The problem of allocating main storage for a message-segment buffer
pool s considered. A queuing model that approximates the most
typical mode of operation is formulated. Solutions for the nmumber
of buffers required by the pool are obtained. Although the soluitons
require tterative computational methods, they are not difficult to
program.

Inasmuch as the model and solution methods both tnvolve approxima-
tions, the validity of the approach was checked by stmulating a
typical set of operating conditions. Although the compuiational
results were found to be conservatively biased, the method s clearly
adequate for most design purposes.

On teleprocessing system design

Part III An analysis of a request-queued buffer pool
by J. P. Bricault and I. Delgalvis

Where each communication line transfers data at a rate well
below the processing-unit rate, many lines are usually permitted
to operate concurrently. Buffers then become necessary in coor-
dinating the communication and processing functions. A buffer
consists simply of a main-storage area reserved for message
assembly and disassembly tasks.

A homogeneous set of buffers is called a buffer pool. Because
a buffer pool may require a considerable portion of main storage,
it is important to define a pool area that is reasonably close to
the minimum permitted by application parameters. This paper
postulates and analyzes a mathematical model that is applicable
to a buffer pool of the class required for gram (Queued Tele-
communications Access Method of os/360). Methods of solving
for an appropriate set of buffers are given.

Buffering principles

Storage may be allocated to a buffer on either a static or dynamic
basis. In static allocation, a fixed amount of storage is assigned
to each line. In dynamic allocation, the storage is pooled and
each line requests a buffer from the pool as the need arises.
Static allocation is the simpler of the two schemes; however,
it requires that the area assigned to a line accommodate the
line’s longest message. If such a message appears infrequently,

IBM SYSTEMS JOURNAL * VOL. 5 * NO. 3 - 1966




or if some lines have little traffic, static allocation leads to in-
efficient use of storage. Although dynamic allocation permits more
efficient utilization of storage because storage is assigned to a
line only when required, it involves a more elaborate control
program. Thus, the choice between allocation schemes depends
upon a typical kind of trade-off between allocated storage and
control complexity. Systems transmitting long messages, or
handling more than a few communication lines, usually employ
a dynamic method of buffer allocation.

A common technique for reducing main-storage requirements
in both allocation schemes involves message segmentation. Each
segment of a message is then allocated a buffer in its own right.
The most useful technique for keeping track of the message
segments is chaining. Chaining requires of each buffer that a
section be allocated to fields for a message identifier, a pointer
to the buffer holding the previous segment, and other control
information. Let this section be called the buffer prefiz.

A message can be put together from its segments either in
main storage or in direct-access auxiliary storage. In this paper,
we make the rather reasonable assumption that main storage is
to be conserved, and that, as a result, messages are reconstructed
in auxiliary storage.

We assume that buffers are homogeneous. To ensure that a
buffer is reserved for segment k& + 1, a buffer request is issued
during the interval in which segment k is transmitted. The re-
quest is queued and a buffer reservation occurs when the request
is honored.

The reserved buffer lies idle from the instant of reservation
to the instant at which the first character of segment k& 4 1
arrives. If u denotes the time interval from buffer request to buffer
usage, and w denotes the waiting-time interval from buffer request
to buffer reservation, then the assigned buffer is idle for v — w
units of time. Let r denote this idle #ime. One of the objectives
of an efficient buffering scheme is to keep idle time reasonably
close to a minimum.

One way to achieve a small r is to operate with a short, fixed «
and a fixed w; Reference 1 discusses such a method. The purpose
of the present paper is to discuss a more flexible method in which
u can be large and w is a random variable that depends upon the
arrival pattern of requests.

