
This  document  adapts  the  sequencing  control  reported in Part  V 
of this  paper  to  individual  plant  requirements  and  goals. 

A regression  model i s  used  to  relate  measures of plant  performance 
to  certain  control  parameters. This  relationship  is   periodically re- 
computed  using  statistical  analysis of operational  data. 

A pertinent  decision  rule i s  derived  by  optimal  control  theory. 

Fabrication  and  assembly  operations 
Part VI Parameter  values for sequencing 

control 
by S. Gorenstein 

The scheduling priority formula developed in Part V of this 
paper partially goes beyond ordinary project network scheduling 
techniques. Its detailed sequences for individual work activities 
in  fabrication and assembly shops consider delivery and resource 
constraints  as well as  the requirements for work already in progress. 

Further refinements of the sequencing control can be achieved sequencing 
by  fitting the schedule to individual plant  requirements or goals, control 
and by using operational historical data for updating purposes. refinements 
The necessary statistical analysis of the process data  and a 
pertinent decision rule are discussed here. 

Some of the overall goals of interest in scheduling operations 
are : 

Minimize the excess of the  throughput  time over the critical- 

Minimize the dollar value of waiting time, including the  time 

Minimize the dollar value of lateness time or some other 

Maximize the utilization of manpower and/or  equipment 

path length 

lost in waiting for shipment 

penalty measure 

To optimize the priority assignments for the desired goals, 
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we assign to each term of a priority  function  a  certain  parameter 
value  according to  the weight we want  to give to  that respective 
term.  Letting ui denote  these  parameters (where j = 1, 2,  3, 4, 5), 
and  adding a  “value”  term, V ,  the scheduling  priority  formula 
developed in  Part V can  be expressed as 

for which job i precedes job k if f i  < f b  and where the variables 
have the following denotations: 

M expected duration of a job 
F total float  (latest start time  minus  earliest start time  minus M )  

of a job a t  time t 
S slack (difference between due  date  and earliest possible corn- 

pletion date) of a  job a t  time t ,  negative  values  indicating 
lateness 

V importance,  or  “value,” of the end  product to which a  job 
contributes 

D node  density  (as defined in Part V of this  paper) of a  job. 

A  method of choosing the needed parameters  for  Equation 1 
regression is developed in  this discussion. It should  be kept  in mind that 
procedure we want  to optimize  a  production  system  in its  day-to-day opera- 

tion.  Since the selected parameter values affect the  plant, free 
experimentation  is  not  advisable. The chief goal is to improve 
actual  system performance.  Therefore, the parameter  values 
selected  should  optimize  or  improve the system  performance 
rather  than merely yield information. 

A  least-squares regression model is now used to express some 
system  state, z, as a  function of the scheduling  parameters, ui, 
for j = I, 2, , n. In  the  particular case mentioned  above, 
n = 5 .  For example, it is reasonable to expect that some  per- 
formance  measure,  such as dollar  value of lateness, would be 
affected by  the variables in  the priority  function of Equation 1. 
We can  think of this lateness  value as  system  state x, and use 
a  least-squares regression model to  estimate  the relationship 
between x and  the  parameters ui. The  data for this model would 
come from  past experience with  the use of the priority  function 
as given  in Equation 1. Although other regression models could 
be considered, a linear  function of the  type 

X = b1ul + baUp + * .  + b5u5 

is assumed  for the sake of simplicity and ease of computation. 
After  fitting  such  a  function,  one  strategy  for  reducing x is to 
increase the parameters  with  negative coefficients and decrease 
those  with  positive coefficients. Caution should  be exercised to 
stay within  or  near the values  for which process data  are available. 
The linear  function, being an approximation of the  true functional 
relationship,  is  only  valid in some limited region, usually  within the 
region for  which we have  data,  and sometimes in some  slightly 
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1 larger region. This  caution also applies to  any non-linear function 

Another  function,  somewhat  related to  the form of Equation 1, 
that might  be  fitted. 

is : 

x =  b 1 ~ 1  + bzua + bnus + b 4 ~ 4  

b,eu8 

By choosing the denominator  in  this  exponential  form,  rather 
than  in  the  form of Equation 1, we can  transform to  an equation 
that leads to a  system of linear rcgression equations. A non-linear 
system of regression equations would be  much  more difficult 
to solve and require  more  computing  time. Letting y = e%', 

~ - blUl I b2U2 I b3U3 ; b'1UI 
bjy bsy b5Y b5Y 

= h X 1  + ka& + k323 + 1C4& 

where 

3- 
Y - Z d ,  and i = 1 , 2 , 3 , 4 .  

