
Jiciency i s  tested before  each  Jlight  by  simulation  described in this 
paper. 

Discussed is the  dynamic  gathering of operating  system  performance 
data  during  real-time  simulation, achieved by  incorporating  appro- 
priate  routines in the Apollo  control program. The  data  thus collected 
i s  used  as  input to improved  system  models. 

The effect of the  statistics  gathering  routine on systems  performance 
can be measured. 

Statistics gathering and simulation 

for the Apollo real-time operating system 
by W. I. Stanley and H. F. Hertel 

In  monitoring Apollo manned  space flights, National  Aeronautics 
and Space  Administration flight controllers must rely on a complex 
real-time  computing  system. Trajectory  and  telemetry  data, pro- 
viding both positional and  environmental  parameters of the space 
vehicle and  the ast,ronauts,  must  be processed immediately  upon 
arrival at  the  Real  Time  Computer Complex (RTCC) via SL world- 
wide telecommunication  network.  Computers,  peripheral equip- 
ment,  and programming support,  as shown in  Figure 1, must  be 
efficient enough to avoid  a backlog. 

In  addition to  their  primary purpose of supporting  manned 
space flights, RTCC computers  support real-time space-flight simu- 
lations.  These  simulations  generate  traject'ory and  telemetry  data 
to  test  the mission support  system  and  to  train flight controllers  in 
an environment that closely approximates an  actual mission. 

Each Apollo mission presents  t'he RTCC with  a  unique  set of 
processing requirements. For example, real-time data sources may 
change in  number,  arrival  rate,  or message size. These and  other 
such  factors cause changes in  the performance of real-time  com- 
puting  systems. So that changes do not cause t,he systems to  per- 
form below acceptable  limits,  performance of current syst,ems is 
measured  and that of future systems is modeled. Pcrformance 
measuring  as well as design modeling and simulation  are  t'he main 
subjects of this  paper.  These  techniques  are  a  formal  method of 
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Figure 1 Real Time Computer  Complex  programming system 

assuring that RTCC performance requirements  are  met  in  advance 
of computer  system delivery. This  paper  introduces processing 
requirements  and the  operating system briefly. Later, performance 
measuring and modeling techniques  are discussed as they  are used 
in  studying  the design of future systems. 

To  date,  the most  important Apollo mission areas requiring 
processing modeling are the launch and  orbit phases. The launch  phase consists 

requirements of two periods: powered flight and  a brief period of computation, 
called ‘(hold.” Powered flight processing consists primarily of two 
asynchronous processing cycles (trajectory  and  telemetry) com- 
peting for all  system resources. During hold, go/no-go and  abort 
computations  operate  as  background to  the higher-priority tra- 
jectory and telemetry cycles. It is imperative that  the response of 
the hold cycle  be within  certain allowable limits. At  the same 
time, the responses of the two  faster cycles, trajectory  and telem- 
etry,  must  not be seriously impacted. Because of the load of cyclic 
processing, the critical  system resource during  launch  is the cen- 
tral processing unit (CPU). Launch-phase modeling is  primarily 
concerned with  the evaluation of the ability of the  computer  to 
maintain  all cyclic responses. 

In  the orbit phase, telemetry  and  trajectory processing are done 
only when the spacecraft is in range of an adequately  equipped 
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station.  Even  then,  the processing magnitude of orbit  phase is 
much smaller than  that of the launch phase. However,  other  tasks 
are  normally performed during  orbit: mission planning (rendezvous 
computations  and  orbital changes), updating  trajectory predictions, 
and calculating time-to-fire. I n  general, these  tasks do not  have 
severe response requirements and  operate  as background to orbit 
cyclic processing. Thus,  they  do  not necessarily impose a  heavy 
load on the system CPU. However, the program and  data sizes 
associated with  these  tasks  are  quite large. Because a  number of 
these  tasks  can be in process at  any one time,  such  tasks  can  make 
serious storage  demands.  Therefore,  just  as  launch-phase modeling 
is centered on the evaluation of CPU capabilities, orbit-phase 
modeling primarily  studies  main  storage and large-capacity  storage 
availability. 

Support for the Apollo space flights consists of five  SYSTEM/^^^ 
Model 75 computers and a modification of the S Y S T E M / ~ ~ O  Oper- 
ating  System (osp60). The decision to use os/aso as  a real-time 
operating  system to support  the stringent response requirements 
(real-time data messages arrive at rates of 50 messages per second) 
was not  without problems. First,  the performance of OS/360 had 
been essentially untried  in  an application of this  magnitude. 
Second, RTCC controls the computer  time  sharing and peripheral 
I/O devices among many semi-independent jobs that operate 
asynchronously, but share or reference some of the same data. 
Third,  the first system had  to be operational by  the  last  quarter of 
1966, which left  little leeway for misjudgment of performance or 
miscalculation in design. 

The following introduces the RTCC real-time  operating  system 
( R T O S / ~ ~ O )  and briefly describes how statistical  and  simulation 
methods  are used to analyze its design and performance. 

R T O S / ~ ~ ~  is basically os/sso (multiprogramming  with  a  variable 
number of tasks)  with modifications to  the nucleus to increase 
efficiency in the ETOS environment and t o  provide  additional real- 
time capabilities. Part of the deviations from OS/360 result from 
the need to effectively use a  one-megabyte SYSTEM/BBO Model 75 
with an additional  two-megabyte Large Capacity  Storage (LCS). 

