Since each Apollo manned space flight makes new demands on the
computer configuration and operating system, data processing ef-
ficiency s tested before each flight by stmulation described in this
paper.

Discussed is the dynamic gathering of operating system performance
data during real-time simulation, achieved by incorporating appro-
priate routines in the Apollo control program. The data thus collected
18 used as input to improved system models.

The effect of the statistics gathering routine on systems performance
can be measured.

Statistics gathering and simulation

for the Apollo real-time operating system
by W. 1. Stanley and H. F. Hertel

In monitoring Apollo manned space flights, National Aeronautics
and Space Administration flight controllers must rely on a complex
real-time computing system. Trajectory and telemetry data, pro-
viding both positional and environmental parameters of the space
vehicle and the astronauts, must be processed immediately upon
arrival at the Real Time Computer Complex (RTCC) via a world-
wide telecommunication network. Computers, peripheral equip-
ment, and programming support, as shown in Figure 1, must be
efficient enough to avoid a backlog.

In addition to their primary purpose of supporting manned
space flights, RTCC computers support real-time space-flight simu-
lations. These simulations generate trajectory and telemetry data
to test the mission support system and to train flight controllers in
an environment that closely approximates an actual mission.

Each Apollo mission presents the RTCC with a unique set of
processing requirements. For example, real-time data sources may
change in number, arrival rate, or message size. These and other
such factors cause changes in the performance of real-time com-
puting systems. So that changes do not cause the systems to per-
form below acceptable limits, performance of current systems is
measured and that of future systems is modeled. Performance
measuring as well as design modeling and simulation are the main
subjects of this paper. These techniques are a formal method of

No. 2 - 1968 STATISTICS GATHERING AND SIMULATION

Figure 1 Real Time Computer Complex programming system

~
\\ SYSTEM /360 MODEL 75 \\\
~

COMMANDS FOR, ON-BOARD COMPUTER

RTOS/360

===
I IND. | DATA
MANUAL LOGGING : TASK : TABLE SUBPOOL
REQUESTS [

AND
PERIPHERAL
/0

1 MEGABYTE
MAIN MEMORY

DYNAMICALLY
MODULE ALLOCATABLE
FROM LCS

N

2 MEGABYTE

LOAD
O MODULE
LARGE CAPACITY

ELOAD MODULES STORAGE
- DATA TABLES

assuring that RTCC performance requirements are met in advance
of computer system delivery. This paper introduces processing
requirements and the operating system briefly. Later, performance
measuring and modeling techniques are discussed as they are used
in studying the design of future systems.
To date, the most important Apollo mission areas requiring
processing modeling are the launch and orbit phases. The launch phase consists
requirements of two periods: powered flight and a brief period of computation,
called “hold.” Powered flight processing consists primarily of two
asynchronous processing ecycles (trajectory and telemetry) com-
peting for all system resources. During hold, go/no-go and abort
computations operate as background to the higher-priority tra-
jectory and telemetry eycles. It is imperative that the response of
the hold eycle be within certain allowable limits. At the same
time, the responses of the two faster cycles, trajectory and telem-
etry, must not be seriously impacted. Because of the load of cyclic
processing, the critical system resource during launch is the cen-
tral processing unit (cpu). Launch-phase modeling is primarily
concerned with the evaluation of the ability of the computer to
maintain all eyclic responses.
In the orbit phase, telemetry and trajectory processing are done
only when the spacecraft is in range of an adequately equipped

STANLEY AND HERTEL IBM SYST J

station. Even then, the processing magnitude of orbit phase is
much smaller than that of the launch phase. However, other tasks
are normally performed during orbit: mission planning (rendezvous
computations and orbital changes), updating trajectory predictions,
and calculating time-to-fire. In general, these tasks do not have
severe response requirements and operate as background to orbit
cyclic processing. Thus, they do not necessarily impose a heavy
load on the system cpu. However, the program and data sizes
associated with these tasks are quite large. Because a number of
these tasks can be in process at any one time, such tasks can make
serious storage demands. Therefore, just as launch-phase modeling
is centered on the evaluation of cpu capabilities, orbit-phase
modeling primarily studies main storage and large-capacity storage
availability.

Support for the Apollo space flights consists of five sysTEM/360
Model 75 computers and a modification of the sysTEm/360 Oper-
ating System (0s/360). The decision to use 0s/360 as a real-time
operating system to support the stringent response requirements
(real-time data messages arrive at rates of 50 messages per second)
was not without problems. First, the performance of 0s/360 had
been essentially untried in an application of this magnitude.
Second, RTCC controls the computer time sharing and peripheral
1/0 devices among many semi-independent jobs that operate
asynchronously, but share or reference some of the same data.
Third, the first system had to be operational by the last quarter of
1966, which left little leeway for misjudgment of performance or
miscalculation in design.

The following introduces the RTCC real-time operating system
(rros/360) and briefly describes how statistical and simulation
methods are used to analyze its design and performance.

