
languages  independently of machine architectures  and  compiler 
implementations.  The  method, which was developed to describe PL/I, 
is being applied to other programming languages and to compilers 
and  operating systems. 

The deJinitiona1 techniques  are demonstrated using a  simple program- 
ming language (SPL). The  paper has  been written so that  little knowl- 
edge of mathematics or formal logic is required. 

The formal  description of programming  languages 
by E. J. Neuhold 

The  description of programming  languages involves both  the 
definition of the  functions that can be expressed in the  language 
(its semantics) and the  notational rules governing the  format to be 
used for  requesting  the  functions  (its syntax). A number of formal 
description  methods exist for  representing  the  syntax of program- 
ming languages,'*2'6  but  natural language  (such as English) is still 
generally used to specify their semantics. We describe one  technique 
that allows the  complete  formal  description (syntax and semantics) 
of programming languages. The principal  features of this definitional 
method were developed for  the  formal  description of The 
publications of J. McCarthy,lo311 P. J. Landin,"*'' and  C. C. 
ElgotI4  strongly influenced the early work  leading to development 
of this  method. So far,  it  has been used to  at  least partially  describe 
ALGOL 60,15 FORTRAN, APL, and BASIC, as well as PL/l.  Efforts 
are  also underway to apply  the  techniques to compilers and to 
operating systems. 

The use of formal  description  methods allows programming  lan- 
guages to be defined in precise, universally understood  terms, 
independently of machine architecture  and compiler implementa- 
tions. Such methods  are  also  opening  the way to further theoretical 
investigations of programming  languages  and compilers. 1(1 ,11 ,16 ,17  

The  formal  description  method discussed in this paper is based on 
the  notion  that  interpretive execution of a  program in fact constitutes 
a  semantical  description of that program. In this case, the  interpre- 
tation is conceptual  rather  than  actual, the programs being in- 
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terpreted are  abstract  rather  than real, and  the  interpretation must 
be seen as applying to  the entire  language  rather than a  subset of 
its  statements  included in a  particular  program. 

The  interpretation is performed by an abstract  interpreter or abstract 
machine, which is not written in any  programming  or  machine 
language but is specified in an artificial language  based on  abstract 
concepts of computing. The basic  interpreter  mechanisms are  the 
same  for all programming  language definitions. However,  for  each 
language, different information  must  be  kept  during  interpretation 
(values of variables, intermediate  results, flow of control  informa- 
tion)  and different ways must  be employed for handling  this  in- 
formation  (transfers of control,  movements of data,  procedure 
calls, arithmetic  operations).  Thus,  formal  language definition is 
concerned  primarily with defining both  the  information  to  be 
retained by an  abstract  interpreter  and  the  instructions  and  functions 
to be used by the  interpreter in manipulating  that  information. 

By interpreting  an  abstract  form of a program,  the  interpretation 
process is not burdened with purely notational  considerations,  such 
as spacing  requirements, choice of separators  and delimiters, and 
parentheses  requirements and priority  rules  in  arithmetic expres- 
sions.  Abstract  programs  are defined using the abstract syntaxlo"' 
of the  programming  language, which is designed to exhibit only 
those  structural  aspects of programs  that  are relevant to their 
interpretation.  Thus  the  formal  description of a  programming 
language  must  include the specification of a  translator  that describes 
the  mapping of source  programs  into  their  abstract  form  before 
interpretation. 

Finally, to  complete the description,  the  formal  syntax (using 
Backus-Naur  Form) of well-formed source  programs  must  be 
supplied at some stage in the production of the  formal description. 

This  paper  is  intended to provide  a precise but  not excessively 
formal  presentation of the principles used for  the complete  formal 
description of programming languages. We develop a formal 
description of a  simple  programming  language (si%) as a vehicle 
for  demonstrating  the  method. SPL has deliberately been kept very 
simple to avoid  burdening  the  reader with learning  a  programming 
language  as well as  the formal  description  concepts. 

We have attempted to write  the paper so that little knowledge of 
abstract  mathematical or logical concepts is needed. However, at 
least a superficial knowledge of Backus-Naur Form  notation is 
required.  Some of the  definitions we introduce differ from  those 
used in the These  changes were made  partially to 
simplify the definitional technique itself and partially to  simplify 
explanations; however, they do not  fundamentally  alter  the  de- 
scriptive method. 
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with a  more careful examination of the logical properties of SPL 
programs  translated  into  their  abstract  form.  The  requirements 
of an abstract  interpreter that can provide a  formal  description of 
SPL are developed next.  Finally, in the  concluding  remarks, we 
demonstrate  one  important use of formal  language definition-how 
to accommodate  language extensions. A  formal  description of the 
translator is not included. It is of little  interest  for  the definition of 
semantics, and  its properties  are implied in the  relationship between 
the  abstract  form of SPL programs and their  source  language  form. 

A simple  programming  language 

The basic components of SPL are numbers and variables. A  number 
in SPL is always an integer, and a variable is a quantity  that is 
identified by a name (an identifier consisting of one  or  more letters). 
An SPL variable may take  on any of the integer values. SPL also 
provides the  two arithmetic  operators, + (add)  and - (subtract). 

The arithmetic  operators,  together with numbers  and variables, are 
used to construct expressions. An expression may be simple (a single 
number or variable) or it may be any  combination of numbers, 
variables, and  operators,  as allowed by the  rules of mathematics. 
Using  Backus-Naur Form, we are able to specify the syntax of 
expressions as 

(expression) : : = (simple expression) I 
(simple expression) (operator) (expression) 

(simple expression) : : = (number) I (variable) I 
((expression)) 

operator : : = + I - 
Examples of well-formed SPL expressions are: 

ALPHA 
105 
(A + X )  
(SUM - A )  + (B - 5 f D) 
A + B - C + D  

If an expression contains  a sequence of additions  and/or  subtrac- 
tions in which the  order of evaluation is not specified  by parentheses, 
the  operations  are  performed  from left to right. Thus  the expression 

A f B - C f D  

is equivalent to the expression 

((A + B)  - C )  + D 



Note  that  the order in which additions  and  subtractions  are per- 
formed is of importance as  soon  as upper  and lower limits  are 
placed on  the numbers that can  be  handled by the computer. 

An SPL program consists of set-statements and goto-statements. 

A set-statement is used to assign a value to a variable. The  syntactic 
form of a  set-statement is given by the rule 

(set-statement) : : = SET (variable) TO (expression) 

The value of the expression is taken on by the variable that follows 
the  word SET, and  any value previously assigned to the  variable is 
destroyed. 

