
A technique for measuring and comparing the performance of
existing computer systems is to devise a synthetic job that is simple
enough to be programmed with a modest effort in diflerent languages
and on dissimilar machines, so as to be run and t imed on each of
the systems.

The job dercribed here i s a greatly s impl i jed Jile maintenance pro-
cedure, which exercises both the central processing unit and major
inputloutput devices, with activity parameters being specijied in a
manner independent of the system. A complete PL/I version is shown
a s a n e x a m p l e . I t i s conjectured that such a synthetic job m a y evolve
into a practical standard of performance.

A synthetic job for measuring system performance
by W. Buchholz

In the absence of a theoretical definition of performance, we will
here describe performance quantit,atively in terms of the running
time of a given job, or rather the reciprocal of this time so as to
associate the faster marhine with the larger number. To make
performance a reproducible measure, we will, as far as possible,
exclude hard-to-control variables, such as manual set-up and
error recovery times. These important aspects of overall per-
formance must be stated as factors reducing the ideal performance
of a perfect system.

Thus performance is defined as a measurable quantity, but
how do we select a job and how do we measure it? Compiling and
executing a selection of well-defined mathematical routines, such
as matrix inversion and polynomial evaluation, may be a reason-
able work load to characterize a computing center running mostly
small mathematical programs. I n a dat’a processing environment’,
it may be found that sorting occupies a significant fraction of the
execution time, and programmed sorting routines may be avail-
able for comparing different systems. For most other applications,
the effort of programming a nontrivial job and converting its
data files to compare dissimilar systems is prohibitively expensive.
High-level languages help to reduce the cost, but imperfect rom-
patibility and dependence on particular hardware or software
configurations still present substantial reprogramming problems.
Consequently, the use of substantial “benc~hmark” jobs has been
limited in practice to evaluating successor systems for a particular

NO. 4 * 1969 A SYNTHETIC JOB 309

application environment. Even large benchmark jobs must he
recognized as models simulating the real world.

A greater degree of abstraction is necessary to make inter-
system comparisons practical. Stripped-down but carefully speci-
fied file maintenance and mathematical routines have been
de~cribed,"~ which permit skilled analysts to calculate from
published t,irnirlg data their comparat'ive running times on different
systems. Alternatively, a simulat'ion program may be employed"'"
t o model the major act'ions of a part'icular job in a specific :tp-
plication environment while suppressing det'ails that would un-
necessarily extend the model writing and execution times.

The technique to be described here is to imitat,e the real
application by a simple but) complete synthetic program. E'or
existing hardware and software, the execution time can be meas-
ured objectively, thus avoiding all assumptions regarding the
behavior of complex hardwaTe and software syst,ems. For pro-
posed hardware or software, evaluat,ion by analysis or simulation
of an executable program has the considerable advant,age t,hat
it's accuracy can be verified by direct measurement once the sys-
t'em is completed. To beep the program simple enough so that
it c:m be readily reprogrammed, details of the application being
imitated are intentionally suppressed. Hence, performance of a
system on a synthetic program cannot be used directly to predict
the running time of a specific applicat'ion accurately. The relative
performance of tj\zo systems on a synthetic job should, however,
yield a reasonable first approximation to their relative perform-
mce on a specific job using the same system facilities.

A measurement standard
A synthetic job ('an serve as a standard measure of romputer
performance in the same sense that a yardst'ick measures lengt'h.
The yard, or the meter, is a completely arbitrary but standardized
measure of the length of an object. It does not measure other
important characteristics, such as might or power. A synthet'ic
job can only serve to measure t8hose characteristics of a system
to which it' is sensitive. Several different computer yardsticks
may be needed; then one can rhoose that' whirh will best nxmure
the charact'eristic's of interest,. The objective would be to have
only a few different hut ~~-ell-controlled yardsticks in general
use, so that a nmtsurement, by one group may prove useful t'o
many others a d its significa1lc.e (* a n be more reliably interpreted.

