A technique for measuring and comparing the performance of
existing computer systems is to devise a synthetic job that is simple
enough to be programmed with a modest effort in different languages
and on disstmilar machines, so as to be run and ttmed on each of
the systems.

The job dercribed here is a greatly simplified file maintenance pro-
cedure, which exercises both the central processing unit and major
nput/output devices, with activity parameters being specified in a
manner independent of the system. A complete PL/1 version is shown
as an example. It 1s conjectured that such a synthetic job may evolve
nto a practical standard of performance.

A synthetic job for measuring system performance
by W. Buchholz

In the absence of a theoretical definition of performance, we will
here describe performance quantitatively in terms of the running
time of a given job, or rather the reciprocal of this time so as to
associate the faster machine with the larger number. To make
performance a reproducible measure, we will, as far as possible,
exclude hard-to-control variables, such as manual set-up and
error recovery times. These important aspects of overall per-
formance must be stated as factors reducing the ideal performance
of a perfect system.

Thus performance is defined as a measurable quantity, but
how do we select a job and how do we measure it? Compiling and
executing a selection of well-defined mathematical routines, such
as matrix inversion and polynomial evaluation, may be a reason-
able work load to characterize a computing center running mostly
small mathematical programs. In a data processing environment,
it may be found that sorting occupies a significant fraction of the
execution time, and programmed sorting routines may be avail-
able for comparing different systems. 1°or most other applications,
the effort of programming a nontrivial job and converting its
data files to compare dissimilar systems is prohibitively expensive.
High-level languages help to reduce the cost, but imperfect com-
patibility and dependence on particular hardware or software
configurations still present substantial reprogramming problems.
Consequently, the use of substantial ‘‘benchmark’ jobs has been
limited in practice to evaluating successor systems for a particular

NO.4 - 1969 A SYNTHETIC JOB

application environment. Kven large benchmark jobs must be
recognized as models simulating the real world.

A greater degree of abstraction is necessary to make inter-
system comparisons practical. Stripped-down but carefully speci-
fied file maintenance and mathematical routines have been
described,' ™ which permit skilled analysts to calculate from
published timing data their comparative running times on different
systems. Alternatively, a simulation program may be employed*'®
to model the major actions of a particular job in a specific ap-
plication environment while suppressing details that would un-
necessarily extend the model writing and execution times.

The technique to be described here is to imitate the real
application by a simple but complete synthetic program. I'or
existing hardware and software, the execution time can be meas-
ured objectively, thus avoiding all assumptions regarding the
behavior of complex hardware and software systems. For pro-
posed hardware or software, evaluation by analysis or simulation
of an executable program has the considerable advantage that
its aceuracy can be verified by direct measurement once the sys-
tem is completed. To keep the program simple enough so that
it can be readily reprogrammed, details of the application being
imitated are intentionally suppressed. Hence, performance of a
system on a synthetic program cannot be used directly to predict
the running time of a spccific application accurately. The relative
performance of two systems on a synthetic job should, however,
vield a reasonable first approximation to their relative perform-
ance on a specific job using the same system facilities.

A measurement standard

A synthetic job can serve as a standard measure of computer
performance in the same sense that a yardstick measures length.
The yard, or the meter, is a completely arbitrary but standardized
measure of the length of an object. It does not measure other
important characteristics, such as weight or power. A synthetic
job can only serve to measure those characteristics of a system
to which it is sensitive. Several different computer yardsticks
may be needed; then one can chooge that which will best measure
the characteristics of interest. The objective would be to have
only a few different but well-controlled yardsticks in general
use, so that a measurement by one group may prove uscful to
many others and its significance can be more reliably interpreted.

One requirement of such a job is that it can be stated as a
machine-independent procedure. Another is that it be meaningful
over quite a wide range of computer systems, being neither too
trivial for the larger ones nor too complex to be run on the smaller
ones. It should not be so short that it cannot be measured ac-
curately nor so long that measuring becomes burdensome. Con-
sequently, the procedure should be cyclic with the running time
directly proportional to the number of repetitions.

BUCHHOLZ IBM SYST J

The yardstick job

The synthetic yardstick program, used here as an illustration, is
modeled after the file maintenance procedure that is central to
many data processing jobs. [t makes heavy use of input/output or
external storage devices. By providing a compute kernel of variable
length, it is possible to simulate both input/output- and processor-
bound situations, the latter being more representative of mathe-
matical computing. The amount of storage required can be
changed.

