
Jiciency i s tested before each Jlight by simulation described in this
paper.

Discussed is the dynamic gathering of operating system performance
data during real-time simulation, achieved by incorporating appro-
priate routines in the Apollo control program. The data thus collected
i s used as input to improved system models.

The effect of the statistics gathering routine on systems performance
can be measured.

Statistics gathering and simulation

for the Apollo real-time operating system
by W. I. Stanley and H. F. Hertel

In monitoring Apollo manned space flights, National Aeronautics
and Space Administration flight controllers must rely on a complex
real-time computing system. Trajectory and telemetry data, pro-
viding both positional and environmental parameters of the space
vehicle and the ast,ronauts, must be processed immediately upon
arrival at the Real Time Computer Complex (RTCC) via SL world-
wide telecommunication network. Computers, peripheral equip-
ment, and programming support, as shown in Figure 1, must be
efficient enough to avoid a backlog.

In addition to their primary purpose of supporting manned
space flights, RTCC computers support real-time space-flight simu-
lations. These simulations generate traject'ory and telemetry data
to test the mission support system and to train flight controllers in
an environment that closely approximates an actual mission.

Each Apollo mission presents t'he RTCC with a unique set of
processing requirements. For example, real-time data sources may
change in number, arrival rate, or message size. These and other
such factors cause changes in the performance of real-time com-
puting systems. So that changes do not cause t,he systems to per-
form below acceptable limits, performance of current syst,ems is
measured and that of future systems is modeled. Pcrformance
measuring as well as design modeling and simulation are t'he main
subjects of this paper. These techniques are a formal method of

NO. 2 * 1968 STATISTICS GATHERING AND SIMULATION 85

Figure 1 Real Time Computer Complex programming system

assuring that RTCC performance requirements are met in advance
of computer system delivery. This paper introduces processing
requirements and the operating system briefly. Later, performance
measuring and modeling techniques are discussed as they are used
in studying the design of future systems.

To date, the most important Apollo mission areas requiring
processing modeling are the launch and orbit phases. The launch phase consists

requirements of two periods: powered flight and a brief period of computation,
called ‘(hold.” Powered flight processing consists primarily of two
asynchronous processing cycles (trajectory and telemetry) com-
peting for all system resources. During hold, go/no-go and abort
computations operate as background to the higher-priority tra-
jectory and telemetry cycles. It is imperative that the response of
the hold cycle be within certain allowable limits. At the same
time, the responses of the two faster cycles, trajectory and telem-
etry, must not be seriously impacted. Because of the load of cyclic
processing, the critical system resource during launch is the cen-
tral processing unit (CPU). Launch-phase modeling is primarily
concerned with the evaluation of the ability of the computer to
maintain all cyclic responses.

In the orbit phase, telemetry and trajectory processing are done
only when the spacecraft is in range of an adequately equipped

86 STANLEY AND HERTEL IBM SYST J

station. Even then, the processing magnitude of orbit phase is
much smaller than that of the launch phase. However, other tasks
are normally performed during orbit: mission planning (rendezvous
computations and orbital changes), updating trajectory predictions,
and calculating time-to-fire. I n general, these tasks do not have
severe response requirements and operate as background to orbit
cyclic processing. Thus, they do not necessarily impose a heavy
load on the system CPU. However, the program and data sizes
associated with these tasks are quite large. Because a number of
these tasks can be in process at any one time, such tasks can make
serious storage demands. Therefore, just as launch-phase modeling
is centered on the evaluation of CPU capabilities, orbit-phase
modeling primarily studies main storage and large-capacity storage
availability.

Support for the Apollo space flights consists of five SYSTEM/^^^
Model 75 computers and a modification of the S Y S T E M / ~ ~ O Oper-
ating System (osp60). The decision to use os/aso as a real-time
operating system to support the stringent response requirements
(real-time data messages arrive at rates of 50 messages per second)
was not without problems. First, the performance of OS/360 had
been essentially untried in an application of this magnitude.
Second, RTCC controls the computer time sharing and peripheral
I/O devices among many semi-independent jobs that operate
asynchronously, but share or reference some of the same data.
Third, the first system had to be operational by the last quarter of
1966, which left little leeway for misjudgment of performance or
miscalculation in design.

The following introduces the RTCC real-time operating system
(R T O S / ~ ~ O) and briefly describes how statistical and simulation
methods are used to analyze its design and performance.

R T O S / ~ ~ ~ is basically os/sso (multiprogramming with a variable
number of tasks) with modifications to the nucleus to increase
efficiency in the ETOS environment and t o provide additional real-
time capabilities. Part of the deviations from OS/360 result from
the need to effectively use a one-megabyte SYSTEM/BBO Model 75
with an additional two-megabyte Large Capacity Storage (LCS).

Other modifications are: supervisor services that interface with
specialized methods of data management, a modified definition for
task management, and new receiving and routing logic for incom-
ing telecommunication data. The following items suggest the scope
of RTCC changes to existing os/3so routines that significantly im-
prove system performance when executing an RTCC real-t,ime job
step. Program fetch was modified to use LCS as a residence for
load modules and real-time data tables. The capabilities of load-
ing LCS from a disk and loading main storage from LCS were added.
The main storage supervisor (MSS) was modified to use LCS as an
extension of main storage. The main storage supervisor was mod-
ified to include storage allocation algorithms tailored to the real-
time environment. Temporary storage for system control tables
is obtained from fixed-size pools instead of from MSS.

