This paper presents a formal method for describing programming
languages independently of machine architectures and compiler
implementations. The method, which was developed to describe PL/1,
is being applied to other programming languages and to compilers
and operating systems.

The definitional techniques are demonstrated using a simple program-
ming language (SPL). The paper has been written so that little knowl-
edge of mathematics or formal logic is required.

The formal description of programming languages
by E. J. Neuhold

The description of programming languages involves both the
definition of the functions that can be expressed in the language
(its semantics) and the notational rules governing the format to be
used for requesting the functions (its syntax). A number of formal
description methods exist for representing the syntax of program-
ming languages,”'*°® but natural language (such as English) is still

generally used to specify their semantics. We describe one technique
that allows the complete formal description (syntax and semantics)
of programming languages. The principal features of this definitional
method were developed for the formal description of PL/1.°" The
publications of J. McCarthy,'™'" P. J. Landin,'*>'® and C. C.
Elgot'* strongly influenced the early work leading to development
of this method. So far, it has been used to at least partially describe
ALGOL 60,"> FORTRAN, APL, and BASIC, as well as PL/1. Efforts
are also underway to apply the techniques to compilers and to
operating systems.

The use of formal description methods allows programming lan-
guages to be defined in precise, universally understood terms,
independently of machine architecture and compiler implementa-
tions, Such methods are also opening the way to further theoretical
investigations of programming languages and compilers,'*'" %'

The formal description method discussed in this paper is based on
the notion that interpretive execution of a program in fact constitutes
a semantical description of that program. In this case, the interpre-
tation is conceptual rather than actual, the programs being in-
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terpreted are abstract rather than real, and the interpretation must
be seen as applying to the entire language rather than a subset of
its statements included in a particular program.

The interpretation is performed by an abstract interpreter or abstract
machine, which is not written in any programming or machine
language but is specified in an artificial language based on abstract
concepts of computing. The basic interpreter mechanisms are the
same for all programming language definitions. However, for each
language, different information must be kept during interpretation
(values of variables, intermediate results, flow of control informa-
tion) and different ways must be employed for handling this in-
formation (transfers of control, movements of data, procedure
calls, arithmetic operations). Thus, formal language definition is
concerned primarily with defining both the information to be
retained by an abstract interpreter and the instructions and functions
to be used by the interpreter in manipulating that information.

By interpreting an abstract form of a program, the interpretation
process is not burdened with purely notational considerations, such
as spacing requirements, choice of separators and delimiters, and
parentheses requirements and priority rules in arithmetic expres-
sions. Abstract programs are defined using the abstract syntax'"'*
of the programming language, which is designed to exhibit only
those structural aspects of programs that are relevant to their
interpretation. Thus the formal description of a programming
language must include the specification of a translator that describes
the mapping of source programs into their abstract form before
interpretation.

Finally, to complete the description, the formal syntax (using
Backus-Naur Form) of well-formed source programs must be
supplied at some stage in the production of the formal description.

This paper is intended to provide a precise but not excessively
formal presentation of the principles used for the complete formal
description of programming languages. We develop a formal
description of a simple programming language (SPL) as a vehicle
for demonstrating the method. SPL has deliberately been kept very
simple to avoid burdening the reader with learning a programming
language as well as the formal description concepts.

We have attempted to write the paper so that little knowledge of
abstract mathematical or logical concepts is needed. However, at
least a superficial knowledge of Backus-Naur Form notation is
required. Some of the definitions we introduce differ from those
used in the references.’™® These changes were made partially to
simplify the definitional technique itself and partially to simplify
explanations; however, they do not fundamentally alter the de-
scriptive method.

S
i
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We first present a conventional description of SPL. We follow that
with a more careful examination of the logical properties of SPL
programs translated into their abstract form. The requirements
of an abstract interpreter that can provide a formal description of
spL are developed next. Finally, in the concluding remarks, we
demonstrate one important use of formal language definition—how
to accommodate language extensions. A formal description of the
translator is not included. It is of little interest for the definition of
semantics, and its properties are implied in the relationship between
the abstract form of sPL programs and their source language form.

A simple programming language

The basic components of SPL are numbers and variables. A number
in SPL is always an integer, and a variable is a quantity that is
identified by a name (an identifier consisting of one or more letters).
An SPL variable may take on any of the integer values. SPL also
provides the two arithmetic operators, + (add) and — (subtract).

The arithmetic operators, together with numbers and variables, are
used to construct expressions. An expression may be simple (a single
number or variable) or it may be any combination of numbers,
variables, and operators, as allowed by the rules of mathematics.
Using Backus-Naur Form, we are able to specify the syntax of
expressions as

{expression) : : = (simple expression) |

(simple expression) (operator) {expression)

(simple expression) : : = (number) | {variable) |

({expression))
operator: : = + | —
Examples of well-formed SPL expressions are:

ALPHA

105

(A + X)

(SUM - A)+ (B—- 5+ D)
A+B-C+D

If an expression contains a sequence of additions and/or subtrac-
tions in which the order of evaluation is not specified by parentheses,
the operations are performed from left to right. Thus the expression

A4+B-C+D
is equivalent to the expression

(A+B)-C)y+D
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Note that the order in which additions and subtractions are per-
formed is of importance as soon as upper and lower limits are
placed on the numbers that can be handled by the computer.

An SPL program consists of set-statements and goto-statements.

A set-statement is used to assign a value to a variable. The syntactic
form of a set-statement is given by the rule

(set-statement) : : = SET (variable) TO {(expression)

The value of the expression is taken on by the variable that follows
the word SET, and any value previously assigned to the variable is
destroyed.

Normally, the statements in an SPL program are executed sequen-
tially. However, the goto-statement can transfer control to some
statement other than the next sequential statement. A label in the
goto-statement identifies the destination of the transfer of control.
Such a label is represented by an identifier consisting of one or
more letters. To identify the target statement, the same label must
appear exactly once as the prefix to some statement in the SPL
program. The general form of the goto-statement is given by the
syntax rule

(goto-statement) : : = GOTO (label) IF {expression)

The transfer of control only takes place if the value of the expression
is greater than zero; otherwise, the statement following the goto-
statement is executed.

