This part of the paper discusses the control-program functions most
closely related to job and task management.

Emphasized are design features that facilitate diversily in application
environments as well as those that support multitask operation.

The functional structure of OS/360

Part II Job and task management
by B. I. Witt

One of the basic objectives in the development of 0s/360 has been
to produce a general-purpose monitor that can jointly serve the
needs of real-time environments, multiprogramming for peripheral
operations, and traditional job-shop operations. In view of this
objective, the designers found it necessary to develop a more
generalized framework than that of previously reported systems.
After reviewing salient aspects of the design setting, we will
discuss those elements of 0s/360 most important to an under-
standing of job and task management.

Background

Although the conceptual roots of os/360 task management are
numerous and tangled, the basic notion of a task owes much to
the systems that have pioneered the use of on-line terminals for
inventory problems. This being the case, the relevant charac-
teristics of an on-line inventory problem are worthy of review.
We may take the airline seat-reservation application as an ex-
ample: a reservation request reduces the inventory of available
seats, whereas a cancellation adds to the inventory. Because a
reply to a ticket agent must be sent within a matter of seconds,
there is no opportunity to collect messages for later processing.
In the contrasting environment where files are updated and re-
ports made on a daily or weekly basis, it suffices to collect and
sort transactions before posting them against a master file.

IBM SYSTEMS JOURNAL * VOL. 5 - NO. 1 - 1966




Three significant consequences of the on-line environment can
be recognized:

Each message must be processed as an independent task
Because there is no opportunity to batch related requests,
each task expends a relatively large amount of time in refer-
ences to the master file

Many new messages may be received by the system before
the task of processing an older message is completed

What is called for, then, is a control program that can recognize
the existence of a number of concurrent tasks and ensure that
whenever one task cannot use the cpu, because of input/output
delays, another task be allowed to use it. Hence, the cpu is con-
sidered a resource that is allocated to a task.

Another major consideration in on-line processing is the size
and complexity of the required programs. Indeed, the quantity
of code needed to process a transaction can conceivably exceed
main storage. Furthermore, subprogram selection and sequence
depend upon the content of an input message. Lastly, subpro-
grams brought into main storage on behalf of one transaction
may be precisely those needed to process a subsequent trans-
action. These considerations dictate that subprograms be callable
by name at execution time and relocatable at load time (so that
they may be placed in any available storage area); they also
urge that a single copy of a subprogram be usable by more than
one transaction.

The underlying theme is that a task—the work required to
process a message—should be an identifiable, controllable element.
To perform a task, a variety of system resources are required:
the cpu itself, subprograms, space in main and auxiliary storage,
data paths to auxiliary storage (e.g., a channel and a control unit),
interval timer and others.

Since a number of tasks may be competing for a resource,
an essential control program function is to manage the system’s
resources, i.e., to recognize requests, resolve conflicting demands,
and allocate resources as appropriate. In this vein, the general
purpose multitask philosophy of the o0s/360° control program
design has been strongly influenced by task-management ideas
that have already been tested in on-line systems.' But there
is no reason to limit the definition of ‘‘task” to the context of
real-time inventory transactions. The notion of a task may be
extended to any unit of work required of a computing system,
such as the execution of a compiler, a payroll program, or a data-
conversion operation.

Basic definitions

In the interests of completeness, this section briefly redefines
terms introduced in Part I. Familiarity with the general structure
of sysTEM/360 is assumed.”

From the standpoint of installation accounting and machine

JOB AND TASK MANAGEMENT




room operations, the basic unit of work is the job. The essential
characteristic of a job is its independence from other jobs. There is
no way for one job to abort another. There is also no way for
the programmer to declare that one job must be contingent upon
the output or the satisfactory completion of another job. Job
requirements are specified by control statements (usually punched
in cards), and may be grouped to form an input job stream.
For the sake of convenience, the job stream may include input
data, but the main purpose of the job stream is to define and
characterize jobs. Because jobs are independent, the way is open
for their concurrent execution.

By providing suitable control statements, the user can divide a
job into job steps. Thus, a job is the sum of all the work associated
with its component job steps. In the current os/360, the steps of a
given job are necessarily sequential: only one step of a job can be
processed at a time. Furthermore, a step may be conditional upon
the successful completion of one or more preceding steps; if the
specified condition is not met, the step in question can be bypassed.

