Discussed in this paper are asymptotic properties of the classical
machine interference model, the simplest of queuing models. In sys-
tems analysis, the judicious use of such asymptotic properties can
result in significant savings in time and effort.

Included in the paper is the solution of the generalized machine
interference model.

An analysis of the machine interference model

by A. E. Ferdinand

The machine interference model' is one of the simplest models of
a queuing system, and as such, has probably become one of the
most used queuing models today. In spite of this, no known sig-
nificant effort has been expended in deriving the properties of this
now classic model; most of the studies of the model have been

mainly concerned with extensions and adaptations® to the model
to meet certain specific needs.

Erlang employed the machine interference model in his analysis
of the Swedish telephone traffic. Since that time, the model has
been successfully applied in industry in general. In particular, the
machine interference model is being used in the computer industry
in such problems as the analysis of the flow of messages in a com-
puter system. Because of the utility of the model, the insight into
its properties that is given in this paper offers further understanding
of the behavior of the model, and, consequently, use of it may be
made easier.

The machine interference model is shown in Figure 1. It consists
of n identical machines and a single repairman. When a machine
breaks down, it is repaired by the repairman and put back into
operation, If the repairman is busy, a broken machine has to wait
for service causing a queue to build up in front of the repairman.
Repair and breakdown rates of the machines are assumed to be
exponentially distributed. Each machine is characterized by a mean
breakdown rate u and a mean repair rate v.
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Figure 1. The machine interfer-
ence model
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It would seem, at first sight, that as the number of machines, n,
increases, the complexity and obscurity of the properties of the
queuing system would increase tremendously. But this is not so,
and in the case of a very large number of machines, new and distinct
regularities appear.

In this paper, some interesting and useful asymptotic properties
of the machine interference model are given. These asymptotic
properties are useful in two respects. In the first instance, they
give important knowledge about the actual behavior of the queuing
system. With such knowledge, one can often deduce how the system
is going to behave under certain specified conditions without having
to perform detailed computations to come to a conclusion. At this
juncture, it is well to add that knowing the exact formulas for
the probability distribution, the length of gueues, etc., does not
necessarily mean that one understands the behavior of a model.
Such an understanding can often come only through an analysis
(sometimes numerical) of the exact formulas.

The asymptotic formulas are also useful in obtaining accurate
approximate values of the properties of the system without sig-
nificant expenditure of computation time and human effort. Invari-
ably, as the number of machines, », increases so does the computa-
tion time (and sometimes patience) that is necessary in the calculation
of the system properties from the exact formula. However, calcula-
tions may still be performed with the asymptotic formulas with
relative ease, and furthermore, with an accuracy that increases
with n.

The first part of this paper will be devoted to the asymptotic prop-
erties of the machine interference model. In the second part, the
solution of the generalized machine interference model will be stated
but not derived. The derivation of the solution may be found in
Reference 3, where the solution is only a special case of a very
general solution to queuing problems.

Properties of the model

In the notation of Reference 1, the probability that the queue at
the repairman is empty is given by

P,=1/2, 1)
where Z, is the partition function given by

Z, =3 (Z)k! x*

k=0

= nlx" Z 1/(k! x*)

k=0

with x = u/v.
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The utilization of the repairman or the probability that the repairman
is busy is thus

u,=1-—1/2, 3)

If we now define the length of the queue at the repairman as the
number of machines waiting for or receiving service at the repairman,
and the length of the waiting line as the number of machines awaiting
service (but not including the machine receiving service), then the
mean length of the queue at the repairman is derived in the Appendix
and is given by

L, = [kz k(Z)k! xk] /Z,

d
—In Z,
x o n

the mean length of the waiting line at the repairman is

LZ:; *k — 1)<Z>k! xk:l /Z,

=L, — U,

X,

The mean time required to put a broken machine back into opera-
tion, or in the terminology of computer science, the response time
T, of the system, is given by

T, = (/1 + L, — Uy,

= (1/»)[n +1 - (1 + %) U,,]

where again v is the mean repair rate of a machine.

For large values of n, the term k! in Equation 2 becomes quite large
and may cause an overflow condition to be invoked when Z, is
calculated on a digital computer. On the other hand, x* may trigger
an underflow condition since x is generally positive and less than
unity in realistic cases. However, if k! is weighted with x* through
the definition

a0, x) = 1 (7
a(k, x) = kxatk — 1, x) (8)

so that

Z, = a(n, x) Z 1/a(k, x) 9)
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Figure 2. The utilization U, of the repairman
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the numerical computation of Z, by a digital computer may be
carried out for considerably larger values of n without invoking
either overflow or underflow conditions.