The holding time, s, of a buffer is an interval that starts
when the buffer is reserved and ends when the buffer is finally
liberated, i.e., returned to the subpool of available buffers. As
shown in Figure 1, s is the sum of the idle time r and the applica-
tion-dependent times for segment transmission, housekeeping, and
movement between main storage and direct-access auxiliary
storage. Because these times can vary among the first, last, and
intermediate segments of a message, the average holding time,
§, is obtained as a weighted average over all the segments of a
message. Later we show that § is related to the average buffer

BUFFER POOL ANALYSIS

message
segmentation




Figure 1

JiUFFER

lllustration of buffer holding time

RESERVED

TRANSSMISSION

BEGIN

TRANSMISSION COMPLETED

PROCESSING COMPLETED

BUFFER RELEASED

le

!
—>
—s!

SEGMENT k

'@— "
Uy

Uy =+
SEGMENT k +1

|
e

< >
} - ;
!
|
|

I

BUFFER
REQUESTED

design
criterion

PROCESSING COMPLETED

3
UFF
RELEASED
BUFFER TRANSMISSION
RESERVED BEGINS

TRANSMISSION COMPLETED

request waiting time % by the linear function § = ¢ — gw. (The
coefficients a and g are based on knowledge of the application.)

The normal flow of data is broken if a buffer request for
segment k& - 1 is not honored by the time segment % has been
transmitted. Such a break results in either a loss of data (for in-
coming transmission) or in a transmission gap (for outgoing
transmission). It is seldom economically feasible to entirely
eliminate all breaks, and some small probability # of a break
is normally considered acceptable. Let & denote the maximum w
that does not involve a break (# < u, of course). The mathematical
models to be discussed assume that

Pr{w>w} <ng o))

Mathematical models

The mathematical problem is to determine P, the number of
buffers (service facilities) required to serve buffer requests
(customers) within a maximum waiting time % under the condi-
tions preseribed in (1). The buffer requests are held in a single
queue. Let § denote the average service time and A the average
buffer request rate. Then if the trafic intensity for the system
is defined as A3, the buffer utilization p is A3/ P. The model readily
vields a solution if we assume a Poisson distribution of request
arrivals and an exponential distribution of service time s (buffer
holding time).

BRICAULT AND DELGALVIS




The probability 8 that an arriving request finds all P buffers
busy is well known to be®

1l —o¢
F=1"%, 2)

®3)

and the probability that a customer must wait more than ¢ units
of time for service to be

Pr (w > t) = ﬁc—(P—)\s)t/g
From (1) and (4), we have
n > ﬁe'“’—)\i)wu 5

and our problem is to find Pp;,, the smallest P that satisfies (5).

The solution is complicated by the fact that the average
service time 3 is related to w, which in turn is dependent upon
§ and P. The circularity can be handled by iteratively determining
from (5) a first approximate value of P satisfying the design
criterion, assuming the service time to be independent of the
waiting time and reduced to its constant term § = a. Then,
an approximate computation of the average wait % is possible.
The service is subsequently corrected by § = a — gw. Based
on this corrected service, a new value of P is iteratively computed,
and the process is repeated until two successive values of P
converge to the correct value. This procedure is illustrated in
Figure 2.

Solution 1 yields highly overconservative results. The assump-
tion of a Poisson distribution for customer arrivals is generally
sound unless the number of lines is very small, but the service
times normally vary much less than expected of an exponential
distribution. It would be more realistic, in fact, to assume that
service time was constant. For just such cases, Everett® has given
a method that simulates the desired effect of constant service
time by introduction of a traffic reduction factor f in a relation
of the form

f=24/p

The trend in 6 can be seen from Table 1.

The procedure for finding the desired P is similar to the one
described previously, except that we must find f in addition.
Since the necessary buffer utilization p is not available at this
time, an iterative procedure must be employed to find a realistic

where 5 = eﬂll—(ms)] (6)

BUFFER POOL ANALYSIS

Figure 2 Flowchart for solution 1

:

BY ITERATION, FIND
SMALLEST P THAT
SATISFIES EQ. 5

:

COMPUTE W
(EQUATION 3)

!

