
Discussed  are  two  computer  programs for generating  and  realistically 
plotting  any  view of a three-dimensional object f r o m  the  same object 
description,  thereby  simulating  the  viewpoints of a person  moving 
around  the  object.  Although  the  programs  have  been  implemented-on 
an experimental basis-for digital  plotting,  the  use of the  underlying 
concepts for graphic  display i s  cmtemplated. 

Involved in the SIGHT program  are  approaches  to  some of the  most 
dificult  problems in three-dimensional graphics-the hidden-line 
problem,  approximating curved solids  by  polyhedra,  and  simulating 
degrees of surface  transparency. 

The  description of the  program LEGER emphasizes  the  design of data 
storage for  the object description.  This  scheme  allows  the  use of the  same 
data for generating  all  views of the object. The  data  structure  can be 
modiJied  to  adjust  the  dimensions of the  scene  and  the  relative  orienta- 
tions of the  component  parts. 

INTERACTIVE GRAPHICS IN DATA  PROCESSING 

Modeling in three dimensions 
by A. Appel 

Designing a  computer  graphics  system for producing views of 
objects in  three dimensions involves four problem areas: describing 
the object,  storing  the description, producing views that  are recog- 
nizable as  the  object,  and using the computer to generate geo- 
metric descriptions based upon nongeometric descriptions. When 
the object description and storage  are based upon the two- 
dimensional picture plane, the recorded description typifies the 
actions of a draftsman  in  generating  orthographic,  perspective, or 
oblique views. Lines or shading of the picture  are  treated  as the 
equivalent of the material  object. 

Modeling in  three dimensions, the  subject of this  paper, has 
proved to be  a difficult task for man.  By three-dimensional model- 
ing it is meant that  the model description is invarient.  Therefore,  a 
given description (data) can be used for plotting  any or all views of 
the object. Discussed first is an early three-dimensional graphics 
program, written in FORTRAN, known as SIGHT.’ This  program  has 
advantages over previous attempts as well as shortcomings. At- 
tempts  to overcome the limitations of SIGHT led to  the development 
of the program package LEGER, a  description of which is presented 
next. LEGER is  primarily a programming strategy  and a  group of 
FORTRAN subroutines that make possible three-dimensional per- 
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Figure 2 A graphic output of SIGHT 

With  this list, the bounding polygons can also be designated 
transparent,  translucent, or opaque. In order to represent boun- 
dary planes as possessing some material  substance, lines hidden 
from the observer are  eliminated or dashed. All lines to be drawn 
are divided into  short  segments,  and  the line of sight to a  point  on 
each segment is test)ed to  determine if the line of sight pierces an 
opaque surface. If the line of sight pierces a  bounded surface, the seg- 
ment is not  drawn.  This  technique  has been used in  other drawing 
schemes for quadric  surface^.^,^ Translucent surfaces hide every 
other line segment, while transparent surfaces do not hide segments. 

The SIGHT system  stores  surface descriptions as rings of vertex 
coordinates and  the equations of lines connecting the vertices. 
Simple to describe, SIGHT is somewhat cumbersome and time- 
consuming to use. However, it was and still is a useful medium for 
investigating  computational  graphic effects. For example, com- 
puter  graphic  techniques for shading line drawings were investi- 
gated using SIGHT as  a framework. These  graphic  techniques were 
later  introduced  into the more efficient, but more complex, program 

The SIGHT system has several  limitations that  are now discussed 
modeling in order to gain some insight into criteria for evaluating  computer- 

criteria graphic modeling schemes. In  SIGHT, restrictions on surfaces are 
that  they  may be bounded by one external polygon and  by one 
internal  coplanar polygon (a hole). In representing solids by a con- 
figuration of planes in  space,  this is a severe restriction on the 
descriptive  vocabulary. 

There is no attempt  in SIGHT to form a hierarchical order for 
associating points  with surfaces, lines, and objects or for associating 
surfaces with lines, points, and objects,  etc.  Such  ordering  is of 
great  value  in  making  the model description more specific and  in 
reducing graphic output calculation time. 

SIGHT allocates identical amounts of main  storage to each sur- 

LEGER. 
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face, i.e., the  amount  that is  adequate  to describe a  surface ex- 
ternally  .bounded  by twenty lines and internally bounded by  ten 
lines. That these  arbitrary dimensions hopefully would approxi- 
mate  the most complex surfaces  proved  false; there should  be  no 
such  restrictions. Because the basic scheme is essentially a  point- 
by-point  one,  calculation  time increases with  resolution or with  the 
minimum size of line segment. The ideal  graphic output scheme 
should  enable perfect resolution  for any size output. 

