
A technique  for  measuring  and  comparing  the  performance of 
existing  computer  systems  is  to  devise  a  synthetic  job  that  is  simple 
enough  to be programmed  with  a  modest  effort in diflerent  languages 
and  on  dissimilar  machines,  so as to be run   and   t imed on each of 
the  systems. 

The  job  dercribed here i s  a greatly s impl i jed  Jile maintenance  pro- 
cedure,  which  exercises  both  the  central  processing  unit  and  major 
inputloutput  devices,  with  activity  parameters  being  specijied in a 
manner  independent of the  system. A complete PL/I version  is  shown 
a s   a n   e x a m p l e .   I t   i s  conjectured  that  such  a  synthetic  job m a y  evolve 
into a practical  standard of performance. 

A synthetic job for measuring system performance 
by W. Buchholz 

In  the absence of a  theoretical definition of performance, we will 
here  describe  performance  quantit,atively  in terms of the running 
time of a given job, or rather  the reciprocal of this  time so as to 
associate the faster  marhine  with  the larger number. To make 
performance a reproducible  measure, we will, as  far as possible, 
exclude hard-to-control  variables,  such as manual  set-up  and 
error recovery times.  These  important  aspects of overall  per- 
formance  must  be stated as factors  reducing the ideal  performance 
of a  perfect  system. 

Thus performance is defined as a measurable quantity,  but 
how do we select a  job and how do we measure it? Compiling and 
executing  a selection of well-defined mathematical  routines,  such 
as  matrix inversion and polynomial evaluation,  may  be  a  reason- 
able work load to characterize a computing  center  running  mostly 
small mathematical  programs. I n  a dat’a processing environment’, 
it may  be  found that sorting occupies a significant fraction of the 
execution  time, and programmed  sorting  routines  may  be  avail- 
able  for  comparing  different  systems.  For  most other  applications, 
the effort of programming  a  nontrivial  job and  converting  its 
data files to  compare  dissimilar  systems is prohibitively  expensive. 
High-level  languages  help to  reduce the cost, but  imperfect rom- 
patibility  and dependence on particular  hardware  or  software 
configurations  still  present substantial reprogramming  problems. 
Consequently, the use of substantial  “benc~hmark” jobs has been 
limited in  practice to evaluating successor systems for a particular 
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application  environment.  Even  large  benchmark jobs must he 
recognized as models simulating  the real world. 

A greater degree of  abstraction is necessary to make  inter- 
system  comparisons  practical.  Stripped-down but carefully speci- 
fied file maintenance and mathematical  routines  have been 
de~cribed,"~ which permit skilled analysts  to  calculate  from 
published t,irnirlg data their  comparat'ive  running  times on different 
systems.  Alternatively, a simulat'ion  program may be employed"'" 
t o  model the major  act'ions of a  part'icular  job in a specific :tp- 
plication  environment while suppressing  det'ails that would un- 
necessarily extend the model writing and execution times. 

The technique to be described here is to  imitat,e  the real 
application by a simple  but)  complete synthetic  program. E'or 
existing  hardware and software, the execution  time  can  be meas- 
ured  objectively, thus avoiding all assumptions  regarding the 
behavior of complex hardwaTe and software  syst,ems. For pro- 
posed hardware or software,  evaluat,ion  by  analysis or simulation 
of an executable  program  has the considerable  advant,age t,hat 
it's  accuracy  can be verified by  direct  measurement once the sys- 
t'em is completed. To beep the program  simple  enough so that 
it c:m be readily  reprogrammed,  details of the application being 
imitated  are  intentionally suppressed.  Hence,  performance of a 
system on a synthetic  program  cannot be used directly to predict 
the running  time of a specific applicat'ion  accurately. The relative 
performance of tj\zo  systems on a synthetic job should,  however, 
yield a reasonable  first  approximation to  their  relative perform- 
mce on a specific job using the same  system  facilities. 