RT0s/360 1s basically 0s/360 (multiprogramming with a variable
number of tasks) with modifications to the nucleus to increase
efficiency in the rros environment and to provide additional real-
time capabilities. Part of the deviations from 0s/360 result from
the need to effectively use a one-megabyte sysTeM/360 Model 75
with an additional two-megabyte Large Capacity Storage (Lcs).
Other modifications are: supervisor services that interface with
specialized methods of data management, a modified definition for
task management, and new receiving and routing logic for incom-
ing telecommunication data. The following items suggest the scope
of RTCC changes to existing 0s/360 routines that significantly im-
prove system performance when executing an RTCC real-time job
step. Program fetch was modified to use Lcs as a residence for
load modules and real-time data tables. The capabilities of load-
ing Les from a disk and loading main storage from Lcs were added.
The main storage supervisor (Mss) was modified to use Lcs as an
extension of main storage. The main storage supervisor was mod-
ified to include storage allocation algorithms tailored to the real-
time environment. Temporary storage for system control tables
is obtained from fixed-size pools instead of from wmss.

NO. 2 - 1968 STATISTICS GATHERING AND SIMULATION

operating
system

Some design ehanges were necessary to allow several independ-
ent units of work to share computing resources. Thus, the concept
of “independent task” was introduced. An independent task is a
sub-job step that can share programs and data with other tasks
and can be referenced by a symbolic task name, which allows a task
to have a queue of work that it performs serially. An independent
task has a dormant state that allows the task to remain known to
the system although it has no eurrent work. The dormant state
permits cyclic processing since independent task resources are
saved until the next data frame or processing cycle when the task
becomes active again. Independent tasks may be created and de-
stroyed without affecting the operation of other independent tasks.

Data tables were added to the data management services
offered by os/360. Data tables are referenced symbolically with a
system name in much the same way as a load module. Data table
services do not require OPEN or CLOSE macroinstructions to be
executed. Data table macroinstruetions are not access mechanisms
to 1/0 devices; rather, they reference the named data or storage,
which may be allocated in Lcs or in main storage.

Control program services were added to control the rRTOS/360
logic that receives and routes real-time input data arriving over
the telecommunication lines. This logic provides rros/360 with an
efficient method of identifying input data by using parameters
supplied by the application programs. Data is buffered and routed
to a work queue of the proper independent task. These and other
control program services modify 0s/360 to form ®rT0s/360, which
supports the RTCC real-time application systems created for the
Apollo project.

In deciding which design alterations and which implementation
changes yield the best performance, two evaluation techniques
are used. A Statistics Gathering System (sas) obtains timing and
frequency statistics on RT0s/360 control program services as well
as all application programs. The General Purpose Simulation Sys-
tem (grss)!? predicts expected performance (given the sas sta-
tistics) of both real-time job steps and job-shop operations.

In an initial simulation, actual performance statistics are gen-
erally not available.? However, initial simulations can and should
be performed during the systems design stage to evaluate the
machine and basic program design together. Performance statis-
tics for models used in the initial simulation are based on perform-
ance statistics of similar systems. As the programming com-
ponent of the computer system is developed, actual performance
statistics are gathered and added as refinements to the model.
Thus, as the computer system is being developed, the model pro-
vides a more accurate evaluation of the programming design.

Measuring system performance

To measure the performance of a real-time system and monitor
its execution, a comprehensive Statistics Gathering System (s6s)

STANLEY AND HERTEL IBM BYST J

was developed. sas, a program and not a hardware device at-
tached to the computer, provides an accurate means of measuring
performance on rros/360 by collecting:

® Timing information on control program services and application
programs
Percentage figures showing how definable system functions use
the cpu resource
Elapsed-time figures showing task response time in a multi-
programming environment

An interface with rRTOs/360 enables sgs to record time, logic
flow, and frequency statistics. Although sas degrades performance,
it does not push the processing load to the point of failure. sgs
relies on the fact that a real-time system normally operates with
enough idle time or surplus capacity to allow the system to handle
peak load processing surges. (While statistics are being collected,
some surplus capacity is used up; thus, the time to process a peak
load is lengthened.) In the normal job-shop environment, where
sGs monitors the FORTRAN compiler, assembler, or execution job
step, the monitored job step takes longer to complete. In both the
real-time and job-shop environments, sas gives the percentage of
computer capacity used by itself in collecting and reporting sta-
tistics. This feature allows the analyst to remove the effect of
sas from statistics on the actual system.

The sas design for rros/360 is patterned after an earlier version
used with the Gemini 7094 exccutive control program. Experience
shows that dividing the obtainable statistics into several inde-
pendently selected categories reduces the impact on normal per-
formance of the system. Six general categories of statistics have
been defined for sas:

RTOS/360 statistics provide execution times and frequencies for con-
trol program functions, i.e., the control program services and other
control program routines.

Load module statistics provide execution times and frequencies for
each load module and show the number, type, and cpu utilization
for control program services used by each load module.

Gross cPuU ulilization statistics provide the percent utilization of the
CcPU by RT03/360 and by the application system, the percentage of
capacity spent waiting for 1/0 operations, and the percentage of
capacity spent idle, i.e., time when no work is in process and none
is queued waiting to be processed.

Independeni-lask statistics provide frequencies with which named
tasks are executed, average response times for the tasks, and
computer capacity used by them to perform assigned work.

1/0 device statistics provide frequencies with which 1/0 devices
are used.

