This document adapts the sequencing control reported in Part V
of this paper to individual plant requiremenis and goals.

A regression model is used to relate measures of plant performance
to certain control parameters. This relationship is pertodically re-
computed using statrstical analysts of operational data.

A pertinent decision rule is derived by optimal control theory.

Fabrication and assembly operations

Part VI Parameter values for sequencing
control

by S. Gorenstein

The scheduling priority formula developed in Part V of this
paper partially goes beyond ordinary project network scheduling
techniques. Its detailed sequences for individual work activities
in fabrication and assembly shops consider delivery and resource
constraints as well as the requirements for work already in progress.

Further refinements of the sequencing control can be achieved sequencing
by fitting the schedule to individual plant requirements or goals, control
and by using operational historical data for updating purposes. refinements
The necessary statistical analysis of the process data and a
pertinent decision rule are discussed here.

Some of the overall goals of interest in scheduling operations
are:

e Minimize the excess of the throughput time over the critical-
path length
Minimize the dollar value of waiting time, including the time
lost in waiting for shipment
Minimize the dollar value of lateness time or some other
penalty measure
Maximize the utilization of manpower and/or equipment

To optimize the priority assignments for the desired goals,
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we assign to each term of a priority function a certain parameter
value according to the weight we want to give to that respective
term. Letting «; denote these parameters (where j = 1, 2, 3, 4, 5),
and adding a ‘“value” term, V, the scheduling priority formula
developed in Part V can be expressed as

— M + wl + uSi +u/V,
Dy

fi , M
for which job ¢ precedes job k if f; < f, and where the variables
have the following denotations:

M expected duration of a job

F total float (latest start time minus earliest start time minus /)
of a job at time ¢

S slack (difference between due date and earliest possible com-
pletion date) of a job at time ¢, negative values indicating
lateness

V importance, or ‘“value,’
contributes

D node density (as defined in Part V of this paper) of a job.

b

of the end product to which a job

A method of choosing the needed parameters for Equation 1
is developed in this discussion. It should be kept in mind that
we want to optimize a production system in its day-to-day opera-
tion. Since the selected parameter values affect the plant, free
experimentation is not advisable. The chief goal is to improve
actual system performance. Therefore, the parameter values
selected should optimize or improve the system performance
rather than merely yield information.

A least-squares regression model is now used to express some
system state, x, as a function of the scheduling parameters, u;,
for j =1, 2, --- , n. In the particular case mentioned above,
n = 5. For example, it is reasonable to expect that some per-
formance measure, such as dollar value of lateness, would be
affected by the variables in the priority function of Equation 1.
We can think of this lateness value as system state z, and use
a least-squares regression model to estimate the relationship
between x and the parameters u;. The data for this model would
come from past experience with the use of the priority function
as given in Equation 1. Although other regression models could
be considered, a linear function of the type

x = bu, + byus + -+ + bsus

is assumed for the sake of simplicity and ease of computation.
After fitting such a function, one strategy for reducing z is to
increase the parameters with negative coefficients and decrease
those with positive coefficients. Caution should be exercised to
stay within or near the values for which process data are available.
The linear function, being an approximation of the true functional
relationship, is only valid in some limited region, usually within the
region for which we have data, and sometimes in some slightly
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larger region. This caution also applies to any non-linear function
that might be fitted.
Another function, somewhat related to the form of Equation 1,
is:
_ buir + bsus + baus + bou,
bse™

By choosing the denominator in this exponential form, rather
than in the form of Equation 1, we can transform to an equation
that leads to a system of linear regression equations. A non-linear
system of regression equations would be much more difficult
to solve and require more computing time. Letting y = e**,

— E/Iﬁ b2u2 b3u3 %
T = by + by -+ Doy + by

= k2 + ke + ksza 4 kazs

where

bi = ]Ci, ; = Zi and 7/ = 1, 2, 3, 4

bs

An assumed functional form can be chosen on the basis of
an analysis of empirical data. The analysis may indicate a relation-
ship between z and powers and products of the parameters
Uy, Ua, Ug, and w,. Then,

z = b + b, + baus + by + blluf + -+ b44'ui + biuu;,
inwhichs = 1,2,3,4, j=1,2234, j*53

would allow for the consideration of as many as 14 variables,
and would constitute a large class of possible relationships. Of
course, any function appropriate for the data can be considered.
The resulting function could then be minimized.

An important task is to select those parameters in the schedul-
ing formula that exercise significant influence on the system state.
These parameters (called independent, input, or control variables)
can be chosen by two different regression procedures. In approx-
imating the functional relationship between the system state, z,
and the variables (u,, 4%, and w,u; in the case above), it is, of
course, desirable to fit as simple an equation as possible. It is
not necessary to include all the variables in the relationship.
Of interest are only those variables that provide a function useful
for our purposes in exercising some control.