A measurement  standard 
A synthetic job  ('an  serve as a standard measure of romputer 
performance in the same sense that a yardst'ick measures lengt'h. 
The yard, or the  meter, is a completely arbitrary  but  standardized 
measure of the length of an  object. It does not measure  other 
important  characteristics, such as might  or power. A synthet'ic 
job  can only serve to measure t8hose characteristics of a system 
to which it' is sensitive.  Several  different  computer  yardsticks 
may be  needed;  then one can rhoose that'  whirh will best nxmure 
the charact'eristic's of interest,. The objective would be to have 
only a few different hut  ~~-ell-controlled  yardsticks  in general 
use, so that a nmtsurement, by one group  may  prove  useful t'o 
many others a d  its significa1lc.e ( * a n  be more reliably interpreted. 

0 1 1 ~  requirement, of surh a job  is that it call be st,ated as a 
rn:lc,hi~~e-itldepelldcllt, procedure.  Another is that it, be  meaningful 
over quite a wide rauge of romputer systems, being neither  too 
trivial for the larger ones nor too vomplex to be run on the smaller 
ones. It should not' be so short that it' cmmotm be  measured ac- 
cwately  nor so long that' measuring beromes burdensome. Con- 
sequently, the procedure  should be cyc~lic~ \$-it11 the running  time 
directly  proportional t,o the number of repetitions. 
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The yardstick job 
The  synthetic yardstick program, used here as an illustration, is 
modeled after  the file maint,enance  procedure that is central  to 
many  data processing jobs. It makes  heavy use of input'/output  or 
external  storage devices. By providing a compute  kernel of variable 
length, it is possible to simulate  both  input/out'put-  and processor- 
bound  situations, the  latter being more representative of mathe- 
matical  comput'ing. The  amount of storage  required (YII~  be 
changed. 

The  input is a file of detail records. J'or each  detail  record,  a 
file of master  records is searched.  When the matching  master 
record is found, the compute  kernel is executed, after which an 
updated  master recsord and a detail  output record are  written. 
For sequential  record  organization on magnetic tape,  the  detail 
records must be in  the  same sequence  as the mast'er  records, and 
all  master  records  must, be read  and  written  during  the  search, 
whether  active  or  not. Direct-access devices, sucah as  magnetic 
disks,  are  not  restricted  to  sequential processing. Randomly 
selected  detail  records  can be processed directly  against the active 
master records without  searching through  the  inactive ones. Aft'er 
locating the desired master  record and executing the kernel, the 
updated  master record  is written, replacing the old one. With 
random processing, there  is only one copy of the master file. 

The cyclic requirement is satisfied by designing a  program 
whose running  time is directly  proportional to  the  number of 
records processed. Initiation  and  terminat'ion procedures,  such as 
tape rewinding, are excluded from the measured time as far  as pos- 
sible. 

The compute  kernel is likewise a cyclic procedure, so that 
the  ratio of compute time  to  input/output  time can be defined 
in terms of a machine-independent, parameter:  the  number of 
repet'itions of the compute cycle. To  st'ay on common ground 
among  simple fixed-point machines, data processing machines 
with  a good repertoire of alphanumeric  and  data-moving  opera- 
tions,  and larger  computers  with specialized float'ing-point arith- 
metic units,  the procedure chosen uses integer  arithmetic.  Thus 
the kernel does not attempt  to measure the effect'iveness of more 
specialized operations.  After  all,  why use the speed of floating- 
point  arithmetic,  subroutines as a basis for  comparing a computing 
system designed for applications where such  a  feature is not 
important? 