The identifiers SET and TO in the set-statement and the identifiers
GOTO and IF in the goto-statement are called keywords of SPL.
The words SET and GOTO are also called statement identifiers.

To avoid ambiguities, at least one space (blank character) must be
inserted between adjacent identifiers in SPL programs. Between the
other basic components, the use of separating spaces is optional.

An SPL program that specifies the summation of the integers 1
through 10 is shown in Table 1.

The abstract program

When designing an interpreter for a programming language, source
programs are usually not interpreted directly; instead a translated
form of the program is used as the input to the interpreter. Basically,
source programs may be considered as strings of characters. In-
terpreting these strings requires cumbersome scanning and sometimes
complicated procedures for gathering the segments relevant for the
interpretation. (By segments, we mean components of statements
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Table 1 Summation program

SET SUM TO ZERO
SETITO I

LOOP SET SUM TO SUM + [
SETITOT 41
GOTO LOOPIF 11 — 1
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Figure 1 Sample tree x

s-target

/

SET

SUM

such as statement identifiers, variable names, or expressions.) For
example, a set-statement in SPL contains two main parts, the target
variable and the expression to be evaluated. However, the expression
must be evaluated (and therefore located in the program) before the
value replacement for the target variable can take place. For this
reason, a translation should produce structures that allow ready
access to the program segments needed for interpretation.

As previously indicated, the translation process also eliminates
source program elements not required for the semantic interpreta-
tion. Usually, the structuring inherent in the translated program
allows the elimination of some of the punctuation marks and
keywords. For example, the words TO and IF in SPL are not required
in the translated form; they are redundant and are used only to
make the program more intelligible to human beings. However, the
statement identifiers SET and GOTO are important; they distinguish
between the two possible statement types in SPL. Also in the trans-
lation process, keywords are commonly translated into some internal
form to distinguish them from variable and label names.

These principles of source program translation have been applied
in the design of the interpreters used for the formal description of
programming languages. The translated (abstract) programs ex-
plicitly show the relevant program structure but do not contain
redundant symbols and keywords. The form we selected to represent
the abstract program is the free. Names associated with the branches
of the trees identify the various segments of the abstract programs.
The leaves (terminal nodes) of the trees are formed by the elementary
components; e.g., translated keywords, identifiers, constants, and
operators in the programming language. A degenerated tree con-
sisting of only a single elementary component (a tree without
branches) is called an elementary tree. An example of a tree, which
represents the SPL statement

SET SUM TO SUM 41
in abstract form, is shown in Figure 1. Note that the keyword TO

has been eliminated in the abstract form of the set-statement.

Three functionally different segments in the set-statement are identi-
fied by the branch names:
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s-st-id  for the translated statement identifier SET
s-target  for the target variable SUM
s-expr for the expression SUM + I

The expression itself forms an abstract tree (a subtree of the set-
statement tree). Its parts are identified by:

s-opndl  for the first operand SUM
s-op for the expression operator +
s-opnd2  for the second operand I

To allow the interpreter ready access to the various parts of an
abstract program, the names of the branches are used as selectors
of tree segments. For example, the application of the selector s-expr
to the sample tree x produces the subtree shown in Figure 2. The
application of the selector s-st-id to the abstract set-statement
produces the elementary tree SET, i.e., a degenerated tree consisting
only of the leaf SET.

Assuming that x identifies the abstract set-statement represented in
Figure 1, we may use functional notation to represent the application
of a selector. For example, s-expr (x), which is read “s-expr applied
to x,” also represents the subtree in Figure 2. Another example is
given by

s-st-id(x) = SET

The result of the application of a selector is a tree, and another
selector may be applied to this result-tree to produce some even
smaller part of the total tree. For example, the application of the
selector s-op to the subtree represented by s-expr(x) produces the
elementary component +. Using the functional notation, we may
write

s-0p (s-expr(x)) = +

The named branches in the abstract programs allow, by means of
selector application, fast access to the various segments of the
programs. However, an interpreter must accept any well-formed
program and thus must handle a variety of different tree types.
Because different actions are required of the interpreter depending
on the type of tree, the interpreter must be able to distinguish among
tree types. For example, translation of the SPL statement

SET I TO 10

produces the tree shown in Figure 3. Comparison of the tree in
Figure 3 with the tree in Figure 1 shows that the interpreter must
use different selectors to arrive at the elementary components of
these trees. Thus a test of the tree type is required.

Each type of tree can be distinguished from all other trees by its
membership in a set of trees containing all the trees of that type.
For example, all trees representing SPL expressions may form such a

No.2 - 1971 FORMAL DESCRIPTION

segment
selection

Figure 2 Subtree of x

s-opndl s-0p s-opnd2

+

definition
of predicates

Figure 3 Sample tree y

y=

s-st-id’ s-target S-expr.

I




class. All tests for a tree type are then tests for membership in the
associated class. Therefore, with each class, a test function, termed
a predicate, is defined. The predicate, when applied to a tree, is
satisfied (frue) if the tree is a member of the associated class; it is
not satisfied (false) otherwise. We may also say that each predicate
defines a class of trees whose members are those trees that satisfy
the predicate.

Assuming that the predicate is-expr defines all SPL expressions, the
following formulas referring to the trees in Figures 1 and 3 produce
the result true.

is-expr (s-expr(x))
is-expr (s-expr(y))
is-expr (s-target(y))

Note that in the last formula the selector s-farger produces the
elementary tree I, i.e., a variable, and a variable is a well-formed
SPL expression. However, the formula

is-expr (s-st-id(x))

is not satisfied. The function s-sz-id(x) returns the translated state-
ment identifier SET, which is not an expression.

To define the predicates used by the abstract machine, we start by
introducing predicates that describe the elementary components.
These predicates are then used to specify predicates describing
more complex tree classes,

We introduce the predicate is-constant, which is satisfied only for
the integer congtants allowed in SPL. The predicate is-name is
satisfied for all the variables and labels allowed in SPL. The special
predicates is-set, is-goto, is-add, and is-subtract are satisfied for the
elementary objects SET, GOTO, +, and —, respectively.

