Once the trajectory of a spacecraft in flight has been predicted,
control measures are required to ensure that the trajectory data is
applied in a consistent manner when calculating the many trajectory-
related parameters required by the flight controllers of the space

fight.

This paper describes the queue control techniques used in generating
the predicted trajectory and the subsequent use of the trajectory data.
The queue control logic that is discussed requires a minimum amount
of main storage while a task is waiting to be performed.

Trajectory control programs in support of Apollo missions
by D. R. Quarles

The real-time computer programs' used in support of the Apollo
missions are composed of highly complex mathematical programs,
various control programs, and a sophisticated operating system.
This paper describes a set of control programs, referred to as the
trajectory control programs, that make use of features provided by
the operating system to enhance the integrity and consistency of
the output from some of the mathematical programs.

A large percentage of the data viewed by the flight controllers of a
space flight is calculated from a table of position and velocity vectors
that describe the predicted spacecraft trajectory for the next several
hours.” The predicted trajectory, or ephemeris, is used to calculate
such items as the time to fire retro-rockets to land in a given place,
the direction in which a given radar antenna should be pointed to
make contact with the spacecraft as soon as it crosses the horizon,
which tracking stations will sight the spacecraft in a given revolution,
and how a planned maneuver will change the current trajectory.
Since many critical decisions are based on ephemeris data, great
care must be taken to ensure that the ephemeris is updated in a
timely manner and that other programs that might be affected by
a changing ephemeris are locked out while the ephemeris is being
generated. For example, data needed for determining the positions
of contact stations might be rather disjointed if part of it were

QUARLES IBM SYST J




based on an old ephemeris and part on a new ephemeris. The flight
controller must be assured of receiving up-to-date and consistent
information from the real-time computer program. The purpose of
the trajectory control programs is to provide the necessary control
logic to ensure that the ephemeris is successfully generated and to
prevent simultaneous processing that could result in inconsistent
or misleading information.

In this paper, we first describe the procedure for updating the
trajectory and then indicate the operation of the trajectory control
programs within a real-time operating system. The chief topic
discussed is the queue control necessary for the operation. Several
examples are used to illustrate the concepts of trajectory control.

A particularly useful characteristic of the queue control logic is
that a minimum amount of main storage is utilized while a task is
waiting to be carried out. Even when the available main storage is
very large, deadlock is a potential problem in a large multitasking
system.” Use of the real-time queue control blocks and associated
queue elements described herein reduces the required amount of
main storage, thus lessening this problem. A control block requires
only 32 bytes, each queue element about 60 bytes, and the message
length varies according to the application.

Trajectory update

The process of generating the ephemeris and storing it for use by
other programs is called a trajectory update. The trajectory is
updated any time new information is available that increases the
accuracy of the predicted trajectory. This includes a better deter-
mination of the current spacecraft position and velocity as well as
any change in plans for maneuvers.

Figure 1 shows four levels of control programs that are used in the
trajectory-update process. The queue control program in Level 1 is
by far the most complicated of the trajectory control programs
and is discussed at length in this paper. The trajectory-update
control program in Level 2 is used to sequence the trajectory-update
events which include, in addition to the ephemeris generation,
generating revolution times and informing other tasks that the
trajectory has been updated. The ephemeris generation program in
Level 3 is used to control the process of generating and storing the
ephemeris. Since the ephemeris is first generated in main storage
and then stored on an auxiliary storage device, it is generated in
segments. This process is repeated until the allocated space on the
auxiliary storage device has been filled with segments. For this
process, still another control program is used: the numerical inte-
gration program in Level 4. This program communicates directly
with the mathematical routines that are numerical integrators.

No. 1 - 1970 TRAJECTORY CONTROL




Figure 1 Orbit trajectory-update control program levels

QUEUE
CONTROL

LEVEL 1

-

|
T
|
H

TRAJECTORY
UPDATE
CONTROL

LEVEL 2

EPHEMERIS
GENERATION
CONTROL
LEVEL 3

NUMERICAL
INTEGRATION
CONTROL

LEVEL 4

H i |
. ) !
GENERAL
FREE-FLIGHT TRANSLUNAR
DESCENT NUMERICAL POWER FLIGHT ASCENT INJECTION

INTEGRATOR NUMERICAL INTEGRATOR
INTEGRATOR INTEGRATOR INTEGRATOR

LEVELS

Selection of the proper numerical integrator depends on whether
the trajectory segment is free-flight or whether it contains a ma-
neuver by the spacecraft. If a maneuver is scheduled, the control
program must determine the type of maneuver and select the proper
maneuver integrator.

