Discussed are two computer programs for generating and realistically
plotling any view of a three-dimensional object from the same object
description, thereby simulating the viewpoinis of a person moving
around the object. Although the programs have been implemented—on
an experimental basis—for digital plotting, the use of the underlying
concepts for graphic display is contemplated.

Involved in the SIGHT program are approaches to some of the most
difficult problems in three-dimensional graphics—the hidden-line
problem, approximating curved solids by polyhedra, and simulating
degrees of surface transparency.

The description of the program LEGER emphasizes the design of data
storage for the object description. This scheme allows the use of the same
data for generating all views of the object. The data structure can be
modified to adjust the dimensions of the scene and the relative orienta-
tions of the component paris.

INTERACTIVE GRAPHICS IN DATA PROCESSING
Modeling in three dimensions
by A. Appel

Designing a computer graphics system for producing views of
objects in three dimensions involves four problem areas: describing
the object, storing the description, producing views that are recog-
nizable as the object, and using the computer to generate geo-
metric descriptions based upon nongeometric descriptions. When
the object description and storage are based upon the two-
dimensional picture plane, the recorded description typifies the
actions of a draftsman in generating orthographie, perspective, or
oblique views. Lines or shading of the picture are treated as the
equivalent of the material object.

Modeling in three dimensions, the subject of this paper, has
proved to be a difficult task for man. By three-dimensional model-
ing it is meant that the model deseription is invarient. Therefore, a
given description (data) can be used for plotting any or all views of
the object. Discussed first is an early three-dimensional graphics
program, written in FORTRAN, known as sigaT.! This program has
advantages over previous attempts as well as shortcomings. At-
tempts to overcome the limitations of steut led to the development
of the program package LEGER, a description of which is presented
next. LEGER is primarily a programming strategy and a group of
FORTRAN subroutines that make possible three-dimensional per-

APPEL IBM SYST J




spective computer drawings of polyhedra with shadow and color.
Both sieaT and LEGER have been programmed to produce outputs
on a digitally controlled plotter; however, interactive console out-
put 1s econtemplated.

Some advantages of three-dimensional modeling are: changes
in the object description can be based upon functional require-
ments, and the views can be adjusted automatically; assembly
drawings can be generated simply by bringing together component
deseriptions, as shown in Figure 1; and stored desecriptions can be
used for nongraphic purposes such as the generation of instructions
for machine-tool control and for the calculation of weights, mo-
ments, and volumes. The computer can also be used to generate
pictures having a greater range of graphic elements—tone and
color—than is commonly used by draftsmen. Thus, the output
graphics quality is significantly more realistic than in conventional
drafting.

There are also disadvantages in working with a three-dimension-
al model. Except for principal views in orthographic projection,
there is no simple, direct correspondence between the object de-
seription and the display. Traditional languages, graphic or verbal,
do not enable economic and precise description of three-dimen-
sional solids, and there is almost no precedent mathematics.

The SIGHT program

Examples of graphic output generated by the early system, sigHT,?
are shown in Figures 1 and 2. The siHT system was designed to
draw free-standing polygons in space. A solid is described by a series
of polygons completely enclosing a volume. The input (object)

deseription is a list of cartesian coordinates that specify the vertex
points of the polygons.

Figure 1 Bringing together component parts by SIGHT

%@@
Fde UG

NOS. 3 & 4 - 1968 3-D MODELING




Figure 2 A graphic output of SIGHT

modeling
criteria

With this list, the bounding polygons can also be designated
transparent, translucent, or opaque. In order to represent boun-
dary planes as possessing some material substance, lines hidden
from the observer are eliminated or dashed. All lines to be drawn
are divided into short segments, and the line of sight to a point on
each segment is tested to determine if the line of sight pierces an
opaque surface. If the line of sight pierces a bounded surface, the seg-
ment is not drawn. This technique has been used in other drawing
schemes for quadric surfaces.®® Translucent surfaces hide every
other line segment, while transparent surfaces do not hide segments.