Normally, the statements in an SPL program  are executed sequen- 
tially. However, the goto-statement  can  transfer  control to some 
statement  other  than  the next sequential  statement. A label in the 
goto-statement identifies the  destination of the  transfer of control. 
Such a label is represented by an identifier consisting of one or 
more  letters. To identify the  target  statement,  the same label must 
appear exactly once as the prefix to some  statement in the SPL 
program. The general form of the  goto-statement is given by the 
syntax  rule 

(goto-statement) : : = GOTO (label) IF (expression) 

The  transfer of control only takes place if the value of the expression 
is  greater  than  zero; otherwise, the  statement following the  goto- 
statement is executed. 

The identifiers SET and TO in the set-statement  and  the identifiers 
GOTO and IF in the  goto-statement  are called keywords of SPL. 
The  words SET and GOTO are  also called statement identifiers. 

To avoid ambiguities, at least one space (blank  character)  must be 
inserted between adjacent identifiers in SPL programs. Between the 
other basic components,  the use of separating spaces is optional. 

An SPL program that specifies the  summation of the integers 1 
through 10  is shown in Table 1. 

The abstract program 

When designing an interpreter  for  a  programming language, source 
programs  are usually not  interpreted directly; instead  a  translated 
form of the  program is  used as  the  input  to the  interpreter. Basically, 
source  programs may be considered as strings of characters. In- 
terpreting these strings  requires  cumbersome  scanning  and sometimes 
complicated procedures for gathering  the segments relevant for  the 
interpretation. (By segments, we mean components of statements 
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Table 1 Summation program 

SET SUM TO ZERO 
SET I TO I 

S E T I T O T + I  
LOOP SET SUM TO SUM + I 

GOTO LOOP IF 1 1 - I 

need for 
translation 
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s-st-id for  the  translated  statement identifier SET 
s-target for  the  target variable SUM 
s-expr for the expression SUM + I 

The expression itself forms  an  abstract tree (a subtree of the set- 
statement tree). Its  parts  are identified by: 

s-opndl for the first operand SUM 

s-opnd2 for  the second operand I 

To allow the  interpreter  ready access to  the various  parts  of an 
abstract  program,  the  names of the  branches  are used as selectors 
of tree segments. For example, the application of the selector s-expr 
to the  sample  tree x produces the subtree shown in Figure 2. The 
application of the selector s-st-id to the  abstract  set-statement 
produces  the elementary tree SET, Le., a  degenerated  tree consisting 
only of the leaf SET. 

Assuming that x identifies the abstract  set-statement represented in 
Figure 1,  we may use functional  notation to represent  the  application 
of a selector. For example, s-expr  (x), which is read “s-expr applied 
to x,” also  represents  the  subtree in Figure 2. Another  example is 
given by 

s-op for  the expression operator + 

s-st-id(x) = SET 

The result of the  application of a selector is a  tree,  and  another 
selector may be applied to this result-tree to produce  some even 
smaller part of the  total tree. For example, the  application  of the 
selector s-op to  the  subtree represented by s-expr(x) produces  the 
elementary component +. Using  the  functional  notation, we may 
write 

s-op  (s-expr(x)) = + 
The  named  branches in the  abstract  programs allow, by means of 
selector application,  fast access to the  various segments of the 
programs. However, an interpreter  must accept any well-formed 
program  and  thus must  handle  a variety of different tree types. 
Because different actions  are  required of the  interpreter  depending 
on the type of tree, the interpreter  must be able to distinguish among 
tree types. For example, translation of the SPL statement 

SET I TO 10 

produces  the  tree shown in Figure 3. Comparison of the  tree in 
Figure 3 with the  tree in Figure  1 shows that  the interpreter  must 
use different selectors to arrive at  the elementary components of 
these trees. Thus  a test of the  tree  type is required. 

Each  type of tree  can be distinguished from  all  other trees by its 
membership in a set of trees  containing  all  the  trees of that type. 
For example, all trees representing SPL expressions may form such a 
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class. All tests for  a tree type  are  then tests for membership in the 
associated class. Therefore, with each class, a test  function, termed 
a predicate, is  defined. The predicate, when applied to a tree, is 
satisfied (true) if the  tree is a member of the associated class; it is 
not satisfied (false) otherwise. We may also say that each predicate 
defines a class of trees whose members are those trees that satisfy 
the predicate. 

Assuming that  the predicate is-expr defines all SPL expressions, the 
following formulas referring to  the  trees  in  Figures 1 and 3 produce 
the result true. 

is-expr  (s-expr(x)) 
is-expr  (s-expr(y)) 
is-expr  (s-targetb)) 

Note  that in the  last  formula  the selector s-target produces the 
elementary tree I, i.e., a variable, and  a variable is a well-formed 
SPL expression. However, the  formula 

is-expr  (s-st-id(x)) 

is  not satisfied. The  function s-st-id(x) returns  the  translated  state- 
ment identifier SET, which is not  an expression. 

To define the predicates used by the abstract machine, we start by 
introducing predicates that describe the elementary components. 
These predicates are then used to specify predicates describing 
more complex tree classes. 

We introduce  the predicate is-constant, which is satisfied only for 
the integer constants allowed in SPL. The predicate is-name is 
satisfied for all the variables and labels allowed in SPL. The special 
predicates is-set,  is-goto,  is-add, and is-subtract are satisfied for  the 
elementary objects SET, GOTO, +, and - , respectively. 

It may become necessary to specify predicates that define simple 
combinations of different tree classes. For example, a predicate 
defining all elementary components allowed as SPL expressions must 
combine variables and constants, since either of them may appear 
as  a simple expression. 

To define such a  combination, the logical or operator V is used. 
For example, the expression 

is-simple-expr = is-name V is-constant 

specifies that the predicate is-simple-expr(x) is satisfied if either the 
predicate is-name(x) or the  predicate is-constant(x) is satisfied for 
the tree x. 