NO. 2 - 1968 STATISTICS GATHERING AND SIMULATION

statistical
categories

initialization

Logic traces provide the logic flow and cru execution time of the
logic required to satisfy an application program request for a
control program service.

sas accounts for all cpu time. Symbolie clocks are kept on each
program segment identified to sas. Time not spent executing pro-
grams is tallied either as time spent waiting for 1/0 or as idle time.
A notable characteristic of sags timing statistics is that the meas-
ured execution time of the instruction logic of each system func-
tion is independent of other system functions. Elapsed times for
1/0 operations and execution of other functions are acerued sep-
arately. The statistics obtained are more nearly independent of
the environment in which they are obtained. Therefore, timing
statistics may be used in a model of a real-time system that sim-
ulates a different operating environment from the one in which
the statistics were obtained.

Statisties gathering is divided into three phases: initialization,
collection, and reporting. A user may select one or more of the
six categories of statistics by entering control parameters to start
and stop the selected categories according to time or the initiation
and termination of a job step. These control parameters, which are
entered via the job stream or an on-line typewriter, are passed to
the sas independent task to start the initialization phase. All ses
logic is implemented as transient load modules to minimize the
impact of size on storage allocation for an operational system.

The first phase initializes the rT0s/360 nucleus enabling control
to pass to sas colleetion routines whenever the ¢PU begins executing
instructions for a new or different system function. The definition
of system function used by sas is the change of processing pur-
pose implied by cru interruptions. Since each purpose requires
its own implementation, the implementation logic and purpose
define a system function. The interface with RTOs/360 is via the
new program status words (psw), which pass control to s@s upon
each interruption of the cpu.

There are five types of interruptions that cause a change in
the psw:

& 1/0 interruption — indicates the need to service an 1/0 channel
S Program interruplion — indicates a program error or excep-
tional result during execution
svc enterruplion — indicates a request for a control program
service
External interruption — signals the computer to service an
external device
Machine check interruption — indicates an error in computer
hardware

Each type of interruption has an assigned new psw and an old
PSW in main storage. Upon interruption, the old psw is saved and
the new psw is loaded with the new contents of the instruction
counter to give the starting address of an RT08/360 interruption

STANLEY AND HERTEL IBM SYST J

handler. When sas is in use, the new psw sets the instruction
counter to the start of the sas program that handles the particular
type of interruption.. After recording the statistics required, the
8Gs program passes control to the Rros/360 interruption handler
with all machine conditions set as though the interruption had
proceeded there directly.

An interruption is not associated with every change in system
function, and, therefore, interruptions alone cannot define the
complete sGs interface. For instance, a load rsw (LPSW) instruc-
tion, which returns control of the cPu to an application program
after completing a control program service, does not interrupt the
cpU. Nevertheless, there is a definite change in functional purpose
of the instructions being executed. The method of keeping sas
informed in cases like this is to force an interruption. Combined
with the nucleus by the linkage editor is a small table of symbolic
references to such special instructions as all LPSW’s, entry to
program fetch, and entry to the dispatcher. At scs initialization
time, the operation code of these instructions is replaced with an
illegal operation code. Upon each execution thereafter, a program
interruption occurs at these identifiable addresses.

In the case of certain control program subroutines, sGs not
only must recognize when the program is entered, but also must
recognize when the program is exited. It is possible to take ad-
vantage of the fact that general register 14 (GR 14) is used as a
standard return register. For example, assume program A wants
to call subroutine B using the sysTEM/360 assembly language
instructions

L 15 = V(B)
BALR 14, 15

At address B, sGs gains control by means of an illegal operation
code at the subroutine entry point. sas then saves the contents of
base register 14 and replaces the contents with an sas address.
Also, statistics gathering is stopped for A and started for B. Sub-
routine B is executed and then returns control via the address in
base register 14 (BR 14). sGs gains control via the address in base
register 14, then stops statistics on B, restarts statistics on A,
restores base register 14, and branches to the intended return
point in program A.

During statistics initialization, ses routines that obtain the
selected categories of statistics are loaded into main storage. Until
collection is terminated, these routines are entered each time there
is a change in system function.

The second phase in s6s consists of routines that record execu-
tion time, frequency counts, and logic flow. Statistics are collected
in main-storage buffers that are linked to the proper job step,
independent task, and load module. Note that most categories of
sGs statistics do not report every statistical event, rather statis-
tics are averaged over a period of time and the average is reported
for each system function.

NO. 2 - 1968 STATISTICS GATHERING AND SIMULATION

coliection

reporting

92

Storage for statistics is obtained, as necessary, from the main
storage supervisor. The size of s@s in main storage depends on the
number and kind of statistical categories selected, and on the
number of system functions in the selected categories for the
application system being monitored.

The statistics for each system function are identified by a
symbol. Normally, these symbols are also used externally to sés,
such as: macroinstruction names for statisties on rros/360 control
program services, load module names for application program
statistics, and independent task names for statistics reported for
each independent task and any of its dependent tasks.

Multiprogramming is a basie ingredient in the ses method of
maintaining statistics. Each time RTOs/360 performs a task switch,
8as interrupts the collection of statisties for the current task and
starts collecting statistics for the new task. Each time RT0S/360
resumes a previous task, sgs resumes collecting statisties for that
task. Any partially completed system function, which is tem-
porarily interrupted because of multiprogramming considerations,
is recognized by sas, and a partial set of statistics is saved until
the function is resumed at a later time.

