
This  part of the  paper  discusses the control-program  functions  most 
closely related to job and  task  management. 

Emphasized are design  features  that  facilitate  diversity in application 
environments  as well as those that suwwort multitask oneration. 

The functional  structure of OW360 
Part I1 Job and  task  management 

by B. I. Witt 

One of the basic objectives in the development of os/aso has been 
to produce a general-purpose monitor that can jointly serve the 
needs of real-time environments, multiprogramming for peripheral 
operations, and  traditional job-shop operations. In  view of this 
objective, the designers found it necessary to develop a more 
generalized framework than  that of previously reported systems. 
After reviewing salient aspects of the design setting, we will 
discuss those elements of OS/360 most  important  to  an  under- 
standing of job and  task  management. 

Background 
Although the conceptual roots of os/3so task management are 
numerous and tangled, the basic notion of a  task owes much to 
the systems that have pioneered the use of on-line terminals for 
inventory problems. This being the case, the relevant charac- 
teristics of an on-line inventory problem are  worthy of review. 
We may  take  the airline seat-reservation application as an ex- 
ample:  a reservation request reduces the inventory of available 
seats, whereas a cancellation adds  to  the inventory. Because a 
reply to a  ticket  agent  must be sent within a matter of seconds, 
there is  no opportunity  to collect  messages for later processing. 
In  the contrasting environment where  files are  updated  and re- 
ports made on a daily or weekly  basis, it suffices to collect and 
sort  transactions before posting them  against  a  master file. 
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room operations, the basic unit of work  is the job. The essential 
characteristic of a job is its independence from other jobs. There is 
no way for one job  to  abort  another.  There is  also no way for 
the programmer to declare that one job  must be contingent upon 
the  output or the satisfactory completion of another job. Job 
requirements are specified by control statements (usually punched 
in cards), and  may be grouped to form an  input job stream. 
For the sake of convenience, the job stream  may include input 
data,  but  the main purpose of the job  stream is to define and 
characterize jobs. Because jobs are  independent, the way is open 
for their concurrent execution. 

By providing suitable control statements, the user can divide a 
job job into job steps. Thus, a job is the sum of all the work associated 
step with its component job steps. In the current os/360, the steps of a 

given job are necessarily sequential: only one step of a job can be 
processed at  a time. Furthermore,  a  step  may be conditional upon 
the successful completion of one or more preceding steps; if the 
specified condition is not  met, the step  in question can be bypassed. 

Whenever the control program recognizes a  job  step (as the 
task result of a job control statement), it formally designates the  step 

as  a task. The  task consists, in part or in whole, of the work to 
be accomplished under the direction of the program named by 
the job  step.  This program is free to invoke other programs in 
two ways, first within the confines of the original task,  and second 
within the confines of additionally  created tasks. A  task is created 
(except in the special case of initial program loading) as a con- 
sequence of an ATTACH macroinstruction. At  the initiation of 
a  job  step, ATTACH is issued by the control program;  during 
the course of a  job  step, ATTACH’S may be issued by the user’s 
programs. 

From the viewpoint of the control system,  all  tasks are inde- 
pendent  in the sense that  they may be performed concurrently. 
But  in tasks that stem from one given job (which implies that 
they  are from the same job  step), dependency relationships may 
be inherent because of program logic. To meet  this possibility, the 
system provides means by which tasks  from  the same job  can be 
synchronized and confined within  a hierarchical relationship. As a 
consequence, one task can await a designated point in the execu- 
tion of another  task. Similarly, a task can wait for completion of a 
subtask (a task lower in  the hierarchy). Also, a  task  can  abort  a 
subtask. 

Although a job  stream may designate many jobs, each of which 
consists of many  job  steps  and, in turn, leads to many  tasks,  a 
number of quite reasonable degenerate cases may be imagined; 
e.g., in an on-line inventory environment, the entire computing 
facility  may be dedicated to  a single job that consists of a single job 
step. At  any one time, this  job  step  may be comprised of many 
tasks, one for each terminal  transaction. On the other  hand,  in 
many  installations, it is quite reasonable to expect almost  all jobs 
to consist of several steps (e.g., compile/link-edit/execute) with 
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no step consisting of more than one task. 
In most jobs, the executable programs and  the  data  to be 

processed are  not new to  the system-they are carried over from 
earlier jobs. They therefore need not be resubmitted for the new 
job;  it is sufficient that they be identified in the control statements 
submitted  in  their place as  part of a  job  stream.  A  job  stream con- 
sists of such control statements]  and optionally of data  that is 
new to  the system (e.g., unprocessed keypunched information). 
Control statements  are of six types; the  three kinds of interest 
here are job, execute, and data  de$nition statements. 

