A basic objective in the design of a package of general-purpose
graphics subroutines was to make them accessible 10 FORTRAN pro-
grammers whaele circumventing some of the limitations of that language
Jor graphics applications.

This paper discusses how observation of graphics applications led to
the establishment of design crileria for a subroutine package to facili-
tate the generation of interactive displays. It outlines how application
programmers would use the package, including provisions for com-
munication between the console and the program. Many of the funda-
mental concepts that characterize the package are described, including
provisions for display modification and animation.

INTERACTIVE GRAPHICS IN DATA PROCESSING
A subroutine package for FORTRAN
by A. D. Rully

Data processing systems equipped with graphic display consoles
have provided an opportunity for new and unusual applications
involving man-machine interaction. Several of these applications
are discussed in other papers of this issue. The potential of such
systems has not always been realized, partly because the use of
graphics data processing systems often involves rather complex
programming.

General-purpose programs whose execution can be requested
in higher-level languages can greatly facilitate the use of graphic
display devices. Such programs are needed, for example, to create
the graphics orders and data necessary to produce the display.
Some general-purpose programs of this type have been provided,?
but these programs require use of assembler language. Graphic dis-
play systems are likely to be used for engineering and scientific
applications, and FORTRAN is the most widely accepted program-
ming language in these fields. Thus, it ought to be possible for a
programmer preparing a specific application program to request
general-purpose graphics functions in this programming language.
It should be noted that graphics application programs may be pre-
pared either by the console operator, who actually solves problems
at the graphic display console, or by application programmers, who
prepare the programs for the console operator.

A major problem in using the FORTRAN language for graphics is
that FORTRAN does not have all of the facilities needed for inter-
active graphies. Therefore, a graphics subroutine package (Gsp)

RULLY IBM SYST J

was designed,? the subroutines of which can be called from FORTRAN
programs. This paper deals with that portion of a total graphie
system design that was extracted for implementation.

The subroutines facilitate the display of characters and geometric
forms on a graphic display screen, specifically the 1Bm 2250, and
they control the communication between a graphics application
program in the main storage of a computer and the operator at
the display console. The subroutines enable an application pro-
grammer using FORTRAN or assembler language to create for the
console user a variety of displays, which are constructed from
points, lines, and alphanumeric characters.

We first discuss the design criteria established for the graphics
subroutine package. We then consider application programs and
the provisions for communication between them and the graphic
console operator. The remainder of the paper deals with the
fundamental concepts underlying the design of asp.

Design criteria

Many of the design decisions that resulted in the graphics sub-
routine package are based on observations of the applications for
which display devices are being used or their use is planned.

Because of the dynamically changing requirements typical of
graphics application programs, we decided to make the facilities of
an operating system indirectly available to the application pro-
grammer through the use of the subroutines. Moreover, these
functions are performed automatically, so that the FORTRAN pro-
grammer is not confronted with problems to which he is not ac-
customed. For example, the subroutine package should auto-
matically decide which routines should be brought into main
storage, how they should be loaded, when additional main storage
is needed, and when it can be relinquished. To provide these
capabilities, asp is designed to run under the I1BM SYSTEM/360
Operating System.? The subroutines are accessible to all FORTRAN
and assembler-language programmers whose programs are executed
under control of any of the optional configurations of the operating
system.

The decision to use subroutines, rather than to extend the
FORTRAN language, makes the subroutines available to assembler-
language as well as FORTRAN programmers. The subroutine ap-
proach also offers considerably greater flexibility. If future experi-
ence indicates the need for additional functions, the appropriate
subroutines can be added much more easily than FORTRAN compilers
can be modified. A more basic reason for not extending the FORTRAN
language, however, is that operating system facilities, such as
dynamic program loading or storage allocation, would not other-
wise be available.

Among other objectives for Gsp is ease of use for the program-
mer, the lack of which is believed to be an important factor in
deterring use of interactive display devices. We attempt to make use

NOs. 3 & 4 - 1968 A SUBROUTINE PACKAGE

of graphic display consoles as easy as use of the more familiar
magnetic tape devices, card readers, and printers. However, all of
the facilities of the graphic display device remain accessible to the
application programmer.