Other modifications are: supervisor services that interface  with 
specialized methods of data management,  a modified definition for 
task management, and new receiving and  routing logic for incom- 
ing telecommunication data.  The following items suggest the scope 
of RTCC changes to  existing os/3so routines that significantly im- 
prove system performance when executing an RTCC real-t,ime job 
step.  Program  fetch was modified to use LCS as a residence for 
load modules and real-time data tables. The capabilities of load- 
ing LCS from a disk and loading main  storage from LCS were added. 
The main  storage  supervisor (MSS) was  modified to use LCS as  an 
extension of main  storage. The main  storage  supervisor was  mod- 
ified to include storage allocation algorithms  tailored to  the real- 
time  environment.  Temporary  storage for system  control  tables 
is  obtained from fixed-size  pools instead of from MSS. 
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Some design changes were necessary to allow several  independ- 
ent  units of work to  share  computing resources. Thus,  the concept 
of “independent  task” was introduced.  An  independent task is a 
sub-job step  that  can  share programs and  data  with  other  tasks 
and  can be referenced by a symbolic task name, which allows a task 
to  have  a  queue of work that  it  performs serially. An independent 
task has a dormant  state  t’hat allows the  task  to remain known to 
the system  although it  has no current work. The  dormant  state 
permits cyclic processing since independent  task resources are 
saved  until  the  next  data  frame or processing cycle when the  task 
becomes active  again.  Independent  tasks  may be created  and de- 
stroyed  without affecting the operation of other  independent  tasks. 

Data tables were added to  the  data management services 
offered by os/sso. Data tables  are referenced symbolically  with  a 
system  name  in  much the same  way  as a load module. Data  table 
services do  not  require OPEN or CLOSE macroinstructions to  be 
executed. Data  table macroinstructions are  not access mechanisms 
to I/O devices; rather,  they reference the named data or storage, 
which may  be allocated in LCS or in main  storage. 

Control  program services were added to control the RTOS/36O 
logic that receives and  routes real-time input  data  arriving over 
the telecommunication lines. This logic provides Rros/360 with an 
efficient method of ident,ifying input  data  by using parameters 
supplied by  the applicat,ion  programs. Data is buffered and  routed 
to a work queue of the proper  independent  task.  These  and  other 
control  program services modify os/seo to  form RTOS/%O, which 
supports  the RTCC real-time  application  systems  created  for the 
Apollo project. 

In  deciding which design alterations  and which implementation 
changes yield the best performance, two  evaluation techniques 
are used. A Statistics  Gathering  System (SGS) obtains  timing and 
frequency  statistics on RTOS/XO control  program services as well 
as all application  programs. The General  Purpose  Simulation Sys- 
tem ( G P S S ) ~ ~ ~  predict,s expected performance (given the SGS sta- 
tistics) of both real-time  job  steps and job-shop operations. 

In an initial  simulation, actual performance  statistics are gen- 
erally not a~a i l ab le .~  However,  initial  simulations  can and should 
be performed during  the  systems design stage  to  evaluate  the 
machine and basic program design together.  Performance  statis- 
tics  for models used in  the initi:tl simulation are based on perform- 
ance  statistics of similar systems. As the programming com- 
ponent of the computer  system is developed, actual performance 
statistics ark gathered  and added  as refinements to  the model. 
Thus,  as  the  computer  system is being developed, the model pro- 
vides  a more accurate  evaluation of the programming design. 

Measuring system performance 

To measure the performance of a  real-time  system and  monitor 
its execution,  a comprehensive Statistics  Gathering  System ( S G S )  
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was developed. SGS, a  program and  not a  hardware device at- 
tached  to  the  computer, provides an accurate  means of measuring 
performance on I ~ T O S / ~ C O  by collecting: 

Timing  information on control  program services and application 

Percentage figures showing how definable syst'em  functions use 

Elapsed-time figures showing task response t'ime in a  multi- 

programs 

the CPU resource 

programming  environment 

An interface  with Rrros/xo enables SGS to  record  time, logic 
flow, and frequency  statistics.  Although SGS degrades  performance, 
it does not push the processing load  to the  point of failure. SGS 

relies on the  fact  that a  real-time  system  normally  operates  with 
enough idle  time or surplus  capa,city to allow the  system  to handle 
peak  load processing surges. (While statistics  are being collected, 
some surplus  capacity is used up;  thus,  the  time  to process a peak 
load is lengthened.) In  the normal job-shop environment,  \\here 
SGS monitors the FORTRAN compiler, assembler, or execution  job 
step,  the monitored  job step  takes longer to complete. In  both  the 
real-time and job-shop environments, SGS gives the percentllge of 
computer  capacity used by itself in collecting and reporting sta- 
tistics. This  feature  allom  the  analyst  to remove the effect of 
SGS from  statistics on the  actual  system. 

The SGS design for lt~os/360 is patterned  after an earlier version 
used with the Gemini 7094 executive  control  program.  Experience 
shows that dividing the obtainable  statistics  into  several  inde- 
pendently selected categories reduces the  impact  on normal  per- 
formance of the system. Six general categories of statistics  have 
been defined for SGS: 

R T O S / ~ ~ ~  statistics provide  execution  times and frequencies  for con- 
trol  program  functions,  i.e., the control  program services and  other 
control  program  routines. 

Load  module  statistics provide  execution  times and frequencies for 
each load  module and shorn the number, type,  and CPU utilization 
for control  program services used by each  load module. 

Gross CPU utihxation  sfatistics provide the percent  utilization of the 
CPU by RTOS/360 and by the app1icat)ion system, the percentage of 
capacity  spent  waiting for I/O operations, and  the  percentage of 
capacity  spent idle, i.e.,  time when no  work  is  in process and none 
is queued  waiting to be processed. 