Whenever the control program recognizes a job step (as the
result of a job control statement), it formally designates the step
as a task. The task consists, in part or in whole, of the work to
be accomplished under the direction of the program named by
the job step. This program is free to invoke other programs in
two ways, first within the confines of the original task, and second
within the confines of additionally created tasks. A task is created
(except in the special case of initial program loading) as a con-
sequence of an ATTACH macroinstruction. At the initiation of
a job step, ATTACH is issued by the control program; during
the course of a job step, ATTACH’s may be issued by the user’s
programs.

From the viewpoint of the control system, all tasks are inde-
pendent in the sense that they may be performed concurrently.
But in tasks that stem from one given job (which implies that
they are from the same job step), dependency relationships may
be inherent because of program logic. To meet this possibility, the
system provides means by which tasks from the same job can be
synchronized and confined within a hierarchical relationship. As a
consequence, one task can await a designated point in the execu-
tion of another task. Similarly, a task can wait for completion of a
subtask (a task lower in the hierarchy). Also, a task can abort a
subtask.

Although a job stream may designate many jobs, each of which
consists of many job steps and, in turn, leads to many tasks, a
number of quite reasonable degenerate cases may be imagined;
e.g., in an on-line inventory environment, the entire computing
facility may be dedicated to a single job that consists of a single job
step. At any one time, this job step may be comprised of many
tasks, one for each terminal transaction. On the other hand, in
many installations, it is quite reasonable to expect almost all jobs
to consist of several steps (e.g., compile/link-edit/execute) with

B. I. WITT




no step consisting of more than one task.

In most jobs, the executable programs and the data to be
processed are not new to the system—they are carried over from
earlier jobs. They therefore need not be resubmitted for the new
job; it is sufficient that they be identified in the control statements
submitted in their place as part of a job stream. A job stream con-
sists of such control statements, and optionally of data that is
new to the system (e.g., unprocessed keypunched information).
Control statements are of six types; the three kinds of interest
here are job, execule, and data definition statements.

The first statement of each job is a job statement. Such a
statement can provide a job name, an account number, and a pro-
grammer’s name. It can place the job in one of fifteen priority
classes; it can specify various conditions which, if not met at the
completion of each job step, inform the system to bypass the
remaining steps.

The first statement of each job step is an execute statement.
This statement typically identifies a program to be executed, al-
though it can be used to call a previously cataloged procedure into
the job stream. The first statement can designate accounting
modes, conditional tests that the step must meet with respect to
prior steps, permissable execution times, and miscellaneous operat-
ing modes.

A data definition statement permits the user to identify a data
set, to state needs for input/output devices, to specify the desired
channel relationships among data sets, to specify that an output
data set be passed to a subsequent job step, to specify the final
disposition of a data set, and to incorporate other operating details.

In os/360, a ready-for-execution program consists of one or
more subprograms called load modules; the first load module to be
executed is the one that is named in the execute control statement.
At the option of the programmer, a program can take one of
the following four structures:

Semple structure. One load module, loaded into main storage as an
entity, contains the entire program.

Planned overlay structure. The program exists in the library as a
single load module, but the programmer has identified program
segments that need not be in main storage at the same given
time. As a consequence, one area of storage can be used and reused
by the different segments. The 0s/360 treatment of this structure
follows the guide lines previously laid down by Heising and Larner.?
A planned overlay structure can make very effective use of main
storage. Because the control system intervenes only once to find a
load module, and linkages from segment to segment are aided by
symbol resolution in advance of execution, this structure also
serves the interest of execution efficiency.

Dynamic serial structure. The advantages of planned overlay tend
to diminish as job complexity increases, particularly if the selection

JOB AND TASK MANAGEMENT

control
statements

program
structure




Figure 1

L SAVE

LINK B

— RETURN
RETURN

— RETURN

RETURN

* SUPERVISORY ACTION

of segments is data dependent (as is the case in most on-line in-
ventory problems). For this situation, os/360 provides means for
calling load modules dynamically, i.e., when they are named during
the execution of other load modules. This capability is feasible be-
cause main storage is allocated as requests arise, and the conven-
tions permit any load module to be executed as a subroutine.
It is consistent with the philosophy that tasks are the central
element of control, and that all resources required by a task
for its successful performance—the cpu, storage, and programs—
may be requested whenever the need is detected. In the dynamic
serial structure, more than one load module is called upon during
the course of program execution. Following standard linkage con-
ventions, the control system acts as intermediary in establishing
subroutine entry and return. Three macroinstructions are provided
whereby one load module can invoke another: LINK, XCTL (trans-
fer control), and LOAD.