The kernel is a  simple  mathematical exercise of summing n 
values looked up in  a  t'able  in  main  storage.  The  table is set  up 
beforehand to contain at  least n3 ronsecwt'ive integers  start,ing 
with  an  arbitrary  integer A .  To make  tjhe exercise nontrivial, the 
lookup  intervals  are  varied: successive values to be summed  are 
the first,  eighth,  twenty-seventh,  etc.,  value  in the  table,  that is, 
the 16th value  in the summation is the k'th entry  in  the  table. 
The summation  result is then verified by an  independent 
computat,ion. 
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running  time would change  only in  quantum  jumps of the revolu- 
tion  time  as,  for example,  t,he  kernel  repetitions are increased. 

An important  part of random processing is the conversion of 
real  record  keys to  addresses. It is suggested that for simplicity 
this problem be ignored  here and small  int'egers  be used as  keys, 
as is done in  the sequential  example  in the Appendix. Such 
integers are easily generated  in  any desired sequence and con- 
verted  t,o  whatever addressing  scheme is required by a sperific 
device. 

portional to  the number of master records;  a  secondary  parameter 
is the  ratio of master to  detail records, or its  reciprocd,  the 
activity  ratio.  For  random processing, t'he  time is proportional  to 
the  number of detail records,  given  a sufficient number to average 
out  the  random  fluctuations;  t,he  number of master  records is a 
secondary  parameter that affects average  acress  time but  not  in 
direct  proportion.  A  time comparison between the two  organiza- 
tions  can  be  made  but only if the number of detail  and  master 
records are bot,h specified. 

Hardware  and  software  comparisons 
The yardstick  program is readily  programmed  in different 
languages. As long as the provedure remains t,he same-that is, 
each  program does the same  t,hing  in the same way-the running 
t,ime of each  version on the same  hardware  system  provides a 
valid  performance  measure of the corresponding software. 

independently of any  software facilit,ies, the execut'ion time  meas- 
ures only the hardware facilities used. If an equivalent'  program 
is written  in a higher-level language (FORTRAN, COBOL, I'L/I, 
etr.), its execut,ion time measures the efficiency of the object code 
produced by  t,he compiler and of other software  features,  as well 
as  the performance of the hardware.  Indeed, t,he difference in 
execution time of two  equivalent  programs  run  in precisely the 
same way, one compiled from  a higher-level language and one 
written  in  machine  language, is a  measure of the software efficiency 
alone. 

It is possible, of course, to  run a synthetic program as a 
rombination compile-load-go job to bring  in  other  software 
factors  inrluding  job  scheduling  time, compile t,ime, and file 
opening and closing time.  Such a  combination run lacks  t'he 
cyclic nature of the  execdon phase and  is,  therefore, less easily 
controlled. 

while running  alone. In  a batch processing system that can  over- 
lap  the execution of more than one job,  two  additional  types of 
measurement  are of interest. One is the increase in t,otal  system 
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throughput resulting  from  mult~iprogramming,  and the  other is 
the slowdown of any single job  arising  from  interference  by  other 
jobs being processed concurrently.  For  both  measurements  it is 
valuable to have  a well-cont'rolled job stream consisting of syn- 
thetic,  parameterized jobs with known  properties. 

The number of jobs that can  be processed simultaneously 
depends in  part on the  input/output,  compute-time,  and storage- 
space  requirements,  all of which can  be  varied  in the yardstick 
program. A low value of performance is obtained  by measuring  a 
number of identical copies of the program  running  concurrently 
and competing  for the same facilities. A higher  performance is 
obtained  by set,t)irlg the  parameters differently for each  copy, so 
that a  compute-bound  program  can run  together  with  an  in- 
put/output,-bound  program, a  large  program  (in terms of storage 
space)  with  a small one, and so on. In  each  case, the measure of 
multiprogramming  capability is the comparison of the  total 
running  time  against  the same  job stream  run one job at  a  time. 