To record accurate timing statistics, a clock with a ten-micro-
second resolution is used. Each time a program or routine is started,
stopped, or interrupted, a logical clock with the appropriate sym-
bolic identification is updated accordingly. A typical sequence of
sas 1s as follows:

. Time is recorded, and the current function stops.

. Contents of all necessary registers are saved.

. Statisties for the interrupted routine are updated.

. Overlaid instructions are simulated.

. If the interrupt is a supervisor call (SVC), a symbolic clock is
started, according to a control code in the SVC instruction.

. If the interruption is caused by illegal instructions resulting
from the augmented sas interface, a symbolic clock is started,
according to a control code in an sas table.

. Control returns to the normal RT0s/360 logic flow.

The third phase of sas is that of reporting, which may be called
periodically to allow a requestor to record trends or changes in
system performance. Programs associated with generating sas re-
ports operate as transient load modules. The reporting phase runs
as an independent task whose priority is adjusted to allow it to
compete favorably for system resources. Since the reporting phase
cannot stop the system to report the statistics colleeted, the report-
ing and collecting phases alternate. When a complete report is
generated (normally in less than one second), the time and fre-
clluency counts are reset to zero, and the collection phase begins
again. Formatted reports are usually written on tape for off-line
printing.

Samples of the first statisties produced by the sYSTEM/360
version of sas are shown in Table 1 and are intended to provide

STANLEY AND HERTEL IBM SYST J

Table 1

Execution times for logical functions

RTOS /360 logical function

Average time
(microseconds)

Number of
executions timed

Description of function

LINK*
XCTL*
LOAD*

EXIT*
Dispatcher
GETMAIN*

REGMAIN (get mode)
FREEMAIN*

REGMAIN (free mode)
WAIT*

POST*

POST (branch entry point)
BLDL*

Program fetch

Program fetch after
1/0 interruption

EXCPp*

Input/output first-level
interruption handler

Interruption supervisor

External first-level
interruption handler

Time routing
Routing
RTATTACH*
OPEN*
CLOSE*
DELETE*
STIMER*
RTIME (243)*
RTIME (250)*
DTROUTE*
RUATTACH

DTWRITE*
DTREAD*
DTLOAD*

DTDELETE*
RTWRITE*
Logging

1693
1760
2026

836
498
1186

2427
1133
1253
712
804
142
700
1760
604

1872

3
1
6

45

Passes control temporarily to a load module
Passes control to a load module

Requests a module be loaded and retained in
main storage

Passes control from current load module
Passes control to tasks according to priority

Allocates main storage for use by requesting
program

Allocates main storage in supervisor subpools

Returns program-allocated main storage to a
free pool
Frees main storage from supervisor subpools

Waits for a specified number of events to occur
Sets a complete flag when an event has occurred
Sets a complete flag for 1/0 supervisor

Builds a special directory in main storage
Reads a load module into main storage

Reads a load module into main storage after
1/0 interruption

Requests transmission to/from an 1/0 device

Retains register contents of interrupted pro-
gram

Performs 1/0 device control

Retains register contents of interrupted pro-
gram and determines cause of interruption

Creates a work request based on time
Creates a work request based on time or data
Enters a work request in task queue
Prepares system for data transfer

Restores system after data transfer

Makes a load module eligible for purging
Provides time control services

Acquires Greenwich Mean Time

Sets system to Greenwich Mean Time
Creates a control block for routing

Enters a work request in task queue (used by
routing)

Writes a data table from user load module
Reads a data table for user load module

Requests a data table to-be allocated to main
storage

Makes a data table eligible for purging
Transmits telecommunications data

Records telecommunications data on a log
tape

* RTOS /360 macroinstructions.

Note: Average times for the rTos/360 functions may vary depending upon the application system from which
they are obtained and the level of ses development.

No. 2 - 1968

STATISTICS GATHERING AND SIMULATION 93

operating
system
model

the reader with an insight into the level of detail that sas yields.
These statistics were obtained while running test cases on a
sysTEM/360 Model 50. The average time reported for each rT0s/360
system function is the time to execute the instructions for that
particular function only. The average times are the basic statistics
with which system performance is analyzed at RTCC.

It should be understood that the average times given in Table
1 reflect only the time required to execute the basic routine. Pro-
viding the whole control program service may, in fact, require the
execution of additional system funections. For example, the total
time for the complex control service LINK, given in Table 1, can
be calculated by including all additional logical functions, such
as REGMAIN, to the basic LINK execution time.

System functions marked with an asterisk in Table 1 are de-
rived from RTOS/360 control program macroinstructions and are
thus directly available to the application programmer. Functions
without the asterisk are used only by the rT0$/360 control pro-
gram and are unavailable for direct use by the application pro-
gramimer.