COMPUTE §=a-gw

'

WITH NEW 5, FIND
SMALLEST P THAT
SATISFIES EQ. 5

!

ARE LAST TWO

Table 1

COMPUTED VALUES
OF P EQUAL?

lVES

Pun =P

MIN T

Delta as a function of

rho




Figure 3 Flowchart for solution 2

—]

LETp=009; 5=a
P<3ip

]

RETAIN LAST p;
FIND & BY ITERATION
FIND f; a, «af

l

’—’

RETAIN LAST §; FIND
W, USING A, AND
EQUATIONS 2 AND 3

'

S—a-gw,

!

DOES § MATCH
PREVIOUS 57

p— AS/P

]

DOES p MATCH
PREVIOUS p ?

!

FIND Pr(w > W)
FROM EQUATION 7

!

COMPARE Pr
W > %) WITH 5

l>

!

0 < AS/P

i

number of buffers and their utilization. Then, a probability com-
putation will show whether the proper condition on 7 is satisfied.
The whole procedure is illustrated in Figure 3. The auxiliary
equation required in the computations is

Pr (w > 1?)) — 6/6—(P—)‘§,)u‘)/(a—0171,) (7)

where the subscript f denotes that the waiting time in the sub-
scribed variable is based on the reduced traffic rate f\.

Although Solution 2 is still an approximation, experience has
shown that it yields solutions of acceptable accuracy. A more
accurate formulation of the problem would lead to a multiserver
queuing model with a general service time—and at present an
exact solution to this problem does not exist. Other approximate
solutions could have been tried, but investigation showed them
to be more cumbersome than desired.

An example of a message-switching system

Consider a message switching system that receives, interprets,
and forwards messages to their destinations. To avoid superfluous
detail, we assume that each message is sent to only one destination.
Each terminal, including the processing unit, competes for line
usage. The system contains L half-duplex lines and the line speed
K is 14.8 characters per second. The messages are queued on a
disk file. The messages in the system are characterized by an
average message length M of 250 characters and an average
message rate B of 2.83 messages/minute/line. The buffer size
is 50 characters.

When recognized, the terminal issues a buffer request for
Segment 1. The first 32 character spaces of this buffer are allocated
for the Segment 1 prefix, which will be filled in the course of
segment processing. The terminal starts serial transmission into
the remaining 18 character spaces of the buffer. After receipt
of the first character, a request is issued for another buffer. For
Segment 2, only 22 characters are allocated for the prefix, which
is used to link the segment to the previous segment and identify
the message. Buffers for subsequent segments of the message are
similarly obtained and employed. An “extra’ buffer is requested
by the last message segment.

For each new message, the entire allocation cycle is repeated.
After a filled buffer has been processed, its content is placed on
the disk file and the buffer is again made available. The extra
buffer is released without being used.

For outgoing transmission, a similar procedure is used. In this
case, however, the processing unit must be admitted to the line
of the desired terminal. The processing unit then issues the request
for the first buffer and starts the transmission-out cycle. When
segments are retrieved from the disk file, they are examined to
avoid a request for an extra buffer.

BRICAULT AND DELGALVIS




The average buffer request rate X\ is equal to R(N + 0.5)L,
where N is the average number of segments per message and
0.5 accounts for the unused extra buffers requested by the last
segments of incoming messages.

Let N, denote the number of characters per first segment
and N, the number per subsequent segment. Then the average
number of segments per message is given by

v [

where [ 2] denotes the smallest integer greater than or equal to z.
In our example, we have

N = 1+P5ozg 1§] = 10

Since the last segment must consist of eight characters, the
buffer request rate, expressed in requests per minute, is