A time-sharing  system  responding to a  demand  for processing 
a task-such as compiling or executing  a  program or answering 
an  inquiry concerning  a  record in a file-may be  regarded  as  a 
multiprogramming  system;  the same type of job is appropriate 
for  measurement  as  in a bat,ch  system if the corresponding 
facilities are provided. Some time-sharing  systems,  however,  are 
restrict'ed to specialized functions  or  languages, so that a  more 
specaialized workload must be designed.' Measurement does not 
start  until  an  appropriate  number of jobs have been entered  from 
different' terminals or possibly through a  central  facility. The 
termirds  and communication  netn-ork of a  time-sharing  system 
do  not really erlt,er into  this  measurement. 

Response  tjo  a nonprocessing demand-such as  editing  a 
statement or returning  a message-does involve  terminals  and ~ 

network  and requires quite different  measuring  techniques, which ~ 

are  not  the  subject of this  paper. 

Conclusions 
The synthet,ic  program described here  can  serve  several  functions. 
It may  be simply  a well-behaved exerciser of syst'em  features or 
a tool  for  comparing the speed of dissimilar  systems. By  writing 
t'he  program  in a procedure-oriented high-level language, it is easier 
t'o define the  prowdurc precisely and  to transfer the program to 
different  machines, but  the performance  measure then includes 
language and soft'n-are  as well as hardware  funct'ions. The pro- 
cedure is simple  enough,  however, that  it  can  be  reprogrammed 
readily in machine  language  for  a  particular system, so that 
hardware performance  can  be  separated  from  software. 

The  particular  program chosen for discussion is a  highly 
stylized file maintenance  procedure. No claim is made that  the 
program is in  any way representative of a  real file maintenance 
application so that  it could be used to predict the  time on a 
particular  job.  Given  a part,icwlar applicat'ion,  however, i t  may 
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be possible to use the  synthetic  program  repeatedly  with differently 
adjusted  parameters  in such a way that  it  approximates the 
sequence of steps of the real  program. Whether  such modeling of 
a real  program  can  be  made to  track  its performance  on different 
systems  remains to  be  determined,  but  the  approach holds promise 
of greatly  simplifying the technique of benchmark  testing that 
is widely used in  evaluating complex systems. 

The objection may  be raised that a synthetic  program  cannot 
represent all  the complexities of a real  program. It should be 
remembered,  however, that  any benchmark  program separated 
from its original  environment is but a model of the real  job. 
When  reprogramming  a  benchmark, there  are  many  uncertainties 
of interpretation of the original intent  and of human  and  other 
factors, which may  introduce as much  error into  the comparison 
as the artificiality of a less costjly synthetic  program.  The syn- 
thetic  program can  be  much better controlled. At  least  the user 
can understand  in  detail  what  he is measuring and  what  the 
limitations are. 

A synthetic file maintenance  program  alone  may  not  be  able 
to  model all the  steps of a real applic,ation. A single  measure of 
performance also leads to  the danger of designing a system that 
is “tuned”  to  this  job.  But if several dissimilar programs are used, 
a  system that does well on all of them is likely to  do well on  real 
jobs.  A  small collection of parameterized  procedures, imitating 
such  operations  as  sorting and  matrix  computat’ions,  may well 
prove to be adequate  standards of comparison from which a user 
can select those  most  appropriate for his application. 
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Appendix: PL/I version of yardstick program 
The following listing shows a pL/I version of the yardstick  program 
using magnetic tape for file storage.  Four tape drives are needed, 
one each for the old master file (MASTER), new master file 
(NEWMAS), detail  input (IIETIN), and  detail  output (IIETOUT) 
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tapes. If two tape channels are available, the two  input  tapes 
should be on one channel and  the  output  tapes on the  other. A 
card  reader  for  entering  parameters and a printer for  indicating 
the results  are inc,idental and  do  not  have  any effect on the meas- 
urement. 

The first DECLARE statement, specifying file attributes,  is 
implementation-dependent  and  may  have to  be modified for 
different systems.  This  may, or may  not, be the place to  specify 
the record  lengths (200 characters), blocking factors (10 records 
per block for master files, no blocking for  detail  files),  and  degree 
of buffering desired. 