An assumed  functional  form  can  be chosen on  the basis of 
an analysis of empirical data.  The analysis may  indicate a  relation- 
ship bet,ween x and powers and  products of the parameters 
ul,  u2,  u3, and u4. Then, 

X = blul + b2Uz + b 3 ~ 3  + b,u, + h1uT + * * * + b 4 4 d  + bi;uiu;, 

i n w h i c h i = 1 , 2 , 3 , 4 ,   j = 1 , 2 , 3 , 4 ,  j # i ,  

would allow for the consideration of as  many  as 14 variables, 
and would constitute a large class of possible relationships. Of 
course, any function  appropriate for the  data can  be considered. 
The resulting  function could then be  minimized. 

An important  task  is  to select those  parameters  in  the schedul- selection 
ing  formula that exercise significant influence on the system  state. of variables 
These  parameters (called independent,  input, or control  variables) 
can  be chosen by  two different regression procedures. In  approx- 
imating the functional  relationship  between the system  state, x, 
and  the variables (ui ,   u f ,  and uiui in  the case above), it is, of 
course, desirable to fit as simple an equation  as possible. It is 
not necessary to include all the variables  in the relationship. 
Of interest  are only those  variables that provide  a  function useful 
for  our  purposes  in exercising some control. 

A  recommended  procedure, called step-wise forward regres- 
sion,' is to compute the regression of z on  each  variable,  one 
a t  a  time, and  accept  the  variable  that  has  the smallest  residual 
sum of squares.  Then  compute  the regression of x on  this first 
chosen variable  paired  with  all  others,  and  select the  pair  that 
has  the  least residual sum of squares.  Compute  the regression 
on all the triplets of variables that include the already  selected 
pair plus  a third variable, and select the  triplet  with  the  least 
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residual sum of squares. Continue in this fashion until (1) the 
residual sum of squares reaches a desired small percentage level 
of the  total sum of squares and (2) an additional  variable only 
causes a  relatively small reduction in the residual sum of squares. 
Alternatively, variables could  be introduced on the basis of an 
objective testing procedure. For example, the F test‘” may show 
them  not  to be significant a t  some low-percentage level; however, 
this  test would only be applicable in the case of normally dis- 
tributed  random variables. Since normality  cannot be guaranteed 
in all cases, it is recommended that  the amount of “explained” ~ 

sum of squares  (rather than  the F test) be  used as a criterion. 
The step-wise forward procedure is recommended also  be- 

cause it is less sensitive to  the effect of round-off errors  in the 
inversion of ill-conditioned mat rice^.^ * 4  These  errors are especially 
noticeable if squares  and  products are considered as variables. 

As an  alternative method, a step-wise backward regression 
procedure can be used. For this method, compute the regression 
of x on all variables and eliminate variables one by one. Continue 
eliminating variables as long as  the desired level of residual sum 
of squares is still  maintained  and, at the same time, the variable 
dropped would reduce the residual sum of squares  by some small 
percentage only. 

In general, these two procedures do not lead to  the retention 
of the same independent variables, nor to exactly the best set 
of variables of that particular size.‘ In  both cases,  however, the 
resulting function simplifies our equation considerably and is use- 
ful for our purposes. 

Thus  far, we have defined  some  regression procedures for 
initial using the process data in  estimating its relationship to  the param- 
system eter values. Now, attention is directed toward using these  param- 
state eters  in the system state control procedures. Thus  far, for exposi- 

tional  clarity, we have neglected the dependence of x at time t 
on the value of z at the initial  time. However, the system state, 
x, changes as  the system develops in time, and x(t + 1) depends 
upon z(t), because each period’s operation is not completely 
independent of the previous periods. We assume a linear model 
for the system  under the assumption that a linear approximation 
of a non-linear system holds for some short period of time. Also, 
the procedure calls for a periodic revision of the linear model 
based on  new data.  Thus,  it seems reasonable that  the linear 
approximation will  be useful. If we think of x as representing 
a vector of system states, we can look at  the dynamics of the 
system as 

~ ( t  + 1) = Ax( t )  + Bu(t), 

where x is an n x 1 vector, A an n X n matrix, u an m x 1 vector, 
and B an n x m matrix. In their full complexity, A and B may 
be considered as functions of t .  