The first statement of each job is a job  statement.  Such  a 
statement can provide a job name, an account  number, and a  pro- 
grammer’s name. It can place the job in one of fifteen priority 
classes; it can specify various conditions which, if not met at   the 
completion of each job  step, inform the system to bypass the 
remaining steps. 

The first  statement of each job step is an execute statement. 
This  statement  typically identifies a program to be executed, al- 
though it can be  used to call a previously cataloged procedure into 
the job stream.  The  first  statement can designate accounting 
modes, conditional tests that  the  step must meet with respect to 
prior steps, permissable execution times, and miscellaneous operat- 
ing modes. 

A data definition statement  permits  the user to identify a data 
set, to  state needs for input/output devices, to specify the desired 
channel relationships among data sets, to specify that  an  output 
data  set be  passed to a subsequent job  step,  to specify the final 
disposition of a data set,  and to incorporate  other  operating  details. 

In os/360, a ready-for-execution program consists of one or 
more subprograms called load modules; the first load module to be 
executed is the one that is named in the execute control statement. 
At the option of the programmer, a program can take one of 
the following four  structures: 

Simple structure. One load module, loaded into  main  storage as  an 
entity,  contains the  entire program. 

Planned  overlay  structure. The program exists in  the library as a 
single load module, but  the programmer has identified program 
segments that need not be in  main  storage at  the same given 
time. As a consequence, one area of storage can be used and reused 
by the different segments. The OS/360 treatment of this  structure 
follows the guide lines previously laid down by Heising and 
A planned overlay structure can make  very effective use of main 
storage. Because the control system  intervenes only once to find a 
load module, and linkages from segment to segment are aided by 
symbol resolution in advance of execution, this  structure also 
serves the interest of execution efficiency. 

Dynamic serial  structure. The advantages of planned overlay tend 
to diminish as job complexity increases, particularly if the selection 
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task intact-in particular, the working storage being used by the 
reenterable  program. No matter how many  intervening  tasks use 
the program, the original task  can be allowed to  resume its use of 
the program  by merely  restoring the saved  registers and  program 
status word.  The  reenterable  program is itself unaware of which 
task  is using it  at  any  instant. It is only concerned with  the con- 
tents of the machine  registers and  the working storage  areas 
pointed to  by designated  registers. 

Job management 
The  primary  functions of job  management  are 

Allocation of input/output devices 
Analysis of the  job  stream 
Overall  scheduling 
Direction of setup  activities 

In  the  interests of efficiency, job  management  is also empowered 
to  transcribe  input  data onto, and user output  from, a  direct- 
access device. 

In  discussing the functions of os/360, a  distinction  must  be  made 
between job  management  and  task  management.  Job  management 
turns each job  step over to  task management as a  formal  task,  and 
then  has  no  further control  over the  job  step  until completion or 
abnormal  termination.  Job  management primes the  pump  by de- 
fining work for task  management;  task  management  controls  the 
flow of work. The  functions of task  management  (and to  some 
degree of data management) consist of the fetching of required 
load  modules; the dynamic  allocation of CPU, storage  space, 
channels, and control  units  on behalf of competing tasks;  the 
services of the  interval  timer;  and  the  synchronization of related 
tasks. 

Job management  functions are accomplished by a job scheduler 
and a master  scheduler. The  job scheduler  consists  mainly of con- z 
trol  programs  with  three  types of functions: read/interpret, 
initiate/terminate, and write. The  master scheduler  is  limited in 
function to  the handling of operator  commands and messages to  
the console operator. 