The graphies support package is also designed to provide some
degree of device independence. Although this package is intended
primarily for the 1BM 2250 display console, it is designed so that
other graphic devices can be incorporated with limited impaect
on the system. Our observations of graphies applications also led
to the conclusion that the package should support multiple
consoles for a single graphics application program.

Early in its design, it became apparent that ase should pro-
vide only general-purpose facilities for using graphic display con-
soles. For example, the subroutines should neither generate geo-
metric figures nor impose constraints on the structuring of models,
since the ways in which geometric figures are generated appear to
be too dependent on applications. For these purposes, users can de-
velop libraries of routines that are more in accord with their needs.

Finally, it was decided that asp should be compatible with the
general-purpose programs mentioned earlier to simplify problems
for users of that support. In fact, the assembler-language program-
mer can mix use of that support with Gsp.

Application programs

GsP is designed so that by calling the subroutines in an appropriate
order, the application programmer creates the environment in
which the console operator can solve his problem. The functions of

the subroutines in the package are summarized in Table 1.

A major design objective of gsP was that it simplify the job of
the graphics application programmer. One of the more obvious
approaches was to perform functions automatically where feasible.
Some subroutines need not be called unless the function they per-
form is to be done in a nonstandard fashion. Similarly, default
conditions prevail when many of the subroutines are called unless
the programmer explicitly chooses optional alternatives. Also, the
syntax of the ForRTRAN language was modified so that calling asp
subroutines requires less coding. (These last two topics are dealt
with in greater detail later in the paper.)

To prepare a graphies application program, the programmer
first calls subroutines that inform the operating system of his intent
to use gsp and that identify the device on which his display is to
appear.

Next, the programmer defines one or more graphics data sets
(files that will later contain all the graphics orders and graphics
data,* either in main storage or in the display buffer, needed to dis-
play an image). The package is designed so that the application
programmer can create as many graphics data sets as needed and
destroy those no longer needed to conserve main storage space.

RULLY IBM SYST J

Table 1 Graphics subroutines

Subroutine

Purpose

Initialize asp
Initialize graphics device
Initialize graphics data set

Set data mode
(optional)

Set graphic mode
(optional)

Set character mode
(optional)

Set graphics data set limits

Set data set limits
(optional)

Set scissoring option
(optional)

Move beam to position
Set beam at absolute position

Plot line(s)

Plot point{s)

Plot line segment(s)
Plot text

Execute
Create attention level

Enable attention sources

Request attention information

Terminate use of graphics data set

(optional)

Terminate use of graphics device

(optional)
Terminate use of gsp

Establish communication between
application program and Gsp

Identify 2250 on which displays are to
appear

Create a graphics data set for a particular
2250

Define type and form of input data for a
graphics data set

Define form of output to be produced
by image generation subroutines for a
graphics data set

Define character size for a data set and
specify whether characters can be
replaced from alphanumeric keyboard
Define boundaries of a graphics data set
relative to the screen

Define scaling factor for input data
associated with a graphics data set
Define action to be taken if image
exceeds boundaries of graphics data set
or screen

Control position of beam on screen
Control position of beam based on
absolute input data

Create orders and data necessary to
display lines, points, line segments, and
text

Cause display to be produced from
graphic orders and data

Establish level of an attention signal
within a hierarchy

Designate types of attention signals to
be accepted or ignored

Indicate whether an attention signal has
occurred and, if so, its source
Terminate use of particular graphics
data set

Terminate use of particular 2250

Terminate use of all graphics data sets
and 2250’s, and free all storage used by
asp

The programmer next defines the characteristics of the data,

such as how it is to be scaled, the size of characters, and its loca-
tion relative to the boundaries of the screen. He also specifies the
type (real or integer) and form (absolute or incremental) of the co-
ordinate values that he will supply later. Many of these parameters
are predefined as default conditions and used automatically unless
the programmer specifies alternatives.