It may become necessary to specify predicates that define simple
combinations of different tree classes. For example, a predicate
defining all elementary components allowed as SPL expressions must
combine variables and constants, since either of them may appear
as a simple expression.

To define such a combination, the logical or operator V is used.
For example, the expression

is-simple-expr = is-name V is-constant

specifies that the predicate is-simple-expr(x) is satisfied if either the
predicate is-name(x) or the predicate is-constant(x) is satisfied for
the tree x. ’

Predicates that define nonelementary trees are defined by incor-
porating the branch names of the trees into the definition. By using
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the branch names that leave the root of the tree, all subtrees
immediately subordinate to the root can be identified. Assuming
that the predicates of these subtrees have already been defined, the
new predicate can be formulated by specifying the predicates of
the subtrees with the branch names. For example, a predicate
is-set-stmt defining all abstract set-statements may be formulated as

is-set-stmt = ({s-st-id : is-set),
(s-target : is-name),
{s-expr : is-expr))

All branches leaving the root of the set-statement tree are specified
together with the predicates defining the subtrees that may appear
at these branches. The general form of this construct is given by

is-pred = ({sel, : is-pred,),
(sely : is-pred,),

{sel, : is-pred,))

where is-pred is the newly defined predicate; sel,, sel,, - - - , sel, are
the selectors leaving the roots of the trees described; and is-pred,,
is-pred,, --- , is-pred, are the predicates defined for the subtrees.
The predicate is-pred is satisfied only if all selectors sel,, sel,, - - - ,
sel, appear as branches leaving the root of a tree and if in addition
all of the predicates is-pred,, is-pred,, - - - , is-pred, as applied to the
identified subtrees are satisfied. Note the correspondence of this
definition to the logical and operation.

To describe in tree form the sequences of SPL'statements that
constitute programs, a special convention about the branch names
identifying elements in a sequence is introduced.

The branch names elem(1), elem(2), - - - , elem(n) are used to identify
the first, second, --- , nth element in the sequence. For example,
the SPL program in Table 1 is represented in abstract form as shown
in Figure 4. Note that the predicates is-stmt are used as indicators
for the subtrees that must appear in a well-formed abstract program.
To complete the tree, we must insert all of the proper subtrees for
statements 1 through 5 of the program,

Predicates that define sequences are always written as a predicate
name followed by the affix-list (e.g., is-stmt-list for a sequence of
statements), The general definition of such predicates is given by

is-pred-list = ({elem(1) : is-pred),
(elem(2) : is-pred),

{elem(n) is-pred))
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Figure 5 Tree representing A + (B — C)

s-opndl

Figure 6 Tree representing A+ B —C

s-opndl - s-opnd2

=

s-opndl s-0p s-opnd2

The selectors elem(l), elem(2), - - - , elem(n) identify the individual
elements of the sequence. For example, the ith statement in the
abstract tree x (Figure 4) is selected by using the selector function

elem(i) (x)

A special function Jlength (x) is introduced to determine the number

of elements contained in the abstract sequence x. We shall see that
this function is needed to determine when the interpretation of a
sequence is completed.

Consider now the representation of SPL expressions in abstract form.
In SPL, parentheses and the left-to-right rule indicate the order in
which the individual operations required to evaluate an expression
must be performed. In the abstract program, this order can be
reflected in the structure of the tree, which represents the abstract
SPL expression. For example, the expression

A+ B-C)
is translated into the tree shown in Figure 5, whereas the expression
A4+B-C

is translated according to the left-to-right rule into the tree in
Figure 6. Each operator and its associated operands are easily
identified in the tree structure using the branch names leaving the
individual nodes in the expression tree.

In general, the structure of the trees satisfying a predicate is illus-
trated in the definition of the predicate. Branch names and predicates
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corresponding to the immediate subcomponents of the trees appear
in the definition. That is, the predicate definition provides a syntactic
description of the associated trees, By using the definition of
predicates, an abstract syntax, i.e., a syntax of abstract SPL pro-
grams, can be formulated.

All well-formed abstract SPL programs satisfy the predicate is-
program. This predicate is defined in terms of subordinate predicates
corresponding to the relevant subcomponents of the abstract SPL
programs, as follows:

is-program = is-stmt-list
is-stmt = is-lab-stmt \/ is-unlab-stmt
is-lab-stmt = ({s-label : is-name),
(s-unlab-stmt : is-unlab-stmt))
is-unlab-stmt = is-set-stmt \ is-goto-stmt
is-set-stmt = ((s-st-id : is-set),
(s-target : is-name),
(s-expr : is-expr))
is-goto-stmt = ({s-st-id : is-goto),
(s-label : is-name),
(s-cond-expr : is-expr))
is-expr = is-name N is-constant \ is-infix-expr
is-infix-expr = ({s-opnd\ : is-expr),
(s-op : is-operator),
(s-opnd?2 : is-expr))
is-operator = is-add \/ is-subtract

The abstract interpreter

The abstract interpreters used for defining the semantics of pro- Figure 7 Interpreter components
gramming languages have many similarities to conventional in-
terpreters. Therefore, the main structural components of such
interpreters are illustrated in Figure 7 and reviewed here using
conventional terminology. The components of abstract interpreters t }
are then considered in relation to those of conventional interpreters.

RS

CONTROL LIBRARY

The execution control in Figure 7 guides all actions of the conven-
tional interpreter during program interpretation. To specify these It
actions, a set of instructions is provided with the interpreter. These ' !
instructions are used to formulate routines that scan and test the RROGRAM oA
elements of the program to be interpreted and that describe all the
calculations required for the interpretive execution of the program.
The execution control selects from these routines the next instruction
to be executed and performs its execution,

The control storage contains the instruction sequence to be used
for the interpretation. To increase the flexibility of these routines,
the instruction sequence is usually not fixed; instead it is created
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during an interpretation via expansions of macroinstructions or
via direct modifications of the instruction stream.