Independent-task  statistics provide  frequencies  with Jvhich named 
tasks  are executed,  average response times  for  the t,asks, and 
computer  capacity used by  them to perform assigned work. 

I/O device statistics provide  frequencies with which I/O devices 
are used. 
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I logic required to satisfy an application  program  request  for a 
control  program service. 

SGS accounts for all CPU time. Symbolic clocks are  kept on  each 
program  segment identified to SGS. Time  not  spent executing pro- 
grams is tallied  either  as  time  spent  waiting  for I/O or as idle time. 
A  notable  characteristic of SGS timing  statistics is that  the meas- 
ured  execution  time of the  instruction logic of each  system func- 
tion is independent of other  system  functions.  Elapsed  times for 
I/o operations and execution of other  functions are accrued sep- 
arately.  The  statistics  obtained  are more nearly  independent of 
the environment  in which they  are  obtained. Therefore,  timing 
statistics  may  be used in  a model of a real-t.ime system that sim- 
ulates  a different operating  environment from the one in which 
the statistics were obtained. 

Statistics  gathering is divided into  three phases:  initialization, 
collection, and reporting.  A  user  may select one or more of the 
six categories of statistics  by  entering  control  parameters to  start 
and  stop  the selected categories according to time or the initiation 
and  termination of a  job  step.  These  control  parameters, which are 
entered  via the job  stream or an on-line typewriter,  are passed to 
the SGS independent  task  to  start  the initialization  phase. All SGS 

logic is  implemented  as transient load modules to  minimize the 
impact of size on  storage  allocation  for an operational  system. 

The first  phase initializes the rz~os/aso nucleus enabling  control 
initialization to pass to SGS collection routines whenever the CPU begins executing 

instructions for a new or different system  function. The definition 
of system  function used by SGS is the change of processing pur- 
pose implied by CPU interruptions. Since each  purpose  requires 
its own implementation, the implementation logic and purpose 
define a  system  function. The interface  with RTOS/XO is via the 
new program status words (PSW), which pass  control to SGS upon 
each interruption of the CPU. 

There  are five types of interruptions that cause a change in 
the PSW: 

I/O interruption - indicates the need to service an I/o channel 
Program  interruption - indicates  a  program  error  or excep- 

svc interruption - indicates a request  for  a  control  program 

External  interruption - signals the computer to service an 

Machine check interruption - indicates an error in  computer 

tional  result  during execution 

service 

external device 

hardware 

Each  type of interruption  has an assigned new PSW and  an old 
PSW in  main storage.  Upon interruption,  the old PSW is  saved  and 
the new PSW is  loaded  with the new contents of the  instruction 
counter to give the  starting address of an R T O S / ~ ~ O  interruption 
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handler.  When SGS is in use, the new PSW sets the instruction 
counter to  the  start of the SGS program that handles the particular 
type of interruption..  After recording the  statistics required, the 
SGS program passes control to  the R T O S / ~ G O  interruption  handler 
with  all  machine  conditions set  as though the interruption  had 
proceeded there  directly. 

An  interruption  is  not associated with  every  change in  system 
function, and, therefore,  interruptions alone cannot define the 
complete SGS interface. For instance,  a load PSW ( L P s ~ )  instruc- 
tion, which returns  control of the CPU to  an application  program 
after completing a  control  program service, does not  interrupt  the 
CPU. Nevertheless, there is  a definite change in functional purpose 
of the instruct'ions being executed. The method of keeping SGS 

informed in cases like this is to force an interruption. Combined 
with the nucleus by  the linkage  editor  is  a  small table of symbolic 
references to such special instructions  as  all Lpsw's, entry  to 
program  fetch, and  entry  to  the dispatcher. At SGS initialization 
time, the operation code of these  instructions  is replaced with an 
illegal operation code. Upon each execution thereafter,  a  program 
interruption occurs at these identifiable addresses. 

In  the case of certain  control  program  subroutines, SGS not 
only must recognize when the program  is  entered, but also must 
recognize when the program  is  exited. It is possible to  take ad- 
vantage of the  fact  that general register 14 (GR 14) is used as  a 
standard  return register. For example, assume program A wants 
to call subroutine B using the SYSTEM/360 assembly language 
instructions 

L 15, = V(B) 
BALR 14, 15 

At  address B, SGS gains control  by means of an illegal operation 
code at  the subroutine  entry point. SGS then saves the  contents of 
base register 14 and replaces the contents  with an SGS address. 
Also, statistics  gathering is stopped for A and  started for B. Sub- 
routine B is executed and  then  returns control  via the address in 
base register 14 (BR 14). SGS gains control  via the address in base 
register 14, then  stops  statistics on B, restarts  statistics on A, 
restores base register 14, and  branches to  the intended return 
point in program A. 

During  statistics  initialization, SGS routines that obtain the 
selected categories of statistics  are loaded into main  storage.  Until 
collection is  terminated,  these  routines  are  entered each time  there 
is a  change in  system function. 

The second phase  in SGS consists of routines that record execu- 
tion  time, frequency counts, and logic flow. Statistics  are collected 
in main-storage buffers that are linked to  the proper job step, 
independent  task, and load module. Note that most categories of 
SGS statistics do not  report  every  statistical  event, rather  statis- 
tics are averaged  over a period of time  and  the average  is  reported 
for each  system  function. 
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Storage  for  statistics is obtained,  as  necessary,  from the main 
storage  supervisor. The size of SGS in  main  storage  depends  on the 
number  and kind of statistical  categories  selected,  and  on the 
number of system  functions in  the selected  categories  for the 
application  system being monitored. 