The trajectory-update procedure just described shows the use of
control programs in the generation of the predicted trajectory, or
ephemeris. By merely scheduling events sequentially, the control
programs can ensure that there are no complications within the
trajectory update itself. However, conflicts with other tasks cannot
be prevented by sequencing events within the trajectory update. The
queue control program is used to prevent conflicting processing
from being initiated while the trajectory update is in process. A
complete description of the queue control logic is presented later,
but first some features of the operating system are discussed.

Real-time operating system

The Real-Time Operating System (RTOS) used in the computers
that monitor and control space flights was developed from the
IBM System/360 Operating System that provides multiprogramming
with a variable number of tasks* (0S/360 MVT). Many new capa-
bilities and concepts were added to 0S/360 MVT, but only those

QUARLES IBM SYST J




concepts used by the queue control program are discussed in this
paper. Additional information on RTOS may be found in the
reference material.’*™”

RTOS provides a task structure that makes use of named independent
tasks. As the name suggests, these tasks are completely independent
of each other, and several tasks may be performed at any time.
Communication between independent tasks is achieved by the
RTATTACH macroinstruction. When an RTATTACH is issued by
the control program, a queue element with an associated message is
generated, and the message is passed to the specified task and load
module when conditions permit. The program issuing the RTATTACH
continues normal processing with no further concern for the message
that it has passed to the other task. The format of the RTATTACH
macroinstruction follows:

RTATTACH TASK =task name, EP=1oad module name,
QNAME=RTQCB name, QRANK =#, ID=#,
PARAM = (message, message length)

The parameters are as follows:

TASK The name of the independent task that is to receive the
message

EP The load module name
The real-time queue control block through which the
queue element is to be chained
The relative location of the queue chain in which the
newly created queue element is to be inserted
A number used to identify the message
The address and length of the message that is to be
passed

The queue element created by an RTATTACH is placed in a queue
chain controlled by the real-time queue control block (RTQCB)
that was specified by the QNAME parameter. Figure 2 illustrates
such a situation.

The real-time queue control block has associated with it certain
attributes that define how its queue chain is to be processed. These
attributes may be dynamically changed by the RTQCNTRL macro-
instruction. Among these attributes is a length which determines
the maximum number of queue elements that may be entered in its
queue chain before purging takes place, a mode which defines
whether the control block is enabled or disabled, and an order which
determines which queue element should be serviced first. The order
may be first-in-first-out (FIFO), last-in-first-out (LIFO), or priority.
If priority is the assigned order attribute, the QRANK parameter on
the RTATTACH macroinstruction determines the ordering of the
queue elements.

No. 1 - 1970 TRAJECTORY CONTROL




RTOS rules

16

Figure 2 RTATTACH communication

RTATTACH

PARAM
(MESSAGE, m)

MESSAGE

RTOS has the following rules for governing the servicing of queue
elements from any real-time queue control block chain:

1.

Only one queue element from a control block may be active at
any time. That is, when a queue element is removed from a
control block chain and passed to an independent task, no
further queue elements may be serviced from that chain until
the independent task receiving the first queue element is
completed.

No queue elements will be serviced from a control block chain
if the independent task specified for the first eligible queue
element in the chain is currently being carried out; that is, it is
considered active.

No queue elements from a control block chain will be serviced
if the control block is disabled. However, additional queue
elements may be entered into the chain.

These rules are referred to in subsequent examples.

The independent task and the real-time queue control block are the
primary tools of the queue control logic employed by the trajectory
control programs. Techniques for using these facilities are discussed
in the following section.