The action of LINK is illustrated in Iigure 1. Of the three
programs (i.e., load modules) involved, X is the only one named at
task-creation time. One of the instructions generated by LINK is a
supervisor call (8VC), and the program name (such as A or B in
the figure) is a linkage parameter. When the appropriate program
of the control system is called, it finds, allocates space for, fetches,
and branches to the desired load module. Upon return from the
module (effected by the macroinstruction RETURN), the occupied
space is liberated but not reused unless necessary. Thus, in the
example, if program B is still intaet in main storage at the second
call, it will not be fetched again (assuming that the user is op-
erating under ‘‘reusable” programming conventions, as discussed
below).

As suggested by Figure 2, XCTL can be used to pass control to
successive phases of a program. Standard linkage conventions are
observed, parameters are passed explicitly, and the supervisor

B. I. WITT




Figure 2

- SAVE

LINK A RETURN

-~ RETURN

* SUPERVISORY ACTION

Figure 3a, 3b

SAVE

LOAD B LOAD B
LINK B

LINK B

LINK B
OELETE 8

RETURN RETURN

functions are similar to those needed for LINK. However, a program
transferring via XCTL is assumed to have completed its work, and
all its allocated areas are immediately liberated for reuse.

The LOAD macroinstruction is designed primarily for those
cases in which tasks make frequent use of a load module, and
reusable conventions are followed. LOAD tells the supervisor to
bring in a load module and to preserve the module until liberated
by a DELETE macroinstruction (or automatically upon task
termination). Control ean be passed to the module by a LINK, as
in Figure 3a, or by branch instructions, as in Figure 3b.

Dynamic parallel structure. In the three foregoing structures,
execution is serial. The ATTACH macroinstruction, on the other
hand, creates a task that can proceed in parallel with other tasks, as
permitted by availability of resources. In other respects, ATTACH
is much like LINK. But since ATTACH leads to the creation of
a new task, it requires more supervisor time than LINK and
should not be used unless a significant degree of overlapped
operation is assured.

Load modules in the library are of three kinds (as specified by
the programmer at link-edit time): not reusable, serially reusable,
and reenterable. Programs in the first category are fetched directly

JOB AND TASK MANAGEMENT

program
usability




from the library whenever needed. This is required because such
programs may alter themselves during execution in a way that
prevents the version in main storage from being executed more
than once.

A serially reusable load module, on the other hand, is designed
to be self-initializing; any portion modified in the course of execu-
tion is restored before it is reused. The same copy of the load
module may be used repeatedly during performance of a task.
Moreover, the copy may be shared by different tasks created from
the same job step; if the copy is in use by one task at the time it is
requested by another task, the latter task is placed in a queue to
wait for the load module to become available.

A reenterable program, by design, does not modify itself during
execution. Because reenterable load modules are normally loaded in
storage areas protected by the storage key used for the supervisor,
they are protected against accidental modification from other
programs. A reenterable load module can be loaded once and used
freely by any task in the system at any time. (A reenterable load
module fetched from a private library, rather than from the main
library, is made available only to tasks originating from the same
job step.) Indeed, it can be used concurrently by two or more tasks
in multitask operations. One task may use it, and before the
module execution is completed, an interruption may give control
to a second task which, in turn, may reenter the module. This in no
way interferes with the first task resuming its execution of the
module at a later time.

In a multitask environment, concurrent use of a load module
by two or more tasks is considered normal operation. Such use is
Important in minimizing main storage requirements and program
reloading time. Many o0s/360 control routines are written in
reenterable form.

A reenterable program uses machine registers as much as
possible; moreover, it can use temporary storage areas that “be-
lIong”” to the task and are protected with the aid of the task’s stor-
age key. Temporary areas of this sort can be assigned to the
reenterable program by the calling program, which uses a linkage
parameter as a pointer to the area. They can also be obtained
dynamically with the aid of the GETMAIN macroinstruction in
the reenterable program itself. GETMAIN requests the supervisor
to allocate additional main storage to the task and to point out
the location of the area to the requesting program. Note that the
storage obtained is assigned to the task, and not to the program
that requested the space. If another task requiring the same pro-
gram should be given control of the cpu before the first task finishes
its use of the program, a different block of working storage is
obtained and allocated to the second task.

Whenever a reenterable program (or for that matter any pro-
gram) is interrupted, register contents and program status word
are saved by the supervisor in an area associated with the inter-
rupted task. The supervisor also keeps all storage belonging to the

B. I, WITT




task intact—in particular, the working storage being used by the
reenterable program. No matter how many intervening tasks use
the program, the original task can be allowed to resume its use of
the program by merely restoring the saved registers and program
status word. The reenterable program is itself unaware of which
task is using it at any instant. It is only concerned with the con-
tents of the machine registers and the working storage areas
pointed to by designated registers.