0 1 1 ~ requirement, of surh a job is that it call be st,ated as a
rn:lc,hi~~e-itldepelldcllt, procedure. Another is that it, be meaningful
over quite a wide rauge of romputer systems, being neither too
trivial for the larger ones nor too vomplex to be run on the smaller
ones. It should not' be so short that it' cmmotm be measured ac-
cwately nor so long that' measuring beromes burdensome. Con-
sequently, the procedure should be cyc~lic~ \$-it11 the running time
directly proportional t,o the number of repetitions.

310 HUCHHOLZ IBM SYST J

The yardstick job
The synthetic yardstick program, used here as an illustration, is
modeled after the file maint,enance procedure that is central to
many data processing jobs. It makes heavy use of input'/output or
external storage devices. By providing a compute kernel of variable
length, it is possible to simulate both input/out'put- and processor-
bound situations, the latter being more representative of mathe-
matical comput'ing. The amount of storage required (YII~ be
changed.

The input is a file of detail records. J'or each detail record, a
file of master records is searched. When the matching master
record is found, the compute kernel is executed, after which an
updated master recsord and a detail output record are written.
For sequential record organization on magnetic tape, the detail
records must be in the same sequence as the mast'er records, and
all master records must, be read and written during the search,
whether active or not. Direct-access devices, sucah as magnetic
disks, are not restricted to sequential processing. Randomly
selected detail records can be processed directly against the active
master records without searching through the inactive ones. Aft'er
locating the desired master record and executing the kernel, the
updated master record is written, replacing the old one. With
random processing, there is only one copy of the master file.

The cyclic requirement is satisfied by designing a program
whose running time is directly proportional to the number of
records processed. Initiation and terminat'ion procedures, such as
tape rewinding, are excluded from the measured time as far as pos-
sible.

The compute kernel is likewise a cyclic procedure, so that
the ratio of compute time to input/output time can be defined
in terms of a machine-independent, parameter: the number of
repet'itions of the compute cycle. To st'ay on common ground
among simple fixed-point machines, data processing machines
with a good repertoire of alphanumeric and data-moving opera-
tions, and larger computers with specialized float'ing-point arith-
metic units, the procedure chosen uses integer arithmetic. Thus
the kernel does not attempt to measure the effect'iveness of more
specialized operations. After all, why use the speed of floating-
point arithmetic, subroutines as a basis for comparing a computing
system designed for applications where such a feature is not
important?

The kernel is a simple mathematical exercise of summing n
values looked up in a t'able in main storage. The table is set up
beforehand to contain at least n3 ronsecwt'ive integers start,ing
with an arbitrary integer A . To make tjhe exercise nontrivial, the
lookup intervals are varied: successive values to be summed are
the first, eighth, twenty-seventh, etc., value in the table, that is,
the 16th value in the summation is the k'th entry in the table.
The summation result is then verified by an independent
computat,ion.

NO. 4 * 1969 A SYNTHETIC JOH

running time would change only in quantum jumps of the revolu-
tion time as, for example, t,he kernel repetitions are increased.

An important part of random processing is the conversion of
real record keys to addresses. It is suggested that for simplicity
this problem be ignored here and small int'egers be used as keys,
as is done in the sequential example in the Appendix. Such
integers are easily generated in any desired sequence and con-
verted t,o whatever addressing scheme is required by a sperific
device.

portional to the number of master records; a secondary parameter
is the ratio of master to detail records, or its reciprocd, the
activity ratio. For random processing, t'he time is proportional to
the number of detail records, given a sufficient number to average
out the random fluctuations; t,he number of master records is a
secondary parameter that affects average acress time but not in
direct proportion. A time comparison between the two organiza-
tions can be made but only if the number of detail and master
records are bot,h specified.

Hardware and software comparisons
The yardstick program is readily programmed in different
languages. As long as the provedure remains t,he same-that is,
each program does the same t,hing in the same way-the running
t,ime of each version on the same hardware system provides a
valid performance measure of the corresponding software.

independently of any software facilit,ies, the execut'ion time meas-
ures only the hardware facilities used. If an equivalent' program
is written in a higher-level language (FORTRAN, COBOL, I'L/I,
etr.), its execut,ion time measures the efficiency of the object code
produced by t,he compiler and of other software features, as well
as the performance of the hardware. Indeed, t,he difference in
execution time of two equivalent programs run in precisely the
same way, one compiled from a higher-level language and one
written in machine language, is a measure of the software efficiency
alone.