QUARLES IBM SYST J




Figure 3 Basic queve control logic

A C D
LENGTH=10 LENGTH=60 LENGTH=50

B
LENGTH=2

1 2 n
LENGTH=2 LENGTH=2 oo LENGTH=2

TASK RESOURCE TABLE

PTP STATUS XXXXXXXXXX
SERIAL PROCESSING STATUS XX

Queue control logic

The most sophisticated program in the trajectory control programs
group is the queue control supervisor. Its function is to prevent
simultaneous performing of independent tasks that can adversely
affect each other. This includes protection of the trajectory update
from tasks that might inhibit its processing, protection of users of
the ephemeris from the trajectory update, and protection from each
other of tasks that require a large amount of main storage.

The queue control technique employed by the queue control super-
visor is basically one of enabling and disabling real-time queue
control blocks. In addition, it takes full advantage of the RTOS

queue-element servicing rules outlined previously. Figure 3 shows
a group of control blocks that are used by the queue control
supervisor. Note that each control block has a designated length
which indicates the number of queue elements that it can contain.

Block A is used to chain up to ten incoming trajectory-update
requests. It is assumed that it should never be necessary to stack
more than ten trajectory-update requests. Block B is used to reroute
the requests to the queue control supervisor and to dispatch them
for processing. The reason for rerouting these requests is given in
the examples. Block C is used for incoming requests from other
tasks that require protection. These requests are known as
“permission-to-process’ (PTP) requests and are rerouted by Block D
when necessary. Again, an explanation is given in the examples.
The control blocks numbered 1 to n are used to dispatch such
requests when the necessary protection has been provided. Each
task that uses the protection feature provided by the queue control
supervisor has been preassigned at least one unique queue control
block. When the task requests permission to process (that is, to be
performed), it passes the name of the control block to be used as

No. 1 + 1970 TRAJECTORY CONTROL




Example 1

18

part of the message. Note that each of these control blocks has a
length of two. This is very important in the queue control logic.

Figure 3 also shows two indicators that are maintained by the queue
control supervisor. The first (PTP status) is a bit pattern which
uniquely identifies each task that has been granted permission to
process. The second indicator is the serial-processing status, use
of which is shown in the following examples. The complexity of the
examples increases according to their order of presentation.

In this first example, Block A controls the queue chain through
which all queue elements that cause a trajectory update must be
routed. When the queue control supervisor receives a trajectory-
update request, it immediately disables Block A so no more requests
can be serviced from its queue chain. The queue control supervisor
then uses the RTATTACH macroinstruction on itself through Block
B, as shown in Figure 4, indicating that the trajectory update is
complete; that is, it creates a queue element for itself in the queue
chain controlled by Block B. This may seem strange since the
trajectory-update control program has not yet been called. However,
the newly created queue element for the queue control supervisor
cannot be serviced since the task is currently active (RTOS Rule 2).
Now, the queue control supervisor applies the RTATTACH macro-
instruction to the trajectory-update control program, again creating
a queue element in the queue chain controlled by Block B. However,
the second queue element is assigned a higher queue rank and thus
is placed ahead of the first queue element in the queue chain as in
Figure 4.

The queue chain controlled by Block B contains two queue elements
which is the maximum length of the chain. Whether or not a queue
element can be serviced from this queue chain depends on whether
Block B is currently enabled or disabled (RTOS Rule 3). When the

Figure 4 Trajectory-update completion

TRAJECTORY UPDATE
COMPLETION
RTATTACH

TASK = QUEUE CONTROL QUEUE
QRANK =6 ELEMENT

T
TRAJECTORY
UPDATE

RTATTACH
TASK = TRAJECTORY UPDATE
QRANK =10

CONTROL

QUARLES IBM SYST J




status of Block B becomes enabled, the trajectory-update queue
element will be serviced first because it was assigned a higher queue
rank. In the meantime, the queue control supervisor has completed
its work and is inactive. It is eligible for further requests and may
receive requests from other queue control block chains. Tt cannot,
however, receive the queue element that it has waiting in the Block B
queue chain because a queue element from that chain is currently
active (RTOS Rule 1). When the trajectory update completes its
function and its task becomes inactive, the trajectory-update com-
pletion queue element in the Block B queue chain can be serviced.
When the completion queue element is received by the queue
control supervisor, it enables Block A, which makes any additional
trajectory-update requests eligible for servicing.