Whenever  a new tape processing run  is specified, the program 
first  generates  master  and  detail  input  tapes before entering  a  full 
tape processing pass.  During  generation,  these  tapes  are defined 
as  output  tapes (MASGEN and  DETGEN);  during processing, the 
same  tapes  must  be defined as  input  tapes (MASTER and DETIN). 

The program uses only  features  available  in the PL/I subset 
as well as the full  language. The program  prints  the elapsed time 
automatically using the built-in PL/I TIME function. (If aninternal 
timer is not  available,  the DISPLAY statement  may be used to  
stop  the  program for manual  timing.) 

For multiprogramming  measurements, the  printed elapsed 
time would include the slowdown caused by interference  from 
other  concurrent  jobs. The program could be modified to  print 
the values of START-TIME and END-TIME as well, so as  to show 
the sequence in which the jobs were executed and  to provide the 
complete time  interval for  all  jobs,  from the earliest  value of 
START-TIME to  the  latest  value of END-TIME. 

Typical  parameter  cards  are shown following the program. 
The  cards  are  read  during  program execution to specify the 
number of master (NMAS) and  detail  (NDET) records to  be 
generated.  Master records are  numbered consecutively. Detail 
record  numbers  jump  by  an  increment  equal to  the  ratio between 
NMAS and NDET. For each  matching  master  and  detail  record, 
the compute  kernel is repeated NREP times. NMAS = 0 specifies 
a  compute-only  pass, using NREP number of kernel  repetitions, 
which bypasses  all tape operations. Any number of passes can  be 
specified by successive parameter cards. The results  produced 
with the sample  cards on a  particular  system  are also shown. 

Several  variat'ions of the program  are possible by making 
changes and recompiling. In  the second DECLARE statement, 
specifying the variables START, SUM, and TABLE, the  attributes 
BIXARY FIXED (31) may  be replaced by DECIMAL FIXED (7)  to 
execute the kernel  in fixed-point decimal arithmetic, or by DECI- 
MAL FLOAT (7)  to obtain  a comparison with  floating-point arith- 
metic.  Increasing N will rapidly  increase the main  storage  require- 
ment N 3  for table  storage,  as well as lengthen the kernel time;  the 
dimension of the  array TABLE (J) must be  increased correspond- 
ingly.  Increasing the value of START increases the precision 
required. 
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/ *  T H E   F O L L O Y I N G   O E C L 4 R E   S T A T E M E N T  I S  IMPLEMENTITION-OEPENOENT ;/ 
O E C L A H t   P A R A M S   F I L E   I N P U T .  

MASTER F I L E  RECORD I N P U T ,  O E T I N  F I L E  RECORD I N P U T ,  
N t k M A S  F I L E  RECORD OUTPUT. OETCUT F I L E  RECORD OUTPUT. 
M4SGEN F I L E  RECORD OUTPUT, O E T C E N  F I L E  RECORD OUTPUT; 

I *  T H t  F O L L O W I N G   S T A T E M E N T   O E F I N E S   T H E   T Y P E  OF K E R N E L   4 R l T H M E T I C  +I 
D E C L A R E   I S T 4 R T ~ S U M ~ T A B L E I 1 0 0 0 1 1   B l N 4 R Y   F I X E O I 3 1 1   S T A T I C ;  
O E C L I H t  I I I ~ J ~ K ~ N ~ U ~ C H E C K ~ C O U N T ~ L S U M ~ N M 4 S ~ N M A S ~ ~ N O E T ~ N O E T ~ ~ N R E P l  

B l N 4 H Y   F l X E O I 3 l l . C 4 R O   C H 4 R A C T E R I B O l . T E M P C   C H 4 R b C T E R I 6 ) )   S T A T I C .  
I I N T K E Y   P I C T U R E ' I 6 1 9 ' t K R t T U R N   L A B E L .  
I S T ~ ~ T - T I M E I E N O _ T I M E I   C H A R b C T t R I 9 1 1   S T A T I C .  
1 M I S T E N - R E G   4 L l G N E O   S T A T I C .  