The asymptotic properties

The asymptotic formulas given in this section are all derived
explicitly in the Appendix.

Figure 2 shows curves of utilization plotted against w for w < 1
and against 1/w for w > 1, where w is defined by

W = nx (10)
The dashed line indicates the utilization of the repairman under

infinite load, i.e., the utilization of the repairman when n — .
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It is noted that as the system load n increases, the utilization con-
verges to the utilization of the infinite system. Consequently, one
can represent U, in terms of a displacement from U. which is

defined by

= <
U w for w< an

=1 for w

 One may write

U, = U — f(n) (12)
where f(n), for a given w, is a positive decreasing function of n,

and

lim f(r) = 0 (13)

n—o

In realistic situations, w is usually less than 1, and the asymptotic
approximation

U = w L AN — 5+ o(ﬁa) (14)

Tad—w A —w

can be used to give quick and accurate results. This formula is
asymptotic in both w and n, so that for any given w < 1, the accuracy
increases with increasing n, and for any given n, the accuracy
increases as w decreases. The asymptotic formulas for U, when
w > 1 are given later in this section and also in the Appendix.

With the aid of Equations 3, 4, and 14, one can show that the mean
length of the queue at the repairman is an extensive property of
the total number of machines n. It is therefore prudent to study
a normalized queue length, i.e., the queue length per machine.
Figure 3 shows the normalized queue length L, defined by

L= L.,/n (15)

plotted against w for w < 1 and against 1/w for w > 1. The dashed
line shows the normalized length of the queue in the limit as the
number of machines n — «. It is given by

L(w) = lim L

n-—o

=0 for w<1 (16)
=1—-1/w for w2>1

Here again, we can observe the convergence to the limiting curve
L(w). The asymptotic formula for L, is given by

L.= (1 - w)[l - n_(lz—w—w)z] + O(%f)

for w<1 (17)

For any given w < 1, the accuracy of Equation 17 increases with
increasing n, and for any given n, accuracy increases with decreasing
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Figure 3. The normalized length of the queve L = L,/n
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w. For w > 1, the convergence is quite rapid and for all practical
purposes, we may write

L, ~ n{l _L [1 - (l el—l/w>n/(21rn)l/2:|} for w > 1 (18)
w w

The variable w may be designated the system variable since it is
the variable in which the properties of the system can be most
naturally described.

The asymptotic behavior of the iength of the waiting line W, and
the response time T, of the system can be obtained by use of the
asymptotic formulas given for L, and U,. Figure 4 shows the doubly
normalized response time plotted against w for w < 1, and against
1/wfor w > 1. This doubly normalized response time T is defined by

T =vT,/n (19)
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Figure 4. The double normalized response time T — v To/n
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In summary, the asymptotic formulas are listed here. A further
display of the accuracy of the approximations is shown in Table 1
where some results obtained through the use of the asymptotic
formulas are compared with the exact values. Again, these
asymptotic formulas are all derived explicitly in the Appendix.

The asymptotic formulas for w < 1 are

2 3
w 2w

1
- n(l — w) + (1l — w) + O(ZE) 20
Y 2w 1
L, = <1 — w)|:1 - n(l — w)2:| + 0<n2) @D

Ln - Un >Un] (22)
n w

U, =w

A/ + L, — U,] = (n/u)[l +o - (1 + 71) U,,] (23)

n
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the unstable
point

Table 1 Comparison of asymptotic values and exact values

Asymptotic values Exact values
U, L./n U, L./n

B

w

0.04974 0.00520 0.04974 0.00521
0.19531 0.02344 0.19528 0.02358
0.04995 0.00105 0.04995 0.00105
0.19901 0.00494 0.19901 0.00494
0.49080 0.01840 0.49070  0.01861
0.19950 0.00248 0.19950  0.00248
0.49520 0.00960 0.49519 0.00963
0.49676 0.00649 0.49675 0.00650

cooooooo
U\U’ANU‘IN&NO

where L, and U, are given in Equations 21 and 20 respectively.
Forw > 1

U, ~1 — (!‘; el_l/"’> /(21rn)”2 (24)

L, ~ n{l — _1; [1 — (:—v el_l/"')n/(va)l/z]} 5)

The mean length of the waiting line and response time for w > 1
can be obtained from Equations 22 and 23 respectively with L,
and U, given in Equations 25 and 24 respectively.