The  statistics for each system  function  are identified by  a 
symbol.  Normally,  these  symbols  are also used externally to  SGS, 

such as: macroinstruction  names for statistics  on RTOS/360 control 
program services, load  module  names  for  application  program 
statistics,  and  independent  task  names  for  statistics  reported  for 
each  independent  t,ask  and  any of its  dependent  tasks. 

Rlultiprogramming  is  a  basic  ingredient in  the SGS method of 
maintaining  statistics. Each time RTOS/~SO performs  a task switch, 
SGS interrupts  the collection of statistics  for  the  current  task  and 
starts collecting statistics for the new task.  Each  time n~oS/360 
resumes  a  previous task, SGS resumes collecting statistics for that 
task. Any  partially  completed  system  function, which is tem- 
porarily interrupted because of multiprogramming  considerations, 
is recognized by SGS, and a partial  set of statist,ics is saved  until 
the  function is resumed a t  a later time. 

To record  accurate  timing  statistics,  a clock with a ten-micro- 
second resolution  is used. Each  time a  program  or  routine  is  started, 
stopped, or interrupted, a logical clock with  the  appropriate sym- 
bolic identification is updated accordingly. A  typical  sequence of 
SGS is as follows: 

1. Time  is recorded, and  the  current  function  stops. 
2.  Contents of all necessary registers are  saved. 
3. Statistics  for the  interrupted  routine  are  updated. 
4. Overlaid instructions  are  simulated. 
5. If the  interrupt is a  supervisor call (sVC), a symbolic clock is 

started, according to a  control code in  the Svc instruction. 
6. If the  interruption is caused by illegal instructions  resulting 

from the augmented SGS interface,  a  symbolic clock is started, 
according to a  control code in  an SGS table. 

7. Control  returns to  the normal R T O S / ~ ~ O  logic flow. 

The  third  phase of SGS is that of reporting, which may be called 
reporting periodically to allow a  requestor to record trends  or changes in 

system  performance.  Programs  associated with  generating SGS re- 
ports  operate as transient load modules. The reporting  phase  runs 
as  an  independent  task whose priority  is  adjusted  to allow it  to 
compete  favorably for system resources.  Since the reporting  phase 
cannot  stop  the  system  to  report  the  statistics collected, the report- 
ing and collecting phases alternate.  When a  complete report is 
generated  (normally  in less than one second), the  time  and fre- 
quency  counts are reset to  zero, and  the collection phase begins 
again. Formatted  reports  are usually written on tape for off-line 
printing. 

Samples of the first statistics produced by the SYSTEM/~~O 

version of SGS are shown in  Table 1 and  are  intended to  provide 
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Table 1 Execution times for  logical functions 

R T O S / ~ ~ O  logical function 

LINK* 
XCTL* 
LOAD* 

EXIT* 
Dispatcher 
GETMAIN* 

REGMAIN (get mode) 
FREEMAIN* 

REGMAIN (free mode) 
WAIT* 
POST* 
POST  (branch  entry  point) 
BLDL* 
Program  fetch 
Program fetch after 
1/0 interruption 
EXCP* 
Input/output first-level 
interruption handler 
Interruption supervisor 
External first-level 
interruption handler 
Time routing 
Routing 
RTATTACH* 
OPEN* 
CLOSE* 
DELETE* 
STIMER* 
RTIME (243)* 
RTIME (250)* 
DTROUTE* 
R’UATTACH 

DTWRITE* 
DTREAD* 
DTLOAD* 

DTDELETE* 
RTWRITE* 
Logging 

Average  time Number of 
(microseconds) executions  timed 

- 

1693 
1760 
2026 

836 
498 

1186 

2427 
1133 

1253 
712 
804 
142 
700 

1760 
604 

1872 
347 

1053 
650 

232 
160 

2600 
3280 
2760 
1408 
1176 
460 
960 

1760 
840 

1190 
1140 
1410 

1040 
660 

1120 

3 
1 
6 

45 
123 
58 

35 
3 

67 
30 
10 
38 

2 
2 

18 

38 
49 

49 
4 

a 

5 
1 
1 

1 

5 

5 
2 
1 

1 
2 

12 
2 

12 

1 

4 
4 

Description of function 

Passes control temporarily to a load module 
Passes control to a  load module 
Requests  a module be loaded and retained  in 
main  storage 
Passes control from current  load module 
Passes control to  tasks according to  priority 
Allocates main storage for use by requesting 
program 
Allocates main storage in supervisor  subpools 
Returns program-allocated main  storage to a 
free pool 
Frees  main  storage from supervisor  subpools 
Waits for a specified number of events  to occur 
Sets a complete flag when an  event  has occurred 
Sets a complete flag for 1/0 supervisor 
Builds a special directory in main storage 
Reads a  load module into main storage 
Reads a  load module into main storage after 
1/0 interruption 
Requests transmission to/from an I/O device 
Retains register contents of interrupted pro- 
gram 
Performs I/O device control 
Retains register contents of interrupted pro- 
gram and determines cause of interruption 
Creates  a work request based on time 
Creates a work request based on time or data 
Enters a work request  in  task queue 
Prepares system for data  transfer 
Restores system after data transfer 
Makes a load module eligible for purging 
Provides time control services 
Acquires Greenwich Mean  Time 
Sets system to  Greenwich Mean  Time 
Creates  a  control block for routing 
Enters a work request in task queue (used by 
routing) 
Writes  a data  table from user load module 
Reads a data  table for user load module 
Requests a data  table  to-be allocated to main 
storage 
Makes  a data  table eligible for purging 
Transmits telecommunications data 
Records telecommunications data on a 1% 
tape 

* RTOS/360 macroinstructions. 

they  are obtained and  the level of SGS development. 
Note: Average times for the RTOS/XO functions may  vary depending  upon the application  system from which 
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the reader with  an insight into  the level of detail that SGS yields. 
These  statistics were obtained while running  test cases on  a 
S Y S T E M ~ B O  Model 50. The average  time  reported for  each RTos/360 

system  function  is the time to execute the instructions  for that 
particular  function only. The average  times  are the basic statistics 
with which system  performance  is  analyzed at RTCC. 