The staHT system stores surface descriptions as rings of vertex

coordinates and the equations of lines connecting the vertices.
Simple to describe, sigur is somewhat cumbersome and time-
consuming to use. However, it was and still is a useful medium for
investigating computational graphic effects. For example, com-
puter graphic techniques for shading line drawings were investi-
gated using SIGHT as a framework. These graphic techniques were
later introduced into the more efficient, but more complex, program

LEGER.

The sicaT system has several limitations that are now discussed
in order to gain some insight into criteria for evaluating computer-
graphic modeling schemes. In s1GHT, restrictions on surfaces are
that they may be bounded by one external polygon and by one
internal coplanar polygon (a hole). In representing solids by a con-
figuration of planes in space, this is a severe restriction on the
descriptive vocabulary. ‘

There is no attempt in sigur to form a hierarchical order for
associating points with surfaces, lines, and objects or for associating
surfaces with lines, points, and objects, ete. Such ordering is of
great value in making the model description more specific and in
reducing graphic output calculation time.

s16HT allocates identical amounts of main storage to each sur-

APPEL IBM SYST J




face, i.e., the amount that is adequate to describe a surface ex-
ternally ‘bounded by twenty lines and internally bounded by ten
lines. That these arbitrary dimensions hopefully would approxi-
mate the most complex surfaces proved false; there should be no
such restrictions. Because the basic scheme is essentially a point-
by-point one, calculation time increases with resolution or with the
minimum size of line segment. The ideal graphic output scheme
should enable perfect resolution for any size output.

Because vertex points are not tagged in a logical order, it is
difficult to add subroutines that automatically generate surface
descriptions. The fundamental assumption of sigaT, namely, that
most objects can be approximated by polyhedra, is questionable,
but it has yet to be demonstrated that higher-order surfaces are
more effective.®

The LEGER program

In designing LEGER, the main goal was to improve the strategy of
input, storage, graphic output, and automatic description genera-
tion and manipulation. Improvements in capability of LEGER over
SIGHT are that there are no restrictions on the polyhedra faces that
LEGER can store, storage efficiency is improved, and the caleulation
time for line drawings is reduced by two orders of magnitude.

There are two modes of object description in LEGER, micro-
description and macrodescription. A microdeseription of a picture
gives all vertices and all lines that join them to form polygon-
bounded planes. Those planes must enclose specified volumes. A
LEGER microdescription of a picture is given by preparing two
input card decks, printouts of which are shown by example in
Tables 1 and 2. Table 1 is a series of tagged vertices and their
spatial coordinates. The tags need not be in order, but the series
must end with a 1000 tag. Essentially, a vertex list determines the
dimensions of the picture; if the coordinates are changed, only the
dimensions of the picture change, but not the geometric organiza-
tion.

Table 2 gives the organization of the tagged vertices into lines,
surfaces, and objects. The first column in Table 2 describes the
origin and termination of geometric elements, where 999 signifies
the end of a list of surface boundaries, 888 signifies the end of an
object, and 777 indicates the end of all input cards. Other numbers,
such as 1 in the first column, are used by the programmer to mark
the object to which the card refers. The second column indicates
the surface to which a card refers, but these numbers are not used
for processing. The third column gives the card number, which is
also not used for processing. The fourth column gives the tags of
vertices in space and implies that a vertex so tagged is connected
to the succeeding tagged vertex by a line. Zero tags in column four
are used to break the vertex strings into boundary loops, where the
vertex preceding the zero joins the first vertex following a preceding
Z€ro.

NoS. 3 & 4 - 1968 3-D MODELING

microdescription




Table 1 A vertex list for LEGER

Vertex Coordinates
tag Y

8
©

00O O WN e

COHOOHOOOOOOCOOOHMFEFOOMKO
NOOCOOCDWONNONNWIODOOCOOOCO
COHHFEFFERFOOOODOOODOQOOOOoOOOOO
VRO OCOOCOCOOONNNNNNNNOOCO
COO O OO0 COOCOCOCOOOOHMHEMMEOO
CONNOONXTONNNLIOINNSODOOOSO

[N = T = o
coococoocoo
OO OO KRB
cooccocoo
== Y= N~ N N NN

0.
0.
0.
0.
0.
0.
0.
0.