At the point w = 1, the asymptotic formulas are

1/2
o= 1 - (2)" 1424 o L) @6

wh

20\ _ 4 (_1_)
L, () — 3.+ 0\~ @7

™

mh

The partition function of the machine interference model with a
finite number of machines is a finite series. As such, it is an analytic
function of x and contains no singular points. But, in the limit as
the number of machines # — «, the partition function develops a
mathematical singularity at the point w = 1. This is amply demon-
strated in Figures 2, 3, and 4 by the kinks in the utilization, queue
length, and response time curves at the point w = 1. Convergence
to the limiting curve is also very slow around the point w = 1.
For finite n, dL/dx goes through a maximum at a point w,,.. where

Woax = 1 + g(n) (28)

—~Ch at  Wmax (29)
dx

g(n) being a positive decreasing function of n and C a constant.
The point w,,,, may be called the unstable point of the system, and

it tends to the critical point as n — o, The function dL/dx diverges
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to infinity with » at the critical point as # — «. One will find in
performing a simulation around the point w,,, that because of
the large fluctuations in that vicinity, the time taken to attain equi-
librium will be longer than it will be in regions away from w,,,,.
Furthermore, this difficulty to attain equilibrium around w,,,, will
also increase as n is increased. The simulation model and the mathe-
matical queuing model may sometimes be found to give different
answers in the vicinity of w,,.. This is because the mathematical
model always represents the system under equilibrium conditions,
and the simulation model may not have attained equilibrium even
after a presumably long settling time. Contrary to commonly held
belief, the utilization has nothing to do with this disagreement
between the simulation and mathematical models, and it is only
incidental that the utilization is high in the region around w....

The generalized machine interference model

The generalized system consists of # machines and a single repair-
man, and here again, the breakdown and repair rates of the machines
are assumed to be exponentially distributed. The kth machine is
characterized by a mean breakdown rate u,, a mean repair rate
v, and by an occupational variable d; defined by

d, = 0  if the kth machine is broken and is awaiting repair or
being repaired
d, = if the kth machine is operational (30)

The derivation of the solution to this problem will not be repeated
in this paper, but appears as a simple special case of a general
solution to queuning problems in Reference 3.

The partition function for this generalized machine interference
model may be written as

- [Z a - dk):ll kI__I]x,t”“ (31

dn k=1

where
Xy = /vy 32)

and the probability of being in a state characterized by a vector
(dla d29 Y dn) is

p(dly d2’ T dn) = {[i (1 - dk):|! fI xllc_dk}/Zn (33)
k=1 k=1

with Z, given in Equation 31. The classical queuing equation
that this probability distribution function satisfies is given (but not
derived) in the Appendix.
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When the queuing system is in a state characterized by a vector
(di, dy, - - -, d,), the queue at the repairman has a length > 7_, (1 —
d,), so that the mean length of the queue L, is given by

L= 232 - > p(dis doy L) 2 (1~ dy

dy da

c d
= g Xy dx In Z,
which is the sum of the mean values of (1 — d)fork = 1,2, - - , n.
From Equation 33, the probability that the repairman is idle is

p(L, 1, -+, 1)=1/Z, (35)
so that the utilization of the repairman is simply
U,=1-—1/z, (36)

When the kth machine is broken, the mean length of time T, re-
quired to put it back into operation is given by

T, = 1/v, + 1 — U,/L,) lz:,) (1 /0)x; 21% In Z, 37

One may check that in the special case when all machines possess
the same characteristics, each formula given for this generalized
model reduces to the equivalent formula for the ordinary machine
interference model.

The occupational variable d, makes the task of evaluating the
utilization of any given machine or combination of machines a
simple one indeed. The utilization U!” of the rth machine in the
generalized model is the probability that the occupational variable
d. = 1. That is,

Uf.":{zz... P I IEEE

d: de dr—1 dr=1 dr4:

X > [ ) a— dk)]! fIxi‘”} z,
k=1 k=1

dn

= Zii)l/zn

where

Z,(Lr_)1 = dE dz dZ dz e dz: [;l (1 . dk)]' kI=Il/ xllcfdk
(39)

and where " and J]’ indicate that the rth term is omitted in the
sum and product over k. Z\!7) represents the partition function
of a generalized model in which the rth machine is omitted. In
general, the utilization of a specific set [s] of s machines is given by
us, = 2z2/z, (40)

where Z!°! is the partition function for the generalized model

n—s
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consisting of the complementary set [n — [s]] of machines which
does not include the set [s].