Job management

The primary functions of job management are

e Allocation of input/output devices
e Analysis of the job stream

e Overall scheduling

¢ Direction of setup activities

In the interests of efficiency, job management is also empowered
to transcribe input data onto, and user output from, a direct-
access device.

In discussing the functions of 0s/360, a distinction must be made
between job management and task management. Job management
turns each job step over to task management as a formal task, and
then has no further control over the job step until completion or
abnormal termination. Job management primes the pump by de-
fining work for task management; task management controls the
flow of work. The functions of task management (and to some
degree of data management) consist of the fetching of required
load modules; the dynamic allocation of cpu, storage space,
channels, and control units on behalf of competing tasks; the
services of the interval timer; and the synchronization of related
tasks.

Job management functions are accomplished by a job scheduler
and a master scheduler. The job scheduler consists mainly of con-
trol programs with three types of functions: read/interpret,
initiate/terminate, and write. The master scheduler is limited in
function to the handling of operator commands and messages to
the console operator.

In its most general form, the job scheduler permits priority
scheduling as well as sequential scheduling. The sequential schedul-
tng system is suggested by Figure 4. A reader/interpreter scans
the control statements for one job step at a time. The initiator
allocates input/output devices, notifies the operator of the physical
volumes (tape reels, removable disks, or the like) to be mounted,
and then turns the job step over to task management.

In a priority scheduling system, as suggested by Figure 5, jobs
are not necessarily executed as encountered in an input job stream.
Instead, control information associated with each job enters an
input work queue, which is held on a direct-access device. Use of
this queue, which can be fed by more than one input job stream,
permits the system to react to job priorities and delays caused by

JOB AND TASK MANAGEMENT

schedulers




Figure 4

JOB STREAM

multijob
initiation

the mounting and demounting of input/output volumes. The
initiator/terminator can look ahead to future job steps (in a given
job) and issue volume-mounting instructions to the operator in
advance.

Some versions of the system have the capability of processing
jobs in which control information is submitted from remote on-line
terminals. A reader/interpreter task is attached to handle the job
control statements, and control information is placed in the input
work queue and handled as in the case of locally submitted jobs.
Output data sets from remote jobs are routed to the originating
terminal.

For each step of a selected job, the initiator ensures that all
necessary input/output devices are allocated, that direct-access
storage space is allocated as required, and that the operator has
mounted any necessary tape and direct-access volumes. Finally,
the initiator requests that the supervisor lend control to the pro-
gram named in the job step. At job step completion, the terminator
removes the work description from control program tables, freeing
input/output devices, and disposing of data sets.

One version of the initiator/terminator, optional for larger
systems where it is practical to have more than one job from the
input work queue under way, permits multijob initiaiton. When
the system is generated, the maximum number of jobs that are
allowed to be executed concurrently can be specified. Although
each selected job is run one step at a time, jobs are selected from
the queue and initiated as long as (1) the number of jobs specified

—

SYSTEM

CARD
READER

AND/OR

CONSOLE
.3

MESSAGES

A4

MASTER

‘ TAPE i

AND/OR

SCHEDULER

J:

COMMANDS MESSAGES

Y

' DisK I

AND/OR

READER-
INTERPRETER INITIATOR

T

20

B. 1. WITT




by the user is not exceeded; (2) enough input/output devices are
available; (3) enough main storage is available; (4) jobs are in the
input work queue ready for execution; and (5) the initiator has not
been detached by the operator.

Multijob initiation may be used to advantage where a series of
local jobs is to run simultaneously with an independent job re-
quiring input from remote terminals. Typically, telecommunica-
tion jobs have periods of inactivity, due either to periods of low
traffic or to delays for direct-access seeks. During such delays, the
locally available jobs may be executed.

During execution, output data sets may be stored on a direct-
access storage device. Later, an output writer can transcribe the
data to a system output device (normally a printer or punch). Each
system output device is controlled by an output writer task. More-
over, output devices can be grouped into usage classes. For
example, a single printer might be designated as a class for high-
priority, low-volume printed output, and two other printers as a
class for high-volume printing. The data description statement
allows output data sets to be directed to a class of devices; it also
allows a specification that places a reference to the data on the
output work queue. Because the queue is maintained in priority
sequence, the output writers can select data sets on a priority
basgis.