Because vertex  points are  not tagged  in  a logical order, it is 
difficult to  add  subroutines  that  automatically  generate surface 
descriptions. The  fundamental  assumption of SIGHT, namely, that 
most  objects  can be approximated  by  polyhedra,  is  questionable, 
but it has  yet  to  be  demonstrated  that higher-order surfaces are 
more eff ective.6 

The LEGER program 
In  designing LEGER, the main goal was to  improve  the  strategy of 
input,  storage, graphic output,  and  automatic description genera- 
tion  and manipulation.  Improvements in  capability of LEGER over 
SIGHT are  that  there  are no  restrictions  on the polyhedra faces that 
LEGER can  store,  storage efficiency is improved, and  the calculation 
time for line drawings  is  reduced  by  two  orders of magnitude. 

There  are  two modes of object  description  in LEGER, micro- 
description and macrodescription. A microdescription of a  picture 
gives all  vertices and all lines that join them  to form polygon- 
bounded planes. Those  planes must enclose specified volumes. A 
LEGER microdescription of a  picture is given by preparing  two 
input  card decks, printouts of which are shown  by example in 
Tables 1 and 2. Table 1 is a series of tagged  vertices and  their 
spatial coordinates. The  tags need not be in  order,  but  the series 
must  end  with a 1000 tag.  Essentially, a  vertex  list  determines the 
dimensions of the picture; if the coordinates are changed,  only the 
dimensions of the picture change, but  not  the geometric organiza- 
tion. 

Table 2 gives the organization of the tagged  vertices into lines, 
surfaces, and objects. The first column in Table 2 describes the 
origin and  termination of geometric  elements, where 999 signifies 
the end of a  list of surface  boundaries, 888 signifies the end of an 
object,  and 777 indicates the  end of all input cards.  Other  numbers, 
such as 1 in  the first  column, are used by the programmer to  mark 
the object to which the card refers. The second column indicates 
the surface  to which a  card refers, but these  numbers  are  not used 
for processing. The  third column gives the card  number,  which is 
also not used for processing. The  fourth column gives the  tags of 
vertices in space and implies that a  vertex so tagged is connected 
to the succeeding tagged  vertex by a line. Zero tags  in column four 
are used to break the vertex  strings  into  boundary loops, where the 
vertex preceding the zero joins the first  vertex following a  preceding 
zero. 
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Table 1 A vertex list for LEGER 

Vertex Coordinates 
tag X Y z 

1 0.0 
2 1 . 0  
3 1.0 
4 0.0 
5 0.0 
6 1.0 
7 1.0 
8 0.8 
9 0.8 

10 0 . 2  
11 0.2 
12 0.0 
13 0 . 2  
14 0.2 
15 0.8 
16 0.8 
17 1.0 
18 0.0 
19 0.0 
20 1.0 
21 0 .8  
22 0.2 

47 0.6 
48 0.4 
49 0.6 
50 0.4 
51 0 .4  
52 0.6 
53 0.6 
54 0.4 

1000 

In order to describe a picture, the designer should make at least 
one sketch of the component parts,  such  as shown in Figure 3. All 
vertices and surfaces are labeled in  order that  the sketch  may help 
in debugging input cards. A sketch  may also be used during  program 
debugging to correct and improve calculations. The vertex list is 
made from such  a  sketch. No vertex is to be labeled zero. While a 
logical order is not necessary, some organization aids in checking 
coordinates. The list ends with  a 1000 tag,  as shown in  Table 1. 
During execution of the program, the vertex list is read  in from 
punched cards. 

A geometry organization  list  such  as shown in  Table 2 is then 
prepared as follows: 

1. For each  external surface, taken one at a time,  enter  the ex- 
ternal  boundary  points in  the  fourth column, using a  particular 
sense of rotation  around each surface. End each loop with  a zero 
tag. 
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0.0 
0.0 
0.0 
0.0 
0.2 
0.2 
0 . 2  
0.2 
0.2 
0 . 2  
0.2 
0 . 2  
0.0 
0.0 
0.0 
0.0 
1.0 
1.0 
1.0 
1.0 
0.8 
0.8 

0.4  
0.4 
0.0 
0.0 
0.0 
0.0 
0.4 
0.4 

0.0 
0.0 
1.0 
1.0 
1.0 
1.0 
0 .2  
0.2 
0.8 
0.8 
0 . 2  
0 .2  
0 . 2  
0.8 
0.8 
0.2 
0.0 
0.0 
0.2 
0.2 
0.0 
0.0 

0.4 
0.4 
0 .4  
0 .4  
0.6 
0.6 
0.6 
0.6 
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Table 2 A geometry organization list for LEGER 

Picture Card Vertex 
Picture element organization Surface number tag 

1 1 1 3 
1 1 2  4 
1  1 3 5 
1 1 4  6 
1 1 5 0 

1 2 6 5 
1 2 7 12 
1 2 8 11 
1 2 9 10 
1 2 10 9 
1 2 11 8 
1 2 12 7 
1 2 13 6 
1 2 14 0 

1 3 15 3 
1 3 16 6 
1 3 17 7 
1 3 18 20 
1 3 20 2 
1 3 21 0 

1 16  94 7 
~ 

I 1 16 95 8 
1 16 96 24 
1 16 97  23 
1 16 98 11 
1 16 99 12 
1 16 100  19 
1 16 101 20 
1 16 102 0 

End  surface 999 

End surface 999 

End surface 999 

End surface 999 
End object 888 

1 7  37 

2 17 105 29 

2 
End surface 999 

2 
2 
2 
2 
2 

End surface 999 
End object 888 
End  input cards 777 

17 110 0 

32 201 49 
32 202 50 
32 203 51 
32 204 52 
32 205 0 
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Figure 3 Typical design sketch for LEGER 

2. Enter all  internal  boundary vertices. For internal loops, the 
sense of rotation  must be opposite that of the external sense of 
rotation. Again, end each loop with  a zero tag. 