2 M A S T E R - K E Y   C H 4 R 4 C T E H I 1 2 1 r  
2 M A S T E R - S U M   B I N A R Y   F I X E O I 3 1 1 .  

7 M b S T E R - U I T A  I151 C H I R d C T E R I l 2 1 .  
2 M I S T E R - C H E C K   B l N 4 R Y   F I X E O 1 3 1 1 r  

2 O E T 4 I L - K E Y   C H d R A C T E R I   1 2 1 .  

2 O E T P I L - C H E C K   B l N 4 R Y   F I X E O 1 3 1 1 1  
2 D E T A I L - S U M   0 l N 4 R V   F I X E O 1 3 1 1 v  

2 D F T A l L - 0 4 T 4  I151 C H I R A C T E R I I 2 I ;  

I O t T 4 l L - R E C   4 L l G N E O   S T A T I C ,  

O P E N   F I L E   l P 4 H A M S l ;  ON E N O F I L E I P A R A M S I  GO T O  EOF; 
N = IO; S T 4 R T  = 100; NM4S = 0; NOET = 0; 
00 J = I T O  N**3 ;   TABLEl .11  = S T 4 R T  + J - 1; END; 

STPUT-PIS: 
GET F I L k I P b R 4 M S I   E D I T   I C A R O I  I4IB011; 
P U T   E b I T  IC4ROI I S K I P I 2 1 . 1 1 B 0 1 1 ;  

G E T   S T R I N l r   I C 4 R O l   E D I T   I N M 4 S L v N O E T l r N R E P l   I X 1 6 ~ ~ 3 1 X 1 6 1 ~ F I 6 1 1 1 ;  
I F  S U b S T R I C 4 R O I l . 6 1  -= * P 4 S S  ' THEN  GU T O  START-PASS; 

I F  N M A S l  < 0 THFN GO  TO ST4RTLPASS;   COUNT = 0 ;  CHECK = 0; 

I *  P A S T E H   G E N E R A T I O N  * I  
I F  NMASL = NM4S I N M A S l  -> 0 THEN GO T O  D E T A I L - G E N F R b T I O N ;  
N M 4 S  = N M I S I ;  
O P t N   F l L E l M A S G E N I ;  00 J = 1 TO NMAS; 

HPISTER-SUM = 0; I N T K E Y  = J; M I S T E R - K E Y  = 'OOOOOO' I I  I N T K E Y ;  
CHECK = CHECK + J; M4STER-CHFCK = CHECK; 
l E W P C  = I N T K E Y ;   M A S T E R - 0 4 T A  = ' M 4 S T E R '  I I  TEMPC; 
* R I T E   F I L E l M 4 S G E N I  FROM  IMASTER-RECI ;  

E N D ;   C L O S E   F I L E I M 4 S G E N l ;   C H E C K  = 0; 

U E T 4 I L - G t N E R A T I O N :  

NOET = N O E T l ;   R 4 T l O  = NMAS I N O E I ;  
I F   N O E T l  = NOET I N O E T l  -> 0 THEN GO T O  TAPE-P4SS; 

O P E N   ~ I L E I O E T G E N I ;  00 J = R A T I O  T O  k M A S  0 1  R 4 T I O ;  

C H t C K  = CHECK + J; O E T 4 I L - C H E C K  = CHECK; 
l,tTAIL-SUM = 0; I N T K E Y  = J; O E T 4 I L - K E Y  = '000000' I I  I N T K E Y ;  

I E H P L  = I N T K E Y ;   O E T 4 I L - 0 4 T 4  = ' D E T A I L '  II TEWPC; 
hHITt F I L E I O E T G E N I  FROM I O F T A I L - R F C I ;  

E N D ;   C L O S E   F l L E l O E T G E N I ;   C H E C K  = 0; 

