Program reference patterns can have a more profound effect on
paging performance in a virtual memory system than page re-
placement algorithms.

This paper describes experimental techniques that can signifi-
cantly reduce paging exceptions in existing, frequently executed
programs. Automated procedures reorder relocatable program
sectors, and computer displays of memory usage facilitate fur-
ther optimization of program structure.

Program restructuring for virtual memory

virtual
memory
systems

by D. J. Hatfield and J. Gerald

Experimental techniques have been developed for improving the
performance of programs in virtual memory systems!? by rear-
ranging, or by duplicating and rearranging, relocatable sectors of
code. Experimental results were obtained from finished programs,

rather than from programs in the design stage. Improvements in
paging performance were on the order of two-to-one to ten-to-
one. Those aspects of the sector placement problem that can be
solved without extensive recoding are emphasized. The approach
used involves a combination of algorithms for automatic place-
ment of relocatable sectors and examination of memory usage
with the aid of a computer display.

Virtual memories allow programs to be written as though a
virtually unlimited amount of main storage space were available
to them. The large virtual storage not only relieves programmers
of planning overlay structures for programs larger than available
physical main storage space, it makes possible more efficient use
of computing system resources. Since programs do not use all
of their main storage space at all times during their execution,
it is possible to keep only small pieces (pages) in main storage
at any given time. Since virtual memory systems provide auto-
matic address translation, additional pages can be brought into
physical memory as they are needed and wherever there is room
for them. In this way, the pages of many programs can be in
main storage at the same time, with the remaining pages kept

HATFIELLD AND GERALD IBM SYST J

on high-speed secondary storage. This increases the possibility
of overlapping central processing unit (CPU) and input/output
(1/0) operations, improving system efficiency.

Several variables influence the performance of virtual memory
systems, including the speed of the secondary storage device,
the size of the page, the replacement algorithm for swapping
pages, and the structure of the program. Programs written under
the assumption that main storage is virtually unlimited can result
in a phenomenon called “thrashing,” in which much more time
is spent performing paging 1/0 operations than executing instruc-
tions. The cost of thrashing is compounded since, as paging 1/0
increases, the rate of system degradation also increases. For
frequently executed application or support programs not written
for use in a paging system, some alternatives to complete recod-
ing are clearly desirable.

We present some experimental techniques for examining pro-
grams that are to be run in virtual memory systems and for re-
ducing their physical memory requirements with little or no
recoding. We assume that pages of contiguous code are relocated
as units and that contiguous locations within a page of virtual
memory are also contiguous in physical memory. At first we as-
sume that all pages have the same length. This is true of many of
the paging (relocate) systems in use today, and it simplifies virtual
memory management considerably. Later the model is extended
to the case of nested page sizes.

The failure to locate a virtual memory address in physical
memory is called a page exception. The hardware environment
is generally describable as a memory hierarchy consisting of
smaller, faster memories replenished when necessary from larger,
slower ones. One goal of the management of such a hierarchy is
to minimize the sum of the replenishment times for a given
program or programs. Detailed techniques are described in this
paper for approaching the problem in the simple two-level
heirarchy of main storage and secondary storage, and the ex-
tensions necessary for three or more levels are considered
briefly.

We first consider the page exception problem and how it relates
to page replacement algorithms and to program structure. We
then investigate means for representing program intercommuni-
cations in matrix form and for performing operations on the
matrix to determine a reordering of program parts that will re-
duce page exceptions. We next examine how additional reorder-
ing based on code usage can further reduce page exceptions.
Finally, we consider possible extensions to the techniques, in-
cluding the possibility of compilers that optimize code for execu-
tion in a paging environment.

No 3 - 1971 PROGRAM RESTRUCTURING

replacement
algorithms

reducing

page
exceptions

The page exception problem

For the purpose of defining a repeatable environment, consider
a single program being executed in a physical memory smaller
than the span of virtual memory it uses. One would like to
minimize the number of page exceptions for a given page size
(the page size for virtual and real pages is identical). One way
to go about this is to study the effect of the page replacement
algorithm,? which selects a page to be removed or written over
whenever a new virtual memory page must be brought into phy-
sical memory. Several comparisons of page replacement strate-
gies have been made, often noting as much as 30 to 40 percent
improvement from one algorithm to another. In particular, an
algorithm has been found?® that gives the minimum number of
page exceptions for a program. Using this algorithm, one can
compare the performance of any other algorithm against the
optimal performance.