Simulating system performance

The Real Time Computer Complex is not a project that is blessed
with a firm definition of mission requirements. Results of each
mission impose requirements for future missions and, thus, levy
new demands for real-time support. It is essential to the orderly
development of RTCC real-time systems to anticipate problems in
computer system configuration or system program design that
could impair the success of future missions. To analyze future
system performance, RTCC uses models written in the language of
the General Purpose Simulation System (Gpss/360).4

The primary responsibility of the RTCC modeling effort is sys-
tem assurance. Models of particular missions are primarily devel-
oped to assure the RTCC project that both the machine configura-
tion and the system programs to be used will perform satisfactorily.
Thus, the most frequent output of modeling is a prediction of
systems performance for a particular mission. This prediction can
be expressed in such ways as cpuU load, eyelic response, and channel
utilization.

arss models designed for the RTCC are composed of four major
components:

1. The systeEM/360 computers and many of the peripheral 1/0
devices are modeled. This component defines the cpu, main
storage, and 1/0 devices in terms of parameters that allow speed
and size characteristics to be changed in order to model other
computer configurations.

. The rTO08/360 nucleus component simulates significant r10s/360
and 0s/360 control-program services. These services are modeled
as subroutines so that new designs for operating-system logic
may be tested.

STANLEY AND HERTEL IBM SYST J

3. Application systems are modeled in a manner analogous to
programming the real-time system. Models of application-
system programs are combined with the computer and the
RTOS/360 logic components to simulate a total real-time system.

. The world-wide telecommunication network model represents
message size, arrival rate, and transmission-line speed of
messages arriving at RTCC during an Apollo mission.

Of these four components, the sysTEM/360 and RT0S/360 nucleus
models are relatively constant. Therefore, these models are sub-
routines in the Gpss/360 modeled operating system (emos). By
using ¢Mos models of econtrol program service routines, the analyst
need only characterize the application programs and the tele-
communication data. amos includes eurrent timing statistics and
logic flow of the rRros control program services. Therefore, the
analyst who is studying a new application has a significant portion
of his system accurately modeled.

aMos provides users with an easy interface to hardware models
and models of control program service routines. A control program
service is requested by the following format wherein TRANSFER
and ASSIGN are GPss macroinstructions:

TRANSFER SBR, SVC, 12
ASSIGN 4, (service)
ASSIGN 4, (argument 1)
ASSIGN 4, (argument 2)
ASSIGN 4, (argument 3)
ASSIGN 4, (argument 4)

More specifically, a request for a control program service (such
as EXCP) that simulates a reference to an 1/0 device (such as
TAPE) is written as follows:

TRANSFER SBR, SVC, 12

ASSIGN 4, EXCP Service being simulated

ASSIGN 4, TAPE 1/0 device

ASSIGN 4,40 Number of bytes being transmitted
ASSIGN 4, ECB Event control block

When this sequence of instructions is executed by an application
model, a TRANSFER is made to the amos logic that simulates an
SVC interruption. cpU time is simulated for the instructions exe-
cuted in the first level interruption handler and the execute channel
program (xcp) logic. The rRT0S/360 model then simulates a START
1/0 instruction, which initiates a model of a tape device. While
simulating the time to transmit 40 bytes of data to or from tape,
the cpu model passes control back to the application model (after
the cpu time for exit logic). When the data-transfer time has
elapsed, the cpu model is interrupted, and control passes to a
model of the 1/0 interruption handler and to a model of the 1/0
supervisor. After the proper amount of cpu time is simulated and
the event control block (EcB) is posted, amos logic proceeds to a
model of the dispatcher and then, again, to the application model.
A simple interface for the application modeler results in a com-

NO. 2 - 1968 STATISTICS GATHERING AND SIMULATION

application
models

plex web of logic in much the same way that a simple control pro-
gram service initiates similar logic in rTOS/360 Or 08/360.

One of the most important parts of computer systems analysis
is a good definition of the application program logic and processing
requirements. Often, obtaining this information is not a trivial task.

The modeler is concerned with expressing the system logic and
processing requirements in terms of ¢umos standard interfaces. At
RTCC, the modeler defines input characteristics (frequency, mes-
sage size, routing procedure), obtained largely from NASA mission
requirements. He then models the input in a series of predefined
calls to aMos input routines. The modeled input serves as a driver
(i.e., initiates all processing) for the mission model just as the real
input drives the system being modeled.

Simulation involves the concept of mission logic, which refers
to the logic within the many load modules that make up an Apollo
mission plus a general description of all load modules and data
tables used. The analyst gathers this information from mission
programmers and then expresses the logic or refers to modeled
data tables in a series of calls to Gamos routines. Kach of these calls
corresponds to a similar call in rTos/360 and, in general, carries
with it a similar set of arguments. The only exception to this
generality is a special call representing the expenditure of enabled
processing time within a load module. The load-module and data-
table descriptions are expressed as parts of a GPss/360 FUNCTION.
As an example, the following is a typical description of a load
module on a epss function follower card:

LMID 2000 626 1 BEG 8000

Here, LMID is the predefined identification of a 2000-word-long
load module resident in Large Capacity Storage (Lcs). That the
load module is serially reuseable is indicated by the amos code “1.”
The number 626 points to a location that identifies Lcs. The load
module has an entry point at BEG (defined in the model of the
load module) and executes for 8000 time units. Sometimes, if the
analyst is working in advance of actual implementation, this
information is largely guesswork. If the load module is already in
operation, however, the gathering of these characteristics is simple:
sGs measures cxecution time, and all other items are available
from the programmer.