In  its  most general  form, the  job scheduler  permits  priority 
scheduling as well as  sequential scheduling. The sequential  schedul- 
ing system is  suggested by  Figure 4. A reader/interpreter  scans 
the control  statements  for one job  step at a  time. The  initiator 
allocates input/output devices, notifies the operator of the physical 
volumes (tape reels, removable  disks, or the like) to  be  mounted, 
and  then  turns  the  job  step over to  task management. 

I n  a priority  scheduling  system, as suggested by  Figure 5 ,  jobs 
are  not necessarily executed as encountered in  an  input job  stream. 
Instead,  control  information associated  with  each job  enters  an 
input work  queue, which is held on a direct-access device. Use of 
this queue, which can  be fed  by  more than one input  job  stream, 
permits the system to react to  job priorities and delays  caused by 

ichedulers 



20 B. I .  WITT 





statement to a usable output.  At two  intermediate  stages of the 
work  flow, data  are accessible as soon as prepared, without  any 
requirement for batching; and a t  each of these stages, priorities 
are used to place important work ahead of less important work 
that may have been previously prepared. These stages occur 
when the job has  just entered the  input work queue, and when the 
job is completed with  its  output  noted  in  the  output work queue. 

Note that a typical  priority scheduling system, even one 
that handles only a single job at a time,  may require multitask 
facilities to manage the concurrent execution of a reader, master 
scheduler, and a single user’s job. 

Task management 
As stated earlier, job management turns job  steps over to task 
management, which is implemented in a number of supervisory 
routines. All  work submitted for processing must be formalized as 
a task. (Thus, a program is treated  as  data until named as an 
element of a task.) A task  may be performed in either a single-task 
or rnultitask environment. In  the single task  environment, only 
one task can exist at  any given time. In  the multitask environ- 
ment, several tasks  may compete for available resources on a 
priority basis. A program that is written for the single-task 
environment and follows normal conventions will  work equally 
well in  the  multitask environment. 

In  a single-task environment, the job scheduler operates as a 
single-task task that entered the system when the system was initialized. Each 
operation job  step is executed as part of this  task, which, as  the only task  in 

the system, can have  all available resources. Programs can have  a 
simple, overlay, or dynamic serial structure. 

The control program first finds the load module named in the 
EXEC statement.  Then it allocates main  storage space according 
to program attributes  stated in the library  directory entry for the 
load module, and loads the program into main storage. Once the 
load module (or root segment, in the case of overlay) is available in 
main storage, control is passed to  the  entry point. If the load 
module fetched is the first subprogram of a dynamic serial program, 
the subsequent load modules required are fetched in  the same 
way as the first, with one exception: if the needed module is 
reusable and a copy is already  in main storage, that-copy is used 
for the new requirement. 

When the job step is completed, the supervisor informs the 
job scheduler, noting whether completion was normal or abnormal. 

By clearly distinguishing among tasks, the control  system can 
allow tasks to share facilities where advantageous to do so. 

Although the resource allocation function is not  absent  in a 
multitask single-task system, it comes to  the fore in a multitask  system. The 
operation system  must assign resources to tasks, keep track of all assign- 

ments,  and ensure that resources are appropriately freed upon 
task completion. If several tasks  are waiting for the same resource, 
queuing of requests is required. 
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Each kind of resource is managed by a separate part of the 
control system. The CPU manager, called the task dispatcher, is 
part of the supervisor; the queue on the CPU is called the task queue. 
The task queue consists of task control blocks ordered by priority. 
There is one task control block for each task in the system. Its 
function is to contain or point to all control information associated 
with a task, such as register and program-status-word contents 
following an interrupt, locations of storage areas allocated to the 
task, and the like. A task is ready if it can use the CPU, and waiting 
if some event must occur before the task again needs the CPU. 

A task can enter the waiting state directly via the WAIT macro- 
instruction, or it may lapse into a waiting state as a result of 
other macroinstructions. An indirect wait may occur, for example, 
as a result of a GET macroinstruction, which requests the next 
input record. If the record is already in a main storage buffer 
area, the control program is not invoked and no waiting occurs; 
otherwise, a WAIT is issued by the GET routine and the task 
delayed until the record becomes available. 

Whenever the task dispatcher gains control, it issues the Load 
Program Status Word instruction that passes control to the ready 
task of highest priority. If none of the tasks are ready, the task 
dispatcher then instructs the CPU to enter the hardware waiting 
condition. 