In systems with input and output work queues, the output
writer is the final link in a chain of control routines designed to
ensure low turn-around time, i.e., time from entry of the work

Figure 5

JOB STREAM

/

CARD SYSTEM
READER CONSOLE

AND,OR COMMANDSl TMESSAGES

MASTER
SCHEDULER
COMMANDS T T MESSAGES
AND.OR
VAN "2

INPUT >
| Reaper. QUEUE INITIATOR-
DISK INTERPRETER TERMINATOR

OUTPUT
) QUEUE

outeuT SGrRor
WRITER |

JOB AND TASK MANAGEMENT 21




single-task
operation

multitask
operation

statement to a usable output. At two intermediate stages of the
work flow, data are accessible as soon as prepared, without any
requirement for batching; and at each of these stages, priorities
are used to place important work ahead of less important work
that may have been previously prepared. These stages occur
when the job has just entered the input work queue, and when the
job is completed with its output noted in the output work queue.

Note that a typical priority scheduling system, even one
that handles only a single job at a time, may require multitask
facilities to manage the concurrent execution of a reader, master
scheduler, and a single user’s job.

Task management

As stated earlier, job management turns job steps over to task
management, which is implemented in a number of supervisory
routines. All work submitted for processing must be formalized as
a task. (Thus, a program is treated as data until named as an
element of a task.) A task may be performed in either a single-task
or multitask environment. In the single task environment, only
one task can exist at any given time. In the multitask environ-
ment, several tasks may compete for available resources on a
priority basis. A program that is written for the single-task
environment and follows normal conventions will work equally
well in the multitask environment.

In a single-task environment, the job scheduler operates as a
task that entered the system when the system was initialized. Each
job step is executed as part of this task, which, as the only task in
the system, can have all available resources. Programs can have a
simple, overlay, or dynamic serial structure.

The control program first finds the load module named in the
EXEC statement. Then it allocates main storage space according
to program attributes stated in the library directory entry for the
load module, and loads the program into main storage. Once the
load module (or root segment, in the case of overlay) is available in
main storage, control is passed to the entry point. If the load
module fetched is the first subprogram of a dynamic serial program,
the subsequent load modules required are fetched in the same
way as the first, with one exception: if the needed module is
reusable and a copy is already in main storage, that copy is used
for the new requirement.

When the job step is completed, the supervisor informs the
job scheduler, noting whether completion was normal or abnormal.

By clearly distinguishing among tasks, the control system can
allow tasks to share facilities where advantageous to do so.

Although the resource allocation function is not absent in a
single-task system, it comes to the fore in a multitask system. The
system must assign resources to tasks, keep track of all assign-
ments, and ensure that resources are appropriately freed upon
task completion. If several tasks are waiting for the same resource,
queuing of requests is required.

B.I. WITT




Each kind of resource is managed by a separate part of the
control system. The cru manager, called the task dispaicher, is
part of the supervisor; the queue on the cpu is called the task queue.
The task queue consists of task control blocks ordered by priority.
There is one task control block for each task in the system. Its
funetion is to contain or point to all control information associated
with a task, such as register and program-status-word contents
following an interrupt, locations of storage areas allocated to the
task, and the like. A task is ready if it can use the cpu, and wazting
if some event must occur before the task again needs the cpu.

A task can enter the waiting state directly via the WAIT macro-
instruction, or it may lapse into a waiting state as a result of
other macroinstructions. An indireet wait may occur, for example,
as a result of a GET macroinstruction, which requests the next
input record. If the record is already in a main storage buffer
area, the control program is not invoked and no waiting occurs;
otherwise, a WAIT is issued by the GET routine and the task
delayed until the record becomes available.

Whenever the task dispatcher gains control, it issues the Load
Program Status Word instruction that passes control to the ready
task of highest priority. If none of the tasks are ready, the task
dispatcher then instructs the cpu to enter the hardware waiting
condition.

By convention, the completed use of a resource is always
signaled by an interruption, whereupon the appropriate resource
manager seizes control.

Let subtask denote a task attached by an existing task within
a job step. Subtasks can share some of the resources allocated
to the attaching task—notably the storage protection key, main
storage areas, serially reusable programs (if not already in use),
reenterable programs, and data sets (as well as the devices on
which they reside). Data sets for a job step are initially pre-
sented to the job scheduler by data definition statements. When
the job scheduler creates a task for the job step, these data sets
become available to all load modules operating under the task,
with no restriction other than that data-set boundaries be heeded.
When the task attaches a subtask, it may pass on the location
of any data control block: using this, the subtask gains access
to the data set.