NO. 2 * 1968 STATISTICS GATHERING AND SIMULATION

Some design changes were necessary to allow several independ-
ent units of work to share computing resources. Thus, the concept
of “independent task” was introduced. An independent task is a
sub-job step that can share programs and data with other tasks
and can be referenced by a symbolic task name, which allows a task
to have a queue of work that it performs serially. An independent
task has a dormant state t’hat allows the task to remain known to
the system although it has no current work. The dormant state
permits cyclic processing since independent task resources are
saved until the next data frame or processing cycle when the task
becomes active again. Independent tasks may be created and de-
stroyed without affecting the operation of other independent tasks.

Data tables were added to the data management services
offered by os/sso. Data tables are referenced symbolically with a
system name in much the same way as a load module. Data table
services do not require OPEN or CLOSE macroinstructions to be
executed. Data table macroinstructions are not access mechanisms
to I/O devices; rather, they reference the named data or storage,
which may be allocated in LCS or in main storage.

Control program services were added to control the RTOS/36O
logic that receives and routes real-time input data arriving over
the telecommunication lines. This logic provides Rros/360 with an
efficient method of ident,ifying input data by using parameters
supplied by the applicat,ion programs. Data is buffered and routed
to a work queue of the proper independent task. These and other
control program services modify os/seo to form RTOS/%O, which
supports the RTCC real-time application systems created for the
Apollo project.

In deciding which design alterations and which implementation
changes yield the best performance, two evaluation techniques
are used. A Statistics Gathering System (SGS) obtains timing and
frequency statistics on RTOS/XO control program services as well
as all application programs. The General Purpose Simulation Sys-
tem (G P S S) ~ ~ ~ predict,s expected performance (given the SGS sta-
tistics) of both real-time job steps and job-shop operations.

In an initial simulation, actual performance statistics are gen-
erally not a~a i l ab le .~ However, initial simulations can and should
be performed during the systems design stage to evaluate the
machine and basic program design together. Performance statis-
tics for models used in the initi:tl simulation are based on perform-
ance statistics of similar systems. As the programming com-
ponent of the computer system is developed, actual performance
statistics ark gathered and added as refinements to the model.
Thus, as the computer system is being developed, the model pro-
vides a more accurate evaluation of the programming design.

Measuring system performance

To measure the performance of a real-time system and monitor
its execution, a comprehensive Statistics Gathering System (S G S)

88 STANLEY AND HERTEL IBM SYST J

was developed. SGS, a program and not a hardware device at-
tached to the computer, provides an accurate means of measuring
performance on I ~ T O S / ~ C O by collecting:

Timing information on control program services and application

Percentage figures showing how definable syst'em functions use

Elapsed-time figures showing task response t'ime in a multi-

programs

the CPU resource

programming environment

An interface with Rrros/xo enables SGS to record time, logic
flow, and frequency statistics. Although SGS degrades performance,
it does not push the processing load to the point of failure. SGS

relies on the fact that a real-time system normally operates with
enough idle time or surplus capa,city to allow the system to handle
peak load processing surges. (While statistics are being collected,
some surplus capacity is used up; thus, the time to process a peak
load is lengthened.) In the normal job-shop environment, \\here
SGS monitors the FORTRAN compiler, assembler, or execution job
step, the monitored job step takes longer to complete. In both the
real-time and job-shop environments, SGS gives the percentllge of
computer capacity used by itself in collecting and reporting sta-
tistics. This feature allom the analyst to remove the effect of
SGS from statistics on the actual system.

The SGS design for lt~os/360 is patterned after an earlier version
used with the Gemini 7094 executive control program. Experience
shows that dividing the obtainable statistics into several inde-
pendently selected categories reduces the impact on normal per-
formance of the system. Six general categories of statistics have
been defined for SGS:

R T O S / ~ ~ ~ statistics provide execution times and frequencies for con-
trol program functions, i.e., the control program services and other
control program routines.

Load module statistics provide execution times and frequencies for
each load module and shorn the number, type, and CPU utilization
for control program services used by each load module.

Gross CPU utihxation sfatistics provide the percent utilization of the
CPU by RTOS/360 and by the app1icat)ion system, the percentage of
capacity spent waiting for I/O operations, and the percentage of
capacity spent idle, i.e., time when no work is in process and none
is queued waiting to be processed.

Independent-task statistics provide frequencies with Jvhich named
tasks are executed, average response times for the t,asks, and
computer capacity used by them to perform assigned work.

I/O device statistics provide frequencies with which I/O devices
are used.

NO. 2 3 1968 STATISTICS GATHERING AND SIMULATION

I logic required to satisfy an application program request for a
control program service.