The input is a file of detail records. For each detail record, a
file of master records is searched. When the matching master
record is found, the compute kernel is executed, after which an
updated master record and a detail output record are written.
For sequential record organization on magnetic tape, the detail
records must be in the same sequence as the master records, and
all master records must be read and written during the search,
whether active or not. Direct-access devices, such as magnetic
disks, are not restricted to sequential processing. Randomly
selected detail records can be processed directly against the active
master records without searching through the inactive ones. After
locating the desired master record and executing the kernel, the
updated master record is written, replacing the old one. With
random processing, there is only one copy of the master file.

The cyclic requirement is satisfied by designing a program
whose running time is directly proportional to the number of
records processed. Initiation and termination procedures, such as
tape rewinding, are excluded from the measured time as far as pos-
sible.

The compute kernel is likewise a cyclic procedure, so that
the ratio of compute time to input/output time can be defined
in terms of a machine-independent parameter: the number of
repetitions of the compute cycle. To stay on common ground
among simple fixed-point machines, data processing machines
with a good repertoire of alphanumeric and data-moving opera-
tions, and larger computers with specialized floating-point arith-
metic units, the procedure chosen uses integer arithmetic. Thus
the kernel does not attempt to measure the effectiveness of more
specialized operations. After all, why use the speed of floating-
point arithmetic subroutines as a basis for comparing a computing
system designed for applications where such a feature is not
important?

The kernel is a simple mathematical exercise of summing n
values looked up in a table in main storage. The table is set up
beforehand to contain at least n® consecutive integers starting
with an arbitrary integer A. To make the exercise nontrivial, the
lookup intervals are varied: successive values to be summed are
the first, eighth, twenty-seventh, etc., value in the table, that is,
the kth value in the summation is the k*th entry in the table.
The summation result is then verified by an independent
computation.

NO. 4 - 1969 A SYNTHETIC JOB

the kernel

the PL/I
program

In mathematical notation, the table entries are
Toon=T,+1 (f =1ton?

with T, = A. The procedure consists of computing

S = nZ T,
=
where
jk = jk—l + 6w +1
and
Up = Uy + K
with
Jo = Uy = 0.

It will be seen that j, = %, so that

S=YUA-1+F) =n(d -1+ 3K

Since

k= (L) = mo+ ver

the arithmetic can be verified by computing

B=1[S—<"—(’%9)2]+1

n

and testing for A = B.

A sclf-testing program is desirable to ensure accurate pro-
gramming and proper operation of the system if the program is
allowed to run for an extended time. Checks are also provided
to verify input/output operation.

Note that 4 and n are parameters that affect the word length
and storage space needed to carry out the comnutation success-
fully. If A or n are large, smaller computers would require
multiple-precision arithmetic and fetching of data from secondary
storage at a large sacrifice in speed.

As a specific illustration, a PL/1 version of the program is
given in the Appendix. Only sequential organization of records
on magnetic tape is shown for simplicity. The program is complete,
including the generation of suitable master and detail files. It has
an option to bypass tape and execute only the compute kernel.
The program is self-timing on any system with an internal timer
where the timing function of PL/I is implemented.

A corresponding program for direct-access devices, such as
disks, needs some additional features. Random processing re-
quires a random number generator for the detail keys. Even
when sequential processing is desired, the spacing between suc-
cessive detail keys should be irregular to smooth out the effect

BUCHHOLZ IBM SYST J

of the fixed revolution time of disks and drums; otherwise, the
running time would change only in quantum jumps of the revolu-
tion time as, for example, the kernel repetitions are increased.

An important part of random processing is the conversion of
real record keys to addresses. It is suggested that for simplicity
this problem be ignored here and small integers be used as keys,
as is done in the sequential example in the Appendix. Such
integers are easily generated in any desired sequence and con-
verted to whatever addressing scheme is required by a specific
device.

Note that for sequential processing the running time is pro-
portional to the number of master records; a secondary parameter
is the ratio of master to detail records, or its reciprocal, the
activity ratio. For random processing, the time is proportional to
the number of detail records, given a sufficient number to average
out the random fluctuations; the number of master records is a
secondary parameter that affects average access time but not in
direct proportion. A time comparison between the two organiza-
tions can be made but only if the number of detail and master
records are both specified.