The program storage contains the program to be interpreted in
internal format. As discussed in the preceding section, the internal
format in general reflects the original source language program,

The data storage contains all program data and internal data needed
for the interpretation process. To relate variable names encountered
in the program with the values kept in the data storage, it is necessary
to hold information that identifies the locations of the values, the
length of the value items, the data types, etc. These data descriptions
are also kept in the data storage, and they are accessed via the names
of the program variables.

To specify an interpreter and its instruction set, some machine
language is usually used. The execution control is represented by a
machine language program. Each nonmacroinstruction of the
interpreter is defined with a small machine language routine, which
is kept in a library. The routine is called as soon as an execution of
the instruction is required. For macroinstructions, the macro-
definitions are kept in the library, and an execution of such an
instruction results in a macro-expansion,

In abstract interpreters, a specific machine language is not used.
Instead, we use the tree structure and tree manipulation functions
as the bases for our interpreter construction.

All storage components of the abstract interpreter are represented
in tree form. In addition, all information concerning the status of
an interpretation is always kept in these storage components. No
information is stored in the execution control of the interpreter.
For example, the next instruction to be executed is identified by
information in storage and not by a counter in the execution control.

The sum of all stored information determines the state (£) of the
abstract interpreter. The execution of an instruction changes this
information and hence the state. Thus, the interpreter instructions
define the transitions of the interpreter between its various states.

The type of information included in the state of an abstract inter-
preter, of course, varies with the programming language described
by the interpreter. For example, SPL allows only integer variables.
Consequently, no description of the data types of variables is
required. Each value of a variable can automatically be interpreted
as an integer value. Conversions between different data types need
never occur.

The information kept as the state of the SPL interpreter is classified
into five different categories:
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. The abstract program to be interpreted
2. The statement counter, which identifies the abstract statement

currently being interpreted

. The value storage, which contains all the values of the program
variables

. The control, which contains the interpreter instruction sequence
to be executed

. The library, which contains the definitions of the macroinstruc-
tions and of the elementary instructions that form the instruction
set of the SPL interpreter

A comparison of these state components with the general structure
of an interpreter shown in Figure 7 provides that category 1 repre-
sents the program storage; category 2 together with category 3, the
data storage; category 4, the control storage; and category 5, the
library of the interpreter.

The predicate is-state is introduced to describe the state of the SPL
interpreter. All well-formed states of the SPL machine satisfy the
predicate is-state. The predicate is-state is defined in terms of
subordinate predicates corresponding to the five information cate-
gories as follows:

is-state = ({s-pgm . is-program),
(s-stc : is-constant),
(s-vst : is-val-stg),
{s-c : is-control),
(s-lib : is-library))

The predicate is-program describes all well-formed abstract SPL

programs, as discussed in the previous section. To select the abstract
SPL program represented by the state & of the SPL interpreter, the
selector function s-pgm (£) must be used. Each abstract program is
defined as a sequence of spL statements. The ith statement is selected
for interpretation by the function elem(i)(s-pgm(¢)) where i re-
presents an integer value.

The statement counter is identified by the selector s-stc in the state
of the SPL interpreter. The value of the statement counter is found
by using the function s-szc (£). This value represents the sequence
number of the statement currently being processed by the SPL
interpreter. In other words, the current statement can be extracted
from the interpreter state by the function elem(s-stc(£))(s-pgm(£)).

Assume that the interpreter state has the form shown in Figure 8.
Application of the selector functions elem(1) (s-pgm(£)) to state &
results in the subtree shown in Figure 9. Various other selector
functions applied to this state produce the following results:

s-target (elem(s-stc(£)) (s-pgm(£))) = B
elem(1) (§) = Q
elem(4) (s-pgm(£)) = Q
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Interpreter state 1

elem(1) elem(2)

s-stid  s-target  stexpr gstid starget

By definition, a selector function applied to a tree always returns the
null-tree @ if the identified selector does not appear as one of the
names of the immediate subbranches of the tree.

value storage ~ The value storage component of the SPL interpreter state contains
the values of the program variables encountered in the abstract SPL
program. To identify the individual values, the names of the program
variables are used as selectors. For example, a value storage may
have the form shown in Figure 10. A, B, and SUM are variables with
the values 124, 30, and 0, respectively.

Figure 9 Selector function ap- A special notation derived from the notation used for set definitions

plied to state 1 allows us to define the predicate is-val-stg describing all the well-

formed value storage items of the SPL interpreter. For our purposes,

it is only necessary to keep in mind that the names of variables are

o/“‘“" stateet "”"'\o used as the selectors to gain access to their values. However, using

ser o - 5  the notation, which is further explained in Reference 8, the definition
of is-val-stg appears as

elem(1) (s-pgm(#)) =

is-val-stg = ({{(name : is-constant) | | is-name(name)})

examples Assume that the interpreter state £ has the form shown in Figure (1.
The results of various selector functions are as follows:

A(s-vst (§)) = 125
Figure 10 Value storage tree s-target (elem(1) (s-pgm(£))) (s-vst(£)) = 125
B(s-vst(§)) = Q

A/E\ Note that the statement counter indicates that the first statement
o/ (L \0 has already been executed by the interpreter. That is, the value of A
12 30 ° in the value storage has been set to 125.

control The actions of abstract interpreters are controlled by the interpreter
instructions. However, arranging the instructions into a prede-
termined sequence for execution, as is done in conventional pro-
gramming, does not provide enough flexibility to represent the
semantics of programming languages.
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Figure 11 Interpreter state 2

elem(1)

s-st-id s-target s-expr

A

Assume, for example, the well-formed SPL expression
(A—B)+ (C—-D)

The rules governing parentheses require that the two subexpressions
A — B and C — D be processed before the addition is performed.
However, no rule of SPL specifies which of the two subtractions has
to be performed first. This is often an important feature of pro-
gramming languages, since it makes possible the optimization of
expression evaluation. Depending on the technique chosen for the
scanning of expressions, and for optimization, one conventional
interpreter may execute A — B before C - D, and another interpreter
may execute C — D before A — B. In other words, conventional
interpreters introduce additional rules that select specific execution
sequences for expression processing, The abstract interpreter is not
allowed to add such rules. It must represent the meaning of expres-
sions exactly as specified for the language. The additional rules are
only allowed to be added for a specific implementation of the

language. The abstract interpreter must describe all possible imple-
mentations, not select a specific one,

To allow the execution controt of the abstract interpreter the required
arbitrariness in the selection of the instruction to be executed, the
control component of the interpreter state is represented by a finite
tree (the control-tree), where each node of the tree is associated
with an instruction, as shown in Figure 12, In addition, the con-
vention is established that only the instructions associated with the
leaves of the control tree are candidates for immediate execution.
The execution control chooses randomly one of these terminal
instructions for the next execution. In the example in Figure 12, the
instructions instr,, instr,, instrs, instr;, and instrs are the candidates
for being executed next.