SGS accounts for all CPU time. Symbolic clocks are kept on each
program segment identified to SGS. Time not spent executing pro-
grams is tallied either as time spent waiting for I/O or as idle time.
A notable characteristic of SGS timing statistics is that the meas-
ured execution time of the instruction logic of each system func-
tion is independent of other system functions. Elapsed times for
I/o operations and execution of other functions are accrued sep-
arately. The statistics obtained are more nearly independent of
the environment in which they are obtained. Therefore, timing
statistics may be used in a model of a real-t.ime system that sim-
ulates a different operating environment from the one in which
the statistics were obtained.

Statistics gathering is divided into three phases: initialization,
collection, and reporting. A user may select one or more of the
six categories of statistics by entering control parameters to start
and stop the selected categories according to time or the initiation
and termination of a job step. These control parameters, which are
entered via the job stream or an on-line typewriter, are passed to
the SGS independent task to start the initialization phase. All SGS

logic is implemented as transient load modules to minimize the
impact of size on storage allocation for an operational system.

The first phase initializes the rz~os/aso nucleus enabling control
initialization to pass to SGS collection routines whenever the CPU begins executing

instructions for a new or different system function. The definition
of system function used by SGS is the change of processing pur-
pose implied by CPU interruptions. Since each purpose requires
its own implementation, the implementation logic and purpose
define a system function. The interface with RTOS/XO is via the
new program status words (PSW), which pass control to SGS upon
each interruption of the CPU.

There are five types of interruptions that cause a change in
the PSW:

I/O interruption - indicates the need to service an I/o channel
Program interruption - indicates a program error or excep-

svc interruption - indicates a request for a control program

External interruption - signals the computer to service an

Machine check interruption - indicates an error in computer

tional result during execution

service

external device

hardware

Each type of interruption has an assigned new PSW and an old
PSW in main storage. Upon interruption, the old PSW is saved and
the new PSW is loaded with the new contents of the instruction
counter to give the starting address of an R T O S / ~ ~ O interruption

I 90 STANLEY AND HERTEL TRM SYST J I

handler. When SGS is in use, the new PSW sets the instruction
counter to the start of the SGS program that handles the particular
type of interruption.. After recording the statistics required, the
SGS program passes control to the R T O S / ~ G O interruption handler
with all machine conditions set as though the interruption had
proceeded there directly.

An interruption is not associated with every change in system
function, and, therefore, interruptions alone cannot define the
complete SGS interface. For instance, a load PSW (L P s ~) instruc-
tion, which returns control of the CPU to an application program
after completing a control program service, does not interrupt the
CPU. Nevertheless, there is a definite change in functional purpose
of the instruct'ions being executed. The method of keeping SGS

informed in cases like this is to force an interruption. Combined
with the nucleus by the linkage editor is a small table of symbolic
references to such special instructions as all Lpsw's, entry to
program fetch, and entry to the dispatcher. At SGS initialization
time, the operation code of these instructions is replaced with an
illegal operation code. Upon each execution thereafter, a program
interruption occurs at these identifiable addresses.

In the case of certain control program subroutines, SGS not
only must recognize when the program is entered, but also must
recognize when the program is exited. It is possible to take ad-
vantage of the fact that general register 14 (GR 14) is used as a
standard return register. For example, assume program A wants
to call subroutine B using the SYSTEM/360 assembly language
instructions

L 15, = V(B)
BALR 14, 15

At address B, SGS gains control by means of an illegal operation
code at the subroutine entry point. SGS then saves the contents of
base register 14 and replaces the contents with an SGS address.
Also, statistics gathering is stopped for A and started for B. Sub-
routine B is executed and then returns control via the address in
base register 14 (BR 14). SGS gains control via the address in base
register 14, then stops statistics on B, restarts statistics on A,
restores base register 14, and branches to the intended return
point in program A.

During statistics initialization, SGS routines that obtain the
selected categories of statistics are loaded into main storage. Until
collection is terminated, these routines are entered each time there
is a change in system function.

The second phase in SGS consists of routines that record execu-
tion time, frequency counts, and logic flow. Statistics are collected
in main-storage buffers that are linked to the proper job step,
independent task, and load module. Note that most categories of
SGS statistics do not report every statistical event, rather statis-
tics are averaged over a period of time and the average is reported
for each system function.

NO. 2 . 1968 STATISTICS GATHERING AND SIMULATION

Storage for statistics is obtained, as necessary, from the main
storage supervisor. The size of SGS in main storage depends on the
number and kind of statistical categories selected, and on the
number of system functions in the selected categories for the
application system being monitored.

The statistics for each system function are identified by a
symbol. Normally, these symbols are also used externally to SGS,

such as: macroinstruction names for statistics on RTOS/360 control
program services, load module names for application program
statistics, and independent task names for statistics reported for
each independent t,ask and any of its dependent tasks.

Rlultiprogramming is a basic ingredient in the SGS method of
maintaining statistics. Each time RTOS/~SO performs a task switch,
SGS interrupts the collection of statistics for the current task and
starts collecting statistics for the new task. Each time n~oS/360
resumes a previous task, SGS resumes collecting statistics for that
task. Any partially completed system function, which is tem-
porarily interrupted because of multiprogramming considerations,
is recognized by SGS, and a partial set of statist,ics is saved until
the function is resumed a t a later time.