Although there are good reasons for studying replacement
algorithms, the search for an ideal replacement algorithm is
complicated by several factors. The minimum replacement
algorithm is practically unrealizable, as it requires a knowl-
edge of the future page references of the program every time a
page fault occurs. In general, the better a replacement algorithm,
the harder it is to implement. For instance, least recently used
(LRU) stacks give better performance than a single resettable
used bit for each page, but LrRU stacks are more expensive to
implement in hardware. In addition, the algorithm that overlays
the least recently used page, which works comparatively well in
most situations, is extremely poor for recurrent cyclic excursions
through a large span of main storage. This request pattern can
turn up locally in the course of an assembly or compilation, or
during matrix multiplication. To make things a little worse, a
multiprogramming environment may bring together a spectrum
of users with different exception rates and different responses to
changes in their available working space. Thus the question of
whose least recently used page becomes important unless all
users can bring in a new page only on top of one of their own
pages (page against themselves).

Another way of reducing the page exceptions associated with a
program is to have the program request fewer pages during the
course of its execution.* For any program, the sequence of
virtual page requests is an absolute measure of the page re-
quirements of the program, independently of available physical
space or page replacement algorithm. Anything that both reduces
the length of the overall sequence and the number of distinct
pages used in subsequences should result in reducing the pro-
gram’s page exceptions for almost all physical memory sizes and
page replacement algorithms.

HATFIELD AND GERALD IBM SYST J

Assume that the page reference sequence has been compacted
to remove all repetitions of single pages, sothatb aa---acis
reduced to b a c. Ideally, the program would have a page of vir-
tual memory removed from physical memory only when there is
no more need for the information on that page. As the number of
such real pages available to it is decreased, such a program must
localize its use of virtual memory to a correspondingly smaller
span of pages for longer and longer periods of time.

An obvious first guess as to how to bring about this localization
is to take parts of the program that are used closely together in
time and put them close together in space. For instance, one
would put each instruction next to the instruction or data loca-
tion it refers to most. Ignoring the fact that this often is im-
possible, as when instruction ¢ is the most popular reference of
instructions r, s, and ¢, the size of the problem precludes an
optimum solution if one exists. The resulting program would not,
in the vast majority of cases, be processible. But although
individual instructions cannot be moved around at will in virtual
memory, larger aggregates of code and data can. Arrays in FOR-
TRAN COMMON can be reordered at compilation time, and sub-
routines can be reloaded, as can the procedure and data areas of
many assemblies and compilations.

An experiment performed in 1967 by L. W. Comeau® indicates
that the conjunction or disjunction of relocatable sectors of code
over virtual pages can have a profound effect on paging perfor-
mance. Changing the load-time ordering of the modules in a
monitor system resulted in a five-to-one reduction in total page
exceptions generated during the course of an assembly. The four
deck orderings were compared under the same physical memory
constraint and the same replacement algorithm. The orderings
were: alphabetical (6500 exceptions), random (4200 exceptions),
an arrangement based on knowledge of the functions of the
modules and awareness of the page size (2400 exceptions), and
an arrangement based on knowledge of the modules and a record
of paging actions generated while the job was in execution (1200
exceptions). A subsequent experiment confirmed the relative
importance of sector ordering over replacement algorithm for this
monitor during compilations. The best ordering in Comeau’s
original experiment was made by a programmer familiar with the
functional nearness requirements of the sectors, and aware of
the page exception rates of the individual pages. The technique
of automatic ordering based on a program’s knowledge of near-
ness requirements is considered now.

Automatic sector reordering

Our aim is to insure that sectors of a program that are needed
within a relatively short time of one another are found either in

No. 3 + 1971 PROGRAM RESTRUCTURING

the
nearness
matrix

the same virtual page or in pages that would otherwise tend to be
in physical memory at the same time. In order to define the prob-
lem, we make certain simplifications. First, the replacement
algorithm is ignored except that it is assumed to bring in and to
remove one page at a time. Second, the sectors are considered to
be opaque, since we are not concerned with what goes on inside
each sector. We assume that the average size of arelocatable sec-
tor is small with respect to the size of a page (between one-tenth
and one-third page size). Ideally then each page should be filled
with sectors that communicate more with one another than with
any other sectors. In addition, each page should be filled with
sectors that are used with nearly the same frequency; we defer
consideration of this until later, since it is partly achieved as a
result of clustering on the basis of sector communication.

Consider a set of m relocatable sectors occupying »n pages in
virtual memory. Sector i should be near sector j (both should
be in physical memory together) whenever control is transferred
from an instruction in sector / to one in sector j, or whenever
an instruction in one sector refers to data in the other. If all
such transfers of control and references are known, a nearness
matrix C; can be constructed. The value of the element c; is
incremented whenever there is a transfer of control or a data
reference from sector i to sector j. This nearness matrix is an
m X m matrix, with one row and one column for each sector i.
Corresponding to each different load ordering of the sectors,
there is a reordering of both rows and columns of the nearness
matrix, and the load orderings that cause the large values in
C, to be clustered around the diagonal are the “best” orderings.
(The diagonal elements themselves represent intrasector com-
munications.)