Hardware and software comparisons

The yardstick program 1is readily programmed in different
languages. As long as the procedure remains the same—that is,
each program does the same thing in the same way—the running
time of each version on the same hardware system provides a
valid performance measure of the corresponding software.

If the program is written in machine language to be run
independently of any software facilities, the execution time meas-
ures only the hardware facilities used. If an equivalent program
is written in a higher-level language (FORTRAN, COBOL, PL/I,
ete.), its execution time measures the efficiency of the object code
produced by the compiler and of other software features, as well
as the performance of the hardware. Indeed, the difference in
execution time of two equivalent programs run in precisely the
same way, one compiled from a higher-level language and one
written in machine language, is a measure of the software efficiency
alone.

It is possible, of course, to run a synthetic program as a
combination compile-load-go job to bring in other software
factors including job scheduling time, compile time, and file
opening and closing time. Such a combination run lacks the
cyclic nature of the execution phase and is, therefore, less easily
controlled.

Multiprogramming

It has been assumed so far that the yardstick program is timed
while running alone. In a batch processing system that can over-
lap the execution of more than one job, two additional types of
measurement are of interest. One is the increase in total system

NO. 4 - 1969 A SYNTHETIC JOB

throughput resulting from multiprogramming, and the other is
the slowdown of any single job arising from interference by other
jobs being processed concurrently. For both measurements it is
valuable to have a well-controlled job stream consisting of syn-
thetic, parameterized jobs with known properties.

The number of jobs that can be processed simultaneously
depends in part on the input/output, compute-time, and storage-
space requirements, all of which can be varied in the yardstick
program. A low value of performance is obtained by measuring a
number of identical copies of the program running concurrently
and competing for the same facilities. A higher performance is
obtained by setting the parameters differently for each copy, so
that a compute-bound program can run together with an in-
put/output-bound program, a large program (in terms of storage
space) with a small one, and so on. In each case, the measure of
multiprogramming capability is the comparison of the total
running time against the same job stream run one job at a time.

A time-sharing system responding to a demand for processing
a task—such as compiling or executing a program or answering
an inquiry concerning a record in a file—may be regarded as a
multiprogramming system; the same type of job is appropriate
for measurement as in a batch system if the corresponding
facilities are provided. Some time-sharing systems, however, are
restricted to specialized functions or languages, so that a more
specialized workload must be designed.® Measurement does not
start until an appropriate number of jobs have been entered from
different terminals or possibly through a central facility. The
terminals and communication network of a time-sharing system
do not really enter into this measurement.

Response to a nonprocessing demand—such as editing a
statement or returning a message—does involve terminals and
network and requires quite different measuring techniques, which
are not the subject of this paper.

Conclusions

The synthetic program deseribed here can serve several functions.
It may be simply a well-behaved exerciser of system features or
a tool for comparing the speed of dissimilar systems. By writing
the program in a procedure-oriented high-level language, it is easier
to define the procedure precisely and to transfer the program to
different machines, but the performance measure then includes
language and software as well as hardware functions. The pro-
cedure is simple enough, however, that it can be reprogrammed
readily in machine language for a particular system, so that
hardware performance can be separated from software.

The particular program chosen for discussion is a highly
stylized file maintenance procedure. No claim is made that the
program is in any way representative of a real file maintenance
application so that it could be used to predict the time on a
particular job. Given a particular application, however, it may

BUCHHOLZ IBM SYST J

be possible to use the synthetic program repeatedly with differently
adjusted parameters in such a way that it approximates the
sequence of steps of the real program. Whether such modeling of
a real program can be made to track its performance on different
systems remains to be determined, but the approach holds promise
of greatly simplifying the technique of benchmark testing that
is widely used in evaluating complex systems.

The objection may be raised that a synthetic program cannot
represent all the complexities of a real program. It should be
remembered, however, that any benchmark program separated
from its original environment is but a model of the real job.
When reprogramming a benchmark, there are many uncertainties
of interpretation of the original intent and of human and other
factors, which may introduce as much error into the comparison
as the artificiality of a less costly synthetic program. The syn-
thetic program can be much better controlled. At least the user
can understand in detail what he is measuring and what the
limitations are.