To record accurate timing statistics, a clock with a ten-micro-
second resolution is used. Each time a program or routine is started,
stopped, or interrupted, a logical clock with the appropriate sym-
bolic identification is updated accordingly. A typical sequence of
SGS is as follows:

1. Time is recorded, and the current function stops.
2. Contents of all necessary registers are saved.
3. Statistics for the interrupted routine are updated.
4. Overlaid instructions are simulated.
5. If the interrupt is a supervisor call (sVC), a symbolic clock is

started, according to a control code in the Svc instruction.
6. If the interruption is caused by illegal instructions resulting

from the augmented SGS interface, a symbolic clock is started,
according to a control code in an SGS table.

7. Control returns to the normal R T O S / ~ ~ O logic flow.

The third phase of SGS is that of reporting, which may be called
reporting periodically to allow a requestor to record trends or changes in

system performance. Programs associated with generating SGS re-
ports operate as transient load modules. The reporting phase runs
as an independent task whose priority is adjusted to allow it to
compete favorably for system resources. Since the reporting phase
cannot stop the system to report the statistics collected, the report-
ing and collecting phases alternate. When a complete report is
generated (normally in less than one second), the time and fre-
quency counts are reset to zero, and the collection phase begins
again. Formatted reports are usually written on tape for off-line
printing.

Samples of the first statistics produced by the SYSTEM/~~O

version of SGS are shown in Table 1 and are intended to provide

92 STANLEY AND HERTEL IBM SYST J

Table 1 Execution times for logical functions

R T O S / ~ ~ O logical function

LINK*
XCTL*
LOAD*

EXIT*
Dispatcher
GETMAIN*

REGMAIN (get mode)
FREEMAIN*

REGMAIN (free mode)
WAIT*
POST*
POST (branch entry point)
BLDL*
Program fetch
Program fetch after
1/0 interruption
EXCP*
Input/output first-level
interruption handler
Interruption supervisor
External first-level
interruption handler
Time routing
Routing
RTATTACH*
OPEN*
CLOSE*
DELETE*
STIMER*
RTIME (243)*
RTIME (250)*
DTROUTE*
R’UATTACH

DTWRITE*
DTREAD*
DTLOAD*

DTDELETE*
RTWRITE*
Logging

Average time Number of
(microseconds) executions timed

-

1693
1760
2026

836
498

1186

2427
1133

1253
712
804
142
700

1760
604

1872
347

1053
650

232
160

2600
3280
2760
1408
1176
460
960

1760
840

1190
1140
1410

1040
660

1120

3
1
6

45
123
58

35
3

67
30
10
38

2
2

18

38
49

49
4

a

5
1
1

1

5

5
2
1

1
2

12
2

12

1

4
4

Description of function

Passes control temporarily to a load module
Passes control to a load module
Requests a module be loaded and retained in
main storage
Passes control from current load module
Passes control to tasks according to priority
Allocates main storage for use by requesting
program
Allocates main storage in supervisor subpools
Returns program-allocated main storage to a
free pool
Frees main storage from supervisor subpools
Waits for a specified number of events to occur
Sets a complete flag when an event has occurred
Sets a complete flag for 1/0 supervisor
Builds a special directory in main storage
Reads a load module into main storage
Reads a load module into main storage after
1/0 interruption
Requests transmission to/from an I/O device
Retains register contents of interrupted pro-
gram
Performs I/O device control
Retains register contents of interrupted pro-
gram and determines cause of interruption
Creates a work request based on time
Creates a work request based on time or data
Enters a work request in task queue
Prepares system for data transfer
Restores system after data transfer
Makes a load module eligible for purging
Provides time control services
Acquires Greenwich Mean Time
Sets system to Greenwich Mean Time
Creates a control block for routing
Enters a work request in task queue (used by
routing)
Writes a data table from user load module
Reads a data table for user load module
Requests a data table to-be allocated to main
storage
Makes a data table eligible for purging
Transmits telecommunications data
Records telecommunications data on a 1%
tape

* RTOS/360 macroinstructions.

they are obtained and the level of SGS development.
Note: Average times for the RTOS/XO functions may vary depending upon the application system from which

NO. 2 . 1968 STATISTICS GATHERING AND SIMULATION 93

the reader with an insight into the level of detail that SGS yields.
These statistics were obtained while running test cases on a
S Y S T E M ~ B O Model 50. The average time reported for each RTos/360

system function is the time to execute the instructions for that
particular function only. The average times are the basic statistics
with which system performance is analyzed at RTCC.

It should be understood that the average times given in Table
1 reflect only the time required to execute the basic routine. Pro-
viding the whole control program service may, in fact, require the
execution of additional system functions. For example, the total
time for the complex control service LINK, given in Table 1, can
be calculated by including all additional logical functions, such
as REGMAIN, to thc basic LINK execution time.

System functions marked with an asterisk in Table 1 are de-
rived from R T O S / ~ ~ O control program macroinstructions and are
thus directly available to the application programmer. Functions
without the asterisk are used only by the RTOS/~GO control pro-
gram and are unavailable for direct use by the application pro-
grammer.