The execution of an instruction results in the deletion of that in-
struction from the control-tree, so that a different set of instructions
is available for the next execution step. The interpretation process
ends as soon as the control component becomes empty.

This generalization of the execution process in the abstract inter-
preter allows all possible execution sequences to be represented in
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the control component. Thus the behavior of the interpreter in
interpreting a program is defined to include all possible execution
sequences, not just one of them. Consequently, all situations that
may arise during the interpretation of a program are described by
the abstract interpreter.

To illustrate this concept, we investigate once more the SPL
expression

(A-B)+ (C-D)

The abstract form of the expression is given in Figure 13. The two
subexpressions (A — B) and (C — D) are represented as the subtrees
s-opnd1(x) and s-opnd2(x).

The rules of SPL require that the subtrees s-opndl(x) and s-opnd2(x)
be processed before the addition can take place. To describe the
execution, we introduce three instructions, which are described
more fully later.

1. eval-expr(r), where t is an expression, Execution of the instruction
causes evaluation of the expression.

2. eval-op(opndl, opnd2, op), where opndl and opnd2 are operand
values and op is one of the two infix operators (add or subtract)
of SPL. Depending on the operator specified, execution of the
instruction calculates the sum opndl + opnd2 or the difference
opndl — opnd?2.

3. get-val(var), where var is a program variable. Execution of the
instruction extracts the value of the variable var from the value
storage.

The proper execution sequence for the expression x can be specified
with the control-tree shown in Figure 14.

The instructions eval-expr(s-opnd1(x)) and eval-expr(s-opnd2(x)) are
both candidates for execution. Either one of them may be chosen
by the execution control to be processed first.

The evaluation of the two subexpressions of x produces two inter-
mediate result values, These values are to be used subsequently
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during the execution of the instruction eval-op. Consequently, a
mechanism for saving intermediate results must be provided. A
simple technique, which is used sometimes in conventional inter-
preters, inserts intermediate results directly into the appropriate
argument fields of the instructions that make use of them. (The
much more widely used push-down stack (last-in, first-out) requires
a predetermined sequence in the execution of interpreter instructions
and is not applicable for our more general control-tree.) For this
purpose, the so-called return information is associated with each
node of the control-tree. The return information specifies the
argument position into which the intermediate result produced by
the instruction of the node is to be inserted. Figure 15 illustrates the
control-tree and the return information required for the evaluation
of the expression x. The return information is indicated by a dashed
line, which leads from the node where the intermediate result is
produced to the argument position into which the value is to be
inserted. The argument values of the instructions, e.g., s-op(x) or
s-opnd1(x), are abstract trees. An argument value is represented by
the null-tree Q until the interpreter establishes the intermediate
result value.

Each execution of an interpreter instruction produces changes in
the state of the abstract interpreter. These state transitions always
include changes in the control component of the state. For example,
the insertion of an intermediate result into the specified argument
position represents such a change. Another obvious requirement is
that eventually all subtrees of a node in the control-tree must be
eliminated, to allow the execution of the instruction associated with
the node.

Corresponding to the two instruction types, the macroinstructions
and the basic instructions, we define two types of transformations
for the control component of the interpreter state, the macro-
expansion and the basic transformation.

The definition of a macroinstruction consists of a finite set of
control-trees. During execution of the macroinstruction, i.e., during
a macro-expansion, one of these control-trees is selected by the
execution control of the interpreter. This selected tree replaces the
executed instruction in the control part of the interpreter state. In
the example illustrated in Figure 15, the execution of the instruction
eval-expr (s-opndl1(x)) results in the new control-tree shown in
Figure 16. Note that the replacement process does not change the
return information associated with the node where the replacement
takes place. Of course, new return information may be established
for the newly created nodes of the control-tree.

In Figure 16, all three eval-expr instructions are candidates for the
next execution step. Let us assume that the instruction eval-expr
(s-opnd2(s-opndi(x))) is selected for execution. The tree component
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Figure 15 Control tree with re-

turn information

eval-op (Q, 0, s-op(x))

eval-expr {s-opnd1(x)) eval-expr (s-opnd2(x))

state
transitions

macro-expansion




basic
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Figure 16 Control tree after evaluation of an expression

eval-op (2, , s-0p(x))
A

eval-expr (s-opnd2(x))

eval-expr (s-opnd1l (s-opnd1(x))) eval-expr (s-opnd2 (s-opnd1(x) })

Figure 17 Replacement of eval-expr(s-opnd2(s-opnd1(x)}))

eval-op (2, 2, s-0p(x))
4

eval-expr (s-opnd2(x))

eval-expr (s-opndl (s-opnd1(x))) get-val (s-opnd2 (s-opnd1{x)))

Figure 18 Execution of get-val(s-opnd2(s-opnd1(x)))

eval-0p(Q, 2, s-op(x))
<A

eval-expr (s-0pnd2(x)}

eval-expr (s-opndl {s-opnd1(x}))

selected by s-opnd2(s-opndl(x)) from the abstract expression x is
the elementary tree B, i.e., a variable name. In this case, the macro-
expansion results in the control-tree shown in Figure 17, in which
the instruction eval-expr(s-opnd2(s-opndl(x))) is replaced by the basic
instruction get-val(s-opnd2(s-opnd1(x))).