Predicates that define nonelementary trees are defined by incor- 
porating the branch  names of the trees  into the definition. By using 
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the  branch  names that leave the  root of the tree, all subtrees 
immediately subordinate to  the  root can  be identified. Assuming 
that  the predicates of these subtrees have already been defined, the 
new predicate  can be formulated by specifying the predicates of 
the  subtrees with the  branch names. For example, a predicate 
is-set-stmt defining all abstract set-statements may be  formulated  as 

is-set-stmt = ((s-st-id : is-set), 
(s-target : is-name), 
(s-expr : is-expr)) 

All branches leaving the  root of the set-statement tree  are specified 
together with the predicates defining the subtrees that may appear 
at these branches. The general form of this  construct is  given by 
is-pred = ((sel, : is-pred,), 

(sel, : is-ped,), 

(sel, : is-ped, )) 
where is-pred is the newly  defined predicate; sel,, sel,, . . . , sel,, are 
the selectors leaving the  roots of the trees described; and is-pred,, 
is-pred,, . - . , is-pred,, are  the predicates defined for the subtrees. 
The  predicate is-pred is satisfied only if all selectors sel,,  sel,, . - . , 
sel, appear  as  branches leaving the  root of a  tree  and if in addition 
all of the predicates is-pred,, is-pred,, . . . , is-pred, as applied to the 
identified subtrees are satisfied. Note  the correspondence of this 
definition to the logical and operation. 

To describe in tree  form the sequences of SPL' statements that 
constitute programs, a special convention about  the branch names 
identifying elements in a sequence is introduced. 

The  branch names elem(l),  elem(2), . . . , elem(n) are used to identify 
the first, second, . . . , nth element in the sequence. For example, 
the SPL program in Table 1 is represented in abstract  form  as shown 
in Figure 4. Note  that  the predicates is-stmt are used as indicators 
for the subtrees that must  appear in a well-formed abstract  program. 
To complete the  tree, we must insert all of the proper  subtrees  for 
statements 1 through 5 of the  program. 

Predicates that define sequences are always written as  a  predicate 
name followed by the affix-list (e.g., is-stmt-list for  a sequence of 
statements).  The general definition of such predicates is given  by 
is-pred-list = ((elem(1) : is -ped) ,  

(eZem(2) : i s -ped ) ,  

(elem(n) : is-pred)) 
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93 



Figure 5 Tree representing A + (B - C )  

Figure 6 Tree representing A -t B - C 

The selectors eZem(l), eZem(2), + . , eZem(n) identify the individual 
elements of the sequence. For example, the ith  statement  in the 
abstract tree x (Figure 4) is selected by using the selector function 

eZern(i) (x) 

A special function length (x) is introduced to determine the number 
of elements contained in the  abstract sequence x. We shall see that 
this function is needed to determine when the  interpretation of a 
sequence is completed. 

treatment of Consider now the representation of SPL expressions in abstract form. 
expressions In sPL, parentheses and  the left-to-right rule indicate the order in 

which the individual operations required to evaluate  an expression 
must be performed. In the  abstract  program,  this  order  can be 
reflected  in the  structure of the  tree, which represents the  abstract 
SPL expression. For example, the expression 

A + (B - C )  

is translated  into  the  tree shown  in Figure 5, whereas the expression 

A + B - C  

is  translated according to  the left-to-right rule into  the tree in 
Figure 6.  Each operator  and  its associated operands  are easily 
identified in the  tree  structure using the  branch  names leaving the 
individual nodes in the expression tree. 

the  abstract In general, the  structure of the trees satisfying a predicate is illus- 
syntax of SPL trated in the definition of the predicate. Branch names and predicates 
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corresponding to the  immediate  subcomponents of the  trees  appear 
in the definition. That is, the  predicate definition provides a syntactic 
description of the associated trees. By using the definition of 
predicates, an abstract syntax, i.e., a  syntax of abstract SPL pro- 
grams, can be formulated. 

All well-formed abstract SPL programs satisfy the predicate is- 
program. This predicate is defined in terms of subordinate  predicates 
corresponding to the relevant subcomponents of the  abstract SPL 
programs, as follows: 

is-program = is-stmt-list 
is-stmt = is-lab-stmt v is-unlab-stmt 
is-lab-stmt = ((s-label : is-name), 

is-unlab-stmt = is-set-stmt v is-goto-stmt 
is-set-stmt = ((s-st-id : is-set), 

(s-unlab-stmt : is-unlab-stmt)) 

(s-target : is-name), 
(s-expr : is-expr)) 

is-goto-stmt = ((s-st-id : is-goto), 
(s-label : is-name), 
(s-cond-expr : is-expr)) 

is-expr = is-nume v is-constant V is-injx-expr 
is-infix-expr = ((s-opndl : is-expr), 

(s-op : is-operator), 
(s-opnd2 : is-expr )) 

is-operator = is-add v is-subtract 

The abstract interpreter 

The  abstract interpreters used for defining the semantics of pro- 
gramming languages have many similarities to conventional  in- 
terpreters.  Therefore, the main  structural  components of such 
interpreters  are  illustrated in Figure 7 and reviewed here using 
conventional terminology. The  components of abstract  interpreters 
are  then considered in relation to those of conventional  interpreters. 

The execution control in Figure 7 guides all  actions of the conven- 
tional  interpreter  during  program  interpretation. To specify these 
actions,  a set of instructions is provided with the  interpreter. These 
instructions  are used to formulate  routines that scan and  test  the 
elements of the  program to be interpreted  and that describe all the 
calculations  required  for  the  interpretive execution of the  program. 
The execution control selects from these routines  the next instruction 
to  be executed and performs  its execution. 

The control  storage contains  the instruction sequence to be used 
for the  interpretation. To increase the flexibility  of these routines, 
the  instruction sequence is usually not fixed; instead it is created 
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during  an  interpretation via expansions of macroinstructions  or 
via direct modifications of the  instruction  stream. 

The program storage contains  the  program to  be  interpreted in 
internal format. As discussed in the preceding section, the  internal 
format in general reflects the original  source  language  program. 

The data storage contains  all  program  data  and  internal  data needed 
for the  interpretation process. To relate  variable  names  encountered 
in the  program with the values kept in the  data storage, it  is necessary 
to hold  information that identifies the  locations of the values, the 
length  of  the value items, the  data types, etc. These data descriptions 
are also  kept in the  data storage,  and  they  are accessed via the names 
of the  program variables. 

To specify an interpreter  and  its  instruction  set,  some  machine 
language is usually used. The execution control is represented by a 
machine language program.  Each  nonmacroinstruction of the 
interpreter is defined with a  small  machine  language  routine, which 
is kept in a library. The  routine is called as soon as an execution of 
the instruction is required. For macroinstructions,  the  macro- 
definitions are  kept in the  library,  and an execution of such an 
instruction  results in a macro-expansion. 

In abstract  interpreters,  a specific machine language is not used. 
Instead, we use the  tree  structure  and  tree  manipulation  .functions 
as the bases for  our  interpreter  construction. 