The graphics orders and data itself are now created by image
generation subroutines. So as not to unduly restrict the applica-

NOS. 3 & 4 - 1968 A SUBROUTINE PACKAGE

program-to-console
communication

tion programmer, these subroutines enable him to display points,
lines, and characters, from which he can form his composite image.
Actual display of the image requires calling another subroutine.
Subroutines are also provided to modify images, another topic
that is expanded later.

One of the most important capabilities of agsp is that it enables
the application programmer to establish communication between
his program and the display console. The basic mechanism that
permits interaction between an application program and a 2250
display console is the 1/0 interruption, which is usually called a
graphics attention signal.

In designing Gsp, we made an initial observation that influ-
enced much of the approach to handling attention signals. The
more directly the console operator can exert control over the ap-
plication program, as opposed to the application program asking
the console operator for information, the more successful the
graphies application. Thus, asp provides facilities that enable the
application programmer to structure his program so that it can
be directed by the console operator. s not only allows the pro-
grammer to designate the functional significance of attention sig-
nal sources but to change their significance at will.

The application programmer using Gsp can enable or disable any
attention signal source. He may choose to light those keys on the
program function keyboard that are enabled. Attention signals are
appropriately decoded and stacked in a queue, which is interrogated
at appropriate times during execution of the program. Thus, atten-
tion handling is much like a standard FORTRAN 1/0 operation.

When an attention signal is generated, information is made
available to the application program. The program function key-
board provides a numeric value for identification purposes. The
alphanumeric keyboard supplies the identification of the end key
and the eancel key. The light pen can be controlled by the program
both to identify the data used to generate the part of the image
under the pen and to return the corresponding 2-y coordinates in
either the programmer-defined or the device coordinate system.

The ability to draw freehand and to track with the light pen is
also a feature of attention handling in gsp. This function is device
dependent and requires use of the 2250 Model 3. The console
operator using the light pen traces a pattern on the screen, such as
a design to be used in a fabric or a mechanical drawing. The trace
appears on the sereen, and the data needed to regenerate the image
is automatically created and can be stored for future use.

GSP concepts

A number of underlying concepts permeate the entire graphies
subroutine package. Some of these reflect generally accepted pro-
gram design practices, and others are efforts to provide an easily
used but flexible package of subroutines.

RULLY IBM SYST J

In designing the interface between a FORTRAN program and null

Gsp, adhering to the strict syntax of a FORTRAN calling sequence variable
became a problem. Since the FORTRAN calling sequence makes no
allowance for missing arguments or keyword parameters, all argu-
ments are positional and must be present. The list of arguments
used to call graphies subroutines is usually long to allow for
generality. Frequently, however, the programmer may use only a
few arguments. To get around this problem in Gsp, the FORTRAN
programmer is allowed to define, by name, a particular variable to
the system as a null varzable. Whenever the null variable appears
in a calling sequence, it merely takes up a position in the sequence.
The value of the variable that it replaces remains the same; if this
parameter has never been entered by the programmer, the system
default conditions prevail. Through use of variable-length calling
sequences and the null variable, the number of parameters required
in asp calling sequences is reduced to manageable proportions.

In designing general-purpose graphics programs, one may as- default
sume a set of conditions that an application programmer would conditions
usually require. These conditions, which are present in Gsp, are
called default conditions. If the programmer does not take positive
action to change them, they remain in effect throughout execution
of his program. Whenever default conditions are overridden, the
newly entered condition prevails from that point on, rather than
the default condition.

The facilities for dynamic program management provided by GSP
the sysTEM/360 Operating System are made indirectly accessible to director
the FORTRAN programmer by the asp director. The Gsp initializa-
tion, termination, and director subroutines are the only subroutines
in the package that reside in the FORTRAN library. The entry points
of all other subroutines are included in the director, but the sub- Figure 1 GSP graphics data structure
routines themselves reside in the link library of the sysTEM/360 TERMINAL
Operating System.

