
Discussed in this paper are asymptotic  properties of the classical 
machine interference model, the simplest of queuing models. In sys- 
tems  analysis, the judicious use of such asymptotic  properties can 
result in signiJicant sauings in time and effort. 

Included in the paper is the solution of  the generalized machine 
interference model. 

An  analysis  of  the  machine  interference  model 
by A. E. Ferdinand 

The machine  interference model' is one of the simplest models of 
a queuing system, and  as such,  has  probably become one of the 
most used queuing models today. In spite of this, no known sig- 
nificant effort  has been expended in deriving the  properties  of  this 
now classic model;  most of the  studies of the  model have been 
mainly concerned with extensions and  adaptations2 to the  model 
to meet certain specific needs. 

Erlang employed the machine interference model in his analysis 
of  the Swedish telephone traffic. Since that time, the model has 
been  successfully applied in industry in general. In particular,  the 
machine interference model is being used in  the  computer  industry 
in such  problems as the analysis of the flow of messages in a  com- 
puter system. Because of the utility of the  model,  the insight into 
its  properties that is given in this  paper offers further  understanding 
of the behavior of the model, and, consequently, use of it may be 
made easier. 

The machine interference model is shown in Figure 1. It consists 
of n identical machines  and a single repairman. When a machine 
breaks  down, it is repaired by the  repairman  and  put back into 
operation. If the  repairman is busy, a  broken  machine has  to wait 
for service causing a  queue to build up in front of the  repairman. 
Repair  and  breakdown  rates of the machines are assumed to  be 
exponentially distributed.  Each  machine is characterized by a mean 
breakdown  rate u and  a  mean  repair  rate u. 
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Figure 1. The machine interfer- 
ence model 
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It would seem, at  first sight, that  as  the number of machines, n, 
increases, the complexity and obscurity of the  properties of the 
queuing system would increase tremendously. But  this is not so, 
and in the case of a very large  number of machines, new and  distinct 
regularities appear. 

asymptotic In this  paper,  some interesting and useful asymptotic  properties 
properties of the machine interference model  are given. These  asymptotic 

properties  are useful in  two respects. In the first instance, they 
give important knowledge about the  actual behavior of the  queuing 
system. With  such knowledge, one  can  often  deduce how the system 
is going to behave under  certain specified conditions  without having 
to perform detailed computations to come to a  conclusion. At this 
juncture, it is well to add  that knowing the exact formulas  for 
the  probability  distribution, the length of queues,  etc.,  does not 
necessarily mean that  one understands  the behavior of a  model. 
Such an understanding  can  often  come only through an analysis 
(sometimes numerical) of the exact formulas. 

The asymptotic  formulas  are  also useful in obtaining  accurate 
approximate values of the  properties of the system without sig- 
nificant expenditure of computation time and  human  effort.  Invari- 
ably, as  the number of machines, n, increases so does  the  computa- 
tion time (and sometimes patience) that is necessary in the  calculation 
of the system properties  from  the exact formula. However, calcula- 
tions may still be performed with the  asymptotic  formulas with 
relative ease, and  furthermore. with an accuracy that increases 
with n. 

The first part of this  paper will be devoted to  the asymptotic  prop- 
erties of the  machine interference model. In the second part,  the 
solution of the generalized machine interference model will be stated 
but  not derived. The derivation of the  solution may be  found in 
Reference 3, where the  solution is only a special case of a very 
general solution to queuing  problems. 

Properties of the model 

In  the  notation of Reference 1, the  probability that  the queue at 
the  repairman  is empty is given  by 

where 2, is the  partition  function given by I Po = l/Zn (1) 

with x = u/u .  
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The utilization of the  repairman  or  the  probability  that  the  repairman 
is busy is thus 

u, = 1 - l/Zn (3) 

If we now define the  length of the  queue  at  the  repairman  as  the 
number of machines waiting for  or receiving service at  the  repairman, 
and  the  length of the waiting line  as  the  number of machines  awaiting 
service (but  not including the machine receiving service), then  the 
mean  length of the  queue  at  the repairman is derived in the Appendix 
and  is given by 

= x -  In Z,  d 
dx 

4 = n - -  
X 

and the mean  length of the waiting line at  the  repairman is 

= L, - u, ( 5 )  

The  mean time  required to  put a  broken  machine  back  into  opera- 
tion,  or  in  the terminology of computer science, the response  time 
T,, of the system, is given by 

Tn = (l/o)(l + t n  - un) 

= (l,u)[n + 1 - (1 +;).I 
where again u is the  mean  repair rate of a machine, 

For large values of n, the term k !  in Equation 2 becomes quite  large 
and  may cause an overflow condition to  be invoked when Z, is 
calculated on a digital  computer.  On  the  other  hand, x' may trigger 
an underflow condition since x is generally positive and less than 
unity  in realistic cases. However, if k !  is weighted with x' through 
the definition 

a(0 ,  x )  = 1 (7) 

a(k ,  X )  = kxa(k - 1, X) (8) 

so that 
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Figure 2. The utilization Un of the repairman 

W- t- l / W  

the numerical computation of Z,, by a digital computer may be 
carried out for considerably larger values of n without invoking 
either overflow or underflow conditions. 