All storage  components of the  abstract  interpreter  are represented 
in tree  form. In addition, all information  concerning  the  status of 
an interpretation  is always kept  in  these  storage  components. No 
information is stored in the execution control of the  interpreter. 
For example, the next instruction to be executed is identified by 
information in storage  and  not by a  counter in the execution control. 

The sum of all stored  information  determines the state (() of the 
abstract  interpreter.  The execution of an instruction  changes  this 
information  and hence the state.  Thus, the interpreter  instructions 
define the  transitions of the  interpreter between its  various  states. 

The  type of information included in the  state of an abstract  inter- 
preter, of course, varies with the  programming language described 
by the  interpreter.  For example, SPL allows only integer variables. 
Consequently, no description of the  data types of variables is 
required.  Each value of a  variable  can  automatically  be  interpreted 
as  an integer value. Conversions between different data types need 
never occur. 

The information  kept as the state of the SPL interpreter is classified 
into five different categories: 
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1 . The abstract program to be interpreted the SPL 
2 .  The statement  counter, which identifies the  abstract  statement interpreter 

currently being interpreted state 
3 .  The ualue storage, which contains  all  the values of the  program 

variables 
4.  The control, which contains  the  interpreter  instruction sequence 

to be executed 
5 .  The library, which contains  the definitions of the  macroinstruc- 

tions  and of the elementary instructions that  form  the instruction 
set of the SPL interpreter 

A  comparison of these state  components with the general structure 
of an interpreter shown in Figure 7 provides that category 1 repre- 
sents  the  program  storage;  category 2 together with category 3, the 
data storage;  category 4, the  control  storage;  and  category 5 ,  the 
library of the  interpreter. 

The  predicate is-state is introduced to describe the  state of the SPL 
interpreter. All well-formed states of the SPL machine satisfy the 
predicate is-state. The predicate is-state is defined in terms of 
subordinate  predicates  corresponding to the five information  cate- 
gories as follows: 

is-state = ((s-pgm : is-program), 
(s-stc : is-constant), 
(s-ust : is-ual-stg), 
(s-c : is-control), 
(s-lib : is-library )) 

The  predicate is-program describes all well-formed abstract SPL abstract program 
programs, as discussed in the previous section. To select the  abstract and statement 
SPL program represented by the  state of the SPL interpreter,  the counter 
selector function s-pgm (E) must be used. Each  abstract  program is 
defined as a sequence of SPL statements. The ith  statement is selected 
for interpretation by the  function e/em(i)(s-pgm(E)) where i re- 
presents an integer value. 

The  statement  counter is identified by the selector s-stc in the  state 
of the SPL interpreter.  The value of the  statement  counter is found 
by using the  function s-stc (E). This value represents  the sequence 
number of the  statement  currently being processed by the SPL 
interpreter. In other words, the  current  statement can  be  extracted 
from  the interpreter  state by the  function e/em(s-stc(U)(s-pgm(E)). 

Assume that the interpreter  state  has  the  form shown in Figure 8. examples 
Application of the selector functions eIem(1) (s-pgm(E)) to  state 4 
results in the  subtree shown in Figure 9. Various  other selector 
functions applied to this  state  produce  the following results: 



value  storage 

Figure 9 Selector function ap- 

plied to state 1 

examples 

Figure 10 Value storage tree 

control 

Figure 8 Interpreter state 1 

I =  

By definition, a selector function  applied to a  tree always returns  the 
null-tree Q if the identified selector does not  appear  as one of the 
names of the  immediate  subbranches of the  tree. 

The value storage  component  of  the SPL interpreter  state  contains 
the values of the  program variables  encountered in the  abstract SPL 
program. To identify the individual values, the names of the program 
variables are used as selectors. For example, a value storage may 
have the  form shown in Figure 10. A, B, and SUM are variables with 
the values 124, 30, and 0, respectively. 

A special notation derived from  the  notation used for set definitions 
allows us to define the  predicate is-ual-stg describing all the well- 
formed value storage items of the SPL interpreter.  For  our purposes, 
it is only necessary to keep in mind that  the names of variables are 
used as the selectors to gain access to their values. However, using 
the  notation, which is further explained in Reference 8, the definition 
of is-Val-stg appears  as 

is-ual-stg = ({  (name : is-constant) 1 1 is-name(name))) 

Assume that  the interpreter  state has  the  form shown  in  Figure 11. 
The results of various selector functions  are as follows: 

A(s-us~ ( f ) )  125 
s-target (eZem(Z) (s-pgm(<))) (s-ust(f)) = 125 
B(s-ust(f)) = Q 

Note  that the  statement  counter  indicates that  the first statement 
has already been executed by the  interpreter.  That is, the value of A 
in  the value  storage has been set to 125. 

The actions of abstract  interpreters  are  controlled by the  interpreter 
instructions. However, arranging  the  instructions into a prede- 
termined sequence for execution, as is done in conventional  pro- 
gramming,  does not provide  enough flexibility to represent  the 



Figure 1 1  interpreter  state 2 

Assume, for example, the well-formed SPL expression 

(A - B) + (C - D) 

The  rules governing parentheses  require that  the  two subexpressions 
A - B and c - D be processed before the addition is performed. 
However, no rule of SPL specifies which of the  two  subtractions  has 
to be  performed first. This is often an  important  feature of pro- 
gramming languages, since it  makes possible the optimization of 
expression evaluation.  Depending on the  technique chosen for the 
scanning of expressions, and  for  optimization,  one  conventional 
interpreter may execute A - B before C - D, and  another  interpreter 
may execute C - D before A - B. In other  words,  conventional 
interpreters  introduce  additional  rules that select specific execution 
sequences for expression processing. The  abstract  interpreter is not 
allowed to add  such rules. It must  represent  the  meaning of expres- 
sions exactly as specified for the language. The  additional rules are 
only allowed to be added for a specific implementation of the 
language. The  abstract  interpreter  must describe all possible imple- 
mentations, not select a specific one. 

To allow the execution control of the  abstract  interpreter  the  required Figure 12 The control-tree 

arbitrariness i n  the selection of the  instruction to be executed, the 
control  component of the  interpreter  state  is represented by a finite 
tree  (the  control-tree), where each  node of the  tree  is associated 

vention is established that only the  instructions associated with the 
leaves of the  control  tree  are  candidates  for  immediate execution. 
The execution control chooses randomly  one of these terminal 
instructions for the next execution. In the example in Figure 12, the 
instructions instr2,  instr,,  instr,,  instr7, and instr, are  the candidates 
for being executed next. 

with an  instruction, as shown in Figure 12. In addition,  the  con- 

instr, instr 

instr,  instr, 

The execution of an instruction  results in the deletion of that in- 
struction  from  the  control-tree, so that a different set of instructions 
is available for the next execution step. The  interpretation process 
ends  as soon as  the  control  component becomes empty. 