This second example considers Block C, which is used to chain the
queue elements for those tasks that cannot be performed when a
trajectory update is in process, in comparison to Example 1 which
was oversimplified for illustrative purposes. Actually, when the
queue control supervisor disables Block A to prevent further
trajectory-update requests, it also disables Block C to prevent the
servicing of any queue elements from its queue chain.

As mentioned earlier, passing requests through the queue control
supervisor is known as requesting permission to process. Since the
permission-to-process concept will be used several times in this and
subsequent examples, some abbreviations are necessary. A queue
element passed to the queue control supervisor requesting permission
to process is identified as an RPTP queue element. The queue
element passed back to the requesting task is a “‘grant-permission-
to-process” element, identified as a GPTP queue element.

The permission-to-process procedure is as follows:

When a task in this group receives a request from some other
source, it generates an RPTP queue element to the queue control
supervisor through Block C.

The requesting task then returns to the operating system.

Block C is disabled if a trajectory update is in process. If so, the
block is enabled by the queue control supervisor when the
trajectory update completes its function.

When the queue control supervisor finally receives the RPTP
queue clement, it disables Block B. Remember from Example 1
that Block B is used for trajectory-update queue elements.

In Figure 3, each of the control blocks numbered | to n has a
length of two. Each of these blocks is assigned to a unique
independent task to be used for the GPTP queue elements.

The queue control supervisor first generates a queue element to
itself through the queue control block assigned to the requesting
task. This queue element cannot be serviced since its requested
task is still busy.

No. 1 - 1970 TRAJECTORY CONTROL

Example 2




Example 3

20

The queue control supervisor then generates the GPTP queue
element through the same control block with a higher queue rank.
This means that the GPTP queue element will be serviced before
the queue element to the queue control supervisor. Furthermore,
the second queue element cannot be serviced until the task
receiving the GPTP queue element is completed and returns to the
operating system.

In addition to generating the necessary queue elements, the queue
control supervisor sets a unique bit in its task resource table
to indicate that the particular task has been granted permission
to process.

When the task receiving the GPTP queue element is completed,
the completion queue element is passed to the queue control
supervisor. The indicator for the completed task is then turned
off.

There can be many GPTP queue elements outstanding at the same
time. Each has a unique bit in the task resource table. As each
completion queue element is received by the queue control
supervisor, the appropriate indicator is turned off. The queue
control supervisor then checks to see if all indicators are off,
and if so, Block B is enabled to allow any waiting trajectory-
update request to be serviced.

The completion queue logic for the permission-to-process requests
is identical to the trajectory-update completion logic mentioned in
Example 1 and outlined in Figure 4. Again, the completion queue
element is generated first, but it cannot be serviced because the
specified task is the queue control supervisor that is still active.
The queue element to grant permission to process is then generated
and placed in the same queue chain as the completion queue element,

but is assigned a higher queue rank. This ordering requires that the
queue element granting permission to process will be serviced first,
and that the completion queue element must wait until the task
receiving the first queue element has been completed. The completion
queue element then returns to the queue control supervisor.

The completion logic is extremely valuable since the queue control
supervisor maintains complete control over queuing logic. It does
not have to depend upon a return queue element being generated
by the task that was granted permission to process.

As mentioned earlier, some of the tasks in the permission-to-process
group cannot be carried out simultaneously. These tasks have been
identified and are performed in a serial-processing stream. Here in
this third example, as in Example 2, an RPTP queue element is
received by the queue control supervisor through control block C
as shown in Figure 5. If the task requesting permission to process is
not in the serial class, it is performed exactly as illustrated in
Example 2. If it is in the serial class, the serial-processing indicator
is checked to see if a task from the serial-processing group is currently

QUARLES IBM SYST J




Figure 5 Serial processing

REQUEST
PERMISSION
TO PROCESS

RTQCE
¢

.