3. When  all  coplanar loops for a  particular  surface  have been en- 
tered, close the surface  segment  with a 999 tag. 

4. When  all surfaces that enclose a  particular  object  have been 
entered, close the  object segment  with an 888 tag. 

5. When the geometric representation is complete, close the or- 
ganization  list with a 777 tag. 

6. As vertex  points and segment markers are being recorded, addi- 
tional  card identifications can be made  as suggested. 

The organization  list in Table 2 is used by  the program to gen- 
erate a  storage  list  such  as shown in  Table 3. The  structure of the 
storage list is  augmented by the program  with more information 
about the model, such as equations of planes and lines, surface 
orientation,  internal  and  external corner identification, surface-to- 
line correspondence, object-to-surface correspondence, and  the 
general sense of rotation of surface boundaries. From the storage 
list, the program then generates  a  string of element description 
blocks, as  indicated  in  Figure 4. Such a data storage  organization 
enables dense data packing, and construction and decomposition 
of the picture elements. 
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Table 3 A storage list 
~~ ~ 

Vertex  point  at  start 
Surface  count  per object, Line  count  per  surface, of line,  indexed 

indexed  by object indexed  by  surface by  line 
count count count 

( 1  "P I O )  ( 1  4 NS( I0 )  = I S )  ( 1  4 NV(iVS(IU)) = I P )  

NV(1) 
I 

IO = Number of objects IS  = Number of surfaces I P  = Number of lines 

An advantage of decomposing a  particular  element  is to  be able 
to determine  whether  a  point lies within  a  bounded surface. This 
requires that all lines in  that surface that form the boundary loops 
be  found. An advantage of constructing an element is to be  able to 
determine the solid side of a  surface that requires  bringing  together 
all the faces of the object  associated  with that surface. The parallel- 
string  data  organization  is  very efficient for  both purposes.  When 
LEGER was run  on  an IBM 7094, the object  description of the picture 
shown in Figure 5 utilized main  memory  with an efficiency of about 



Figure 4 Data  storage  organization 
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Figure 5 Use of microdescription and macrodescription  for relating  two pictures 
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Figure 6 Views  produced  by  the same object description 

A 

\ \\ I / I  

We now consider the second level of object description in 
LEGER, the macrodescription. This description consists of appended 
subroutines that can be called from the  data  input  stream  to 
generate  a  simulation of a microdescription or to manipulate  a 
previously stored microdescription. Both uses of macrodescriptions 
were involved in processing Figure 5. A series of macrodescriptive 
subroutines generates the  aircraft fuselage, and a  rotation  subrou- 
tine  orients the  aircraft carrier  with respect to  the airplane.  This is 
necessary because of the complexity of the picture. Appended sub- 
routines that create new objects  must  operate on both  the vertex 
and  the organization lists. Rotation  and  translation subroutines 
need only operate on the vertex  list, since the geometric organiza- 
tion  remains the same. 

Concluding  remarks 
The overall rendering capability of LEGER is  illustrated  by I" 4 lgures 
5 ,  6, and 7. Specific techniques for generating  these  pictures are 
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Figure 7 O n e  view  with  shading  and  moving  light source 

discussed el~ewhere,~,~  but   i t  should be mentioned  here that  the 
major  contribution of LEGER is in  the design of data storage. The 
system  has  been  expanded to include  shadows, as shown in Figure 
7, and  to generate four-color separations  for color printing. From 
the sample  plotter  outputs,  it  is seen that LEGER has the capability 
of controlling the  plotter  to produce  drawings  without  gaps and 
runovers. LEGER also produces good tone control in  shading  and 
shadows. 

It is desirable to  improve the input-description  method  in 
LEGER. One possibility envisions developing methods of manipulat- 
ing the vertex  list,  geometry  organization  list,  and the  data organi- 
zation  with  more  powerful statements.  Typical problems that re- 
quire  solution are determining how tu-o arbitrary planes  intersect 
in space and how surface  boundaries of polyhedra are affected as 
the polyhedra  intersect.  The use of LEGER in a  real-time  environ- 
ment should also be  investigated. 

A computer  graphics  system must do useful work, but  the  act of 
designing the system  is an educational process in itself. Such  a sys- 
tem  is also useful as a  tool  for the  study of geometric  properties of 
objects, which are  independent of the sense of sight.  Thus,  the 
graphic-systems  programmer becomes increasingly  aware of the 
complexity and exactitude of the discipline of the geometry of 
perception. 
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