The executions of basic instructions, i.c., basic transformations,
have in common that the node with the instruction is deleted from
the control component of the state and that the intermediate result
produced by execution of the instruction is inserted according to
the return information associated with the node. Assuming that
the value of the variable B in the value storage of the interpreter is
47, the execution of the instruction get-val(s-opnd2(s-opndl(x))) in
Figure 17 results in the modified control-tree shown in Figure 18.
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All instructions of the SPL interpreter are contained in the library
component. To identify the individual instructions, the instruction
names are used as selectors. For example, assume that the library
only contains the three instructions eval-expr, eval-op, get-val. The
state £ has the form shown in Figure 19, where eval-expr-instr,
veal-op-instr, and get-val-instr symbolize the instructions contained
in the library. When an instruction is to be executed, the execution
control of the interpreter

I. Selects the instruction from the library
2. Associates the arguments with the parameters by replacing each
parameter occurrence in the instruction definition with the
corresponding argument value
. Performs the macro-expansion or the basic transformation
specified by the instruction definition

For convenience, a number of special notational conventions have
been adopted in the representation of instruction definitions,

The format of a macro-definition is given in Table 2, where instr is
the instruction name and parm,, parm,, - - - , parm, are the param-
eters of the instruction. In an instruction definition without
parameters, the parentheses do not appear.

One of the control-trees c-tree;, c-tree,, -+ , c-tree, is selected
during the macro-expansion to replace the executed instruction in
the control component of the interpreter. For the selection of the
control-tree, the conditional expressions cond,, cond,, --- , cond,
are used. Note that the conditional expressions are not SPL expres-
sions. They are used to control the actions of the abstract interpreter
rather than being a part of the language to be interpreted. To dis-
tinguish expressions controlling the interpreter from SPL expressions,
we shall use the term interpreter expressions where a conflict may
arise.

The evaluation of a conditional expression produces either of the
result values true or false, Conditional expressions may be as simple
as a single logical constant, i.e., frue and false, or a single test
function, i.e., a predicate. More complex expressions may be formed
using the symbols 4, —, <, <, =, #, >, > for the conventional
arithmetic and comparison operators. For the definition of SPL,
only these operators are required. Additional operators are defined
in Reference 8. Examples of conditional expressions are

is-stmt(t)

s-st-id(f) = SET

true

s-ste(§) > length (s-pgm(¥))

The first three expressions should be easy to understand; the fourth
expression has the value rrue if the statement counter of the state &
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library and
the instructions

Figure 19 State when library
contains only three
instructions

eval-expr eval-op  get-val

eval-expr-instr eval-op-instr get.wvalanstr

macro-definition

Table 2 Macro-definition format

instr (parmy, parmy, - - -, parm,) =
cond, — c-tree,
condy, — c-tree;

cond,, — c-treey,




Figure 21  Results of function

basic
instruction

Table 3  Basic instruction

definition

instr(parm, parmy, - - -, parn,) =

PASS
$-5C1
8-5Cs

5-5Cm

. 1-expr,
L t-expn
L l-expry

I t-expry,

Figure 20 Lineor notation of control-tree

instr (op,, @)
o
A

instr, (2, 0p,) wnstr, (0p ), 2)
A instr,
ms}ra (b, op))
}ns(rA (opg)
brinstr,
instr, (op,) azinstr,
) instrs
|n5tr5

indicates that the last statement in the program has been interpreted,
i.e., its value is greater than the number of statements in the program.
When executing a macroinstruction, the execution control evaluates
the conditional expressions in the macro-definition in the order
cond,, cond,, --- , until an expression evaluation produces the
result value true. The control-tree associated with this expression is
then used for the replacement in the control component of the
state, and the execution of the macroinstruction ends.

To allow for a convenient representation of control-trees, a.linear
notation is used, as illustrated by the example in Figure 20.

In the linear form, indentation indicates the sub-levels of the control
tree. Dummy names, a and b in the example, are used in the prefix
of instructions that return values. The appearance of the dummy
name in the prefix of an instruction and in an argument position of
an instruction higher in the control tree indicates that the return
value of the prefixed instruction is to be placed into the identified
argument position. For example, the return value of the instruction
instr; is to be placed into the second argument position of the
instruction inszr,.

The format of a basic instruction definition is given in Table 3. The
definition header for basic instructions has the same form and mean-
ing as the definition header of macroinstructions. The expressions
t-expro, t-expry, - - - , t-expr,, are interpreter expressions that produce
an abstract tree when they are evaluated. The value of the expression
t-expr, represents the intermediate result produced by the instruction.
This result is inserted into the control component according to the
return information of the node associated with the instruction. The
selectors s-sc;, $-sc,, -+ - , s-sc,, identify immediate components of
the state that are to be replaced by the abstract trees produced by
the expressions tr-expry, t-expr,, - -+ , t-expr,. That is, the values of
these expressions constitute the new or modified state components
that result from the instruction execution.

The interpreter expressions specified in the instruction definition
produce abstract trees as results; that is, they are specified using
tree operations. The only tree operations discussed so far are the
selector functions used for selecting subtrees from existing trees,
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To specify the construction and the modification of trees, a new Figure 22 Trees x and y
function is introduced. It is represented by the form

w(x; (sel-sequ:y))

where x and y are abstract trees and sel-sequ is a sequence of branch
names, written as

$ 08190820 08

Using the branch names s,, s,, --- , $. for the identification, the
function p incorporates the tree y into the tree x. The resultant tree
x" has the form shown in Figure 21, where any segments of the
tree x that would lead to naming conflicts have been deleted from
the tree. The order of the branch names in the function is reversed
to indicate the order of selector functions s,(s,_,(- - -s:(x) , , ,)) used
to select the tree y from the tree x'.

As illustrative examples, consider the abstract trees shown in Figure 23 Function u for vari-
Figure 22. The result of the function u for various choices of branch ous branch name
name sequences is shown in Figure 23. In the first example, Figure N
23A, a complete new branch is added to the tree x, and no elements Lpt < 505,y >)=
are deleted. In the second example, application of the function u to AN
tree x (shown at B) replaces the subtree of x (shown at C) by the }( '
tree y. The subtree at C must be eliminated from the tree x to avoid 58,
a namin flict 1 i i 3/ P DN

g conflict in selecting the new subtree y. In the third example 3 ¢’ % 570,
(shown at D), elementary tree e, is replaced by the subtree shown at E 5;/ \ei : \e‘;
to avoid conflicts in selecting the new tree components.

sequences

£ N
o

BZ- B < syos Yy >)= sl/o\s2
Expressions used in the definition of the basic instructions may
contain any of the tree manipulation functions in addition to the
conventional arithmetic operators + and —. (For the description
of SPL, only these functions are required. For more complex defini-

tions, additional operations are described in References 3 through 8.)