I I P E - P P I S S :  
I F   N R t P  = 0 THEN GO TO  START-P4SS; 
I F   N M A S l  -> 0 I N D E T l  -.> 0 THEN GO TO  COMPUTE-PASS; 
KRETURN = W R I T E - D E T A I L ;  
O P E N   F I L E I M A S T E R I .   F I L E I N E U M d S I .   F I L E l O E T I N l v   F I L E I O E T O U T ) ;  
ON E N O F I L E l M A S T E R l  GO T O  END-TPASS; 

R E 4 0   F I L E I M A S T E R I   I N T O   I M A S T E R - R E C I ;  
ON E N O F I L E I O E T I N I  GO  TO RUNOUI;  

R E A O   F I L E I O E T I N I   I N T O   I D E T A I L - R E C I ;  
S T P R T - T I M €  = T I M E ;  

KEY-TEST:  I F  MASTER-KEV < O E T 4 I L - K E V   T H E N  GO T O  YRITE-MASTER; 
I F  MASTER-KEY > D E T A I L - K E V   T H E N  00; P U T   E O 1 1  

I ' S E P U E N C E   E R R O R   H A L T E D   R U N ' I I S K I P . A l i  GO T O  CLOSE-FILES;   END;  

KERNEL:  
I t  KERNEL  SUMS N I N T E G E R S   F R O M  4 T A B L E   O F   N * * 3   C O N S E C U T I V E   I N T E G E R S  

B E G I N N I N G  WITH ' S T 4 R T ' .  K-TH  INTEGER SUMREO IS ' S T 4 1 7 1  - 1 + K8.3'- 
SUM IS CHECKED  ALGEBR4ICALLV.   KERNEL I S  REPEATED  NRFP T I M E S -  * I  
00 I = 1 T O  NREP;  SUM = 0; U = 0; J = 0 ;  

UO K = 1 T O  N; J = J + I b * U  + 1 1 ;  
SUM = SUM + T A B L E I J ) ;  U = U + K;  END; 

LSUM = I N  I N  + 1 1 1  I 2; 
I F  START -= I S U M  - L S U M  L S U M I  / N + 1 THEN 00; P U T   E O 1 1  

END; GO T O  KRETURN; I +  KRETURN IS E I T H E R   W R I T E - O E T P I L  OR CRETURN */ I * C O M P U T E   E R R O R  H A L T E D   P A S S * l I S K I P . A l ;  GO TO START-PASS;  END; 

Y R I T E - O E T 4 I L :   M 4 S T E R - S U M  I SUM; D E T A I L - S U M  = SUM; 
CHECK = OETAIL-CHECK;  COUNT = COUNT + 1; 

R E A O   F I L E I O E T I N I   I N T O   I O E T I I L - R E C I ;  
U R I T E   F I L E I O E T O U T I  F R O M   I O E T A I L - R E C I ;  

U K I T E - M A S T E R :   Y K I T E   F I L E I N E W M I S I   F R O M   I M h S T E R - R E G ) ;  
R E A O   F I L E I M b S T E R I   I N T O   I M A S T E R - R E C I ;  GO T O  KEY-TEST;  

HUNOUT:   DETAIL-KEY = HIGHllZl; GO T O  YRITE-MASTER; 

Fun TDAZC: FNn T 1 Y F  = TIYF: - . . - - . . . . - - . - . . " . . . . - . . . . - . 
I F  C H E L K  = I C O U N T  I C O U N T  + I 1  * R A T I O 1  / 2 THEN GO TO C L O S E - F I L E S ;  

L L O S E - F I L E S :   C L O S E  F I L E I M A S T E R l r F I L E I N E W M A S l r F I L E I D E T I N l ~ F I L E l O E T O U l ~ ~  
P U T   E D I T  I '  CHECKSUM ERROR H A L T E D   P 4 S S ' I I S K I P . A l ;  