For a desired state of the system, say r ( t ) ,  the  quantity 
x ( t )  - r( t )  measures the deviation of our  system from the desired 
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state.  Letting 

z ( t )  = x ( t )  - r(t), 

we can express a  performance  measure  for a period (t, t + 1) as 

z( t  + 1)' &z( t  + 1) + ~(0' Gu(t), (2) 
where Q and G are positive semidefinite matrices, and  the  transpose 
of a  vector  is  indicated  by  prime. Q expresses the penalty, or 
"cost," of deviation  from the desired state.  For  products  waiting 
in queues, for  example, Q might express the  inventory cost for 
the waiting  products. G serves to  keep u within or near the region 
of available process data.  In order to limit the u-region, we may 
even  introduce the  further  restriction  that Juil 5 mi. 

With a performance  measure that depends  upon the system 
state,  and  with  system  dynamics  that  depend  upon  the  input u, 
we  now consider a performance index, E', given by 

P = ~ ( t  + 1)' Qz( t  + 1) + ~ ( t ) '  Gu(~) 

This index takes  into consideration the deviations  from the 
desired  system state over the  time period of interest. If we con- 
sider the measure for only a single time  period and minimize 
it by  a choice of u(t), it would be  optimal  for  only  one  period. 
However, we must consider the effect of u(t) on x ( t  + I), which 
in  turn affects x ( t  + 2), etc. 

Minimization  over the time  period of interest, one period 
a t  a time, is not  equivalent to  minimization  over I' periods. 
Nevertheless, this one-period procedure  has advantages.  We  can 
more  easily consider a complex identification of the system 
dynamics,  almost as complex as we desire, and therefore have a 
better chance to achieve an  acceptable  system  representation 
and  still  have a tractable minimization  problem.  Conceptually, 
of course, optimization  over the entire  time  horizon  is  more 
desirable.  Various  techniques  have been applied to such problems, 
such  as the calculus of variations6.7's  and  its extension,  Pontryagin's 
maximum p r i n ~ i p l e , ~ " ~  and  dynamic programming.""2.'3.14 

Since we are dealing  with the effect of a  scheduling  priority 
formula  on  the  entire  system of which the formula  is  only  a  small 
part,  it seems justifiable and reasonable to use as simple  a model as 
possible. Therefore, in  our  attempt  to  improve  the  system per- 
formance by refining the scheduling  priority  formula, we use a 
scalar  system state  and consider its dependence  on  only  one input 
parameter a t  a time. The  parameter  can be  selected  from the 
regression by choosing the one that  has  the smallest  residual 
sum of squares.  Other  control  variables  and complexities can 
be  introduced if necessary. 

Let us now examine a system  state, such as the dollar  value of 
lateness  in the system.  Taking  into  account all the jobs in  the sys- 
tem, we multiply the number of days each  job  is late  by  the dollar 
value of the job  and  then  take  the  total of such  dollar  days. 

T-1 

t -0 
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Figure 1 Control concepts 
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I can now be approximated as 

! g = k(t)  = bu(t). 

For effective control,  this  system state should be as close as possible 
to  the desired state, r ( t ) .  I n  our case, r( t )  is equal to zero, because 
we want no lateness in  the  system.  Having control  over u(t), 
we use this variable to achieve our goal. However, as mentioned 
before, we must also consider the cost of attaining  this  state. 
This cost is defined as [yu(t) ] ' ,  where y is some penalty  constant 
we can choose. We assign a cost for not being in  the desired 
state,  and a cost for  executing  control to achieve the desired 
state.  The cost-of-control tern1 not only ensures that  the  inputs 
do  not become infinite, but it also keeps the calculated  control 
input  near  the region of available data for estimating b. 

Our performance function of Equation 2 can now be expressed 
as 

[.(4 - r(t)l2 + y2u2(t). 

If our  system is scheduled to  run for a  time  interval ( t ,  T ) ,  we 
minimize the integral 

P = /T {I.(.) - T ( 7 ) I 2  + y ; 2 ( 7 ) }  dT (6) 

by a choice of u(T).  
In  selecting u, we do not prescribe  a  function u(7) for the 

entire  interval ( t ,  T ) .  Using the  data feedback in our system, 
we update  the  computation of the  current u(t) on a  daily basis. 
Therefore, we solve for u(t) as a function of ~ ( t ) ,  the  current 
system  state.  This closed-loop control  is  desirable for several 
reasons. Even if we knew the exact  equations of our  system,  our 
decision should be based on the most  up-to-date  information  on 
our  system  state, x( t ) ,  because the system  operation  is  always 
affected by disturbances. The ever-changing system  dynamics 
require  constant revision of their  approximation by a re-estima- 
tion of b .  

Using Equation 5, we substitute for u(r) in  Equation 6 and 
have 

Minimization must be performed by choice of the function x(.). 
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