Simulating system performance

The Real Time Computer Complex is not a project that is blessed
with a firm definition of mission requirements. Results of each
mission impose requirements for future missions and, thus, levy
new demands for real-time support. It is essential to the orderly
development of RTCC real-time systems to anticipate problems in
computer system configuration or system program design that
could impair the success of future missions. To analyze future
system performance, RTCC uses models written in the language of
the General Purpose Simulation System (GPSS/~SO).~

The primary responsibility of the RTCC modeling effort is sys-
tem assurance. Models of particular missions are primarily devel-
oped to assure the RTCC project that both the machine configura-
tion and the system programs to be used will perform satisfactorily.
Thus, the most frequent output of modeling is a prediction of
systems performance for a particular mission. This prediction can
be expressed in such ways as CPU load, cyclic response, and channel
utilization.

GPSS models designed for the RTCC are composed of four major
operating components:

system 1. The SYSTEM/^^^ computers and many of the peripheral I/O

model devices are modeled. This component defines the CPU, main
storage, and I/O devices in terms of parameters that allow speed
and size characteristics to be changed in order to model other
computer configurations.

2. The RTOS/360 nucleus component simulates significant RTOS/360

and OS/360 control-program services. These services are modeled

system programs are combined with the computer and the
R T O S ~ ~ O logic components to simulate a total real-time system.

4. The world-wide telecommunication network model represents
message size, arrival rate, and transmission-line speed of
messages arriving a t RTCC during an Apollo mission.

Of these four components, the SYSTEM/360 and RTOS/360 nucleus
models are relatively constant. Therefore, these models are sub-
routines in the ~pss/360 modeled operating system (GMOS). By
using GMOS models of control program service routines, the analyst
need only characterize the application programs and the tele- ' communication data. GMOS includes current timing statistics and
logic flow of the RTOS control program services. Therefore, the
analyst who is studying a new application has a significant portion
of his system accurately modeled.

GMOS provides users with an easy interface to hardware models
and models of control program service routines. A control program
service is requested by the following format wherein TRANSFER
and ASSIGN are GPSS macroinstructions:

TRANSFER SBR, SVC, 12
ASSIGN 4, (service)
ASSIGN 4, (argument 1)
ASSIGN 4, (argument 2)
ASSIGN 4, (argument 3)
ASSIGN 4, (argument 4)

More specifically, a request for a control program service (such
as EXCP) that simulates a reference to an I/O device (such as
TAPE) is written as follows:

TRANSFER SBR, SVC, 12
ASSIGN 4, EXCP Service being simulated
ASSIGN 4, TAPE 1/0 device
ASSIGN 4, 40 Number of bytes being transmitted
ASSIGN 4, ECB Event control block

When this sequence of instructions is executed by an application
model, a TRANSFER is made to the GMOS logic that simulates an
SVC interruption. CPU time is simulated for the instructions exe-
cuted in the first level interruption handler and the execute channel
program (EXCP) logic. The RTOS/360 model then simulates a START
I/O instruction, which initiates a model of a tape device. While
simulating the time to transmit 40 bytes of data to or from tape,
the CPU model passes control back to the application model (after
the CPU time for exit logic). When the data-transfer time has
elapsed, the CPU model is interrupted, and control passes to a
model of the I/O interruption handler and to a model of the 110
supervisor. After the proper amount of CPU time is simulated and
the event control block (ECB) is posted, GMOS logic proceeds to a
model of the dispatcher and then, again, to the application model.
A simple interface for the application modeler results in a com-

NO. 2 * 1968 STATISTICS GATHERING AND SIMULATION 93

plex web of logic in much the same way that a simple control pro-
gram service initiates similar logic in 1rros/3eo or OS/360.

One of the most important parts of computer systems analysis
application is a good definition of the application program logic and processing

models requirements. Often, obtaining this information is not a trivial task.
The modeler is concerned with expressing the system logic and

processing requirements in terms of GMOS standard interfaces. At
RTCC, the modeler defines input characteristics (frequency, mes-
sage size, routing procedure), obtained largely from SASA mission
requirement8s. He then models the input in a series of predefined
calls to G;\Ios input routines. The modeled input serves as a driver
(i.e., initiates all processing) for the mission model just as the real
input drives the system being modeled.

Simulation involves the concept of mission logic, which refers
to the logic within the many load modules that lnake up an Apollo
mission plus a general descript>ion of all load modules and data
tables used. The analyst gat’hers this information from mission
programmers and then expresses the logic or refers to modeled
data tables in a series of calls to GMOS routines. Each of these calls
corresponds to a similar call in n~os/360 and, in general, carries
with it a similar set of arguments. The only exception to this
generality is a special call representing the expenditure of enabled
processing time within a load module. The load-module and data-
table descriptions are exprcsved as parts of a ~ ~ s s / 3 6 0 FUKCTION.

As an example, the following is a typical description of a load
module on a GPSS function follower card:

LMID 2000 626 1 BEG 8000

Here, LMIn is the predefined identification of a 2000-word-long
load module resident in Large Capacity St’orage (LCS). That the
load module is serially reuseable is indicated by the GMOS code “1.”
The number 626 points to a location that identifies LCS. The load
module has an entry point a t BEG (defined in the model of the
load module) and executes for SO00 time units. Sometimes, if the
analyst is working in advance of actual implementation, this
information is largely guesswork. If the load module is already in
operation, however, the gathering of these characteristics is simple:
SGS measures execution time, and all other items are available
from the programmer.