A synthetic file maintenance program alone may not be able
to model all the steps of a real application. A single measure of
performance also leads to the danger of desighing a system that
is “tuned’’ to this job. But if several dissimilar programs are used,
a system that does well on all of them is likely to do well on real
jobs. A small collection of parameterized procedures, imitating
such operations as sorting and matrix computations, may well
prove to be adequate standards of comparison from which a user
can select those most appropriate for his application.

CITED REFERENCES AND FOOTNOTE

1. J. A. Gosden and R. L. Sisson, ‘“Standardized comparisons of computer
performance,” Information Processings 62 (Proceedings of the IFIP Con-
gress 62), 57-61.

. N. Statland, “Methods of evaluating computer systems performance,”
Computers and Automation 13, No. 2, 18-23 (February 1964).

. J. B. Totaro, “Real-time processing power: a standardized evaluation,”
Computers and Automation 17, No. 4, 16-19 (April 1967).

. P. 8. Cheng, “Trace-driven modeling,”” in this issue.

. P. H. Seaman and R. C. Soucy, ‘“Simulating operating systems,” in this
issue.

. For example, the computing kernel alone of the yardstick program has
been used to measure a conversational system using the APL language,
which does not make large file storage facilities available to the user. Hence
the file processing part of the program was not applicable.

Appendix: PL/I version of yardstick program

The following listing shows a PL/I version of the yardstick program
using magnetic tape for file storage. Four tape drives are needed,
one each for the old master file (MASTER), new master file
(NEWMAS), detail input (DETIN), and detail output (DETOUT)

NO. 4 - 1969 A SYNTHETIC JOB

tapes. If two tape channels are available, the two input tapes
should be on one channel and the output tapes on the other. A
card reader for entering parameters and a printer for indicating
the results are incidental and do not have any effect on the meas-
urement.

The first DECLARE statement, specifying file attributes, is
implementation-dependent and may have to be modified for
different systems. This may, or may not, be the place to specify
the record lengths (200 characters), blocking factors (10 records
per block for master files, no blocking for detail files), and degree
of buffering desired.

Whenever a new tape processing run is specified, the program
first generates master and detail input tapes before entering a full
tape processing pass. During generation, these tapes are defined
as output tapes (MASGEN and DETGEN); during processing, the
same tapes must be defined as input tapes (MASTER and DETIN).

The program uses only features available in the PL/I subset
as well as the full language. The program prints the elapsed time
automatically using the built-in PL/I TIME function. (If an internal
timer is not available, the DISPLAY statement may be used to
stop the program for manual timing.)

For multiprogramming measurements, the printed elapsed
time would include the slowdown caused by interference from
other concurrent jobs. The program could be modified to print
the values of START_TIME and END_TIME as well, so as to show
the sequence in which the jobs were executed and to provide the
complete time interval for all jobs, from the earliest value of
START_TIME to the latest value of END_TIME.

Typical parameter cards are shown following the program.
The cards are read during program execution to specify the
number of master (NMAS) and detail (NDET) records to be
generated. Master records are numbered consecutively. Detail
record numbers jump by an increment equal to the ratio between
NMAS and NDET. For each matching master and detail record,
the compute kernel is repeated NREP times. NMAS = 0 specifies
a compute-only pass, using NREP number of kernel repetitions,
which bypasses all tape operations. Any number of passes can be
specified by successive parameter cards. The results produced
with the sample cards on a particular system are also shown.

Several variations of the program are possible by making
changes and recompiling. In the second DECLARE statement,
specifying the variables START, SUM, and TABLE, the attributes
BINARY FIXED (31) may be replaced by DECIMAL FIXED (7) to
execute the kernel in fixed-point decimal arithmetic, or by DECI-
MAL FLOAT (7) to obtain a comparison with floating-point arith-
metic. Increasing N will rapidly increase the main storage require-
ment N° for table storage, as well as lengthen the kernel time; the
dimension of the array TABLE (J) must be increased correspond-
ingly. Increasing the value of START increases the precision
required.