A table containing the names of all of the Gsp reentrant sub-
routines is brought into main storage during system initialization, gfrHics
along with usage codes. When a particular entry point in the ¢sp
director is referred to, the director determines from the table
whether the subroutine is already in main storage, and, if not, Sarotine() Shabrnces
whether it should be linked or loaded into main storage. This de-
cision is based on whether projected usage indicates that the sub-.
routine is likely to be required in the future; hence the need for
the usage code in the table. These usage codes may be set at the ELEMENTS ELEMENTS
particular installation by reassembling this table or through system
operator communication at the time of system initial program
loading (1pL).

Graphics data can be generated and manipulated by esP on data
the following five levels, as shown in Figure 1. structure

At the terminal (or highest) level, manipulation of graphies data
is analogous to the handling of tape reels or disk packs. The func-
tions performed by Gsp are analogous to rewinding and unloading
a tape reel or removing a disk pack. Instructions may be included

NOS. 3 & 4 - 1968 A SUBROUTINE PACKAGE

in the graphics applieation program to either temporarily disable
a particular graphics terminal or permanently remove the data
that has been assigned to it. The analogy between the graphic dis-
play terminal and serial devices ends at the terminal level; at
lower levels, the handling of graphics data can only be related to the
comparable operations on direct access devices.

The next lower graphics data entity is the graphics data set.
The graphies data generation routines communiecate with a graphics
device as if it were a random access storage device. The programmer
can define one or more graphics data sets that will exist on a par-
ticular graphics device. At this time, the graphics data set is
represented by rectangular areas on, or at least partially on, the
display sereen. These areas may overlap in any fashion required
by the application programmer. Since GsP is somewhat device-
independent, provided the data sets are rectangular, the application
programmer can specify any type of Cartesian coordinate system
to define his graphies data set on the display screen. The program-
mer may then define a totally different set of Cartesian coordinates
within a particular graphics data set. Thus, the programmer need
never concern himself with the actual coordinate system of the
device.

The lowest level of data within the framework of asp is the
graphics element, which we define as that unit of graphics data
generated as a result of one call to a graphics data-generation sub-
routine. (The graphies element is described here since the remain-
ing levels can more easily be understood in relation to the graphics
element.) The data generated by one call must all be of the same
type (i.e., line, point, or character). However, the amount of data
generated depends upon the input parameters. For example, a
single line, a set of contiguous lines, or a set of disjointed line seg-
ments may be generated from the same call.

A graphics sequence is defined here as a variable-length, not
necessarily contiguous string of graphics elements, which need not be
of the same type. Thus, the graphics sequence is data at a level
above that of the graphics element but below that of a graphics data
set. The facility for manipulating data at the graphics sequence level
was provided because it was recognized that most graphic displays
are made up of groups of elements that are logically connected
through the application program. It is therefore possible to con-
struct an object or a set of objects and to logically connect them
through use of a programmer-defined sequence. For example, let us
assume that a graphics data set has been defined such that its bound-
aries coincide with the display screen boundaries. The graphics ap-
plication programmer wishes to display a string of disconnected
squares and enable the console operator to select a particular
square. At this point in the graphics program, assume that a de-
cision must be made whether a particular square selected by the
console operator is in an odd or an even position in the string. To
make possible this decision, the programmer may generate all
odd-position squares in a single sequence and all even-position

RULLY IBM SYST J

squares in another sequence. When the console operator selects the
square in which he is interested with the light pen, the application
program can determine in which sequence the selected square
belongs.

The graphics subroutine is very similar to a graphics sequence.
It is device-dependent and operational only on an 1BM 2250 Model
3 graphic display console. A graphics subroutine is analogous to a
closed FORTRAN subroutine; i.e., a graphics subroutine is placed in
the graphic device buffer and entered each time the particular
graphics entity it generates is to be displayed on any part of the
screen. If a graphics subroutine were generated to draw a circle of a
particular diameter and if the subroutine were stored in the 2250
buffer, the same subroutine could be used to display many circles of
the same diameter on various parts of the screen by entering a new
starting position for each circle.