By convention, the completed use of a resource is always 
signaled by an interruption, whereupon the appropriate resource 
manager seizes control. 

Let subtask denote a task attached by an existing task within 
a job step. Subtasks can share some of the resources allocated 
to the attaching task-notably the storage protection key, main 
storage areas, serially reusable programs (if not already in use), 
reenterable programs, and data sets (as well as the devices on 
which they reside). Data sets for a job step are initially pre- 
sented to the job scheduler by data definition statements. When 
the job scheduler creates a task for the job step, these data sets 
become available to all load modules operating under the task, 
with no restriction other than that data-set boundaries be heeded. 
When the task attaches a subtask, it may pass on the location 
of any data control block: using this, the subtask gains access 
to the data set. 

We have mentioned the ways by which an active task can enter 
a waiting state in anticipation of some specific event. After the 
event has occurred, the required notification is effected with the 
aid of the POST macroinstruction. If the event is governed by the 
control program, as in the instance of a read operation, the super- 
visor issues the POST; for events unknown to the supervisor, a 
user’s program (obviously not part of the waiting task) must issue 
a POST. 

A task program may issue several requests and then await the 
completion of a given number of them. For example, a task may 
specify by READ, WRITE, and ATTACH macroinstructions that 
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three asynchronous  activities  be  performed, but  that as soon as 
two  have  been completed, the  task be placed in the ready condi- 
tion.  When  each of these  requests is initially  made to  the control 
program, the location of a one-word event  control block is stated. 
The  event  control block provides  communication  between the  task 
(which issued the original request and  the subsequent WAIT) 
and  the posting agency-in this case, the control  program.  When 
the WAIT macroinstruction  is issued, its  parameters  supply  the 
addresses of the relevant  event  control blocks. Also supplied is a 
wait  count that specifies how many of the  events  must occur before 
the  task is  ready to  continue. 

When an  event occurs, a complete flag in  the  appropriate 
event control block is set  by  the POST macroinstruction,  and  the 
number of complete flags is tested  against the wait  count. If they 
match, the  task is placed in the ready  condition.  A post code 
specified in  the POST macroinstruction is also placed in  the  event 
control  block;  this code gives information  regarding the manner 
in which completion  occurred.  After the  task again  gains  control, 
the user  program  can  determine which events  occurred and in 
what  manner. 

Requests  for services may result in  waits of no  direct concern 
to  the programmer, as, for example, in  the case of the GET macro- 
instruction  previously  mentioned. In  all  such  instances, event 
control blocks and  wait specifications are  handled  entirely  by  the 
supervisor. 

Another  form of synchronization allows cooperating tasks  to 
share  certain  resources  in a “serially  reusable”  way. The idea 
(already  invoked  in the discussion of programs) may be  applied 
to  any shared  facility. For example, the facility  may be  a table 
that  has  to  be  updated  by  many  tasks.  In  order  to produce the 
desired  result,  each task  must complete its use of the  table before 
another  task gains access to  it (just  as  each  task  had  to complete 
its use of a  self-initiating  program before another  task was allowed 
to  use the  program).  To control access to  such  a  facility, the pro- 
grammer  may  create a  queue of all  tasks requiring access, and 
limit access to  one task a t  a time.  Queuing  capabilities are pro- 
vided by  two  macroinstructions:  enqueue  (EN&)  and  dequeue 
(DEQ). The  nature of the facility,  known  only to  the  tasks  that 
require it, is of no  concern to  the operating  system so long as a 
queue  control block associated  with the facility is provided  by the 
programmer. EN& causes  a  request to  be placed in a queue asso- 
ciated  with the queue  control block. If the busy  indicator in 
the control block is on, the  task issuing the EN& is placed in  the 
wait  condition  pending its  turn  at  the facility. If the busy  indi- 
cator  is off, the issuing task becomes first in  the queue, the busy 
indicator  is  turned on, and  control  is  returned to  the  task. When 
finished with  the  facility, a task  liberates  the  facility  and  posts  the 
next  task on the queue by issuing DEQ. 