A recommended procedure, called step-wise forward regres-
sion," is to compute the regression of x on each variable, one
at a time, and accept the variable that has the smallest residual
sum of squares. Then compute the regression of x on this first
chosen variable paired with all others, and select the pair that
has the least residual sum of squares. Compute the regression
on all the triplets of variables that include the already selected
pair plus a third variable, and select the triplet with the least
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residual sum of squares. Continue in this fashion until (1) the
residual sum of squares reaches a desired small percentage level
of the total sum of squares and (2) an additional variable only
causes a relatively small reduction in the residual sum of squares.
Alternatively, variables could be introduced on the basis of an
objective testing procedure. For example, the F test"'’ may show
them not to be significant at some low-percentage level; however,
this test would only be applicable in the case of normally dis-
tributed random variables. Since normality cannot be guaranteed
in all cases, it is recommended that the amount of “explained”
sum of squares (rather than the F' test) be used as a criterion.

The step-wise forward procedure is recommended also be-
cause it is less sensitive to the effect of round-off errors in the
inversion of ill-conditioned matrices.’"* These errors are especially
noticeable if squares and products are considered as variables.

As an alternative method, a step-wise backward regression
procedure can be used. For this method, compute the regression
of z on all variables and eliminate variables one by one. Continue
eliminating variables as long as the desired level of residual sum
of squares is still maintained and, at the same time, the variable
dropped would reduce the residual sum of squares by some small
percentage only.

In general, these two procedures do not lead to the retention
of the same independent variables, nor to exactly the best set
of variables of that particular size.” In both cases, however, the
resulting function simplifies our equation considerably and is use-
ful for our purposes.

Thus far, we have defined some regression procedures for
using the process data in estimating its relationship to the param-
eter values. Now, attention is directed toward using these param-
eters in the system state control procedures. Thus far, for exposi-
tional clarity, we have neglected the dependence of z at time ¢
on the value of z at the initial time. However, the system state,
x, changes as the system develops in time, and z(¢ 4 1) depends
upon z(f), because each period’s operation i1s not completely
independent of the previous periods. We assume a linear model
for the system under the assumption that a linear approximation
of a non-linear system holds for some short period of time. Also,
the procedure calls for a periodic revision of the linear model
based on new data. Thus, it seems reasonable that the linear
approximation will be useful. If we think of x as representing
a vector of system states, we can look at the dynamics of the
system as

x(t + 1) = Ax(?) + Bu(l),

where xisann X 1 vector, 4 an n X n matrix, uan m X 1 vector,
and B an n X m matrix. In their full complexity, A and B may
be considered as functions of ¢.

For a desired state of the system, say r(¢), the quantity
x(t) — r(¢) measures the deviation of our system from the desired
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state. Letting
2(?) = x(9) — x(®),

we can express a performance measure for a period (¢, ¢ + 1) as

z(t + 1)’ Qz(t + 1) + u(®)’ Gu(), )

where @ and G are positive semidefinite matrices, and the transpose
of a vector is indicated by prime. @ expresses the penalty, or
“cost,” of deviation from the desired state. For products waiting
in queues, for example, @ might express the inventory cost for
the waiting products. ¢ serves to keep u within or near the region
of available process data. In order to limit the u-region, we may
even introduce the further restriction that |u,| < m,.

With a performance measure that depends upon the system
state, and with system dynamics that depend upon the input u,
we now consider a performance index, P, given by

T—-1
P =3 z(+ 1) Qz(t + 1) + u@®)’ Gu())

t=0
This index takes into consideration the deviations from the
desired system state over the time period of interest. If we con-
sider the measure for only a single time period and minimize
it by a choice of u(¢), it would be optimal for only one period.
However, we must consider the effect of u(f) on x(t + 1), which
in turn affects x(¢ + 2), ete.

Minimization over the time period of interest, one period
at a time, is not equivalent to minimization over 7' periods.
Nevertheless, this one-period procedure has advantages. We can
more easily consider a complex identification of the system

dynamics, almost as ecomplex as we desire, and therefore have a
better chance to achieve an acceptable system representation
and still have a tractable minimization problem. Conceptually,
of course, optimization over the entire time horizon is more
desirable. Various techniques have been applied to such problems,

7% and its extension, Pontryagin’s

11,12,13,14

such as the calculus of variations
maximum principle,®'® and dynamic programming.

Since we are dealing with the effect of a scheduling priority
formula on the entire system of which the formula is only a small
part, it seems justifiable and reasonable to use as simple a model as
possible. Therefore, in our attempt to improve the system per-
formance by refining the scheduling priority formula, we use a
scalar system state and consider its dependence on only one input
parameter at a time. The parameter can be selected from the
regression by choosing the one that has the smallest residual
sum of squares. Other control variables and complexities can
be introduced if necessary.

Let us now examine a system state, such as the dollar value of
lateness in the system. Taking into account all the jobs in the sys-
tem, we multiply the number of days each job is late by the dollar
value of the job and then take the total of such dollar days.
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Our assumed linear functional dependence can now be ex-
pressed as

z(t + 1) — z(t) = b, (&) + -+ + bsus(d) (3)
and can be approximated by the differential equation

dx
Fri b, (®) + -+ + bsus(d).