For convenience, state components not changed by execution of a
basic instruction need not be specified in the list s-sc,, s-5¢3, - - - , §-5¢,,..

If no intermediate result is produced by an instruction, the element

PASS: t-expr,

may be deleted. If no parameters are required, the parentheses in
the definition header must not be specified. For example, the basic
instruction used to update the statement counter is defined as

up-stc =
s-stc : s-stc (&) + 1

As an additional convenience, the body of a basic instruction may
appear instead of a control-tree in a macroinstruction, Assuming
the macroinstruction format shown in Table 2, the appearance of
the form

No. 2 - 1971 FORMAL DESCRIPTION




initial
state

instruction
set

106

cond; — PASS : t-expr,
s-sc, I l-expry

5-SC, : 1-expr,
as one of the alternatives has the same meaning as the appearance of
cond; — b-instr (parm, parm,, - - - , parm,)
together with the appearance of the basic instruction

b-instr (parmy, parm,, - - - , parm,) =
PASS : t-expr,
s-s¢; . t-expr;

5-5C, t-expr,

Note that the new basic instruction uses all the parameters of the
macroinstruction.

The SPL interpreter

The state components of the SPL interpreter and their general
properties were introduced in the preceding section. We now in-
vestigate how the interpretation process of SPL programs progresses
and which instructions are to be used by the SPL interpreter during
interpretive execution.

To start the interpretation of an SPL program, initial information
must be given to the abstract interpreter. This information consti-
tutes what is called the initial state of the interpreter. The initial
state of the SPL interpreter consists of

The abstract program to be interpreted
The value 1 for the statement counter
The instruction inz-program as the only instruction in the control
component, i.e., ini-program represents the top and only node
in the control component

o The library containing all interpreter instructions

The value storage compounent of the state is empty.
The interpretation process starts with the execution of the instruction
int-program, and it continues until the control component becomes

empty.

The instructions of the SPL interpreter can be classified into three
principal groups, each one designed to handle a specific aspect of
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SPL. For reference purposes, a sequential numbering of the in-
structions is introduced.

The interpretation of the SPL program starts with the macro- general control
instruction instructions

L. int-program =
s-ste(t) < length(s-pgm(¥)) —
int-program
up-stc
int-stmi(elem(s-stc(£))(s-pgm(£)))
s-stc(£) > length(s-pgm(£)) — Q

As long as the statement counter does not exceed the number of
statements in the SPL program, the first alternative is chosen for
the macro-expansion. It leads to the interpretation of one statement
and to the subsequent updating of the statement counter. The
macro-expansion also reproduces the instruction int-program in the
top node of the control component. As soon as the statement counter
exceeds the number of statements in the program, the instruction
int-program is replaced by the null-tree, that is, the instruction is
simply deleted from the control component. Since it is always
associated with the top node of the control component, the control
component becomes empty and the interpretation process stops.

2. int-stmt (1) =
is-lab-stmt () — int-stmt (s-unlab-stmt(t))
is-set-stmt (f) — int-set-stmt (f)
is-goto-stmt (¥) — int-goto-stmt (1)

where ¢ is an abstract tree representing a labeled or unlabeled
statement of SPL. The first alternative reproduces the instruction
int-stmt in the control component, but the new argument of the
instruction is the subtree representing the unlabeled statement part
of the abstract tree f. The other alternatives lead to the execution
of the specific statement.

3. up-stc =
s-stc : s-ste (£) + 1

The instruction increases the value of the statement counter by one.

4. int-set-stmi (t) = the set
true — assign-val (a, s-target (1)) statement
a: eval-expr (s-expr(1))

where ¢ is the abstract form of a set-statement. Note that the con-
ditional expression true is always satisfied. That is, this alter-
native is always chosen for the macro-expansion. The inter-
mediate value produced by the evaluation of eval-expr is returned
to the first argument of the instruction assign-val.

5. assign-val (val, id) =
s-vst : u(s-vsi(E); (id : valy)
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Figure 24 Value storage com-

ponent
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the goto
statement

where val is an integer value and id is a variable name. After execu-
tion of the instruction, the value storage contains a component, as
shown in Figure 24. If a component with the branch name id was
already present in the storage before execution of the instruction,
the old value associated with the branch name is replaced by the
value val. If there was no such component, a new component of the
form illustrated will have been added during the execution. In the
initial state, the value storage is empty; consequently, a variable
only appears in the value storage after at least one assignment to
the variable has been encountered during interpretation.

6. eval-expr (t) =
is-name (1) — get-val (1)
is-constant (1) — PASS: t ,
is-expr (t) — eval-op (opl, op2, s-op (1))
opl : eval-expr (s-opndl (1))
op2 : eval-expr (s-opnd2 (1))

In this definition, the order of the conditional expressions is of
importance. The predicate is-expr () is satisfied for all expressions,
including simple variables and constants. Therefore, the tests for a
variable and a constant must precede the test for an expression.
Otherwise, the macro-expansions associated with the conditional
expressions is-name (t) and is-constant (f) would never be utilized.

7. getval (id) =
"~ is-const (id(s-vst(£))) — PASS : id(s-vst(£)))
true — error

The first alternative is only chosen if a value associated with the
name id is found in the value storage. If such a value does not exist,
an assignment to the variable id has not been encountered dutring
the interpretation and the program is in error. The error situation
is indicated using the not further defined instruction error.

8. eval-op (opndl, opnd2, op) =
is-add (op) — PASS: opndl 4 opnd2
is-subtract (op) — PASS: opndl — opnd2

Depending on the operator op, the sum or the difference of the
operand values opndl and opnd? is returned as an intermediate result.