I n  a multitask  operation,  competing  requests  for  service or 
resources must be  resolved. In  some cases, choices are  made  by 
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considering hardware  optimization,  as,  for  example,  servicing 
requests  for access to  a  disk  in  a  fashion that minimizes disk seek- 
ing  time. In  most cases, however, the system relies upon a priority 
number  provided by  the user. The reason  for this is that  the user 
can  best select priority  criteria. He may reconcile such  factors 
as  the identification of the job  requestor,  response-time  require- 
ments, the  amount of time  already allocated to  a task, or the 
length of time  that a job  has been in  the  system  without being 
processed. The  net  result is stated  in a priority  number  ranging 
from 0 to  14 in order of increasing  importance. 

Initial priorities, specified in  job  statements, affect the sequence 
in which jobs are selected for  execution. The  operator  is  free  to 
modify  such  priorities up  to  the  time  that  the job is actually 
selected.  Changes to  priorities may  be  made  dynamically  by  the 
change  priority (CHAP) macroinstruction, which allows a program 
to modify the priority of either the active  task or of any of its 
subtasks.  Means  are provided  whereby  unauthorized modifica- 
tion  can be  prevented. 

When the job  scheduler  initiates a job  step, the current  priority 
of the job  is used to establish  a dispatch  priority and a l imit   pr i -  
ority. The former is used by  the resource managers,  where  applica- 
ble, to  resolve contention  for  a  resource. The limit  priority,  on the 
other  hand, serves to control  dynamic  priority  assignments. CHAP 
permits  each  task to  change its  dispatching  priority to  any point 
in the range  between zero and  its  limit.  Furthermore, when a task 
attaches a subtask,  it is free to  set  the subtask’s  dispatching  and 
limit  priorities at   any point  in the range  between zero and  the 
limit of the  attacher;  the subtask’s  dispatching  priorit,y  can how- 
ever exceed that of the  attacher. For example, were task A, with 
limit  and  dispatching  priorities  both  equal to 10, to  attach sub- 
task B with a higher  relative  dispatching  priority  than  itself, 
i t  could use CHAP to lower its own dispatching  priority to 7 and 
attach B with  limit and  dispatching priorities set  to 8. 

It is expected that most  installations will ordinarily use three 
levels of priority  for  batch-processing  jobs.  Normal  work will 
automatically  be assigned a  median  priority. A higher  number will 
be used for  urgent  jobs,  and a lower one  for  low-priority  work. 

Normally,  programs  are  expected to signal  completion of their 
execution by RETURN or XCTL. If the program at  the highest 
control level within the  task executes  a RETURN, the supervisor 
treats  it  as  an end-of-task  signal.  Whenever RETURN is  used, 
one of the general  registers is used to  transmit a return code to 
the caller. The  return code a t  task  termination  may be  inspected 
by  the at,taching task,  and is used by  the job  scheduler to  evaluate 
the condition  parameters  in  job  control  statements. It may,  for 
example, find that all  remaining steps  are  to be  skipped. 

In  addition,  any  program  operating on behalf of a task  can 
execute  a  macroinstruction to discontinue task execution ab- 
normally. The control  program then  takes  appropriate  action  to 
liberate resources, dispose of data sets,  and  remove the  task con- 
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trol block. Although  abnormal  termination of a task causes ab- 
normal  termination of all  subtasks, it is possible for  abnormal  sub- 
tasks to terminate  without causing termination of the  attaching 
task. 

The supervisor is designed to allocate  main  storage  dynam- 
main ically, when space is demanded  by  a task or the control program it- 
storage self. An implicit request is generated  internally  within the control 
allocation program, on behalf of some other control program service. An 

example is LINK, in which the supervisor finds a program,  allocates 
space, and  fetches  it. To make explicit requests  for  additional 
main  storage  areas,  a user program may employ the GETMAIN 
or GETPOOL macroinstructions. 

Also provided are means for dynamic release of main  storage 
areas.  Implicit release may  take place when a  program is no longer 
in use, as signaled by RETURN, XCTL, or DELETE. Explicit 
release is requested  by the FREEMAIN or FREEPOOL macro- 
instructions. 