Oceasionally, in preparing model-bagsed predictions of system
performance, it is found that the defined system is not capable of
meeting mission requirements. In these cases, a model becomes a
valuable tool for use in defining and evaluating possible solutions
to the problem.

A model of the GT-6 orbit phase (the first planned-rendezvous
mission in the Gemini series) disclosed that the system would be
unable to service program queues as fast as they were generated.
The model was used to define two solutions to this problem: a more
efficient program-priority arrangement, and an increase in the size
of main storage. Also, the RTCC conversion from an 18M 7094-based

STANLEY AND HERTEL IBM SYST J

system to sysTEM/360 was largely brought about by model pre-
dictions that the advanced Apollo requirements would far exceed
the 7094 capacity. Both of these efforts utilized a cpss model of
the executive control program,® the 7094 equivalent of RTos/360.
GeMos is expected to be used in much the same manner to evaluate
SYSTEM/360 performance. It is now being used in the prediction of
early Apollo 500 series mission performance and Apollo storage
requirements.

The very existence of a model has many times proved valuable
in testing speecific hardware or system program design alternatives
(often on short notice). For example, an existing model of the
Apollo simulation system for mission test and training (scaTs)
was useful in evaluating several alternative main-storage purge
algorithms. For such a study, the model is modified to run with
each algorithm, and the most cfficient algorithm is identified by a
comparison of results. The same procedure can be followed to
evaluate design alternatives in such areas as: system bulk storage
devices, main storage allocation algorithms, data tables versus
subpools, program linkages, and routing algorithms.

In creating a model such as amos to simulate multiprogram-
ming systems as complex as those at RTCC, it is necessary to model
logic and to represent timing statistics with a reasonably high
degree of accuracy. The logic modeled in amos represents all the
unique services provided by RT0s/360 in the normal execution of a
real-time job step. Decisions to use these services are based on
the same parameters that would influence processing for an actual
system. For example, if the LINK macroinstruction is exccuted,
the logic modeled for the LINK routine executes a GETMAIN for
an SVRB (supervisor request block) similarly to the way that the
actual rTos/360 does. If the requested Ioad module is not in main
storage, the amos model enters logic to simulate the program
feteh. If program fetch simulates a GETMAIN for a trausient area
in which to place the load module and if the model of the main
storage supervisor canunot find an area large enough, the purge
routine removes unused load modules from a simulated main
storage. Performance of each significant system function is sim-
ulated according to the same parameters and reacts to the same
conditions that the rros/360 would if it were operating in the de-
fined computer system.

s@s provides the timing statistics necessary to accurately assess
the computer capacity required to exccute cach system function.
Each function (GETMAIN, LINK, program fetch, ete.) uses cpu
time according to the average execution-time statistics obtained
by timing the actual system program with sGs. The statistics pro-
vided by amos show the apalyst:

® Elapsed time to perform an independent task
®* Percentage utilization of 1/0 devices and the number of accesses

®* Number of purges necessary

.2 - 1968 STATISTICS GATHERING AND SIMULATION

model
statistics

modei
analysis

three
studies

Number of times load modules and data tables are allocated to
main storage

Number and kind of control program services requested

Percentage of ¢Pu time used for: RTOS /360, application program,
waiting for 1/0, and idle time

® Detailed cru utilization statistics of RT0s/360 functions

With knowledge of how system capacity is being used, the analyst
can spot performance problems, i.e., services for which too great a
price is being paid for the work being accomplished. The perform-
ance of new logic design can be tested by modeling the new ideas,
replacing the model of existing logic, and rerunning the total
system model.

Once a model is working successfully, a great amount of infor-
mation is available for analysis. For models of the Apollo launch
phase, the analyst is interested in cpu utilization and its breakdown
into such component parts as mission time and times for 1/0 super-
visor, task management, and storage management. A simple in-
sertion by the modeler of ¢pss/360 TABULATE macroinstruction
blocks at strategic points in the model produces detailed measure-
ments of response time for all cyclic work. Such response measure-
ments are indispensable to evaluating the successful completion
of all eyclic processing.

For models of the orbit phase, the analyst might be more inter-
ested in the number of times that each load module was fetched
versus the number of times each load module was executed. (Both
items are available in a emos table.) He might also be interested
in the number of purges that were necessary in a given time (de-
rivable from block counts) and the degree of main storage fragmen-
tation at periodic intervals. The latter is available by forcing
periodic output of a emos-maintained storage map.

In either case, the analyst might be interested in knowing the
traffic volume on various real-time lines and system 1/0 channels,
both available in standard emos output. Also produced by emos
are tables showing the frequency of use of each of the standard
RTOS/360 control program services.

Thus, the analyst automatically receives a great amount of
information through the use of emos. The great flexibility of
apss/360 allows the gathering of many additional statistics with
only small modifications to gmos or the application system model.
One of the benefits of such an abundance of information has been
the occasional discovery of an important fact from statisties that
was not originally considered important.

Three studies are presented here as examples of the variety of
problems analyzed at the RTCC by means of Gpss/360 models.