Note that if SPL imposed limitations on the size of the numbers that
may be handled, the limitations would have to be included in the
definition of the instruction eval-op, e.g., by specifying overflow or
underflow actions for the abstract interpreter.

During the interpretation, the conditional SPL expression specified
in the goto-statement must be evaluated, and the target label must
be located in the statement sequence of the abstract program before
a decision on the next statement to be interpreted can be made.
SPL does not specify whether the conditional expression or the

NEUHOLD IBM SYST J




Figure 25 Go-to control-tree

exec-jump (Q, 2}

find-target (s-label(t), 1) find-target (s-label(t), 2) find-target (s-label(t). n) eval-expr (s-cond-expr(t))

search for the target statement has to be performed first. In addi-
tion, a search algorithm for the target statement is not prescribed
by SPL. The only condition to be considered is that the target label
must appear exactly once in the prefix of one of the statements in
the program.

9. int-goto-stmt (f) =
true — exec-jump (cond, target)
{target: find-target (s-label (1), sc)|
1 < sc < length (s-pgm(£))}
cond: eval-expr (s-cond-expr (1))

The instruction definition utilizes notation commonly used in set
theory when specifying that all the tests for the target statement and
the evaluation of the conditional SPL expression may be processed
in any order by the execution control of the interpreter. That is, the
control-tree specified in the instruction definition has the form shown
in Figure 25, where n is the number of statements in the abstract
program,

A special convention is introduced that governs the processing of
the return information provided for all the nodes find-target. Each
of these nodes identifies the same argument (farger) of the in-
struction exec-jump.

The definition of the instruction find-target specifies that either an
elementary tree or a null-tree is produced as the intermediate result
of the execution of the instruction. These two situations must be
distinguished by the execution control of the interpreter as follows:

e If the intermediate result is the null-tree €, the return informa-

tion is disregarded; no value is inserted into the second argument
of the instruction exec-jump.
If the intermediate result is not a null-tree, the execution control
tests whether the argument jdentified by the return information
is still the null-tree , that is, whether no preceding execution
of some other instruction has inserted an intermediate result
into the argument position. If the argument is the null-tree, the
intermediate result is inserted; if it is not, an error situation is
encountered and the execution control automatically initiates
the execution of the instruction error.
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Note that this special convention provides a test, that a label must
not appear more than once in the prefix of the statements in the
abstract program.

10. find-target (lab, sc) =
s-label (elem (sc)(s-pgm(£))) = lab — PASS: sc
s-label (elem (sc)(s-pgm(§))) #= lab — PASS: Q

The instruction returns the statement number sc if the label lab
is found in the prefix of the investigated statement; otherwise, the
null-tree is returned.

11. exec-jump (val, tgt) =
1gt = Q — error
val > 0 — s-stc: tgt—1
val < 00— Q

A value € for the second argument indicates that the label specified
in the goto-statement could not be found during the executions of
the instruction find-target; that is, the abstract program contains an
error, and the instruction error is to be executed. If the first con-
ditional expression is not satisfied, tests are made to determine
whether the jump has to be performed or not.

A value val greater than zero leads to execution of the jump. This
transfer of the interpretation process to the target statement is
accomplished by replacing the statement counter component in the
interpreter state by the value #gz — 1, where gt is the statement num-
ber of the statement containing the target label. The decrease by
one is required because in the method chosen for incrementing the
statement counter (see the definition of ins-program), the counter
contents is increased by one before the identified statement is
actually interpreted.

Concluding remarks

The formal description methods introduced in this paper were
related to our simple language SPL for explanation purposes.
Actually, the methods (i.e., abstract trees, predicates, state com-
ponents, control trees, etc.) apply to all programming languages.
However, some programming languages contain facilities that
cannot be expressed using the methods described in this paper alone.
For example, additional definitions are required to represent the
multitasking facilities of PL/1. To solve this particular problem,
an extension to the execution control of the abstract interpreter
was used in the formal description of PL/1.>7°

Similar problems are created when a language that has been formally
defined is extended to provide additional facilities. However,
formally defining language extensions helps to contain the often
serious problems of identifying all parts of the language affected
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and possibly changing them to accommodate the new facilities.
Assume, for example, that floating-point arithmetic facilities are
to be added to SPL. The conceptual approach to this problem is
outlined in the following paragraphs (with the complete formal
description of the extended SPL left as an exercise to the reader).

To allow floating-point operations in SPL, an analysis of the abstract
interpreter shows that we shall at least have to expand the definition
of the instruction eval-op to provide floating-point additions and
subtractions and to provide conversions between integers and
floating-point values when both appear in a single operation.
Determining the needed conversions to the operands passed as
parameters to the eval-op instruction requires, in turn, that these
values be identified as either integers or floating-point numbers.
Thus the elementary trees containing the operands in the original
formal description must be changed to trees containing two sub-
components—one defining the data type, the other the value of the
operand. Immediately it is clear that this change is not restricted to
the instruction eval-op; any instruction handling arithmetic values
will have to be changed to allow for the accompanying type in-
formation.

Some of the instructions so affected also refer to the storage com-
ponent of the interpreter state. Thus we shall have to provide for a
state component that allows values of variables in storage to be
identified as either integers or floating-point numbers. For example,
we could change the storage component using the abstract syntax

is-val-stg = ({{name : is-elem) | | is-name (name)})
is-elem = ((s-type : is-type),
s-val : is-constant))

where each storage element is represented as a tree composed of a
type-describing component and the value component.

To characterize SPL variables as integer or floating-point, a declara-
tion of the variables must appear in the abstract program. This
declaration is then used by the abstract interpreter to construct the
modified storage component of the interpreter state during inter-
pretation. The abstract syntax of the declare-statement might have
the form

is-dcl-stmt = ({s-st-id : DCL),

(s-dcl: is-dcl-var))
is-del-var = ({{(name : is-type) | | is-name (name)})
is-type = is-integer N is-float

After adding new instructions to the interpreter to process the
declare-statement, a concrete syntax of the declare-statement can be
designed, and the necessary translator function can be defined to
complete the formal definition of the extended SPL.
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