Explicit  allocation  by GETMAIN can  be for fixed or variable 
areas, and  can be conditional or unconditional: 

Fixed area. The  amount of storage  requested is explicitly given. 
Variable area. A minimum acceptable  amount of storage is 
specified, as well as a larger  amount preferred. If the larger 
amount is not  available, the supervisor responds to  the request 
with the largest  available block that equals or exceeds the 
stated minimum. 
Conditional. Space is requested if available, but  the program 
can proceed without it. 
Unconditional. The  task  cannot proceed without the requested 
space. 

The operating  system uses the S Y S T E M / ~ ~ O  storage  protection 
storage feature  to  protect storage  areas controlled by  the supervisor 
protection from damage by user jobs and to protect user jobs from each other. 

This is done by assigning different protection keys to each of 
the  job  steps selected for concurrent execution. However, if 
multiple  tasks  result from a single job step  (by use of the ATTACH 
macroinstruction), all such  tasks  are given the same  protection 
key to allow them  to write  in common communication areas. 

Each  job  step is assigned two logically different pools, each 
consisting of one or more storage blocks. The first of these is used 
to store non-reusable and serially-reusable programs  from any 
source, and  reenterable  programs from sources other than  the'main 
library.  This pool is not  designated  by  number. The second pool, 
numbered 00, is used for any  task work areas  obtained by  the 
supervisor and for filling all GETMAIN or GETPOOL requests-un- 
less a non-zero pool number is specified. 

When the highest-level task of a job  step is terminated,  all 
storage pools are released for reassignment. However, when a 
task  attaches a  subtask,  and  makes  storage  areas  available to  the 
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subtask, it may  suit  the purposes of the  task  not  to  have  the Passing 
storage  areas released upon completion of the subtask. To provide and 
for this possibility, programs may call for  the creation of pools sharing 
numbered 01 or higher. Such a pool may be made available to a 
subtask  in  either of two ways-that  is, by passing or sharing. If a 
pool created  by  a task is passed to a subtask,  termination of the 
subtask  results  in release of the pool.  On the other  hand,  subtask 
termination does not result in the release of a shared pool. I n  
both cases, the  subtask  that receives a pool may add  to  the pool, 
delete from it, or release it in the same way as the originating task. 

Because Pool 00 refers to  the same set of storage blocks for all 
tasks in a job  step, it need not be passed or shared, and is not 
released until  the  job  step is completed. 

more additional  main  storage than is available for allocation, the and 
control program intervenes. First,  the supervisor attempts  to free roll-in 
space occupied by  a program that is neither  in use nor reserved 
by a task. Failing that,  it may suspend the execution of one or 
more tasks  by  storing  the associated information  in auxiliary 
storage. The storage  and  retrieval operations occasioned by com- 
peting  demands for main-storage space are  termed roll-out and 
roll-in. 

The decision to roll out one or more tasks is made on the basis 
of task priorities. A main  storage demand by a task can cause as 
many lower-priority tasks  to be rolled out as necessary to satisfy 
the demand. If the lowest-priority task  in  the system needs more 
space to continue, it is placed in  a  wait state pending main storage 
availability. 

During roll-out, all  tasks  operating  under a single job  step  are 
removed as a group. Input/output operations under way at  the 
time of the roll-out are allowed to reach completion. 

Roll-in takes place automatically as soon as  the original space 
is again available, and execution continues where it left off. Since 
its  task  control block remains  in a wait status  and  its  input/output 
units  are  not  altered,  a  task  may  still be considered in the system 
after roll-out. 

Significance of multitask operations 
It may be expected that multitask operations will not only provide 
powerful capabilities for many existing environments, but will 
also serve as a foundation for more complex environments for 
some time to come. 

Fast  turnaround  in job-shop operations is achieved by allowing 
concurrent  operation of input readers, output writers, and user’s 
programs. It is possible to handle a wide variety of telecommunica- 
tion activities, each of which is characterized by  many  tasks 
(most of them  in  wait conditions). Also, complex problems can 
be programmed in segments that concurrently share  system 
resources and hence optimize the use of those resources. With 
some versions of the job scheduler, multitask operations permit 
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job  steps  from several  different  jobs to be established as con- 
current  tasks.  To serve  such current  multitask needs, the  structure 
of the control  system  consists of two  primary classes of elements: 
(1) queues  representing  unsatisfied  requirements of tasks for cer- 
tain resources, and (2 )  tables  identifying  available resources. Some 
of the control  information  is  in  main  storage; some is  in auxiliary 
storage.  This  structure  facilitates  dynamic configuration changes, 
such as addition  or  removal of programs  in  main storage, and 
attached  input/output devices. 