It is possible, of course, to run a synthetic program as a
rombination compile-load-go job to bring in other software
factors inrluding job scheduling time, compile t,ime, and file
opening and closing time. Such a combination run lacks t'he
cyclic nature of the execdon phase and is, therefore, less easily
controlled.

while running alone. In a batch processing system that can over-
lap the execution of more than one job, two additional types of
measurement are of interest. One is the increase in t,otal system

NO. 4 . 1969 A SYNTHETIC JOB 313

throughput resulting from mult~iprogramming, and the other is
the slowdown of any single job arising from interference by other
jobs being processed concurrently. For both measurements it is
valuable to have a well-cont'rolled job stream consisting of syn-
thetic, parameterized jobs with known properties.

The number of jobs that can be processed simultaneously
depends in part on the input/output, compute-time, and storage-
space requirements, all of which can be varied in the yardstick
program. A low value of performance is obtained by measuring a
number of identical copies of the program running concurrently
and competing for the same facilities. A higher performance is
obtained by set,t)irlg the parameters differently for each copy, so
that a compute-bound program can run together with an in-
put/output,-bound program, a large program (in terms of storage
space) with a small one, and so on. In each case, the measure of
multiprogramming capability is the comparison of the total
running time against the same job stream run one job at a time.

A time-sharing system responding to a demand for processing
a task-such as compiling or executing a program or answering
an inquiry concerning a record in a file-may be regarded as a
multiprogramming system; the same type of job is appropriate
for measurement as in a bat,ch system if the corresponding
facilities are provided. Some time-sharing systems, however, are
restrict'ed to specialized functions or languages, so that a more
specaialized workload must be designed.' Measurement does not
start until an appropriate number of jobs have been entered from
different' terminals or possibly through a central facility. The
termirds and communication netn-ork of a time-sharing system
do not really erlt,er into this measurement.

Response tjo a nonprocessing demand-such as editing a
statement or returning a message-does involve terminals and ~

network and requires quite different measuring techniques, which ~

are not the subject of this paper.

Conclusions
The synthet,ic program described here can serve several functions.
It may be simply a well-behaved exerciser of syst'em features or
a tool for comparing the speed of dissimilar systems. By writing
t'he program in a procedure-oriented high-level language, it is easier
t'o define the prowdurc precisely and to transfer the program to
different machines, but the performance measure then includes
language and soft'n-are as well as hardware funct'ions. The pro-
cedure is simple enough, however, that it can be reprogrammed
readily in machine language for a particular system, so that
hardware performance can be separated from software.

The particular program chosen for discussion is a highly
stylized file maintenance procedure. No claim is made that the
program is in any way representative of a real file maintenance
application so that it could be used to predict the time on a
particular job. Given a part,icwlar applicat'ion, however, i t may

314 BUCHHOLZ IBM SYST J 1

be possible to use the synthetic program repeatedly with differently
adjusted parameters in such a way that it approximates the
sequence of steps of the real program. Whether such modeling of
a real program can be made to track its performance on different
systems remains to be determined, but the approach holds promise
of greatly simplifying the technique of benchmark testing that
is widely used in evaluating complex systems.

The objection may be raised that a synthetic program cannot
represent all the complexities of a real program. It should be
remembered, however, that any benchmark program separated
from its original environment is but a model of the real job.
When reprogramming a benchmark, there are many uncertainties
of interpretation of the original intent and of human and other
factors, which may introduce as much error into the comparison
as the artificiality of a less costjly synthetic program. The syn-
thetic program can be much better controlled. At least the user
can understand in detail what he is measuring and what the
limitations are.

A synthetic file maintenance program alone may not be able
to model all the steps of a real applic,ation. A single measure of
performance also leads to the danger of designing a system that
is “tuned” to this job. But if several dissimilar programs are used,
a system that does well on all of them is likely to do well on real
jobs. A small collection of parameterized procedures, imitating
such operations as sorting and matrix computat’ions, may well
prove to be adequate standards of comparison from which a user
can select those most appropriate for his application.