In order to describe a picture, the designer should make at least
one sketch of the component parts, such as shown in Figure 3. All
vertices and surfaces are labeled in order that the sketch may help
in debugging input cards. A sketch may also be used during program
debugging to correct and improve calculations. The vertex List is
made from such a sketch. No vertex is to be labeled zero. While a
logical order is not necessary, some organization aids in checking
coordinates. The list ends with a 1000 tag, as shown in Table 1.
During execution of the program, the vertex list is read in from
punched cards.

A geometry organization list such as shown in Table 2 is then
prepared as follows:

1. ¥or each external surface, taken one at a time, enter the ex-
ternal boundary points in the fourth column, using a particular
sense of rotation around each surface. End each loop with a zero
tag.

APPEL IBM SYST J




Table 2 A geometry organization list for LEGER

Picture
Picture element organization Surface

End surface

T e e e a e
BN R RO BN BN NN

End surface

End surface

1
1
1
1
1
1
1
1
1

End surface
End object

R0 ©
0 ©
N 00 ©

RO NN RN NN

End surface

End surface
End object
End input cards

NOS. 3 & 4 - 1968 3-D MODELING 315




Figure 3 Typical design sketch for LEGER

. Enter all internal boundary vertices. For internal loops, the
sense of rotation must be opposite that of the external sense of
rotation. Again, end each loop with a zero tag.

. When all coplanar loops for a particular surface have been en-
tered, close the surface segment with a 999 tag.

. When all surfaces that enclose a particular object have been
entered, close the object segment with an 888 tag.

. When the geometric representation is complete, close the or-
ganization list with a 777 tag.

. As vertex points and segment markers are being recorded, addi-
tional eard identifications can be made as suggested.

The organization list in Table 2 is used by the program to gen-
erate a storage list such as shown in Table 3. The structure of the
storage list is augmented by the program with more information
about the model, such as equations of planes and lines, surface
orientation, internal and external corner identification, surface-to-
line correspondence, object-to-surface correspondence, and the
general sense of rotation of surface boundaries. From the storage
list, the program then generates a string of element description
blocks, as indicated in Figure 4. Such a data storage organization
enables dense data packing, and construction and decomposition
of the picture elements.

APPEL IBM SYST J




Table 3 A storage list

Vertex point at start
Surface count per object, Line count per surface, of line, indexed
indexed by object indexed by surface by line
count count count
(1 -10) (1 - NSUI0) =1I8) (1 - NV(NSUIO)) = IP)

(K1)
K(2)
K(3)

K(}\TV(I))

K(NV(1) + 1)

NV(2)

Lu’vwz»

NV(VS(L)
NV(NS() + 1)
NS(@) ‘

. NV(NS@)

NV(NS(2) + 1)

NVVSUIO ~ 1) + 1)
NS(10) f K(NV(IS — 1) + 1)
NV(NSU0Y) '
K(IP)

10 = Number of objects IS = Number of surfaces IP = Number of lines

An advantage of decomposing a particular element is to be able
to determine whether a point lies within a bounded surface. This
requires that all lines in that surface that form the boundary loops
be found. An advantage of constructing an element is to be able to
determine the solid side of a surface that requires bringing together
all the faces of the object associated with that surface. The parallel-
string data organization is very efficient for both purposes. When
LEGER was I'un on an IBM 7094, the object description of the picture
shown in Figure 5 utilized main memory with an efficieney of about
85 percent of the ForTRAN-allocated storage locations.