This generalization of the execution process in the  abstract inter- 
preter allows all possible execution sequences to be represented in 
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Figure 13 (A - 6) i- (C - D) 

the control component. Thus the behavior of the interpreter in 
interpreting a program is  defined to include  all  possible  execution 
sequences, not  just 'one of them. Consequently, all situations that 
may  arise during the interpretation of a program are described by 
the abstract interpreter. 

example To illustrate this concept, we investigate  once more the SPL 
expression 

(A - B)  + (C - D) 

The abstract form of the expression is given in Figure 13. The two 
subexpressions (A - B) and (C - D) are represented as the subtrees 
s-opndl ( x )  and s-opnd2(x). 

The rules of SPL require that  the subtrees s-opndl(x) and s-opnd2(x) 
be  processed  before the addition can take place. To describe the 
execution, we introduce three instructions, which are described 
more fully later. 

1. eval-expr(t), where t is an expression.  Execution of the instruction 
causes evaluation of the expression. 

2.  eval-op(opnd1, opnd2, op), where opndl and opnd2 are operand 
values and op is one of the two  infix operators (add or subtract) 
of SPL. Depending on the operator specified,  execution of the 
instruction calculates the sum opndl + opnd2 or the difference 
opndl - opnd2. 

Figure 14 Control  tree  for  ex- 3 .  get-val(var), where var is a program variable. Execution of the 
pression evaluation instruction extracts the value of the variable vur from the value 

storage. 
eval-op (opndl. opnd?. r.op(x)) 

The proper execution  sequence for the expression x can be specified 
e r ( r . o p n d l ( x ) )  -(s.opnd?(x)) with the control-tree shown  in Figure 14. 

The instructions eval-expr(s-opndl(x)) and evul-expr(s-opnd2(x)) are 
both candidates for execution. Either one of them  may  be  chosen 
by the execution control to be  prozessed  first. 

return The evaluation of the two  subexpressions of x produces  two inter- 
information mediate result  values.  These  values are to be  used  subsequently 



during  the execution of the  instruction eual-op. Consequently, a 
mechanism for saving intermediate results must be provided.  A 
simple technique, which is used sometimes  in  conventional  inter- 
preters,  inserts  intermediate  results directly into the  appropriate 
argument fields  of the  instructions that  make use of them. (The 
much more widely used push-down  stack (last-in, first-out)  requires 
a  predetermined sequence in the execution of interpreter  instructions 
and is not  applicable  for  our  more general control-tree.) For this 
purpose,  the so-called return information is associated with each 
node of the control-tree. The  return information specifies the 
argument  position into which the intermediate  result  produced by 
the  instruction of the  node is to be  inserted.  Figure 15 illustrates  the 
control-tree  and the return  information  required  for  the  evaluation 
of the expression x. The  return  information is indicated by a dashed 
line, which leads from  the  node where the intermediate  result is 
produced to the  argument  position  into which the value is to be 
inserted. The argument values of the  instructions, e.g., s-op(x) or 
s-opndl(x), are  abstract trees. An argument value is represented by 
the  null-tree R until  the  interpreter establishes the  intermediate 
result value. 

Each execution of an interpreter  instruction  produces changes in 
the  state of the  abstract  interpreter. These state transitions always 
include changes in the  control  component of the  state. For example, 
the  insertion of an intermediate result into  the specified argument 
position represents such  a  change.  Another  obvious  requirement is 
that eventually all subtrees of a  node in the  control-tree  must be 
eliminated, to allow the execution of the  instruction associated with 
the node. 

Corresponding to the  two  instruction types, the macroinstructions 
and  the basic instructions, we define two types of transformations 
for the  control  component of the interpreter  state,  the macro- 
expansion and  the basic transformation. 

The definition of a  macroinstruction  consists of a finite set of 
control-trees.  During execution of the macroinstruction, i.e., during 
a  macro-expansion,  one of these control-trees is selected by the 
execution control of the  interpreter.  This selected tree replaces the 
executed instruction in the  control  part of the  interpreter  state.  In 
the example illustrated in Figure 15, the execution of the  instruction 
eual-expr (s-opndl(x)) results in the new control-tree shown in 
Figure 16. Note  that the replacement process does  not change  the 
return  information associated with the  node where the replacement 
takes place. Of course, new return  information may be established 
for  the newly created  nodes of the  control-tree. 

In Figure 16, all three eval-expr instructions  are  candidates for the 
next execution step.  Let us assume that  the instruction eual-expr 
(s-opnd2(s-opndl(x))) is selected for execution. The tree  component 
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Figure 16 Control  tree  after  evaluation of an expression 

Figure 17 Replacement of eval-expr(s-opnd2(s-opndl(x))) 

__ eva1-expr (r-opr ’ 101 (S-OpnOl(xJJJ get-Val (s-opnd2 (s-opndl(x))) 

Figure 18 Execution of get-val(s-opnd2(s-opndl(x))) - 

”- 

__ eval-expr (s-opndZ(x)) 

selected by s-opnd2(s-opndl(.x)) from  the  abstract expression x is 
the elementary tree B, i.e., a variable name. In this case, the  macro- 
expansion  results in the  control-tree shown in Figure 17, in which 
the  instruction euaZ-expr(s-opnd2(s-opndl(x))) is replaced by the basic 
instruction gel-uaZ(s-opnd2(s-opndl(x))). 

basic The executions of basic instructions, i.e., basic transformations, 
transformations have in common that  the node with the  instruction is deleted from 

the  control  component of the  state  and  that  the  intermediate result 
produced by execution of the  instruction is inserted according to 
the  return  information associated with the  node. Assuming that 
the value of the  variable B in the value storage of the  interpreter is 
47, the execution of the instruction get-uaZ(s-opnd2(s-opn~l(x))) in 
Figure 17 results in the modified control-tree shown in Figure 18. 
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All instructions of the SPL interpreter  are  contained in the  library 
component.  To identify the  individual  instructions,  the instruction 
names are used as selectors. For example, assume that the library 
only contains  the  three  instructions eval-expr, eval-op, get-Val. The 
state 4 has the  form shown in  Figure 19, where eval-expr-instr, 
- veal-op-instr, and get-Val-instr symbolize the instructions  contained 
in the  library. When an instruction  is to be executed, the execution 
control of the  interpreter 

1.  Selects the instruction  from  the  library 
2. Associates the  arguments with the  parameters by replacing each 

parameter occurrence in the instruction definition with the 
corresponding  argument value 

3. Performs  the  macro-expansion or the basic transformation 
specified by the instruction definition 

____ - . _ _  

For convenience, a  number of special notational  conventions have 
been adopted in the representation of instruction definitions. 