Occasionally, in preparing model-based predictions of system
performance, it is found that the defined system is not capable of
meeting mission requirements. In these cases, a model becomes a
valuable tool for use in defining and evaluating possible solutions
to the problem.

A model of the GT-6 orbit phase (the first planned-rendezvous
mission in the Gemini series) disclosed that the system would be
unable to service program queues as fast as they were generated.
The model was used to define two solutions to this problem: a more
efficient program-priority arrangement, and an increase in the size
of main storage. Also, the RTCC conversion from an IBM 7094-based

96 STANLEY AND HERTEL IBM SYST J

system to S Y S T E M / ~ ~ O was largely brought about by model pre-
dictions that the advanced Apollo requirement>s would far exceed
the 7094 capacity. Both of these efforts utilized a GPGS model of
the executive control p r ~ g r a m , ~ t h e 7094 equivalent of RTOS/360.

GMOS is expected to be used in much the same manner to evaluate
S Y S T E M / ~ ~ O performance. It is now being used in t'he prediction of
early Apollo 500 series mission performance and Apollo storage
requirements.

The very existence of a model has many times proved valuable
in testing specific hardware or system program design alternatives
(often on short notice). For example, an existing model of the
Apollo simulation system for mission test, and training (SCATS)
was useful in evaluating several alternative main-storage purge
algorithms. For such a study, the model is modified to run with

~ each algorithm, and the most efficient algorithm is identified by a
comparison of results. The same procedure can be followed to
evaluate design alternatives in such areas as: system bulk storage
devices, main storage allocation algorithms, data tables versus
subpools, program linkages, and routing algorithms.

In creating a model such as GMOS to simulate multiprogram- model
ming systems as complex as those at RTCC, it is necessary to model statistics
logic and to represent timing statistics with a reasonably high
degree of accuracy. The logic modeled in GMOS represents all the
unique services provided by R T O S / ~ ~ O in the normal execution of a
real-time job step. Decisions t,o use these services arc based on
the same parameters that n-ould influence processing for an actual
system. Vor example, if the LINK macroinstruction is executed,
the logic modeled for the LINK routine executcs a GETMAIN for
an SVRB (supervisor request block) similarly to the \yay that the
actual R T O S / ~ ~ O does. If the request,ed load module is not in main
storage, the GMos model enters logic to simulate the program
fetch. If program fetch simulates :t GETMAIN for a transient area
in which to place the load module and if the model of the main
storage supervisor cannot find an area large enough, the purge
routine removes unused load modules from a simulated main
storage. Performance of each significant system function is sim-
ulated according to the same parameters and reacts to the same
conditions that the I ~ T O S / ~ ~ O would if it were operating in the de-
fined computer system.

SGS provides the timing statistics necessary to accurately assess
the computer capacity required to exccute each system function.
Each function (GETRIAIN, LINK, program fetch, etc.) uses CPU

time according to the averagc execut,ion-time statist'ics obhined
by timing the actual system program with SGS. The statist'ics pro-
vided by GNOS show the analyst:

Elapsed time to perform an independent task

Percentage utilization of I /O devices and the number of accesses

Number of purges necessary

NO. 2 . 1968 ST.1TISTICS GA'I'HEI1ING .4ND SIMULATION 97

main storage
Number and kind of control program services requested

Percentage of CPU time used for: RTOS/360, application program,
waiting for I/O, and idle time

Detailed CPU utilization statistics of R T O S / ~ ~ ~ functions

With knowledge of how system capacity is being used, the analyst
can spot performance problems, i.e., services for which too great a
price is being paid for the work being accomplished. The perform-
ance of new logic design can be tested by modeling the new ideas,
replacing the model of existing logic, and rerunning the total
system model.

Once a model is working successfully, a great amount of infor-
model mation is available for analysis. For models of the Apollo launch

analysis phase, the analyst is interested in CPU utilization and its breakdown
into such component parts as mission time and times for I /O super-
visor, task management, and storage management. A simple in-
sertion by the modeler of G P S S / ~ ~ O TABULATE macroinstruction
blocks at strategic points in the model produces detailed measure-
ments of response time for all cyclic work. Such response measure-
ments are indispensable to evaluating the successful completion
of all cyclic processing.

ested in the number of times that each load module was fetched
versus the number of times each load module was executed. (Both
items are available in a GMOS table.) He might also be interested
in the number of purges that were 'necessary in a given time (de-
rivable from block counts) and the degree of main storage fragmen-
tation at periodic intervals. The latter is available by forcing
periodic output of a Giuos-maintained storage map.

In either case, the analyst might be interested in knowing the
traffic volume on various real-time lines and system I/O channels,
both available in standard GMOS output. Also produced by GMOS

are tables showing the frequency of use of each of the standard
RTOS/36O control program services.

Thus, the analyst automatically receives a great amount of
information through the use of GMOS. The great flexibilit'y of
GPSS/360 allows the gathering of many additional statistics with
only small modifications to GMOS or the application system model.
One of the bencfits of such an abundance of information has been
the occasional discovery of an important fact from statistics that
was not originally considered important.