N = RN 4+ 0.5 L = 2.83(10.5)L = 29.72L

A buffer holding time depends upon the buffer’s association
with either an incoming or an outgoing message and its usage
as first, second, intermediate, last, or extra buffer for this message.
The average holding time § of a buffer is the weighted sum of
all the individual holding times. Within the context of a given
message, let Ay, hs, ki, by, and h, denote the holding times of the
first, second, intermediate, last, and extra buffers, respectively.
Also let I denote the number of buffers with holding time 7.
Assuming that inbound and outbound traffic are equal, 5 is given by

s = 20+ by + Thi + hw) + b
B 7421

®)

Let p, ¢, and ¢ denote processing time, direct-access move time,
and transmission time, respectively. Then in light of the buffer
allocation process, we can write

h =p+q¢+ 4

he =p2+ ¢+ &+ (L, — A1/K) — w)
hi =pi + g + ¢t + [tioy — (1/K) — w]
hy = py + qv + ty + [tvoy — A/K) — w]
h, = tv — A/K) — w]

where ¢ = 3,4, .-+, N — 1, and the terms in the square brackets
represent r, the idle buffer time. The w’s in (9) are unknown
random variables, not necessarily the same for different A’s.

It is to be expected that ¢; = ¢;. Moreover, the intermediate
transmission times ¢; (where 2 < 7 < N) are all the same. In
many cases it is tenable to assume that p, = p, = p, = py and

BUFFER POOL ANALYSIS

buffer
request
rate

buffer
holding
times




Table 2 Solution 2 buffer requirements

Number of buffers for three
values of break probability

Number of lines Buffer request
in system rate 0.05 0.01 0.001

10 4.85 17 19 22
15 7.275 23 26 30
20 9.7 31 34 38
25 12.125 38 41 46
30 14.55 45 48 54
40 19.40 59 63 69
50 24.25 73 78 85
75 36.375 123
100 48.5 161
150 72.75 237

¢ = @z = ¢. = qy; we make this assumption to simplify dis-
cussion. Substituting (9) into (8), we obtain

§=a— gw (10)

where

642D+ o + 4t + 40 + Dt + 3ty — (6 + 2DA/K)
a= 7+ 21

and

g =+ 20D/(7 + 2I)

For the example, let it be given that I = 7, K = 14.8 characters
per second, and (in units of seconds) p = 0.020; ¢ = 0.0134;
i, = 1.216; ¢; = 1.892; and iy = 0.5405. Substitution yields
a = 3.153 and g = 0.9048.

The solutions for P are rather tedious because of their iterative
nature, but they can easily be programmed for a computer. In
our example, where the buffer holding time is more nearly a
constant variable than an exponential variable (most of the holding
time is in fact accounted for by ¢), the adjusted model of Solution 2
is recommended. Using the specific values of our example, Table 2
shows the buffer requirements for differing number of lines and
break probabilities.

Effects of approximations

To assess the effect of the assumptions and approximations made
in the analytical model, the results for a variety of cases were
checked against the results obtained using apss 11, a general-
purpose systems simulator.* The simulation was also extended
to include some cases of the more frequently used scheme that

BRICAULT AND DELGALVIS




grants first priority to buffer requests for outgoing transmission
(a priority scheme not recognized in the analytical models).
Although the analytic models required more buffers, the over-
design is judged well within the limits of ordinary design practice.

A summary of the simulation results is shown in Table 3.
These results show that both models overestimate the probability
of break. Results are based on the following inputs:

Average message length 390 characters

Line speed 14.8 characters per second

Line utilization 75 percent

Buffer size 55 characters

First-buffer prefix size 36 characters

Other-buffer prefix size 25 characters

Processing time (1st segment in) 20 milliseconds

Processing time (1st segment out) 10 milliseconds

Processing time (other segments) negligible

Time of buffer request after assembly of first
character

The assumed line-control procedure was based on contention
(not polling), and the assumed auxiliary storage device was an
8m 2311 disk file with a special sequential ordering of file accesses
that minimizes seek time.