It should  be  understood that  the average  times  given  in  Table 
1 reflect only the time  required to execute the basic routine.  Pro- 
viding the whole control  program service may,  in  fact,  require  the 
execution of additional  system  functions.  For  example, the  total 
time  for the complex control service LINK, given in  Table 1, can 
be  calculated by including  all  additional logical functions,  such 
as REGMAIN, to  thc basic LINK execution  time. 

System  functions  marked  with  an  asterisk in  Table 1 are de- 
rived  from R T O S / ~ ~ O  control  program  macroinstructions  and  are 
thus directly  available to  the application  programmer.  Functions 
without  the  asterisk  are used only by the RTOS/~GO control pro- 
gram  and  are unavailable  for  direct use by the application pro- 
grammer. 

Simulating  system  performance 

The  Real  Time  Computer Complex is not a  project that is blessed 
with a firm definition of mission requirements.  Results of each 
mission impose requirements  for future missions and,  thus, levy 
new demands  for  real-time  support. It is  essential to  the orderly 
development of RTCC real-time systems to  anticipate problems  in 
computer  system  configuration or system program design that 
could impair the success of future missions. To analyze future 
system performance, RTCC uses models written  in  the language of 
the General  Purpose  Simulation  System (GPSS/~SO).~ 

The primary  responsibility of the RTCC modeling effort is sys- 
tem assurance. Models of particular missions are primarily devel- 
oped to assure the RTCC project that  both  the machine configura- 
tion  and  the  system programs to be  used will perform  satisfactorily. 
Thus, the most  frequent  output of modeling is a  prediction of 
systems  performance  for  a  particular mission. This prediction  can 
be expressed in  such ways  as CPU load, cyclic response, and channel 
utilization. 

GPSS models designed for the RTCC are composed of four  major 
operating components: 

system 1. The  SYSTEM/^^^ computers and  many of the peripheral I/O 

model devices are modeled. This component defines the CPU, main 
storage,  and I/O devices in  terms of parameters that allow speed 
and size characteristics to  be changed in order to model other 
computer configurations. 

2. The RTOS/360 nucleus  component  simulates  significant RTOS/360 

and OS/360 control-program services. These services are modeled 



system  programs are combined with  the  computer  and  the 
R T O S ~ ~ O  logic components to  simulate  a total real-time  system. 

4. The world-wide telecommunication  network model represents 
message size, arrival  rate,  and transmission-line  speed of 
messages arriving a t  RTCC during an Apollo mission. 

Of these  four  components, the SYSTEM/360 and RTOS/360 nucleus 
models are relatively  constant.  Therefore,  these models are  sub- 
routines  in the ~pss/360 modeled operating  system  (GMOS). By 
using GMOS models of control  program  service  routines, the analyst 
need only  characterize the application  programs  and the tele- ' communication data. GMOS includes current  timing  statistics  and 
logic flow of the RTOS control  program services. Therefore, the 
analyst who is  studying  a new application  has  a significant portion 
of his system  accurately modeled. 

GMOS provides users with an easy interface to  hardware models 
and models of control  program service routines.  A  control  program 
service is requested by  the following format  wherein TRANSFER 
and ASSIGN are GPSS macroinstructions: 

TRANSFER SBR,  SVC, 12 
ASSIGN 4, (service) 
ASSIGN 4, (argument 1) 
ASSIGN 4, (argument 2) 
ASSIGN 4, (argument 3) 
ASSIGN 4, (argument 4) 

More specifically, a  request  for  a  control  program service (such 
as EXCP) that simulates  a reference to   an I/O device (such as 
TAPE) is written  as follows: 

TRANSFER  SBR,  SVC, 12 
ASSIGN 4, EXCP Service being simulated 
ASSIGN 4, TAPE 1/0 device 
ASSIGN 4, 40 Number of bytes being transmitted 
ASSIGN 4, ECB Event control block 

When  this sequence of instructions  is  executed  by an application 
model, a TRANSFER is  made to  the GMOS logic that simulates an 
SVC interruption. CPU time  is  simulated for the instructions exe- 
cuted  in  the first level interruption  handler  and  the execute  channel 
program (EXCP) logic. The RTOS/360 model then  simulates a START 
I/O instruction, which initiates  a model of a tape device. While 
simulating  the  time  to  transmit 40 bytes of data  to or from  tape, 
the CPU model passes control back  to the application model (after 
the CPU time for exit logic). When the data-transfer  time  has 
elapsed, the CPU model is  interrupted,  and control passes to a 
model of the I/O interruption  handler  and  to a model of the 110 
supervisor.  After the proper  amount of CPU time is simulated  and 
the  event control block (ECB) is  posted, GMOS logic proceeds to a 
model of the dispatcher  and  then, again, to  the application model. 
A simple interface for the application modeler results in a com- 
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plex web of logic in  much  the same way that a  simple  control pro- 
gram service initiates  similar logic in 1rros/3eo or OS/360. 