FIRST SERIAL
PROCESSING
QUEUE
ELEMENT

FIRST SERIAL

PROCESSING
QUEUE
ELEMENT

———,

REROUTE
SECOND SERIAL
SSIN:
SECOND SERIAL PRg(\:JEF_UE G
PROCESSING ECEMERT

PARALLEL
PROCESSING
UEUE
ELEMENT

PARALLEL
PROCESSING
QUEUE
ECEMENT

active. If not, control block D is disabled, the serial-processing
indicator is turned on, and the RPTP queue element is processed the
same as a nonserial queue element. If, however, the serial-processing
indicator is on and a queue element for another task in the serial
group is received, the queue element is rerouted to the queue control
supervisor through Block D, which will be disabled. When a com-
pletion queue element for a serial GPTP task is received by the queue
control supervisor, the serial-processing indicator is turned off,
and Block D is enabled to release queue elements that might have
been rerouted.

Because the permission-to-process logic had not yet been discussed,
the first example was oversimplified. Remember that when a GPTP
queue element was dispatched, Block B was disabled. However,
Block A was not disabled so a trajectory-update request could be
passed to the queue control supervisor as in this fourth example.
When the queue control supervisor receives the trajectory-update
request through Block A, it immediately disables Block C to prevent
any more RPTP queue elements from being passed to it. However,
there may be GPTP queue elements already active. The queue control
supervisor then disables Block A to prevent additional trajectory-

No. 1 - 1970 TRAJECTORY CONTROL

Example 4




update requests and then reroutes the trajectory-update request to
itself through Block B. If there are GPTP queue elements still active,
Block B will be disabled and will remain so until ail completion
queue elements have returned to the queue control supervisor. If
there are no GPTP queue elements active, Block B will be enabled,
and the trajectory-update request will return to the queue control
supervisor as soon as it is inactive. The trajectory update will then be
processed as outlined in Example 1; that is, first the associated
completion queue element and then the trajectory-update queue
element will be created in the queue chain controlled by Block B.

There are other techniques that can be used by an independent task
to prevent other independent tasks from interfering with its data
usage. One such technique is to lock data tables while they are
being used. This prevents other tasks from accessing the data until
the lock is removed. For example, the trajectory-update control
program could lock the ephemeris table until all of the ephemeris
is generated. Similarly, a user of the ephemeris could lock the
ephemeris table while it is accessing the ephemeris.

A data-table lock is useful if the table is to be locked for a brief
period of time. However, if a data table is used by several indepen-
dent tasks, and if one task locks the table for a long period of time,
the other tasks are required to wait in main storage for the lock
to be removed. Another disadvantage of locking data tables is that
it denies simultaneous access of data tables by independent tasks
that normally can be performed simultaneously.

Summary

The trajectory control programs ensure the integrity and consistency
of all trajectory data that is used by the flight controllers on space
flights. This means that the ephemeris, which is used for many of the
calculations of trajectory data, must be updated in a timely manner
with no interference from other tasks. It also means that users of the
ephemeris must be protected from trajectory updates that might
make their data inconsistent. The objective is achieved by an elabo-
rate queue control process that continually enables and disables
various real-time queue control blocks to regulate the independent-
task processing.

ACKNOWLEDGMENT

The technique of generating a comipletion queue element for a task
prior to actually invoking that task was developed by James Summers.

REFERENCES

1. . L. Johnstone, “RTOS—Extending OS/360 for real-time space flight
control,” AFIPS Conference Proceedings, Spring Joint Computer Con-
ference 34, 15-27 (1969).

QUARLES IBM SYST J




2. F. Ditto, “Nonlinear trajectory estimation in real time for Project
Gemini,” Proceedings of the Real-Time Systems Seminar, Houston,
Texas, International Business Machines Corporation, 1-2 (November
1966).

. J. W. Havender, “Avoiding deadlock in multitasking systems,” IBM
Systems Journal 7, No. 2, 74-84 (1968).

. B. I. Witt, “The functional structure of OS/360, Part II, Job and task
management,” IBM Systems Journal 5, No. 1, 12-29 (1966).

. R. Hoffman, “Managing the design, development, and implementation
of large-scale generalized real-time systems,” Proceedings of the Real-
Time Systems Seminar, Houston, Texas, International Business Machines
Corporation, 13—14 (November 1966).

. J. H. Mueller, “Philosophy of the RTCC control programs,” ibid., 32-40.

. W. L Stanley and H. F. Hertel, “Statistics gathering and simulation for
the Apollo real-time operating system,” IBM Systems Journal T, No. 2,
85102 (1968).

TRAJECTORY CONTROL 23