NOS. 3 & 4 - 1968 3-D MODELING




Figure 4 Data storage organization

KIMS —1)+1]

INSIDE OR OUTSIDE CORNER

LINE EQUATION

SURFACES OF LINE

COORDINATES

NV[NS(L—-1}+1]=MS

EXTERNAL POINT COORDINATES

SURFACE EQUATION

SURFACE VORTICITY

OBJECT OF SURFACE

NVINS(L)]=ME

NVINS(I0—-1) +1]

IBM SYST J




Figure 6 Views produced by the same object description

We now consider the second level of object desecription in
LEGER, the macrodescription. This deseription consists of appended
subroutines that can be called from the data input stream to
generate a simulation of a microdescription or to manipulate a
previously stored microdescription. Both uses of macrodeseriptions
were involved in processing Figure 5. A series of macrodescriptive
subroutines generates the aircraft fuselage, and a rotation subrou-
tine orients the aircraft carrier with respect to the airplane. This is
necessary because of the complexity of the picture. Appended sub-
routines that create new objects must operate on both the vertex
and the organization lists. Rotation and translation subroutines
need only operate on the vertex list, since the geometric organiza-
tion remains the same.

Concluding remarks

The overall rendering capability of LEGER is illustrated by Figures
5, 6, and 7. Specific techniques for generating these pictures are

NOS. 3 & 4 - 1968 3-D MODELING

macrodescription




Figure 7 One view with shading and moving light source

discussed elsewhere,®? but it should be mentioned here that the
major contribution of LEGER is in the design of data storage. The
system has been expanded to include shadows, as shown in Figure
7, and to generate four-color separations for color printing. From
the sample plotter outputs, it is seen that LEGER has the capability
of controlling the plotter to produce drawings without gaps and
runovers. LEGER also produces good tone control in shading and
shadows.

It is desirable to improve the input-description method in
LEGER. One possibility envisions developing methods of manipulat-
ing the vertex list, geometry organization list, and the data organi-
zation with more powerful statements. Typical problems that re-
quire solution are determining how two arbitrary planes intersect
in space and how surface boundaries of polyhedra are affected as
the polyhedra intersect. The use of LEGER in a real-time environ-
ment should also be investigated.

A computer graphics system must do useful work, but the act of
designing the system is an educational process in itself. Such a sys-
tem is also useful as a tool for the study of geometric properties of
objects, which are independent of the sense of sight. Thus, the
graphic-systems programmer becomes increasingly aware of the
complexity and exactitude of the discipline of the geometry of
perception.

CITED REFERENCES AND FOOTNOTES

1. Further information on s1GHT may be obtained from the author, 18M Thomas
J. Watson Research Center, Yorktown Heights, New York 10598.

2. Since LEGER represents polyhedra (and approximates nonplanar surfaces)
by assemblies of polygons in space, it is appropriate to name the package
after the pioneer cubist painter Fernand Léger (1881-1955). Further in-
formation about LEGER may be obtained from the author (Footnote 1).

. A. Appel, The Visibility Problem and Machine Rendering of Solids, 1BM Re-
search Report RC 1618, 1BM Thomas J. Watson Research Center, York-
town Heights, New York 10598 (1966).

. R. A. Weiss, “BE vIsION, a package of 1BM 7090 FORTRAN programs to draw
orthographic views of combinations of plane and quadric surfaces,” Jour-
nal of the Association for Computing Machinery 13, No. 2, 194-204 (April
1966).

. See the article in this issue by Y. Okaya.

APPEL IBM SYST J




6. R. Weiss, at the Bell Telephone Laboratories and members of the Mathe-
matics Applications Group Incorporated, White Plains, New York, have
developed systems based on quadric surfaces. S. A. Coons,” at the Massa-
chusetts Institute of Technology, has worked on the description of free-
form, mathematically complex surfaces. Coons generates contour map-
pings, which are most easily interpreted on a moving crt display.

S. A. Coons, “Surfaces for computer-aided design of space forms,”” Tech-
pical Report Mac-TR-41, Massachusetts Institute of Technology, Cam-
bridge, Massachusetts (1967).

. A. Appel, “The notion of quantitative invisibility and the machine render-
ing of solids,”” Proceedings of the 22nd National Conference of the Association
for Computing Machinery P-67, Thompson Book Company, Washington,
D. C., 387-393 (1967).

. A. Appel, “Some techniques for shading machine renderings of solids,
“AFIPS Conference Proceedings, Spring Joint Computer Conference 32,
Thompson Book Company, Washington, D. C., 37-45 (1968).

NOS. 3 & 4 - 1968 3-D MODELING 321