One of the most important  parts of computer  systems  analysis 
application is a good definition of the application  program logic and processing 

models requirements.  Often,  obtaining this information is not  a  trivial  task. 
The modeler is concerned with expressing the system logic and 

processing requirements in  terms of GMOS standard interfaces.  At 
RTCC, the modeler defines input characteristics  (frequency, mes- 
sage size, routing  procedure),  obtained largely from SASA mission 
requirement8s. He  then models the  input  in a series of predefined 
calls to  G;\Ios input routines. The modeled input serves as  a  driver 
(i.e., initiates all processing) for the mission model just  as  the real 
input drives the system being modeled. 

Simulation  involves the concept of mission logic, which refers 
to  the logic within the  many load modules that lnake  up  an Apollo 
mission plus a  general descript>ion of all  load modules and  data 
tables used. The analyst  gat’hers this information  from mission 
programmers and  then expresses the logic or refers to modeled 
data tables  in a series of calls to GMOS routines.  Each of these calls 
corresponds to a  similar call in n~os/360 and,  in general,  carries 
with it a  similar set of arguments. The only exception to  this 
generality is a special call representing the  expenditure of enabled 
processing time  within  a  load module. The load-module and  data- 
table descriptions are exprcsved as  parts of a ~ ~ s s / 3 6 0  FUKCTION. 

As an example, the following is a  typical  description of a load 
module  on  a GPSS function follower card: 

LMID 2000 626 1 BEG 8000 

Here, LMIn is the predefined identification of a 2000-word-long 
load  module  resident  in  Large  Capacity  St’orage (LCS). That  the 
load module is serially reuseable is  indicated  by  the GMOS code “1.” 
The number 626 points to a  location that identifies LCS. The load 
module  has an  entry point a t  BEG (defined in the model of the 
load module) and executes for SO00 time  units. Sometimes, if the 
analyst is working in advance of actual  implementation,  this 
information is largely guesswork. If the load module is  already  in 
operation, however, the gathering of these  characteristics  is  simple: 
SGS measures execution  time, and all  other  items  are available 
from the programmer. 

Occasionally, in preparing model-based predictions of system 
performance, it is found that  the defined system is not capable of 
meeting mission requirements. In these cases, a model becomes a 
valuable  tool  for use in defining and  evaluating possible solutions 
to  the problem. 

A model of the GT-6  orbit  phase  (the first planned-rendezvous 
mission in  the Gemini series) disclosed that  the system would be 
unable  to service program  queues as fast  as  they were generated. 
The model was used to define two  solutions to this  problem:  a  more 
efficient program-priority  arrangement, and  an increase in  the size 
of main  storage. Also, the RTCC conversion from an IBM 7094-based 
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system to S Y S T E M / ~ ~ O  was largely  brought about  by model pre- 
dictions that  the advanced Apollo requirement>s would far exceed 
the 7094 capacity.  Both of these efforts utilized a GPGS model of 
the executive  control p r ~ g r a m , ~   t h e  7094 equivalent of RTOS/360. 

GMOS is expected to  be used in  much  the same  manner to  evaluate 
S Y S T E M / ~ ~ O  performance. It is now being used in  t'he prediction of 
early Apollo 500 series mission performance and Apollo storage 
requirements. 

The  very existence of a model has  many  times proved  valuable 
in testing specific hardware or system  program  design  alternatives 
(often on  short  notice).  For example, an existing model of the 
Apollo simulation  system for mission test, and  training (SCATS) 
was useful in  evaluating  several  alternative  main-storage  purge 
algorithms. For such  a  study,  the model is modified to  run with 

~ each  algorithm, and  the most efficient algorithm  is identified by a 
comparison of results. The same  procedure  can  be followed to  
evaluate design alternatives  in  such  areas  as:  system  bulk  storage 
devices, main  storage  allocation  algorithms, data tables  versus 
subpools, program  linkages, and  routing algorithms. 

In  creating  a model such  as GMOS to  simulate  multiprogram- model 
ming  systems  as complex as  those at  RTCC, it is necessary to  model statistics 
logic and  to represent  timing  statistics  with  a  reasonably  high 
degree of accuracy. The logic modeled in GMOS represents all the 
unique services provided  by R T O S / ~ ~ O  in  the  normal execution of a 
real-time  job  step. Decisions t,o use these services arc based  on 
the same  parameters that n-ould influence processing for an  actual 
system. Vor example, if the LINK macroinstruction is executed, 
the logic modeled for the LINK routine executcs a GETMAIN for 
an SVRB (supervisor  request block) similarly to  the \yay that  the 
actual R T O S / ~ ~ O  does. If the request,ed load module  is  not in main 
storage,  the GMos model enters logic to  simulate  the program 
fetch. If program fetch simulates :t GETMAIN for  a  transient  area 
in which to place the load  module and if the model of the main 
storage  supervisor  cannot find an area  large  enough, the purge 
routine removes unused  load modules from  a  simulated  main 
storage.  Performance of each  significant  system  function is sim- 
ulated  according to  the same  parameters  and  reacts  to  the  same 
conditions that  the I ~ T O S / ~ ~ O  would if it were operating  in the de- 
fined computer  system. 

SGS provides the timing  statistics necessary to  accurately assess 
the computer  capacity  required to exccute  each  system  function. 
Each function (GETRIAIN, LINK, program  fetch,  etc.) uses CPU 

time  according to  the averagc execut,ion-time statist'ics obhined 
by  timing the  actual  system program  with SGS. The statist'ics pro- 
vided by GNOS show the analyst: 

Elapsed  time to  perform an independent  task 

Percentage  utilization of I /O devices and  the  number of accesses 

Number of purges necessary 
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main  storage 
Number  and kind of control  program services requested 

Percentage of CPU time used  for: RTOS/360, application  program, 
waiting  for I/O, and idle time 

Detailed CPU utilization  statistics of R T O S / ~ ~ ~  functions 

With knowledge of how system  capacity  is being used, the analyst 
can  spot  performance problems, i.e., services for which too  great  a 
price is being paid for the work being accomplished. The perform- 
ance of new  logic design can be tested  by modeling the new ideas, 
replacing the model of existing logic, and  rerunning  the  total 
system model. 