CITED REFERENCES AND FOOTNOTE

1. J. A. Gosden and R. L. Sisson, “Standardized comparisons of computer
performance,” Information Processings 68 (Proceedings of the IFIP Con-
gress 62), 57-61.

Computers and Automation 13, No. 2, 18-23 (February 1964).

Computers and Automation 17, No. 4, 16-19 (April 1967).

,
~

2. N. Statland, “Methods of evaluating computer systems performance,”

1 3. J. B. Totaro, “R.eal-t,ime processing power: a standardized evaluation,”

4. P. S. Cheng, “Trace-driven modeling,” in this issue.
5. P. H. Seaman and R. C. Soucy, “Simulating operating systems,” in this

issue.
6. For example, the computing kernel alone of the yardstick program has

been used to measure a conversational system using the APL language,
which does not, make large file storage facilit,ies available to the user. Hence
the file processing part of the program was not applicable.

Appendix: PL/I version of yardstick program
The following listing shows a pL/I version of the yardstick program
using magnetic tape for file storage. Four tape drives are needed,
one each for the old master file (MASTER), new master file
(NEWMAS), detail input (IIETIN), and detail output (IIETOUT)

NO. 4 ’ 1969 A SYNTHETIC JOB 315

tapes. If two tape channels are available, the two input tapes
should be on one channel and the output tapes on the other. A
card reader for entering parameters and a printer for indicating
the results are inc,idental and do not have any effect on the meas-
urement.

The first DECLARE statement, specifying file attributes, is
implementation-dependent and may have to be modified for
different systems. This may, or may not, be the place to specify
the record lengths (200 characters), blocking factors (10 records
per block for master files, no blocking for detail files), and degree
of buffering desired.

Whenever a new tape processing run is specified, the program
first generates master and detail input tapes before entering a full
tape processing pass. During generation, these tapes are defined
as output tapes (MASGEN and DETGEN); during processing, the
same tapes must be defined as input tapes (MASTER and DETIN).

The program uses only features available in the PL/I subset
as well as the full language. The program prints the elapsed time
automatically using the built-in PL/I TIME function. (If aninternal
timer is not available, the DISPLAY statement may be used to
stop the program for manual timing.)

For multiprogramming measurements, the printed elapsed
time would include the slowdown caused by interference from
other concurrent jobs. The program could be modified to print
the values of START-TIME and END-TIME as well, so as to show
the sequence in which the jobs were executed and to provide the
complete time interval for all jobs, from the earliest value of
START-TIME to the latest value of END-TIME.

Typical parameter cards are shown following the program.
The cards are read during program execution to specify the
number of master (NMAS) and detail (NDET) records to be
generated. Master records are numbered consecutively. Detail
record numbers jump by an increment equal to the ratio between
NMAS and NDET. For each matching master and detail record,
the compute kernel is repeated NREP times. NMAS = 0 specifies
a compute-only pass, using NREP number of kernel repetitions,
which bypasses all tape operations. Any number of passes can be
specified by successive parameter cards. The results produced
with the sample cards on a particular system are also shown.

Several variat'ions of the program are possible by making
changes and recompiling. In the second DECLARE statement,
specifying the variables START, SUM, and TABLE, the attributes
BIXARY FIXED (31) may be replaced by DECIMAL FIXED (7) to
execute the kernel in fixed-point decimal arithmetic, or by DECI-
MAL FLOAT (7) to obtain a comparison with floating-point arith-
metic. Increasing N will rapidly increase the main storage require-
ment N 3 for table storage, as well as lengthen the kernel time; the
dimension of the array TABLE (J) must be increased correspond-
ingly. Increasing the value of START increases the precision
required.

316 BUCHHOLZ IBM SYST J

/ * T H E F O L L O Y I N G O E C L 4 R E S T A T E M E N T I S IMPLEMENTITION-OEPENOENT ;/
O E C L A H t P A R A M S F I L E I N P U T .