By integrating Equation 4 from 0 to 7,

«(T) — 2(0) = b, fTu,(t) di4+ - + b, f ws(l) dt,

and comparing with the sum of Equation 3,

r—1 -1
A(T) = 20) = by 2w + -+ + b 2 (),
we can see that the right-hand side contains approximating sums
for the integrals above.

The functional dependence of Equation 3 provides a sys-
tem of equations for a least-squares regression for b,, in which
i =1, 2, 3, 4, 5. Based on data for values of {, we can perform
the regression on each variable u individually and then select
the one that best explains z(t + 1) — x(¢), i.e., the one with
the smallest residual sum of squares. This selected variable is
used for the optimization. Again, this is done for simplicity.
In a more complex development, the step-wise regression could
be performed on all u,;, u’, and cross products, selecting those
variables that account for a desired large percentage of the sum
of squares. This procedure would lead to a variational problem
in more variables.

In estimating the value of b; by means of a least-squares
fit, not all of the available past data should be used. Since we
are developing a linear model for a non-linear system, our ap-
proximation should not be expected to hold for all system states
at any time. Various conditions within and without the system
can affect the system dynamics. In many manufacturing plants,
however, it can be assumed that conditions change slowly and
radical changes are rare. Thus, we can introduce an adaptive
element to our linear view of the system dynamies by using
current data that incorporate recent system changes. A time
period can be selected that is useful for making a linear approxi-
mation of the system, say d days. The approximation and choice
of b, should be made daily, using data of the last d days only.

The control concepts of the system are shown in Figure 1,
where the plant is our scheduling formula which converts a
parameter value u to a specific system state z (e.g., the lateness
of work). This system could also be viewed in other ways, i.e.,
a model can have many applications, physical or conceptual,
as long as the equations describe the system’s “motion.”

The state of the system at time ¢, as given in Equation 4,

8. GORENSTEIN




Figure 1 Control concepts
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can now be approximated as

% — #(0) = bu(l). )

For effective control, this system state should be as close as possible
to the desired state, r(¢). In our case, r(¢f) is equal to zero, because
we want no lateness in the system. Having control over w(t),
we use this variable to achieve our goal. However, as mentioned
before, we must also consider the cost of attaining this state.
This cost is defined as [yu(t)]?, where v is some penalty constant
we can choose. We assign a cost for not being in the desired
state, and a cost for executing control to achieve the desired
state. The cost-of-control term not only ensures that the inputs
do not become infinite, but it also keeps the calculated control
input near the region of available data for estimating b.

Our performance function of Kquation 2 can now be expressed
as

() — rO) + v(®).
If our system is scheduled to run for a time interval (¢, T), we
minimize the integral

P = ftT {[fc(f) — (D" + 72u2(7)} dr (6)

by a choice of u(r).

In selecting u, we do not prescribe a function u(r) for the
entire interval (¢, T). Using the data feedback in our system,
we update the computation of the current «(¢) on a daily basis.
Therefore, we solve for u(f) as a function of z(¢), the current
system state. This closed-loop control is desirable for several
reasons. Even if we knew the exact equations of our system, our
decision should be based on the most up-to-date information on
our system state, x(¢), because the system operation is always
affected by disturbances. The ever-changing system dynamics
require constant revision of their approximation by a re-estima-
tion of b.

Using Equation 5, we substitute for u(r) in Equation 6 and
have

p=| T{[x@) ) (—’5)3(7)2} dr. ™

Minimization must be performed by choice of the function z{(r).
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After finding the minimizing z°(r) in terms of the initial state,
x(t), we compute the minimizing w’(r) by use of Equation 5.
By setting + = ¢ in u’(s), we finally receive w’(t), the control
to be exerted currently. The mathematics of this procedure are
now indicated; derivations are available in the literature.’

Since r(f) = 0, the Euler equation for Equation 7, calling

the integrand F(z, &), is
d
F, - dr Fx = U

or
2(r) — (%)293(7) = 0.

After setting the appropriate boundary conditions, we find z(7r)
in terms of the initial condition (current state), z(¢). Then, taking

el

u(t) gives the desired control. In this case, the result is

Wl) = —5 (tanh [s T — t)])x(t), @®)

which is fairly easy to compute.

The method deseribed makes it possible to assign weights
to important priority factors by the use of control variables.
A function that in part measures the deviation from a desired
system state is optimized by the choice of values of these control
variables. Under the assumption that Equation 5 represents the
dynamies of the system, Fquation 8 provides the system with
an input that minimizes the performance index P of Equation 6.
This input, u, can then be used in Equation 1, yielding the desired
sequencing function. The control exercised is adaptive in the
sense that the representation of the system’s dynamies is period-
ically revised by successive least-squares fits of new data as
acquired.
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