The  format of a macro-definition is given in Table 2,  where instr is 
the  instruction  name  and parml,  parm,, . . . , parm, are  the  param- 
eters of the  instruction.  In an instruction definition without 
parameters,  the  parentheses do  not appear. 

One of the control-trees c-tree,, e-tree,, . . . , c-tree, is selected 
during  the macro-expansion to replace the executed instruction in 
the  control  component of the  interpreter. For the selection of the 
control-tree,  the  conditional expressions con& condz, . . . , cond, 
are used. Note  that  the conditional expressions are not SPL expres- 
sions. They are used to control  the  actions of the  abstract  interpreter 
rather  than being a part of the language to be interpreted. To dis- 
tinguish expressions controlling  the  interpreter  from SpL expressions, 
we shall use the  term  interpreter expressions where a conflict may 
arise. 

The evaluation of a  conditional expression produces  either of the 
result values true or false. Conditional expressions may be as simple 
as a single logical constant,  i.e., true and false, or a single test 
function, i.e., a predicate. More complex expressions may be formed 
using the symbols +, -, <, 5 ,  =, #, 2 ,  > for  the  conventional 
arithmetic  and  comparison  operators. For the definition of SPL, 
only these operators  are required.  Additional  operators  are defined 
in Reference 8. Examples of conditional expressions are 

is-stmt(t) 
s-st-id(t) = SET 
true 
s-stc(f )  > Iength (s-pgm(E)) 

The first three expressions should be easy to understand;  the fourth 
expression has  the value true if the  statement  counter of the  state ,t 
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Figure 20 Linear  notation of control-tree 

Figure 21 Results of  function p 

basic 
instruction 

Table 3 Basic instruction 

definition 

s-sc, : t-expr, 
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w t r l  ( O P ~ .  a) 
,"St,, 

mstr (b ,  op,) 
(op,) 

b:!nstr, 
a k s t r ,  

mstr. 
instrg 

mstr, 

indicates that  the last statement in the  program  has been interpreted, 
Le., its value is greater than  the  number of statements in the  program. 
When executing a  macroinstruction, the execution control evaluates 
the  conditional expressions in the macro-definition in the order 
condl, condz, ' . . , until  an expression evaluation  produces  the 
result value true. The  control-tree associated with this expression is 
then used for  the replacement in the  control  component of the 
state,  and  the execution of the  macroinstruction  ends. 

To allow for  a convenient representation of control-trees,  a  linear 
notation is used, as illustrated by the example in Figure 20. 

In the  linear  form,  indentation  indicates the sub-levels of the  control 
tree. Dummy  names,  a and b in the example, are used  in the prefix 
of instructions that return values. The appearance of the  dummy 
name in the prefix of an instruction  and in an  argument  position of 
an instruction higher in the  control  tree  indicates  that  the  return 
value of the prefixed instruction is to be placed into  the identified 
argument  position. For example, the  return value of the  instruction 
instri is to be placed into  the second argument  position of the 
instruction instr,. 

The  format of a basic instruction definition is given in  Table 3 .  The 
definition header for basic instructions has  the same  form  and  mean- 
ing as  the definition header of macroinstructions.  The expressions 
t-expr,,  t-expr,, . . . , t-expr, are  interpreter expressions that produce 
an  abstract  tree when they  are  evaluated.  The value of the expression 
t-expro represents  the  intermediate result produced by the  instruction. 
This  result is inserted into  the  control component  according to the 
return  information of the node associated with the  instruction.  The 
selectors s-x,, s-sc2, . 9 . , s-sc, identify immediate  components of 
the  state  that  are  to be replaced by the  abstract  trees  produced by 
the expressions t-exprl,  t-expr,, . . . , t-expr,n. That is, the values of 
these expressions constitute  the new or modified state  components 
that result  from the instruction execution. 

The interpreter expressions specified  in the  instruction definition 
produce  abstract  trees as results; that is, they are specified using 
tree  operations.  The only tree  operations discussed so far  are  the 
selector functions used for selecting subtrees  from existing trees. 
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To specify the  construction  and the modification of trees, a new 
function is introduced. It is represented by the  form 

p(x; (sel-sequ:y)) 

where x and y are  abstract trees and sel-sequ is a sequence of branch 
names, written as 

s, 0 s,-1 0 s,-z 0 . . . 0 SI 
Using the branch  names s,, sz, . - . , s, for the identification, the 
function p incorporates the tree y into  the  tree x. The  resultant  tree 
x' has  the  form shown in Figure 21, where any segments of the 
tree x that would lead to naming conflicts have been deleted from 
the  tree. The order of the branch  names in the  function is reversed 
to indicate  the  order of selector functions s,(s, L(. . . s,(x')  , , ,)) used 
to select the tree y from  the  tree x'. 

A s  illustrative examples, consider the  abstract  trees shown in 
Figure 22. The result of the  function p for various choices of branch 
name sequences is shown in Figure 23. In the first example, Figure 
23A, a complete new branch is added to the  tree x, and no elements 
are  deleted.  In  the second example, application of the  function p to 
tree x (shown at B) replaces the  subtree of x (shown at C )  by the 
tree y. The subtree at c must be eliminated from the  tree x to avoid 
a  naming conflict in selecting the new subtree y .  In  the  third example 
(shown at D), elementary tree e3 is replaced by the  subtree shown at E 
to avoid conflicts in selecting the new tree  components. 

Expressions used in the definition of the basic instructions may 
contain  any of the  tree manipulation  functions in addition to the 
conventional  arithmetic  operators + and -. (For  the description 
of SPL, only these functions  are  required. For  more complex defini- 
tions,  additional  operations  are described in References 3 through 8.) 

For convenience, state  components  not changed by execution of a 
basic instruction need not be specified in the list s-sc,, s-scz, ' . . , s-x, .  