The first study was made to determine the significance of main
storage to an Apollo real-time application system. While the size
of the simulated main storage was varied, the response of a signifi-
cant calculation cyele was noted. Although this study was limited

STANLEY AND HERTEL IBM SYST J

to one Apollo real-time application, the results are expected to be
typical of similar applications. Les was used as a bulk storage device
from which programs and data were loaded into main storage. The
amount of main storage thus required is known to be sensitive to
the ability of rRTos/360 to refresh storage dynamically in real time.

In view of this, the general approach taken in this study was
the following. First, consider improvements to the purge algorithm
in RTOs/360 and select an algorithm independent of the specific
application. Then consider the application system performance at
several storage-required-to-storage-available ratios (Sg/S4) when
such an algorithm is used. With this, one can use the application-
system size estimates to determine the expected Sg/S4 ratio and
the resulting performance. Curves relating measures of system
performance to the Sz/S,4 ratio are shown in Figures 2 and 3. The
following describes how these curves were obtained and how they
are used. A base case was established using a storage size that was
larger than the total size of the application program plus RTO0S/360.
aMos was used in the simulation with a modified purge algorithm.

The purge algorithm maintains “use counts” to decide which
modules to purge. During a single execution of the purge program,
all unused load modules and data tables having a use count equal
to or below a threshold are purged. All modules having a use count
higher than the threshold are retained, but their use counts are
reduced to zero. Thus, use counts reflect only uses since the last
purge. Data tables that have been updated must be written on
an external storage device before being purged. In this study,
thresholds of 1 and 2 were considered. In all cases, the threshold of
1 yielded the better performance, and those results are used in
this paper.)

The Sr/S4 ratio is a measure of the relative size of an applica- Figure 3 ::qpt‘ijoloud versus storage
tion system to a given main storage size. Storage required (Sg) is
taken as the total size of load modules, data tables, and subpools.
Storage available (S4) is taken as the size of main storage, minus
the total size of rT0s/360 plus system subroutines. Starting from
a given Sp/Sa ratio, an increase in the ratio reflects either a
growth in application size requirements or a decrease in main-
storage available; a decrease in the ratio reflects either a lessening R TR RV,
of application size requirements or an increase in available main Su/Ss
storage.

Figure 2 shows response times to one-second telemetry-cycle
proecessing, which operates concurrently with half-second tra-
jectory processing. The Sz/S, ratio is plotted along the horizontal
axis. The 1.0 value along this axis represents the base case for
which no buffering is required (all programs and data just fit in
main storage). The left boundary of the shaded arca indicates
performance based on initial size cstimates. The right boundary
shows the performance if this size estimate were increased by 20
percent to account for errors in size estimations.

Note the steep slope in Figure 2 between the first two points on
the curve. At the first point, the telemetry cycle is completed

Figure 2 Cyclic response versus
storage ratio

ol L
08 10 12 14 16 18 20

Sg/Sa

CYCLIC RESPONSE INCREASE (9;) ~

CPU LOAD INCREASE (%)

NO. 2 - 1968 STATISTICS GATHERING AND SIMULATION

before a trajectory cycle begins. Following the first point, a slight
increase in the time required to process the telemetry cycle causes
overlap with the next trajectory eycle. Since trajectory has greater
priority, the telemetry response is lengthened by an amount
roughly equivalent to the length of the trajectory eycle. The rela-
tion between telemetry response and the increase in cpu load can
be seen by comparing Figure 3 to Figure 2. Figure 3 shows the
relationship of cru load to the Sz/S4 ratio.

The second study, using a model of the FOrRTRAN-H compiler,
was aimed at optimizing throughput by changing 1/0 device con-
figurations. At RTCC, performance of job-shop runs, sYSTEM/360
assemblies, FORTRAN compilations, ete., are as important to the
development of a real-time system as the execution of that system
is to the support of an Apollo mission. Job-shop efficiency increases
job-shop throughput and deereases turn-around time for debug
runs.

In the second study, a compilation was executed as an appli-
cation model with ¢mos to determine how various 1/0 devices for
SYSIN, SYSOUT, SYSPUNCH and SYSRES would change the
time to compile a sample source deck of 436 statements using the
FORTRAN-H compiler model. Since RTCC has Lcs associated with
each sysTEM/360 Model 75, Los was considered as an 1/0 device
for certain system residence modules from SVCLIB and LINKLIB.

Table 2 shows the parameters that were varied to produce the
results; constant parameters are not shown. Production times for
an object deck and listing are included in the table. One can see
that 1/0 devices prevent good utilization of the Model 75 cpu. (The
1BM 2311 disk was the output device for object code to the linkage
editor job step.) Comparing runs 1 and 4, one notices about a
6-to-1 improvement over a standard 1/0 configuration (run 1)

Table 2 Sample FORTRAN-H compilation results

Model runs
2

Parameters
SYSIN cards tape tape
SYSOUT printer tape tape
SYSPUNCH punch tape tape
SYSRES disk (2311) disk (2311) drum (2301)

Results
CPU
utilization (%)
1/0
waiting (%)
Elapsed

compilation
time (sec) 31

100 STANLEY AND HERTEL IBM SYST J

when tapes and Lcs are used (run 4). Comparing runs 2 and 4,
about a 2-to-1 improvement is observed using rcs in place of the
disk, under the assumption that input and output go to or from
tape in an off-line process. A sequential job scheduler was assumed
in this study.