We have mentioned the ways by which an active task can enter
a waiting state in anticipation of some specific event. After the
event has occurred, the required notification is effected with the
aid of the POST macroinstruction. If the event is governed by the
control program, as in the instance of a read operation, the super-
visor issues the POST; for events unknown to the supervisor, a
user’s program (obviously not part of the waiting task) must issue
a POST.

A task program may issue several requests and then await the
completion of a given number of them. For example, a task may
specify by READ, WRITE, and ATTACH macroinstructions that

JOB AND TASK MANAGEMENT

synchronized
events




three asynchronous activities be performed, but that as soon as
two have been completed, the task be placed in the ready condi-
tion. When each of these requests is initially made to the control
program, the location of a one-word eveni control block is stated.
The event control block provides communication between the task
(which issued the original request and the subsequent WAIT)
and the posting agency—in this case, the control program. When
the WAIT macroinstruction is issued, its parameters supply the
addresses of the relevant event control blocks. Also supplied is a
waztl count that specifies how many of the events must occur before
the task is ready to continue.

When an event occurs, a complete flag in the appropriate
event control block is set by the POST macroinstruction, and the
number of complete flags is tested against the wait count. If they
match, the task is placed in the ready condition. A post code
specified in the POST macroinstruction is also placed in the event
control block; this code gives information regarding the manner
in which completion occurred. After the task again gains control,
the user program can determine which events occurred and in
what manner.

Requests for services may result in waits of no direct concern
to the programmer, as, for example, in the case of the GET macro-
instruction previously mentioned. In all such instances, event
control blocks and wait specifications are handled entirely by the
supervisor.

Another form of synchronization allows cooperating tasks to
share certain resources in a ‘‘serially reusable” way. The idea
(already invoked in the discussion of programs) may be applied
to any shared facility. For example, the facility may be a table
that has to be updated by many tasks. In order to produce the
desired result, each task must complete its use of the table before
another task gains access to it (just as each task had to complete
its use of a self-initiating program before another task was allowed
to use the program). To control access to such a facility, the pro-
grammer may create a queue of all tasks requiring access, and
limit access to one task at a time. Queuing capabilities are pro-
vided by two macroinstructions: enqueue (ENQ) and dequeue
(DEQ). The nature of the facility, known only to the tasks that
require it, is of no concern to the operating system so long as a
queue control block associated with the facility is provided by the
programmer. ENQ causes a request to be placed in a queue asso-
ciated with the queue control block. If the busy indicator in
the control block is on, the task issuing the ENQ is placed in the
wait condition pending its turn at the facility. If the busy indi-
cator is off, the issuing task becomes first in the queue, the busy
indicator is turned on, and control is returned to the task. When
finished with the facility, a task liberates the facility and posts the
next task on the queue by issuing DEQ.

In a multitask operation, competing requests for service or
resources must be resolved. In some cases, choices are made by




considering hardware optimization, as, for example, servicing
requests for access to a disk in a fashion that minimizes disk seek-
ing time. In most cases, however, the system relies upon a priority
number provided by the user. The reason for this is that the user
can best select priority criteria. He may reconcile such factors
as the identification of the job requestor, response-time require-
ments, the amount of time already allocated to a task, or the
length of time that a job has been in the system without being
processed. The net result is stated in a priority number ranging
from O to 14 in order of increasing importance.

Initial priorities, specified in job statements, affect the sequence
in which jobs are selected for execution. The operator is free to
modify such priorities up to the time that the job is actually
selected. Changes to priorities may be made dynamically by the
change priority (CHAP) macroinstruction, which allows a program
to modify the priority of either the active task or of any of its
subtasks. Means are provided whereby unauthorized modifica-
tion can be prevented.

‘When the job scheduler initiates a job step, the current priority
of the job is used to establish a dispatch priority and a lemat pri-
ority. The former is used by the resource managers, where applica-
ble, to resolve contention for a resource. The limit priority, on the
other hand, serves to control dynamie priority assignments. CHAP
permits each task to change its dispatching priority to any point
in the range between zero and its limit. Furthermore, when a task
attaches a subtask, it is free to set the subtask’s dispatching and
limit priorities at any point in the range between zero and the
limit of the attacher; the subtask’s dispatching priority can how-
ever exceed that of the attacher. For example, were task A, with
limit and dispatching priorities both equal to 10, to attach sub-
task B with a higher relative dispatching priority than itself,
it could use CHAP to lower its own dispatching priority to 7 and
attach B with limit and dispatching priorities set to 8.