If no intermediate result is produced by an  instruction,  the element 

PASS: t-expr, 

may be deleted. If no parameters  are  required,  the  parentheses in 
the definition header  must not be specified. For example, the basic 
instruction used to update  the  statement  counter is defined as 

up-stc = 

s-stc : s-stc ( E )  + 1 

As  an additional convenience, the  body of a basic instruction may 
appear  instead of a  control-tree in a  macroinstruction. Assuming 

Figure 22 Trees x and y 

Figure 23 Function p. for  vari- 

ous branch  name 

sequences 

A 



condi -+ PASS : t-expr, 
s-sc, : t-expr, 

s-sc, : t-expr, 

as one of the  alternatives has  the same meaning as  the appearance of 

cond, ”+ b-instr (parm,,  parm,, . + ’ , parm,) 

together with the  appearance of the basic instruction 

b-instr (parm,,  parm2, ’ . . , parm,J = 
PASS : t-expr, 

s-scl : t-expr, 

s-sc, : t-expr, 

Note  that  the new basic instruction uses all  the  parameters of the 
macroinstruction. 

The SPL interpreter 

The  state  components of the SPL interpreter  and  their general 
properties were introduced in the preceding section. We now in- 
vestigate how the  interpretation process of SPL programs progresses 
and which instructions  are  to be used by the SPL interpreter  during 
interpretive execution. 

initial To start  the  interpretation of an SPL program,  initial  information 
state must be given to the  abstract  interpreter.  This  information  consti- 

tutes  what is called the initial  state of the  interpreter. The initial 
state of the SPL interpreter  consists of 

The  abstract  program to be interpreted 
The value 1  for  the  statement  counter 
The  instruction int-program as  the only instruction in the  control 
component, i.e., int-program represents the  top  and only node 
in the  control  component 
The  library  containing all interpreter  instructions 

The value storage  component of the  state  is empty. 

The  interpretation process starts with the execution of the instruction 
int-program, and  it  continues  until the  control  component becomes 
empty. 

instruction The instructions of the SPL interpreter  can be classified into three 
set principal  groups,  each  one designed to handle  a specific aspect of 
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SPL. For reference purposes, a  sequential  numbering of the in- 
structions is introduced. 

The  interpretation of the SPL program starts with the  macro- 
instruction 

1. int-program = 
s-stc(t) I length(s-pgm(t)) + 

int-program 
up-stc 

int-stmt(eZem(s-stc(())(s-pgm( t))) 
s-stc(t) > length(s-pgm(i)) -+ 0 

As long as the  statement  counter  does  not exceed the  number of 
statements in the SPL program,  the first alternative is chosen for 
the  macro-expansion. It leads to  the interpretation of one  statement 
and to  the subsequent  updating of the  statement  counter.  The 
macro-expansion  also  reproduces the instruction _~_- int-program in tlle 
top node of the  control  component. As soon  as  the statement  counter 
exceeds the  number of statements in the  program,  the  instruction 
int-program is replaced by the  null-tree, that is, the  instruction is 
simply deleted from  the  control component. Since it is always 
associated with the  top node of the  control  component,  the  control 
component becomes empty  and the interpretation process stops. 

2 .  int-stmt ( t )  = 
is-lab-stmt ( t )  + int-stmt  (s-unlab-stmt(t)) 
is-set-stmt ( t )  -+ int-set-stmt ( t )  
is-goto-stmt ( t )  -+ int-goto-stmt ( t )  

where t is an abstract  tree  representing  a labeled or unlabeled 
statement of SPL. The first alternative  reproduces  the  instruction 
int-stmt in the  control  component,  but  the new argument of the 
instruction is the  subtree representing the unlabeled statement part 
of the  abstract  tree  t.  The  other  alternatives lead to the execution 
of the specific statement. 

3 .  up-stc = 
s-stc : s-stc ( t )  + 1 

The  instruction increases the value of the  statement  counter by one. 

4. int-set-stmt ( t )  = 
true 4 assign-Val (a,  s-target ( t ) )  

a :  e&-expr (s-expr(t)) 

where t is the  abstract  form of a  set-statement. Note  that  the  con- 
ditional expression true is always satisfied. That is, this  alter- 
native is always chosen for the macro-expansion. The inter- 
mediate value produced by the  evaluation of eval-expr is returned 
to  the first argument of the  instruction assign-ual. "___ 

5 .  assign-vu1 (ual, id) = ___- 
s-vst : p(s-vst(t);  (id : Val)) 
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Figure 24 Value storage corn- where vu1 is an integer value and id is a variable name. After execu- 

shown in  Figure 24. If a  component with the  branch  name id was 

// \ the old value associated with the  branch  name is replaced by the 
'\\ value ual. If there was no such  component,  a new component of the 

form illustrated will have been added  during the execution. In the 
initial state, the value storage is empty; consequently, a variable 

va I only appears in the value storage after at least one assignment to 
the variable has been encountered during  interpretation. 

6 .  euul-expr ( t )  = 

ponent tion of the instruction, the value storage  contains  a  component, as /;;7 \ already present in  the storage before execution of the instruction, 

d 
/ 

/CH / 
\ 

is-name ( t )  -+ get-ual ( t )  
is-constant ( t )  + PASS:  t 
is-expr ( t )  3 eual-op (opl,  op2, s-op (t)) 

.___ 

opl : eual-expr (s-opndl ( t ) )  
op2 : eual-expr (s-opnd2 (t))  

In this definition, the order of the  conditional expressions is of 
importance.  The predicate is-expr ( t )  is satisfied for all expressions, 
including simple variables and  constants. Therefore, the tests for a 
variable and  a  constant  must precede the  test  for an expression. 
Otherwise, the macro-expansions associated with the  conditional 
expressions is-name ( t )  and is-constant ( t )  would never be utilized. 

7 .  get-ual (id) = 

is-const (id(s-ust(())) + PASS : id(s-ust(())) 
true 3 error 

The first alternative is only chosen if a value associated with the 
name id is found  in  the value storage. If such  a value does not exist, 
an.assignment to  the variable id has  not been encountered during 
the  interpretation and  the.program is in error.  The  error  situation 
is indicated using the  not further defined instruction __ error. 

8 .  eual-op (opndl,  opnd2,  op) = 

is-add (op) -+ PASS: opndl + opnd2 
is-subtract (op)   PASS: opndl - opnd2 

Depending on the operator op, the sum  or the difference of the 
operand values opndl and opnd2 is returned as  an intermediate result. 