MASTER F I L E RECORD I N P U T , O E T I N F I L E RECORD I N P U T ,
N t k M A S F I L E RECORD OUTPUT. OETCUT F I L E RECORD OUTPUT.
M4SGEN F I L E RECORD OUTPUT, O E T C E N F I L E RECORD OUTPUT;

I * T H t F O L L O W I N G S T A T E M E N T O E F I N E S T H E T Y P E OF K E R N E L 4 R l T H M E T I C +I
D E C L A R E I S T 4 R T ~ S U M ~ T A B L E I 1 0 0 0 1 1 B l N 4 R Y F I X E O I 3 1 1 S T A T I C ;
O E C L I H t I I I ~ J ~ K ~ N ~ U ~ C H E C K ~ C O U N T ~ L S U M ~ N M 4 S ~ N M A S ~ ~ N O E T ~ N O E T ~ ~ N R E P l

B l N 4 H Y F l X E O I 3 l l . C 4 R O C H 4 R A C T E R I B O l . T E M P C C H 4 R b C T E R I 6)) S T A T I C .
I I N T K E Y P I C T U R E ' I 6 1 9 ' t K R t T U R N L A B E L .
I S T ~ ~ T - T I M E I E N O _ T I M E I C H A R b C T t R I 9 1 1 S T A T I C .
1 M I S T E N - R E G 4 L l G N E O S T A T I C .

2 M A S T E R - K E Y C H 4 R 4 C T E H I 1 2 1 r
2 M A S T E R - S U M B I N A R Y F I X E O I 3 1 1 .

7 M b S T E R - U I T A I151 C H I R d C T E R I l 2 1 .
2 M I S T E R - C H E C K B l N 4 R Y F I X E O 1 3 1 1 r

2 O E T 4 I L - K E Y C H d R A C T E R I 1 2 1 .

2 O E T P I L - C H E C K B l N 4 R Y F I X E O 1 3 1 1 1
2 D E T A I L - S U M 0 l N 4 R V F I X E O 1 3 1 1 v

2 D F T A l L - 0 4 T 4 I151 C H I R A C T E R I I 2 I ;

I O t T 4 l L - R E C 4 L l G N E O S T A T I C ,

O P E N F I L E l P 4 H A M S l ; ON E N O F I L E I P A R A M S I GO T O EOF;
N = IO; S T 4 R T = 100; NM4S = 0; NOET = 0;
00 J = I T O N**3 ; TABLEl .11 = S T 4 R T + J - 1; END;

STPUT-PIS:
GET F I L k I P b R 4 M S I E D I T I C A R O I I4IB011;
P U T E b I T IC4ROI I S K I P I 2 1 . 1 1 B 0 1 1 ;

G E T S T R I N l r I C 4 R O l E D I T I N M 4 S L v N O E T l r N R E P l I X 1 6 ~ ~ 3 1 X 1 6 1 ~ F I 6 1 1 1 ;
I F S U b S T R I C 4 R O I l . 6 1 -= * P 4 S S ' THEN GU T O START-PASS;

I F N M A S l < 0 THFN GO TO ST4RTLPASS; COUNT = 0 ; CHECK = 0;

I * P A S T E H G E N E R A T I O N * I
I F NMASL = NM4S I N M A S l -> 0 THEN GO T O D E T A I L - G E N F R b T I O N ;
N M 4 S = N M I S I ;
O P t N F l L E l M A S G E N I ; 00 J = 1 TO NMAS;

HPISTER-SUM = 0; I N T K E Y = J; M I S T E R - K E Y = 'OOOOOO' I I I N T K E Y ;
CHECK = CHECK + J; M4STER-CHFCK = CHECK;
l E W P C = I N T K E Y ; M A S T E R - 0 4 T A = ' M 4 S T E R ' I I TEMPC;
* R I T E F I L E l M 4 S G E N I FROM IMASTER-RECI ;

E N D ; C L O S E F I L E I M 4 S G E N l ; C H E C K = 0;

U E T 4 I L - G t N E R A T I O N :

NOET = N O E T l ; R 4 T l O = NMAS I N O E I ;
I F N O E T l = NOET I N O E T l -> 0 THEN GO T O TAPE-P4SS;