It is expected that most installations will ordinarily use three
levels of priority for batch-processing jobs. Normal work will
automatically be assigned a median priority. A higher number will
be used for urgent jobs, and a lower one for low-priority work.

Normally, programs are expected to signal completion of their
execution by RETURN or XCTL. If the program at the highest
control level within the task executes a RETURN, the supervisor
treats it as an end-of-task signal. Whenever RETURN is used,
one of the general registers is used to transmit a return code to
the caller. The return code at task termination may be inspected
by the attaching task, and is used by the job scheduler to evaluate
the condition parameters in job control statements. It may, for
example, find that all remaining steps are to be skipped.

In addition, any program operating on behalf of a task can
execute a macroinstruction to discontinue task execution ab-
normally. The control program then takes appropriate action to
liberate resources, dispose of data sets, and remove the task con-

JOB AND TASK MANAGEMENT

task
priority

task
termination




main
storage
allocation

storage
protection

trol block. Although abnormal termination of a task causes ab-
normal termination of all subtasks, it is possible for abnormal sub-
tasks to terminate without causing termination of the attaching
task.

The supervisor is designed to allocate main storage dynam-
ically, when space is demanded by a task or the control program it-
self. An émplicit request is generated internally within the control
program, on behalf of some other control program service. An
example is LINK, in which the supervisor finds a program, allocates
space, and fetches it. To make explicit requests for additional
main storage areas, a user program may employ the GETMAIN
or GETPOOL macroinstructions.

Also provided are means for dynamic release of main storage
areas. Implicit release may take place when a program is no longer
in use, as signaled by RETURN, XCTL, or DELETE. Explicit
release is requested by the FREEMAIN or FREEPOOL macro-
instructions.

Explicit allocation by GETMAIN can be for fixed or variable
areas, and can be conditional or unconditional:

~ Fized area. The amount of storage requested is explicitly given.
~ Variable area. A minimum acceptable amount of storage is
specified, as well as a larger amount preferred. If the larger
amount is not available, the supervisor responds to the request
with the largest available block that equals or exceeds the
stated minimum.
Conditional. Space is requested if available, but the program
can proceed without it.
Unconditional. The task cannot proceed without the requested
space.

The operating system uses the sYSTEM/360 storage protection
feature to protect storage areas controlled by the supervisor
from damage by user jobs and to protect user jobs from each other.
This is done by assigning different protection keys to each of
the job steps selected for concurrent execution. However, if
multiple tasks result from a single job step (by use of the ATTACH
magcroinstruction), all such tasks are given the same protection
key to allow them to write in common communication areas.

Each job step is assigned two logically different pools, each
consisting of one or more storage blocks. The first of these is used
to store non-reusable and serially-reusable programs fron} any
source, and reenterable programs from sources other than the main
library. This pool is not designated by number. The second pool,
numbered 00, is used for any task work areas obtained by the
supervisor and for filling all GETMAIN or GETPOOL requests—un-
less a non-zero pool number is specified.

‘When the highest-level task of a job step is terminated, all
storage pools are released for reassignment. However, when a
task attaches a subtask, and makes storage areas available to the

B. I. WITT




subtask, it may suit the purposes of the task not to have the
storage areas released upon completion of the subtask. To provide
for this possibility, programs may call for the creation of pools
numbered 01 or higher. Such a pool may be made available to a
subtask in either of two ways—that is, by passing or sharing. If a
pool created by a task is passed to a subtask, termination of the
subtask results in release of the pool. On the other hand, subtask
termination does not result in the release of a shared pool. In
both cases, the subtask that receives a pool may add to the pool,
delete from it, or release it in the same way as the originating task.

Because Pool 00 refers to the same set of storage blocks for all
tasks in a job step, it need not be passed or shared, and is not
released until the job step is completed.

If two or more job steps are being executed, and one requires
more additional main storage than is available for allocation, the
control program intervenes. First, the supervisor attempts to free
space occupied by a program that is neither in use nor reserved
by a task. Failing that, it may suspend the execution of one or
more tasks by storing the associated information in auxiliary
storage. The storage and retrieval operations occasioned by com-
peting demands for main-storage space are termed roll-out and
roll-in.

The decision to roll out one or more tasks is made on the basis
of task priorities. A main storage demand by a task can cause as
many lower-priority tasks to be rolled out as necessary to satisfy
the demand. If the lowest-priority task in the system needs more
space to continue, it is placed in a wait state pending main storage
availability.

During roll-out, all tasks operating under a single job step are
removed as a group. Input/output operations under way at the
time of the roll-out are allowed to reach completion.