Three studies are presented here as examples of the variety of

studies The first study was made to determine the significance of main
storage to an Apollo real-time application system. While the size
of the simulated main storage was varied, the response of a signifi- I

cant calculation cycle mas noted. Alt'hough this study was limited

three problems analyzed at the nTCC by means of G P S S / ~ ~ O models.

98 STANLEY AND HERTEL IBM SYST J

to one Apollo real-time application, the results are expected tlo be
typical of similar applications. LCS was used as a bulk storage device
from which programs and data were loaded into main storage. The
amount of main storage thus required is laown to be sensitive to
the ability of RTOS/360 to refresh storage dynamically in real time.

In view of this, the general approach taken in this study was
the following. First, consider improvements to the purge algorithm
in RTOS/36O and select an algorithm independent of the specific
application. Then consider the application system performance a t
several storage-required-to-storage-available ratios (SR/SA) when
such an algorithm is used. With this, one can use the application-
system size estimates to determine the expected SR/SA ratio and
the resulting performance. Curves relating measures of system
performance t,o the SR/SA ratio are shown in Figures 2 and 3. The
following describes how these curves were obtained and how they
are used. A base case n.as established using a storage size that was
larger than the total size of the application program plus TETOS/360.

GMOS was used in the simulation with a modified purge algorithm.
The purge algorithm maintains “use counts” to decide which

modules to purge. During a single execution of the purge program,
all unused load modules and data tables having a use count equal
to or below a threshold are purged. All modules having a use count
higher than the threshold are retained, but their use countjs are
reduced to zero. Thus, use counts reflect only uses since the last
purge. Data tables that have been updated must be written on
an external storage device before being purged. In this study,
thresholds of 1 and 2 were considered. In all cases, the threshold of
1 yielded the better performance, and those results are used in
this paper.

The SR/SA ratio is a measure of the relative size of an applica-
tion system to a given main storage size. Storage required (SR) is
taken as the total size of load modules, data tables, and subpools.
Storage available (X,) is taken as the size of main storage, minus
the total size of R T O S / ~ ~ O plus system subroutines. Starting from
a given SR/Sn ratio, an increase in the ratio reflects either a
growth in application size requirements or a decrease in main-
storage available; a decrease in the ratio reflects either a lessening
of application size requirements or a11 increase in available main
storage.

Figure 2 shows response times to one-second telemetry-cycle
processing, which operates concurrently with half-second tra-
jectory processing. The SR/SA ratio is plotted along the horizontal
axis. The 1.0 value along this axis represents the base case for
which no buffering is required (all programs and data just fit in
main storage). The left boundary of the shaded area indicates
performance based on initial size estimates. The right boundary
shows the performance if this size estimate were increased by 20
percent to account for errors in size estimations.

Note the steep slope in Figure 2 between the first two points on
the curve. At the first point, the telemet’ry cycle is completed

NO. 2 * 1968 STATISTICS GATHERING AND SIMULATION

before a trajectory cycle begins. Following the first point, a slight
increase in the time required to process the telemetry cycle causes
overlap with the next trajectory cycle. Since trajectory has greater
priority, the telemetry response is lengthened by an amount
roughly equivalent to the length of the trajectory cycle. The rela-
tion between telemetry response and the increase in CPU load can
be seen by comparing Figure 3 to Figure 2. Figure 3 shows the
relationship of CPU load to the X ~ / X A ratio.

The second study, using a model of the FORTRAN-H compiler,
was aimed at optimizing throughput by changing I/O device con-
figurations. At RTCC, performance of job-shop runs, SYSTEM/^^^
assemblies, FORTRAN compilations, etc., are as important to the
development of a real-time system as the execution of that system
is to the support of an Apollo mission. Job-shop efficiency increases
job-shop throughput and decreases turn-around time for debug
runs.

In the second study, a compilation was executed as an appli-
cation model with GNOS to determine how various I /O devices for
SYSIN, SYSOUT, SYSPUNCH and SYSRES would change the
time to compile a sample source deck of 436 statements using the
FORTRAN-H compiler model. Since RTCC has LCS associated with
each SYSTEM/36@ >lode1 75 , LCS was considered as an I /O device
for certain system residence modules from SVCLIB and LINKLIB.

Table 2 shows the parameters that were varied to produce the
results; constant parameters are not shown. Production times for
an object deck and listing are included in the table. One can see
that I/O devices prevent good utilization of the lModel75 CPU. (The
IBM 2311 disk was the output device for object code to the linkage
editor job step.) Comparing runs 1 and 4, one notices about a
640-1 improvement over a standard I/O configuration (run 1)

Tuble 2 Sample FORTRAN-H compilation results

Model runs
1 2 3 4

Parameters
SYSIN cards tape tape tape

SYSPUNCH punch tape tape tape
SYSRES disk (2311) disk (2311) drum (2301) LCS

SYSOUT printer tape tape tape

Results
CPU

utilization (%) 8 23 36 44

I/O
waiting (70) 92 77 64 56

Elapsed
compilation
time (sec) 177 62 39 31

100 STANLEY AND HERTEL IBM SYST J

when tapes and LCS are used (run 4). Comparing runs 2 and 4,
about a 2-to-1 improvement is observed using LCS in place of the
disk, under the assumption that input and output go to or from
tape in an off-line process. A sequential job scheduler was assumed