For the third study, a preliminary design analysis using Gpss /360
model results and sas timing statistics was made to determine what
design changes might improve RT0s/360 performance. Continual
emphasis was placed on producing an efficient real-time operating
system at RTCC. Because of the frequency with which control pro-
gram services are used and because of the critical nature of the
real-time processing, it is necessary to provide a reasonable margin
of safety, so that peak processing loads do not degrade the response
required to process in real time. The study determined which
RT08/360 services were heavy users of computer capacity, with the
objective of planning ways to reduce the computer capacity re-
quired for these services. Frequency counts for use of control pro-
gram services were obtained from the agrss/360 model of the Apollo
launch system. Timing statistics were obtained with sgs.

As a result of this study, several design changes were recom-
mended, resulting in cpU capacity savings ranging from fractions
of a percent to twenty percent. One of the most significant changes
proposed was the elimination of references to the main storage
supervisor (umss) for all control tables and temporary storage re-
quired by the rro0s/360 control program. Tt was calculated that if
all references to GETMAIN, FREEMAIN, and REGMAIN were re-
placed by references to preallocated fixed-size buffers, storage still
could be provided to control program services as required, with
up to twenty percent decrease in cpu utilization. It was also noted
that requirements for supervisor request blocks (svks) and pro-
gram request blocks (PrB) constituted over half of the demands
on Mss by rros/360. Based upon these results, the cost of addi-
tional tailoring to the rTos/360 environment seemed to be justified.

Concluding remarks

Experience and techniques used at RTCC to analyze computer
system performance have evolved through long exposure to the
problem of assuring workable system designs or problem solutions.
The original development of the techniques discussed in this paper
began in mid-1963 for use with Gemini systems and the 7094-11.
When problems in computer size or speed arose, new computers
were simulated. When 1/0 devices caused delays in processing,
different 1/0 devices were simulated to improve performance.
When programming design seemed inefficient (either control or
application programs), new designs were modeled. Results of these
studies were presented for management decision.

Present versions of sas and Gprss/360 multiprogramming models
are improvements over earlier versions, but essentially the same
techniques are being successfully used to study the rros/360 pro-

NO. 2 - 1968 STATISTICS GATHERING AND SIMULATION

gramming systems for sYSTEM/360. Several attributes of these
techniques at the RTCC are:

® Measurements of system performance are acquired by using 86s
® Current statisties are used in predictions of future system per-
formance via Gmos
Application systems are modeled and tested with relative ease
by using ¢Mo08s

This method of analysis has proved to be accurate and effective.
Techniques discussed in this paper have been used to evaluate
application systems that run under two major multiprogramming
control programs: the RTCC executive control program for the
7004-11 and RTOS/260 for SYSTEM/360. Programming applications
analyzed include: job-shop throughput performance, configuration
studies, and real-time programming design. It seems reasonable
to conclude that other programming applications might also bene-
fit from these modeling and measuring techniques.

ACKNOWLEDGMENTS

Implementation and use of the programs discussed in this paper
were achieved by a group effort, which the authors are pleased to
acknowledge. Special credit goes to T. A. Humphrey, who origi-
nated the computer systems analysis for the RTCC and who has
managed this work since the early Gemini missions.

CITED REFERENCES AND FOOTNOTES

1. G. Gordon, “A general purpose systems simulator,” IBM Systems Journal
1, 18-32 (September 1962).

2. R. Efron and G. Gordon, “A general purpose digital simulator and examples
of its application, Part I, Description of the simulator,”” IBM Systems
Journal 3, 1 22-34 (1964).

C. R. Velasco, “Part II, Simulation of a telephone intercept system,”
tbid., 35-40.

A. M. Blum, “Part III, Digital simulation of urban traffie,”’ <bid., 41-50.
D. F. Boyd, 1. 8. Krasnow, and A. C. R. Petit, “Part IV, Simulation of
an integrated steel mill,”’ bid., 51-56.

. An exception to the availability of initial performance statistics oceurs
when the operating system is a measurable, working product and only the

_ application programs are under development.

. The reader should be aware that the use of apss models, as deseribed in
this paper, is not the only alternative to good computer systems analysis.
There are other simulation languages such as simscripr and Computer
System Simulator, which can be used. Work is also being done with analyti-
cal models such as queuing theory and Markov models, which have appli-
cation in computer systems analysis. See: H. M. Markowitz, et al., SIMSCRIPT
—A Simulation Programming Language, Prentice-Hall, Inec., Englewood
Cliffs, New Jersey, (1963), and A. L. Scherr, An Analysts of Time-Shared
Computer Systems, The M. I. T. Press, Cambridge, Massachusetts (1967).

. The executive control program was implemented by 18m Houston Operations
to support Gemini missions and the early Apollo mission in the 1BM 7094-11
computers. See: J. H. Mueller, ““Aspects of the Gemini real-time operating
system,”” IBM Systems Journal 6, 3, 150-162 (1967).

102 STANLEY AND HERTEL IBM SYST J