Roll-in takes place automatically as soon as the original space
is again available, and execution continues where it left off. Since
its task control block remains in a wait status and its input/output
units are not altered, a task may still be considered in the system
after roll-out.

Significance of multitask operations

It may be expected that multitask operations will not only provide
powerful capabilities for many existing environments, but will
also serve as a foundation for more complex environments for
some time to come.

Fast turnaround in job-shop operations is achieved by allowing
concurrent operation of input readers, output writers, and user’s
programs. It is possible to handle a wide variety of telecommunica-
tion activities, each of which is characterized by many tasks
(most of them in wait conditions). Also, complex problems can
be programmed in segments that concurrently share system
resources and hence optimize the use of those resources. With
some versions of the job scheduler, multitask operations permit

JOB AND TASK MANAGEMENT

passing
and
sharing

roll-out
and
roll-in




job steps from several different jobs to be established as con-
current tasks. To serve such current multitask needs, the structure
of the control system consists of two primary classes of elements:
(1) queues representing unsatisfied requirements of tasks for cer-
tain resources, and (2) tables identifying available resources. Some
of the control information is in main storage; some is in auxiliary
storage. This structure facilitates dynamic configuration changes,
such as addition or removal of programs in main storage, and
attached input/output devices.

Perhaps more important for future systems, the structure
may prove adaptable in the management of additional cpu’s.
For example, if multiple cru’s were given access to the job queue
(now stored on a disk), each cpu could queue new jobs as well
as initiate jobs already on the queue. Similarly, if multiple cpu’s
were given access to main storage, each cpu could add tasks to
the task queue and dispatch tasks already on the task queue.
That is, a system could be designed wherein, by executing the
task-dispatcher control routine (which itself is in the shared main
storage), any cpu could be assigned a ranking task on the queue;
and while executing a task, any cpu could add new tasks to the
queue by means of the ATTACH macroinstruction.

Summary

In os/360, for which the basic unit of work is the task, resources
are allocated only to tasks. In general, resources are allocated
dynamically to permit easier planning on the part of the pro-
grammer, achieve more efficient utilization of storage space, and
open the way for concurrent execution of a number of tasks.
Users notify the system of work requirements by defining each

job as a sequence of job-control statements. The number of tasks
entailed by a job depends upon the nature of the job. The system
permits job definitions to be cataloged, thereby simplifying the
job resubmittal process. Reading of job specifications and source
data, printing of job results, and job execution can occur simul-
taneously for different jobs. Job inputs and outputs may be queued
in direct-access storage, thereby avoiding the need for external
batching and permitting priority-governed job execution. In its
multijob-initiation mode, the system can process a number of
jobs concurrently.

CITED REFERENCES AND FOOTNOTE

1. An historic review of operating systems, with emphasis on 1/0 control and
job scheduling, appears in Reference 4. Operating systems that provided
for multiprogramming are described in References 5, 6, and 7. One on-line
inventory application is described in Reference 8, and some indication of
techniques used in its solution are given in References 9 and 10.

. G. A. Blaauw and F. P. Brooks, Jr., “The structure of sysTteEM/360: Part
I—outline of the logical structure,”” IBM Systems Journal 3, No. 2, 119-
135 (1964).

3. W. P. Heising and R. A. Larner, “A semi-automatic storage allocation




system at loading time,” Communications of the ACM 4, No. 10, 446-449
(October 1961).

. T. B. Steel, Jr., “Operating systems,” Datamaiton 10, No. 5, 26-28 (May
1964).

. E. 8. McDonough, “sTRETCH experiment in multiprogramming,” Digest
of Technical Papers, ACM 62 National Conference, 28 (1962).

. E. F. Codd, “Multi-programming,” Advances in Computers, Volume 3,
Edited by Franz L. Alt and Morris Rubinoff.

. G. F. Leonard, “Control techniques in the CL-II Programming System,”
Digest of Technical Papers, ACM 62 National Conference, 29 (1962).

. M. N. Perry and W. R. Plugge, “American Airlines sABRE electronic
reservation system,” WJCC Proceedings, 593-601 (May 1961).

. M. N. Perry, “Handling of very large programs,” Proceedings of IFIP
Congress 65, Volume 1, 243-247 (1965).

. W. B. Elmore and G. J. Evans, Jr.,, “Dynamic control of core memory
in a real-time system,” Proceedings of IFIP Congress 65, Volume 1, 261-
266 (1965).

JOB AND TASK MANAGEMENT

29