For the third study, a preliminary design analysis using G P S S / ~ ~ O

model results and SGS timing statistics was made to determine what
design changes might improve R T O S / ~ ~ O performance. Continual
emphasis was placed on producing an efficient real-time operating
system a t RTCC. Because of the frequency with which control pro-
gram services are used and because of the critical nature of the
real-time processing, it is necessary to provide a reasonable margin
of safety, so that peak processing loads do not degrade the response
required to process in real time. The study determined which
RTOs/360 services were heavy users of computer capacity, with the
objective of planning ways to reduce the computer capacity re-
quired for these services. Frequency counts for use of control pro-
gram services were obtained from the GPSS/36O model of the Apollo
launch system. Timing statistics were obtained with SGS.

As a result of this study, several design changes were recom-
mended, result,ing in CPU capacity savings ranging from fractions
of a percent to twenty percent. One of the most significant changes
proposed was the elimination of references to the main storage
supervisor (NSS) for all control tables and temporary storage re-
quired by the 1vros/360 control program. It \vas calculated that if
all references to GETMAIN, FREEMAIN, and I’Ll3GMAIN xere re-
placed by references to preallocated fixed-size buffers, storage still
could be provided to control program services as required, with
up to twenty percent decrease in CPU utilization. It was also noted
that requirements for supervisor request blocks (SVRB) and pro-
gram request blocks (PRB) constituted over half of the demands
on MSS by RTOS/~GO. Based upon these results, the cost of addi-
tional tailoring to the RTOS/~SO environment seemed to be justified.

~ in this study.

Concluding remarks
Experience and techniques used at RTCC to analyze computer
system performance have evolved through long exposure to the
problem of assuring workable system designs or problem sohtions.
The original development of the techniques discussed in this paper
.began in mid-1963 for use with Gemini systems and the 7094-11.

When probIems in computer size or speed arose, new computers
were simulated. When I/O devices caused delays in processing,
different I/O devices were simulated to improve performance.
When programming design seemed inefficient (either control or
application programs), new designs were modeled. Results of these
studies were presented for management decision.

Present versions of SGS and G P S S / ~ ~ O multiprogramming models
are improvements over earlier versions, but essentially the same
techniques are being successfully used to study the I i~Os /360 pro-

NO. 2 . 1968 STATISTICS GhTHI!XI ING AND S IMULATION 1

I techniques at the RTCC are:

Measurements of system performance are acquired by using SGS

Current statistics are used in predictions of future system per-

Application systems are modeled and tested with relative ease
formance via GMOS

by using GMOS

This method of analysis has proved to be accurate and effective.
Techniques discussed in this paper have been used to evaluate
application systems that run under two major multiprogramming
control programs: the RTCC executive control program for the
7094-11 and ItTOS/360 for SYSTEM/360. Programming applications
analyzed include: job-shop throughput performance, configuration
studies, and real-time programming design. I t seems reasonable
to conclude that other programming applications might also bene-
fit from these modeling and measuring techniques.

I ACKNOWLEDGMENTS

Implementation and use of the programs discussed in this paper
were achieved by a group effort, which the authors are pleased to
acknowledge. Special credit goes to T. A. Humphrey, who origi-
nated the computer systems analysis for the RTCC and who has
managed this work since the early Gemini missions.

CITED REFERENCES AND FOOTNOTES

1. G. Gordon, “A general purpose systems simulator,” ZBM S y s t e m Journal
1, 18-32 (September 1962).

2. R. Efron and G. Gordon, “A general purpose digital simulator and examples
of its application, Part I, Description of the simulator,” IBM Systems

C. R. Velasco, “Part 11, Simulation of a telephone intercept system,”
ibid., 35-40.
A. XI. Blum, “Part 111, Digital simulation of urban traffic,” ibid., 41-50.
D. F. Boyd, 11. S. Krasnow, and A. C. R. Petit, “Part IV, Simulation of
an integrated steel mill,” ibid., 51-33.

3. An exception to the availability of initial performance statistics occurs
when the operating system is a measurable, working product and only the
application programs are under development.

4. The reader should be aware that the use of GPSS models, as described in
this paper, is not the only alternative to good computer systems analysis.
There are other simulation languages such as SIMSCRIPT and Computer
System Simnlator, which can be used. Work is also being done with analyti- I

Journal 3, 1 22-34 (1964).

I cation in computer systems analysis. See: II. M. rvlarkowitz, et al., SIMSCRIPT I
-A Simulation Programming Language, Prentice-Hall, Inc., Englewood
Cliffs, New Jersey, (1963), and A. L. Scherr, An Analysis of Time-Shared
Computer Systems, The M . I. T. Press, Cambridge, Massachusetts (1967). I

5 . The executive control program was implemented by IBM Houston Operations
to support Gemini missions and the early Apollo mission in the IBM 7094-11

computers. See: J. H. Mrleller, “Aspects of the Gemini real-time operating
system,” IBM Systems Journal 6, 3, 150-162 (1967).

1

I 102 STANLEY AND HERTEL IRM SYHT .I I