One need not look at many graphies programming applications
before recognizing the need for a means of naming graphics enti-
ties and relating them to application data. The design of asp pro-
vides two naming capabilities. A correlation value is a FORTRAN
variable or constant, the value of which——on entry to a graphics
data generation subroutine—is associated with the graphics ele-
ment, sequence, or subroutine generated. This value, specified by
the graphics application programmer, may be used, for example,
as a pointer into a data structure, a value for making a logical de-
cision, or the value of a variable that is to be used in a calculation.
The same correlation value may be assigned to more than one ele-
ment if desired. A key variable, the second naming facility, is a
FORTRAN variable of integer type. The value of the key variable is
set by a graphics data generation subroutine to the identifying key
of the graphics element, sequence, or subroutine generated.

Both of these variables are optional parameters, their values
being returned to the application program as a result of detecting
with the light pen the graphics entities with which they are associ-
ated. The correlation value and key variable may also be used as
input to the graphics data manipulation subroutines to identify
graphics entities that are to be modified. Note that, since the val-
ue of the key variable generated by a particular subroutine is
unique on the graphics data set level, it may be used for building
application data structures.

Gsp provides the programmer with the ability to ‘“‘equivalence”
groups of graphics data sets. This feature was included to facili-
tate the production of animated displays, in which multiple frames
must be displayed in rapid sequence to achieve the illusion of mo-
tion. Since the graphics data sets must use by design the same con-
tiguous block of buffer locations, only one can reside in the buffer at
a time. To replace the graphics data set currently in the buffer and
just executed, the application programmer simply calls the execu-
tion routine, specifying the name of the replacement data set.

Replacement graphics data sets are generated in exactly the
same way as standard graphics data sets except that a complete

NOS. 3 & 4 - 1968 A SUBROUTINE PACKAGE

correlation
value and
key variable

animated
displays

updating
displays

image of the graphics data in the graphics data set is kept in main
storage until a complete replacement frame has been generated.
The timing of frame replacement is critical. Replacement timing is
facilitated by entering a like amount of data in each frame (even if
no-operation type data must be used to completely fill the allocated
graphies data set). Timing can also be controlled using either the
internal timer or buffer-generated interruptions.

Again, by observing a variety of graphics applications, it was
noted that minor modifications to displays are often required.
Normally, modification requires complete regeneration of the
graphics data for the display, which seemed rather inefficient.
Therefore, asp was designed so that relatively small amounts of
data can be replaced without complete regeneration. For example,
it might be necessary to modify one side of a polygon being dis-
played on the screen. The console operator, using the light pen
and the alphanumeric keyboard, can identify to the application
program the side to be modified and how it is to be modified. The
application program, using the key variable or correlation value re-
turned because of the light pen detection, replaces with new
graphics data the data used to display the side to be modified. The
polygon is then redisplayed with the new side.

The limitation on the updating facility is the amount of data
that can be inserted. Update data must be less than or equal to
the graphics data being replaced.

Summary

The complex programs needed to use graphie display consoles in-
teractively has hampered fuller exploitation of a potentially useful

data processing facility. General-purpose programs have been pro-
vided in the past, but they required use of a programming language
unfamiliar to many users of graphies data processing equipment.
The graphics subroutine package described here can be used by
both ForRTRAN and assembler language programmers, and it enables
the programmer to cope with the dynamieally changing conditions
typical of interactive display systems.

CITED REFERENCES AND FOOTNOTES

1. 1BM SYSTEM/360 Operating System: Basic Graphic Programming Services for
2250 Display Unit, C27-6909, International Business Machines Corporation,
Data Processing Division, White Plains, New York.

. IBM SYSTEM/360 Operating System: Graphic Programming Services for
FORTRAN 1v, C27-6932-1, International Business Machines Corporation,
Data Processing Division, White Plains, New York. This package, program
number 3608-LM-537, can be obtained through 18mM Branch Offices.

. IBM SYSTEM/360 Operating System options perform a single data processing
task at a time or perform a fixed or a variable number of tasks concurrently.

. See the paper by A. Appel, T. P. Dankowski, R. L. Dougherty in this series.

IBM SYST J