Although the analytical models lead to conservative estimates,
the appropriate way to judge their utility is to observe the effects
of this bias on actual design choices. In order to show the practical
effects of the bias, the results of Table 3 are shown again in the

Table 3  Summary of simulation results

Number of lines N
16 32 50

No. of buffers No. of buffers No. of buffers
26 25 23 48 46 44 72 70

Buffer utilization .86 .91 .944 93 9656 .973 981 .987

Probability of . . .038 . 013 .031 .02 .04
character loss
SIMULATION

Probability of
transmission gap
SIMULATION

Probability of

character loss or
transmission gap
ANALYTIC MODEL

BUFFER POOL ANALYSIS




Table 4 Comparative estimates of P

Number of lines

Simulation estimate not computed
Analytic estimate not, computed

Simulation estimate
Analytic estimate

form of Table 4. In the design sense, the results are in useful
agreement with simulation results——within about six percent.

The question may be raised whether the analytical approach
is over-conservative if applied to a nonpriority case imposing less
stringent conditions on the waiting time. Table 3 shows that the
domain of pool sizes is close to the saturation state (100 percent
utilization). Thus, the process is very sensitive to any variation
of the number of buffers in the pool. On the other hand, a change
in the waiting-time requirements, such as might be occasioned
by introduction of a priority scheme, has relatively little effect
on the overall number of buffers required. For example, in a
simulation involving » = 0.01 and 32 lines, 44 buffers were
found necessary in the nonpriority case and 47 buffers (an increase
of six percent) in the two-priority case.

Buffer length

If buffers are B characters in length, BP characters of storage
are required by the buffer pool. Unfortunately, B and P are
interdependent variables, and there is no known way of expressing
them in a form that would readily permit solving for minimum
BP. Moreover, there may be operational considerations that
exclude consideration of the smaller buffer size. For example, a
segment must be long enough to make segment-assembly time
longer than the time required to allocate a buffer to a pending
request. In many cases, it is also required that each segment
contain the message header. For low-speed lines, the first restric-
tion has little effect, but for high-speed lines it definitely has
to be taken into account. The message-header requirement, often
made to facilitate processing, is a standard requirement in Qram.’
Another factor to consider is the number of required accesses
to auxiliary storage. In general, the shorter the segment, the
greater the number of accesses to auxiliary storage and the longer
the buffers will be tied up in the auxiliary-storage access queue.

BRICAULT AND DELGALVIS




As a result of all the restrictions and interdependent relation-
ships, buffer length is usually selected by taking the smallest
length that comfortably meets all the restrictions that apply.
If a better solution is desired, an integrated simulation study
of the entire system is indicated. In such cases, the approach
discussed here will still be useful in narrowing the ranges of the
variables to be investigated.

Summary

This paper discusses an approximate procedure for estimating
the amount of storage required for a buffer pool. The solution
method recommended for estimating the required number of
buffers was checked by simulation (for the case of a Poisson
distribution of input messages) and found to agree within six
percent of the estimates yielded by the simulation.

CITED REFERENCES AND FOOTNOTES

1. 1. Delgalvis and G. Davison, “‘Storage requirements for a data exchange,”
IBM Systems Journal 3, No. 1, 2-13 (1964).

2. P. M. Morse, Queues, Inventory and Maintenance, John Wiley and Sons,
New York (1958).

3. The solution is based on the method of Everett, Journal of Operations
Research Society of America 1, 279-283 (1953), which combines the assump-
tion of constant service time and the use of exponential-case formulas. This
is an approximate solution, as there is no identity between the waiting-time
distribution of the constant-service case and its “equivalent’” exponential
process. The iterative identity obtained by Everett is between the proba-
bilities of finding a given number of customers in the system under two
processes.

. R. Efron and G. Gordon, “A general purpose digital simulator and examples
of its application, Part I, description of the simulator,” IBM Systems
Journal 3, No. 1, 23-34, (1964).

. See Part I of this paper, Footnote 2, for references to manuals on QTaM.

BUFFER POOL ANALYSIS

157