Note  that if SPL imposed limitations on the size of the  numbers that 
may be handled,  the  limitations would have to be included in the 
definition of the  instruction eual-op, e.g., by specifying overflow or 
underflow actions  for  the  abstract  interpreter. 

the goto During  the  interpretation,  the  conditional SPL expression specified 
statement in the  goto-statement must be evaluated, and  the target label must 

be located in the  statement sequence of the  abstract  program before 
a decision on the next statement to be  interpreted  can be made. 
SPL does not specify whether the  conditional expression or the 
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Figure 25 Go-to control-tree 

search for  the  target  statement  has to be performed first. In  addi- 
tion,  a search algorithm  for  the  target  statement is not prescribed 
by SPL. The only condition to be considered is that  the target label 
must  appear exactly once in the prefix of one of the  statements  in 
the  program. 

9.  int-goto-stmt ( t )  = 
true -+ exec-jump  (cond,  target) 

{ target:  find-target (s-label ( t ) ,  SC)~ 

cond eual-expr (s-cond-expr ( t ) )  
1 2 sc 5 length (s-pgm(t))} 

The  instruction definition utilizes notation commonly used in set 
theory when  specifying that all the  tests  for  the  target  statement  and 
the evaluation of the  conditional SPL expression may be processed 
in any order by the execution control of the  interpreter.  That is, the 
control-tree specified in the instruction definition has  the  form shown 
in Figure 25, where n is the number of statements  in the abstract 
program. 

A special convention is introduced that governs the processing of 
the  return  information provided for all the  nodes jind-target. Each 
of these nodes identifies the same argument (target) of the  in- 
struction exec-jump. 

The definition of the  instruction find-target specifies that either an 
elementary tree or a null-tree is produced as  the intermediate result 
of the execution of the instruction. These two  situations  must be 
distinguished by the execution control of the  interpreter as follows: 

If  the intermediate result is the null-tree Q, the  return  informa- 
tion is disregarded; no value is inserted into  the second argument 
of the  instruction exec-jump. 
If the  intermediate result is not a null-tree, the execution control 
tests whether the argument identified by the  return  information 
is still the null-tree Q, that is, whether no preceding execution 
of some other  instruction has inserted an intermediate result 

intermediate result is inserted; if it is not,  an error  situation is 
encountered and  the execution control automatically initiates 

i into  the argument position. If the  argument is the null-tree, the 



Note  that this special convention provides a  test,  that  a label must 
not  appear  more  than once in the prefix of the  statements in the 
abstract  program. 

10. jind-target (lab, sc) = 
s-label (elem  (sc)(s-pgm(&))) = lab -+ PASS:  sc 
s-label (elem  (sc)(s-pgm(&))) # lab --+ PASS: C2 

The  instruction  returns  the  statement  number sc if the label lab 
is found in the prefix of the investigated statement; otherwise, the 
null-tree is  returned. 

11 . exec-jump (ual, tgt) = 

tgt  = C2 + error 

Val < 0 -+ D 

~ 

ual > 0 -+ s-stc: tgt- 1 - 

A value Q for  the second argument indicates that the label specified 
in the goto-statement could not be  found  during  the executions of 
the  instruction find-target; that is, the  abstract  program  contains an 
error,  and  the  instruction error is  to be executed. If the first con- 
ditional expression is  not satisfied, tests are  made  to determine 
whether the  jump  has  to be performed or not. 

A value ual greater than zero leads to execution of the  jump.  This 
transfer of the  interpretation process to the  target  statement is 
accomplished by replacing the  statement  counter  component  in the 
interpreter  state by the value tgt - 1, where tgt is the  statement  num- 
ber of the  statement  containing the target label. The decrease by 
one is required because in the  method chosen for incrementing the 
statement  counter (see the definition of int-program), the counter 
contents  is increased by one before the identified statement is 
actually interpreted. 

- 

Concluding remarks 

The  formal description methods  introduced in this paper were 
related to our simple language SPL for  explanation purposes. 
Actually, the  methods (i.e., abstract trees, predicates, state com- 
ponents,  control trees, etc.) apply to all programming languages. 
However, some programming languages contain facilities that 
cannot be expressed using the  methods described in this paper alone. 
For example, additional definitions are required to represent the 
multitasking facilities of PL/1. To solve this particular problem, 
an extension to  the execution control of the  abstract  interpreter 
was used in the  formal description of PL/1.3-g 

Similar problems are created when a language that has been formally 
defined is extended to provide additional facilities. However, 
formally defining language extensions helps to contain  the often 
serious problems of identifying all parts of the language affected 
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and possibly changing them to accommodate  the new facilities. 
Assume, for example, that floating-point  arithmetic facilities are 
to be  added to SPL. The conceptual  approach to this  problem is 
outlined in the following paragraphs (with the  complete formal 
description of the extended SPL left as  an exercise to  the reader). 

To allow floating-point operations in SPL, an analysis of the  abstract 
interpreter shows that we shall at  least have to expand the definition 
of the instruction eual-op to provide floating-point additions  and 
subtractions  and to provide  conversions between integers  and 
floating-point values when both appear in a single operation. 
Determining  the needed conversions to the  operands passed as 
parameters to the eual-op instruction requires, in turn,  that these 
values be identified as either  integers  or  floating-point numbers. 
Thus  the elementary trees  containing  the  operands in the original 
formal  description  must be changed to trees  containing  two  sub- 
components-one defining the  data type,  the  other  the value of the 
operand. Immediately it is clear that  this change is not restricted to 

1 the  instruction eual-op; any  instruction  handling  arithmetic values 
1 will have to be changed to allow for  the  accompanying  type  in- 

1 formation. 

1 Some of the instructions so affected also refer to  the storage  com- 
' ponent of the  interpreter  state.  Thus we shall have to provide for  a 

state  component  that allows values of variables in storage to be 
identified as either integers or floating-point  numbers. For example, 
we could  change  the  storage  component using the  abstract  syntax 

is-Val-stg = ({ (name : is-elem) I 1 is-rzame (name))) 
is-elem = ((s-type : is-type), 

s-ual : is-constant)) 

where each  storage element is represented as a  tree composed of a 
type-describing component  and  the value component. 

To characterize SPL variables as integer or  floating-point,  a declara- 
tion of the variables must  appear in the  abstract  program.  This 
declaration is then used by the  abstract  interpreter to construct  the 
modified storage  component of the  interpreter  state  during  inter- 
pretation.  The  abstract  syntax of the declare-statement might have 
the  form 

is-dcl-stmt = ((s-st-id : DCL), 

is-dcl-var = (( (name : is-type) I j is-name (name)])  
is-type = is-integer v is-float 

After adding new instructions to the  interpreter to process the 
declare-statement, a  concrete  syntax of the declare-statement can  be 
designed, and  the necessary translator  function  can be defined to 

(s-dcl: is-dcl-var)) 