Once a model is working successfully, a  great  amount of infor- 
model mation is available  for  analysis.  For models of the Apollo launch 

analysis phase, the analyst is interested  in CPU utilization  and  its breakdown 
into such  component parts as mission time  and times for I /O super- 
visor, task management, and storage  management.  A simple in- 
sertion by  the modeler of G P S S / ~ ~ O  TABULATE macroinstruction 
blocks at strategic  points  in the model produces  detailed measure- 
ments of response time  for all cyclic work. Such response measure- 
ments  are indispensable to  evaluating the successful completion 
of all cyclic processing. 

ested in  the  number of times that each load  module was fetched 
versus the number of times  each load module was executed. (Both 
items  are available  in  a GMOS table.) He might also be  interested 
in the number of purges that were 'necessary in a  given  time (de- 
rivable  from block counts) and  the degree of main  storage  fragmen- 
tation  at periodic intervals. The  latter is available by forcing 
periodic output of a Giuos-maintained storage  map. 

In either  case, the analyst  might  be  interested  in knowing the 
traffic volume on various  real-time lines and  system I/O channels, 
both available in  standard GMOS output. Also produced by GMOS 

are  tables showing the frequency of use of each of the  standard 
RTOS/36O control  program services. 

Thus,  the  analyst  automatically receives a  great  amount of 
information  through the use of GMOS. The great flexibilit'y of 
GPSS/360 allows the gathering of many  additional  statistics  with 
only small modifications to GMOS or the application  system model. 
One of the bencfits of such an  abundance of information  has been 
the occasional discovery of an  important  fact  from  statistics  that 
was not originally considered important. 

Three  studies  are presented  here  as examples of the variety of 

studies The first study was made to  determine the significance of main 
storage to an Apollo real-time  application  system. While the size 
of the simulated  main  storage was varied, the response of a signifi- I 

cant calculation cycle mas noted. Alt'hough this  study was limited 

three problems  analyzed at  the nTCC by  means of G P S S / ~ ~ O  models. 
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to one Apollo real-time  application, the results  are expected tlo be 
typical of similar  applications. LCS was used as a bulk  storage  device 
from which programs and  data were loaded into  main storage. The 
amount of main  storage  thus required  is laown  to be sensitive to  
the ability of RTOS/360 to refresh  storage  dynamically in real  time. 

In  view of this, the general  approach  taken  in  this  study was 
the following. First, consider improvements to  the purge  algorithm 
in RTOS/36O and select an algorithm  independent of the specific 
application.  Then consider the application  system  performance a t  
several storage-required-to-storage-available ratios (SR/SA) when 
such an algorithm  is used. With  this, one can use the application- 
system size estimates to determine the expected SR/SA ratio  and 
the resulting  performance.  Curves  relating  measures of system 
performance t,o the SR/SA ratio  are  shown  in  Figures 2 and 3. The 
following describes how these  curves were obtained  and how they 
are used. A base case n.as established using a storage size that was 
larger than  the total size of the application  program  plus TETOS/360. 

GMOS was used in the simulation  with  a modified purge  algorithm. 
The purge  algorithm  maintains  “use  counts” to  decide which 

modules to  purge. During a single execution of the purge  program, 
all  unused  load modules and  data tables  having  a use count  equal 
to  or below a  threshold are purged. All modules having  a use count 
higher than  the threshold are  retained,  but  their use countjs are 
reduced to zero. Thus, use counts reflect only uses since the last 
purge. Data tables that have been updated  must be written on  
an external  storage device before being  purged. In  this  study, 
thresholds of 1 and 2 were considered. In  all cases, the threshold of 
1 yielded the  better performance, and those  results are used in 
this paper. 

The SR/SA ratio is a  measure of the relative size of an applica- 
tion  system  to a  given  main  storage size. Storage  required (SR) is 
taken as the  total size of load modules, data  tables,  and subpools. 
Storage  available (X,) is taken as the size of main  storage,  minus 
the  total size of R T O S / ~ ~ O  plus system  subroutines.  Starting from 
a given SR/Sn ratio, an increase in  the  ratio reflects either  a 
growth  in application size requirements or a decrease in main- 
storage  available; a decrease in  the  ratio reflects either  a lessening 
of application size requirements  or a11 increase in available  main 
storage. 

Figure 2 shows response times to one-second telemetry-cycle 
processing, which operates  concurrently  with half-second tra- 
jectory processing. The SR/SA ratio is plotted along the horizontal 
axis. The 1.0 value along this axis represents the base case for 
which no buffering is required (all programs and  data  just fit in 
main storage).  The left  boundary of the  shaded  area  indicates 
performance based on initial size estimates. The right  boundary 
shows the performance if this size estimate were increased by 20 
percent to account  for  errors  in size estimations. 

Note  the  steep slope in  Figure 2 between the first two  points on 
the curve. At  the first point, the telemet’ry cycle is  completed 

NO. 2 * 1968 STATISTICS GATHERING AND SIMULATION 



before a trajectory cycle begins. Following the first point,  a  slight 
increase in  the  time required to process the telemetry cycle causes 
overlap  with  the  next  trajectory cycle. Since trajectory  has  greater 
priority, the telemetry response is lengthened by  an  amount 
roughly  equivalent to  the  length of the  trajectory cycle. The rela- 
tion between  telemetry response and  the increase in CPU load can 
be seen by  comparing  Figure 3 to Figure 2. Figure 3 shows the 
relationship of CPU load to  the X ~ / X A  ratio. 