BUCHHOLZ IBM SYST J

PL/1 listing of yardstick program

YSTKP: PRUCEDURE OPTIDNS (MAIN);
/* THE FOLLOWING DECLARE STATEMENT 1S [MPLEMENTATION-DEPENDENT %/
DECLARE PARAMS FILE INPUT,
MASTER FILE RECORD INPUT, DETIN FILE RECORD INPUT,
NEWMAS FILE RECORD QUTPUT, DETCUT FILE RECORD OUTPUT,
MASGEN FILE RECORD OUTPUT, DETGEN FILE RECORD OUTPUT;

/% THE FOLLOWING STATEMENT DEFINES THE TYPE OF KERNEL ARITHMETIC */

DECLARE (START,SUM,TABLE(1000}} BINARY FIXED{31) STAVIC;

DECLARE ((I9JyKeNyUyCHECK,COUNT4LSUMNMAS,NMASL ¢ NDET +NDETL s NREP)
BINARY FIXED(31),CARD CHARACTER{B80),TEMPC CHARACTER{6)) STATIC,
{INTKEY PICTURE" (6)9° ,KRETURN LABEL,

(START_TVIME,END_TIME)} CHARACTER(9)) STATIC,
1 MASTER_REC ALIGNED STATIC,

2 MASTER_KEY CHARACTER{12),

2 MASTER_SUM BINARY FIXED(31),

2

2

VD NONSWN

MASTER_CHECK BINARY FIXED(31),
MASTER _DATA (15) CHARACTER(12),
1 DETAIL_REC ALIGNED STATIC,
2 DETAIL_KEY CHARACTERI[12),
2 DETAIL_SUM BINARY FIXED(31),
2 DETAIL_CHECK BINARY FIXEDU31),
2 DFYATL_DATA (15) CHARACTER(12)3;

OPEN FILE (PARAMS); ON ENDFILE(PARAMS) GO TO EDF;
N = 10; START = 100; NMAS 03 NDET = 03

00 J = 1 TO N*#3; TABLE(J) = START + J — 1; END;

START_PASS:
GET FILE(PARAMS) EOIYT (CARD) {(A(80));
PUT ELIT {(CARD) (SKIP(2),A(80));
[F SUESTR{CARDyL+6) ~= ¢ PASS ' THEN GU TO START_PASS;
GET STRING (CARD) EDIT (NMASL,NDETL,NREP) (X16}+3(X(6),F(6)));
IF NMAS1 < O THFN GO TO START_PASS; COUNT = 0; CHECK = 03

MASTER GENERATION */
IF NMASL = NMAS | NMASI -> O THEN GO TO DETAIL_GENFRATION;
NMAS = NMASL;
OPEN FILE{MASGEN); D00 4 = 1 TO NMAS;
MASTER_SUM = 0; INTKEY = J; MASTER_KEY = *000000* || INTKEY;
CHECK = CHECK + J; MASTER_CHECK = CHECK;
TEMPC = INTKEY; MASTER_DATA = "MASTVER' [] TEMPC;
ARITE FILE(MASGEN) FROM (MASTER_REC);
END; CLOSE FILE(MASGEN); CHECK = 03

DETAIL_GENERATION:

IF NDET1 = NDET | NDETL ~> O THEN GO TO TAPE_PASS;

NDET = NDET1; RATIO = NMAS / NDET;

OPEN HILE(DETGEN); DO J = RAYIO TO NMAS BY RATIO;
CETAIL_SUM = 0; INTKEY = J; DETAIL_KEY = '000000" || INTKEY;
CHECK = CHECK + J; DETAIL_CHECK = CHECK;
TEMPC = INTKEY; DETVAIL_DATA = *DETAIL* || TEMPC;
WRITE FILE{DETGEN)} FROM (DETAIL_RFC);

END; CLOSE FILE(DETGEN); CHECK = Oj

TAPE_PASS:
IF NREP = O THEN GO TO START_PASS;
IF NMASL1 ~> O | NDET1 -~> O THEN GO TO COMPUTE_PASS;
KRETURN = WRITE_DETAIL;
OPEN FILE(MASTER}, FILE(NEWMAS), FILE(DETIN), FILE(DETOUT);
ON ENDFILE(MASTER) GO TO END_TPASS;
ON ENDFILE{(DETIN) GO TO RUNOUT;
READ FILE(MASTER) INTO (MASTER_REC);
READ FILEI(DEYIN) INTO (DETAIL_REC);
START_TIME = TIME;

KEY_YEST: IF MASTER_KEY < DETAIL_KEY THEN GO TO WRITE_MASTER;
IF MASTER_KEY > DETAIL_KEY THEN DO; PUT EOITY
{*SEQUENCE ERROR HALTED RUN')I(SKIP,A); GO TO CLOSE_FILES; END;

KERNEL:

/¢ KERNEL SUMS N [INTEGERS FROM A TABLE OF N#*#*3 CONSECUTIVE INTEGERS
BEGINNING WITH *START®. K-TH INTEGER SUMMED IS5 *STARY - 1 + K¥%3?¢,
SUM IS CHECKED ALGEBRAICALLY. KERNEL IS REPEATED NREP TIMES. */
DO I = 1 TO NREP; SUM = 0; U = 05 J = 03

OO0 K =1 TO N3 J = J + (63U + 1);
SUM = SUM + TABLE{J); U = U + K; END;
LSUM = (N ® (N + 1)) / 23
IF START ~= {SUM - LSUM ® LSUM) / N + 1 THEN DO; PUT EDIY
(*COMPUTE ERROR HALTED PASS*)(SKIP,A); GO TO START_PASS; END;
END; GO TO KRETURN; /% KRETURN IS EITHER WRITE_DETAIL OR CRETURN */

WRITVE_DETAIL: MASTER_SUM = SUM; DETAIL_SUM = SUM;
CHECK = DETAIL_CHECK; COUNT = COUNT + 1;
WRITE FILE(DETOUT) FROM (DETAIL_REC);
READ FILE(DETIN) INTO {DETAIL_REC);

WRITE_MASTER: WRITE FILE(NEWMAS} FROM (MASTER_REC);
READ FILE(MASTER) INTD (MASTER_REC}; GO TO KEY_TEST;

KUNOUT: DEVAIL_KEY = HIGH(12); GO TO WRITE_MASTER;

END_TPASS: ENO_TIME = TIME;
IF CHECK = (COUNT ® (COUNT + 1) * RATIO) / 2 THEN GO TO CLOSE_FILES;
PUT EDIT {* CHECKSUM ERROR HALTED PASS*}(SKIP,A};

CLOSE_FILES: CLOSE FILE(MASTER),FILE(NEWMAS),FILE(DETIN},FILE(DETOUT);

A SYNTHETIC

PL/! listing of yardstick program (cont’d)

PRTEND: GET STRING (END_VIME) EDIT (HRS,MINS,SECS) (2 FI12),F15,3));

ELAPSEC_TIME = HRS*3600 + MINS*60 + SECS;

GEYT STRING (START_TIME)} EDIT {HRS,MINS,SECS) {2 F(2)4F(5:3));

ELAPSED_TIME = ELAPSED_TIMFE ~ HRS*3600 - MINS*60 ~ SECS;

PUT EDIT (' ELAPSED TIME = *,ELAPSED_TIME," SECONDS'}
(SKIPyA(F(T51)4A);

PUT EDIT{*® END OF PASS. REPETITIONS = *,I-1,%, SUM = *,SUM,
*y ACTIVE RECORDS = *,COUNT,', CHECK SUM = *',CHECK)}
(SKIPy2{A,F(6),AF(9))1};

GO TO START_PASS;

COMPUTE_PASS: KRETURN = CRETURN;
START_TIME = TIME; GO TO KERNEL;
CRETURN: END_TIME = TIMES
GQ TO PRTEND;

£OF: CLOUSE FILE(PARAMS);
END YSTKP;

Sample data cards

1 2 3 4 CARD
123456789U12345678901234567890123456789012 COLUMN

PASS NMAS=000000 NDET=000000 NREP=010000 COMPUTE PASS.
PASS NMAS=00L000 NDET=000200 NREP=000001 TAPE PASS.
PASS NMAS=001000 NDET=000200 NREP=000050 TAPE PASS.

Sample result printout

PASS NMAS=000000 NDET=000000 NREP=010000 COMPUTE PASS.

ELAPSED TIME = 21.2 SECONDS
END OF PASS. REPETITIONS = 10000, SUM = 4015, ACTIVE RECORDS = 0O, CHECK SUM

PASS NMAS=001000 NDET=000200 NREP=000001 TAPE PASS.

ELAPSED FIME = 16.8 SECONLS
END OF PASS. REPETITIONS = 1y SUM = 4015, ACTIVE RECORDS = 200, CHECK SuM = 100500

PASS NMAS=0G1000 NDET=Q00200 NREP=000050 TAPE PASS.
tLAPSED YIME = 22.71 SECONDS
END GF PASS. REPETITIONS = 50y SUM = 4015, ACTIVE RECORDS = 200, CHECK SUM = 100500

318 BUCHHOLZ IBM SYST J