Summary

The asymptotic properties of the machine interference model were
described in this paper. When the properties of the system were
appropriately normalized and represented in terms of the variable
w (=nu/v), the size dependencies of these properties were of order
1/n in regions of the most interest, that is, w < 1. Furthermore,
the model displayed a functionally different behavior in the region
w > 1. The region around w = [ was described as an unstable
region in which an equivalent simulation model could be expected
to stabilize slowly and probably give results different from the mathe-
matical model. The asymptotic formulas are simple in form and
quite accurate, and they allow the performance of queuing analysis
with very little effort.

In the last section of the paper, the solution and the properties of the
generalized machine interference model were given.
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Appendix

The steady-state queuing equation for the generalized machine
interference model is given by

pldy, dg, » - ,dn){i wedy + [l/i a - dk)] ivk(l - dk)}

n

= > wp(dy, dyy s dyoyydp + 1 diyrs e, dy)

/s go-al

X 2upldy, doy =+ s dyysdy — 1, disr, <, dy)
k=1

where

de S n
k=1

p(dla dZ) v sdk—ls dk + l,dk+]9 tt 9dn) = O if dk = 1
pldy, dy, » o S dpor, dy — 1, diyq, - s dy) =0 if dp =0
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The probability distribution function that satisfies the steady-state
equation shown above is given in Equation 33.

The partition function Z, of the machine interference model can
be written in the form

Z, = e"x"T(n + D1 — v + 1, 1/x)/T(n + 1)] A1)

where T'(n + 1) is the Gamma Function, and v(r + 1, 1/x) is the
Incomplete Gamma Function.* If we now write

= ns A2)

then Equation Al can be put in the form
Z, = (') "I/BMIL — ¥(n + 1, n9)/T(n + D]

where

B(my=e""n"/T (n + 1)

The ratio of the Gamma Functions can be written as®

v(n + 1, ns)/T(n + 1)
= (5 Joe o] 1 = o 2+1+”y+4%]

1 —=5 n(l — s) Wl — s

for s <1

1 2/3 1
) _Er%)ﬁi_!_o(?ﬁ) for s =1
( s
1 —

1+ >(se1_3)"ﬁ(n)

S

1 1+ 2 1
X I:l — a1l — 5)° + ) + 0<n3):| for s> 1

(l — s
By now making the substitution

s=1/w (A6)

where we recall that w = nu/v, the partition function can be put
in its final form

_ 1 _ w’ T (L)il
Zn = (1 - w>|:1 n(l — wy + (1 — w)* +o n’

for w<1

2/3

[I/B(n)]li% + (_2;’;—)1/2 '+" 0(%3/2)] fOI' w=1 (A7)

_ _l_ 1-1/w - _ l/w (1)
(we ) (1/8n)) a=1/w 1/w) + 0 - for w>1

By using the relation
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1/B8(n) = (27rn)1/2<1 + _1-;-;> + O(n—a/z)

the utilization U, then becomes
U'n = l - I/Zﬂ

2 3
w 2w

- n(l — w)+ (-

1/2
1 — (1) + i/—3 + 0(13,2> for w=1
Th n

mh

=1 — (-I-el'l/"’) /(27rn)1/2 for w>1

w

= w 3+O<1§> for w<1
w) n

The mean length of the queue L, is given by

d In Z,

L,=x—
T

By using the relation*

d _1_ l)" -1/z
dx7<n+1’x>— x €

we then obtain

L,=n— i + (1/x)/{x"e‘“r(n + 1)

X [1 —‘y<n + 1,§)/r(n + 1)]}

1
n —;(1 - 1/Z,)
=n— U/x

= n(l — U,/w)

By substituting the asymptotic formula for U, into Equation Al2,
we obtain the asymptotic formula for the mean length of the queue as

o w _ 2w 1
L, = (1 = w>[1 ol — w)2] + 0<n2> for w<1
1/2
_ <@> 4 0<11/2> for w =1 (A13)
T n

T 3

=~ n{l _L [1 — (l e““'”> /(21rn)1/2:|} for w> 1
w w

The mean length of the waiting line W, is given by

W,=L,— U, = n[l - (1 + —1> Un:l (A14)
nw

by Equation A12. The asymptotic formula for W, can be obtained
by substituting the value of U, given in Equation A9.
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Finally we obtain the derivative of L, with respect to x. It is given by

d, _d _1<_Lﬂ
dx Lo = dx I:n x 1 Z,

1
.
X

@ e -50-2)]

At the point w = 1, (d/dx)L, has the asymptotic form

w9 - ) (-3 + o)
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