O P E N ~ I L E I O E T G E N I ; 00 J = R A T I O T O k M A S 0 1 R 4 T I O ;

C H t C K = CHECK + J; O E T 4 I L - C H E C K = CHECK;
l,tTAIL-SUM = 0; I N T K E Y = J; O E T 4 I L - K E Y = '000000' I I I N T K E Y ;

I E H P L = I N T K E Y ; O E T 4 I L - 0 4 T 4 = ' D E T A I L ' II TEWPC;
hHITt F I L E I O E T G E N I FROM I O F T A I L - R F C I ;

E N D ; C L O S E F l L E l O E T G E N I ; C H E C K = 0;

I I P E - P P I S S :
I F N R t P = 0 THEN GO TO START-P4SS;
I F N M A S l -> 0 I N D E T l -.> 0 THEN GO TO COMPUTE-PASS;
KRETURN = W R I T E - D E T A I L ;
O P E N F I L E I M A S T E R I . F I L E I N E U M d S I . F I L E l O E T I N l v F I L E I O E T O U T) ;
ON E N O F I L E l M A S T E R l GO T O END-TPASS;

R E 4 0 F I L E I M A S T E R I I N T O I M A S T E R - R E C I ;
ON E N O F I L E I O E T I N I GO TO RUNOUI;

R E A O F I L E I O E T I N I I N T O I D E T A I L - R E C I ;
S T P R T - T I M € = T I M E ;

KEY-TEST: I F MASTER-KEV < O E T 4 I L - K E V T H E N GO T O YRITE-MASTER;
I F MASTER-KEY > D E T A I L - K E V T H E N 00; P U T E O 1 1

I ' S E P U E N C E E R R O R H A L T E D R U N ' I I S K I P . A l i GO T O CLOSE-FILES; END;

KERNEL:
I t KERNEL SUMS N I N T E G E R S F R O M 4 T A B L E O F N * * 3 C O N S E C U T I V E I N T E G E R S

B E G I N N I N G WITH ' S T 4 R T ' . K-TH INTEGER SUMREO IS ' S T 4 1 7 1 - 1 + K8.3'-
SUM IS CHECKED ALGEBR4ICALLV. KERNEL I S REPEATED NRFP T I M E S - * I
00 I = 1 T O NREP; SUM = 0; U = 0; J = 0 ;

UO K = 1 T O N; J = J + I b * U + 1 1 ;
SUM = SUM + T A B L E I J) ; U = U + K; END;

LSUM = I N I N + 1 1 1 I 2;
I F START -= I S U M - L S U M L S U M I / N + 1 THEN 00; P U T E O 1 1

END; GO T O KRETURN; I + KRETURN IS E I T H E R W R I T E - O E T P I L OR CRETURN */ I * C O M P U T E E R R O R H A L T E D P A S S * l I S K I P . A l ; GO TO START-PASS; END;

Y R I T E - O E T 4 I L : M 4 S T E R - S U M I SUM; D E T A I L - S U M = SUM;
CHECK = OETAIL-CHECK; COUNT = COUNT + 1;

R E A O F I L E I O E T I N I I N T O I O E T I I L - R E C I ;
U R I T E F I L E I O E T O U T I F R O M I O E T A I L - R E C I ;

U K I T E - M A S T E R : Y K I T E F I L E I N E W M I S I F R O M I M h S T E R - R E G) ;
R E A O F I L E I M b S T E R I I N T O I M A S T E R - R E C I ; GO T O KEY-TEST;

HUNOUT: DETAIL-KEY = HIGHllZl; GO T O YRITE-MASTER;

Fun TDAZC: FNn T 1 Y F = TIYF: - . . - - - - . - . . " - - .
I F C H E L K = I C O U N T I C O U N T + I 1 * R A T I O 1 / 2 THEN GO TO C L O S E - F I L E S ;

L L O S E - F I L E S : C L O S E F I L E I M A S T E R l r F I L E I N E W M A S l r F I L E I D E T I N l ~ F I L E l O E T O U l ~ ~
P U T E D I T I ' CHECKSUM ERROR H A L T E D P 4 S S ' I I S K I P . A l ;