The asymptotic properties 

The asymptotic formulas given in this section are all derived 
explicitly in the Appendix. 

Figure 2 shows curves of utilization plotted against w for w 5 1 
and against l / w  for w 2 1, where w is defined by 

w = nx (10) 

The dashed line indicates the utilization of the repairman under 
infinite load, i.e., the utilization of the  repairman when n + a. 
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It is noted that  as the system load n increases, the utilization con- 
verges to the utilization of the infinite  system. Consequently, one 
can represent Un in terms of a displacement from Um which  is 
defined  by 

um = w for w 5 1 

= 1  for w > l  

One may write 

I U,, = U ,  - f ( n )  (1 2 )  

where f(n), for a given w, is a positive  decreasing function of n, 
and 

lim f (n)  = 0 
n-+m 

In realistic situations, w is usually  less than 1, and the asymptotic 
approximation 

can be used to give quick and accurate results. This formula is 
asymptotic in both w and n, so that  for any given w < 1, the accuracy 
increases  with  increasing n, and for any given n, the accuracy 
increases as w decreases. The asymptotic formulas for U,, when 
w 2 1 are given later in this section and also in the Appendix. 

With the aid of Equations 3,4,  and 14, one can show that the mean 
length of the queue at the repairman is an extensive property of 
the total number of machines n. It is therefore prudent to study 
a normalized queue length, i.e., the queue length per  machine. 
Figure 3 shows the normalized queue length L, defined by 

L = L,/n (15) 

plotted against w for w 5 1 and against 1 /w for w 2 1. The dashed 
line shows the normalized length of the queue in the limit as the 
number of machines n --$ a. It is given  by 

L ( w )  = lim L 
n-m 

= o  for w 5 1 ( 1  6 )  

= 1 - l / w  for w 2 I 

Here again, we can observe the convergence to the limiting curve 
L(w). The asymptotic formula for L, is  given  by 

for w < 1 (1 7) 

For any given w < 1, the accuracy of Equation 17 increases  with 
increasing n, and for any given n, accuracy increases with decreasing 
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Figure 4. The double normalized response time T = v T,/n 
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Table 1 Comparison of asymptotic values and  exact values 

I 
n W I  

Asymptotic values 
U n  L n  In 

10 0.05 
10 0.2 
50 0.05 
50 0.2 
50 0.5 

100 0.2 
100 0.5 
150 0.5 

0.04974 0. 00520 
0.19531 0.02344 
0.04995 0.00105 
0.19901 0.00494 
0.49080 0.01840 
0.19950 0.00248 
0.49520 0.00960 
0.49676 0.00649 

Exact values 
u n  L, In 

0.04974 0.00521 
0.19528 0.02358 
0.04995 0.00105 
0.19901 0.00494 
0.49070 0.01861 
0.19950 0.00248 
0.49519 0.00963 
0.49675 0.00650 

where Ln and U,, are given in  Equations 21 and 20 respectively. 
For w > 1 

The mean length of the waiting line and response time for w > 1 
can be obtained from Equations 22 and 23 respectively with L; 
and U,, given in Equations 25 and 24 respectively. 

At  the  point w = 1, the asymptotic  formulas  are 

L ,  = (F) -z + o(+) 
1/2 4 

the unstable The  partition function of the machine interference model with a 
point finite number of machines is a finite series. As such, it is an analytic 

function of x and  contains no singular points. But, in the limit as 
the number of machines n -+ a, the  partition function develops a 
mathematical singularity at the  point w = 1. This is amply demon- 
strated  in Figures 2, 3, and 4 by the  kinks in the utilization, queue 
length,  and response time curves at  the point w = 1. Convergence 
to  the limiting curve is also very  slow around  the  point w = 1. 
For finite n, dL/dx goes through  a maximum at a point w,,,;,, where 

d L  - - Cn at w,,, 
dx 

g(n) being a positive decreasing function of n and C a  constant. 
The  point w,,, may be called the  unstable  point of the system, and 







consisting of the  complementary  set [ n  - [SI] of machines which 
does not include the set [SI. 

Summary 

The asymptotic  properties of the machine  interference  model were 
described in  this  paper.  When the properties of the system were 
appropriately  normalized  and  represented  in  terms of the  variable 
w (=nu/u),  the size dependencies of these properties were of order 
l l n  in regions of the  most interest, that is, w < 1. Furthermore, 
the  model displayed a functionally different behavior in  the region 
w 2 1. The region around w = 1 was described as  an unstable 
region in which an equivalent  simulation  model  could be expected 
to stabilize slowly and probably give results different from  the  mathe- 
matical model. The asymptotic  formulas are simple  in  form  and 
quite  accurate,  and they allow the performance of queuing analysis 
with very little  effort. 

In  the  last section of the paper,  the  solution  and  the  properties of the 
generalized machine  interference  model were given. 
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Appendix 

The steddy-state  queuing  equation  for the generalized machine steadystate 
interference  model  is given by queuing 

where 
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