Perhaps  more  important  for  future systems, the  structure 
may  prove  adaptable  in  the  management of additional CPU’S. 

For example, if multiple CPU’S were given access to  the  job queue 
(now stored  on a disk),  each CPU could queue new jobs  as well 
as initiate jobs  already on the queue.  Similarly, if multiple CPU’S 

were given access to  main storage,  each CPU could add  tasks to  
the  task  queue  and  dispatch  tasks  already  on  the task queue. 
That  is, a system could be designed wherein, by executing the 
task-dispatcher  control  routine (which itself is  in  the  shared  main 
storage),  any CPU could be assigned a ranking  task  on  the  queue; 
and while executing a task, any CPU could add new tasks  to  the 
queue  by  means of the ATTACH macroinstruction. 

Summary 
I n  Os/360,  for which the basic unit of work  is the  task, resources 
are allocated  only to  tasks.  In general,  resources are allocated 
dynamically to permit easier planning on the  part of the pro- 
grammer,  achieve  more efficient utilization of storage  space,  and 
open  t8he  way  for  concurrent execution of a number of tasks. 

Users  notify the system of work requirements  by defining each 
job  as a sequence of job-control statements.  The  number of tasks 
entailed  by  a  job  depends  upon the  nature of the  job.  The  system 
permits  job definitions to  be cataloged, thereby simplifying the 
job  resubmittal process. Reading of job specifications and source 
data,  printing of job  results,  and  job execution  can occur simul- 
taneously  for  different jobs. Job  inputs  and  outputs  may be  queued 
in direct-access  storage, thereby avoiding the need  for  external 
batching and  permitting priority-governed job execution. In  i ts  
multijob-initiation mode, the  system  can process a number of 
jobs  concurrently. 

CITED REFERENCES  AND  FOOTNOTE 

1. An historic review of operating systems, with emphasis  on I/o control and 
job scheduling, appears  in Reference 4. Operating systems that provided 
for multiprogramming are described in References 5, 6, and 7. One on-line 
inventory application is described in Reference 8, and some indication of 
techniques used in its solution are given in References 9 and 10. 

2. G. A. Blaauw and F. P. Brooks, Jr., “The  structure of S Y S T E M ~ ~ O :  Part 
I-outline of the logical structure,” IBM Systems Journal 3, No. 2, 119- 
135 (1964). 

3. W. P. Heising and R. A. Lamer, “A semi-automatic  storage  allocation 

28 B.  I. WITT 



system at  loading time,” Co,tL,rLurLications os the  A C “  4, Nu. 10, 446-449 
(October 1961). 

4. T. B. Steel, Jr., “Operating  systems,” Datamation 10, No. 5,  26-28 (May 
1964). 

5. E. S.  McDonough, “STRETCH experiment  in  multiprogramming,” Digest 
of Technical  Papers, ACM 62 National Conference, 28 (1962). 

6. E. F. Codd,  “Multi-programming,” Advances in Computers, Volume 3, 
Edited  by  Franz L. Alt and Morris Rubinoff. 

7. G. F. Leonard,  “Control  techniques in  the CL-I1 Programming  System,” 
Digest of Technical  Papers, ACM 62 National Conference, 29 (1962). 

8. M. N. Perry  and W. R. Plugge, “American Airlines SABRE electronic 
reservation system,” WJCC Proceedings, 593-601 (May 1961). 

9. M. N.  Perry, “Handling of very large  programs,” Proceedkgs of IE’ZP 
Congress 65, Volume 1, 243-247 (1965). 

10. W. B. Elmore and G. J. Evans, Jr., “Dynamic control of core memory 
in  a real-time system,” Proceedings of ZFIP Congress 65, Volume 1, 261- 
266 (1965). 

JOB AND TASK MANAGEMENT 29 