The second study, using a model of the FORTRAN-H compiler, 
was aimed at  optimizing throughput  by changing I/O device con- 
figurations. At RTCC, performance of job-shop runs,  SYSTEM/^^^ 
assemblies, FORTRAN compilations,  etc., are as important  to  the 
development of a  real-time  system  as the execution of that  system 
is to  the  support of an Apollo mission. Job-shop efficiency increases 
job-shop throughput  and decreases turn-around  time for  debug 
runs. 

In  the second study, a  compilation was executed  as an appli- 
cation model with GNOS to determine how various I /O devices for 
SYSIN, SYSOUT, SYSPUNCH and SYSRES would change the 
time  to compile a  sample source deck of 436 statements using the 
FORTRAN-H compiler model. Since RTCC has LCS associated with 
each SYSTEM/36@ >lode1 75 ,  LCS was considered as  an I /O device 
for  certain  system residence modules from SVCLIB and LINKLIB. 

Table 2 shows the parameters that were varied to produce the 
results;  constant  parameters  are  not shown. Production  times  for 
an object  deck and listing are included in  the  table. One  can see 
that I/O devices prevent good utilization of the lModel75 CPU. (The 
IBM 2311 disk was the  output device for  object code to  the linkage 
editor  job  step.)  Comparing  runs 1 and 4, one notices about a 
640-1 improvement  over  a standard I/O configuration (run 1) 

Tuble 2 Sample FORTRAN-H compilation results 

Model runs 
1 2 3 4 

Parameters 
SYSIN cards tape tape  tape 

SYSPUNCH punch tape tape  tape 
SYSRES disk (2311) disk (2311) drum (2301) LCS 

SYSOUT printer tape  tape  tape 

Results 
CPU 

utilization (%) 8 23 36 44 

I/O 
waiting (70) 92 77 64 56 

Elapsed 
compilation 
time (sec) 177 62 39 31 
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when tapes  and LCS are used (run 4). Comparing runs 2 and 4, 
about a 2-to-1 improvement  is observed using LCS in place of the 
disk,  under the  assumption  that  input  and  output go to  or from 
tape  in  an off-line process. A sequential  job  scheduler was assumed 

For  the  third  study, a  preliminary design analysis using G P S S / ~ ~ O  

model results and SGS timing  statistics was made to determine  what 
design changes  might  improve R T O S / ~ ~ O  performance. Continual 
emphasis was placed on  producing an efficient real-time  operating 
system a t  RTCC. Because of the frequency with which control pro- 
gram services are used and because of the critical nature of the 
real-time processing, it is necessary to provide  a  reasonable  margin 
of safety,  so that peak processing loads do  not degrade the response 
required to process in real  time. The  study determined which 
RTOs/360 services were heavy users of computer  capacity,  with the 
objective of planning  ways to  reduce the computer  capacity re- 
quired for these services. Frequency  counts for use of control pro- 
gram services were obtained  from the GPSS/36O model of the Apollo 
launch  system.  Timing  statistics were obtained  with SGS. 

As a  result of this  study, several design changes were recom- 
mended, result,ing in CPU capacity  savings  ranging  from  fractions 
of a  percent to  twenty percent. One of the most significant changes 
proposed was the elimination of references to  the main  storage 
supervisor (NSS) for  all  control  tables and  temporary  storage re- 
quired  by the 1vros/360 control  program. It \vas calculated that if 
all references to  GETMAIN,  FREEMAIN, and I’Ll3GMAIN xere re- 
placed by references to preallocated fixed-size buffers, storage  still 
could be provided to control  program services as  required, with 
up  to  twenty percent decrease in CPU utilization. It was also noted 
that requirements  for  supervisor  request blocks (SVRB) and pro- 
gram  request blocks (PRB) constituted  over half of the  demands 
on MSS by RTOS/~GO.  Based  upon  these  results, the cost of addi- 
tional  tailoring to the RTOS/~SO environment seemed to be justified. 

~ in  this  study. 

Concluding remarks 
Experience and techniques used at  RTCC to analyze  computer 
system  performance  have evolved through long exposure to  the 
problem of assuring  workable  system designs or problem sohtions. 
The original development of the techniques discussed in  this  paper 
.began in mid-1963 for use with  Gemini  systems and  the 7094-11. 

When probIems in computer size or speed arose, new computers 
were simulated.  When I/O devices caused  delays in processing, 
different I/O devices were simulated to improve performance. 
When  programming design seemed inefficient (either  control or 
application  programs), new designs were modeled. Results of these 
studies were presented  for  management decision. 

Present versions of SGS and G P S S / ~ ~ O  multiprogramming models 
are  improvements  over  earlier versions, but essentially the same 
techniques  are being successfully used to  study  the I i~Os /360  pro- 
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I techniques at  the RTCC are: 

Measurements of system performance are  acquired by using SGS 

Current  statistics  are used in predictions of future  system per- 

Application systems are modeled and  tested  with relative ease 
formance via GMOS 

by using GMOS 

This method of analysis  has proved to be  accurate  and effective. 
Techniques discussed in  this  paper  have been used to evaluate 
application  systems that  run under two major  multiprogramming 
control  programs: the RTCC executive control  program for the 
7094-11 and ItTOS/360 for SYSTEM/360. Programming  applications 
analyzed include: job-shop throughput performance, configuration 
studies, and real-time programming design. I t  seems reasonable 
to conclude that other  programming  applications  might also bene- 
fit from these modeling and measuring  techniques. 
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