It is desirable to have a precise evaluator for a given arrangement
of the rows and columns in the matrix. The evaluator should be
related to the expected number of page exceptions associated
with a given sector ordering and a given number r of real page
frames in physical memory. (A page frame is the block of main
storage into which a page is loaded.) If for the sake of simplicity
all sectors are the same fraction of a page size (no sector is
loaded across a page boundary), a reasonable evaluator might
be the sum

m
2 Py
i,j=1

where c; is the entry in the nearness matrix and Py is the prob-
ability that sectors i and j are both in physical memory whenever
either is in physical memory. If two sectors i and j are in the
same page, p; = 1, so that for each page «,

Cij
i,jea

HATFIELD AND GERALD {BM SYST J

is a term in the evaluator. If sector i is in page a and sectorj is
in page B, then

E Cy Pog

iea

JeB

is a term in the evaluator, where p g, is the probability that
virtual pages « and B are both in physical memory whenever
either is in physical memory. Unfortunately, p , is difficult to
estimate, since it depends on the number r of real page frames
and the initial state of the physical memory. One needs the prob-
abilities for going from one memory state to another, where a
memory state is determined by the r pages in physical memory.
To find them is computationally exorbitant when the transition
probabilities among pages are known. And until the sectors are
assigned to pages, these transition probabilities cannot even be
determined. So as a first cut at finding a good ordering, we de-
cided to maximize the sum

> <

i,jea

for the virtual pages «, i.e., maximize the sum of the values ¢;
for sectors within virtual pages (minimize for sectors across
virtual pages). Still assuming that each page contains an exact
integral number of sectors, we may associate with each page
containing s sectors an s X s submatrix about the diagonal. A
“good” ordering is one that maximizes the values of the nearness
matrix in the submatrix positions. Intersector communications
for part of a compiler are shown in Figure 1. The square sub-
matrices about the diagonal show the results of a random order-
ing of sectors at Figure 1A, of the order used by the compiler
developers at B, and of an automatic reordering of sectors at C.
The dashed lines delimit the number of transfers between adja-
cent pages; larger numbers here are associated with smaller
probabilities of generating page exceptions when using a sector
that crosses a page boundary. Since only the first 24 rows and
columns of the matrix are shown, the sectors involved are not
necessarily the same in all three cases.

For the programs examined, the nearness matrix was constructed
by processing a full instruction trace of the program. All control
transfers and data references were recorded. Input/output com-
mand chains were not decoded, and 1/o data reference lengths
were not recorded. Given a list of the load points of sectors, all
virtual addresses could be translated into sector references. Con-
trol transfers from sector i to sector j incremented c;» as did an
instruction in sector | referring to data in sector j. Instructions
involving multiple data references to different sectors were
treated as though the instruction had referred to each sector
individually.

No. 3 - 1971 PROGRAM RESTRUCTURING

trace data

Figure 1

Matrix reflects three sector orderings

54 7 1 4
7 94228 21 266 6
1

18 1282 72
4 21 1054

60

42 6 39
60 52632

40 270 12 1316
244
20 32

42 40 244
6 270
12
39 1316

6 1009
6 74
1009 25130

844
990 %0
240 72

844 90 7294228 1282 246 553 24 330 288: 54 648
1282 13936

|
7648123 83 153
246 123 {2750

533

4100
128

3708

4372
278:205 123 120272 108
4| 62

|

108 1332

174 HATFIELD AND GERALD

IBM SYST J

The resulting matrix represents the sum of the program’s incre-
mental nearness requirements. As such, it is open to the criticism
that it does not adequately represent the more local nearness
requirements upon which paging depends. It is also open to the
criticism that one program execution only represents its own
nearness requirements, and a new nearness matrix must be gen-
erated every time that the program is run. The only decisive way
to answer these criticisms is by improving the techniques for
generating the matrix and by showing that an ordering based on
the matrix generated from one program run gives improved per-
formance over a range of runs of the same program using differ-
ent data. This also presupposes agreement on what subset of
data samples comprises a “typical” set, and it is difficult to find
general agreement on what data is typical for any program.

The various local phases of the program may be biased in as
simple or complicated a manner as is desired. First, it is obvious
that whenever a new overlay of program or data sectors is made,
a new matrix must be started. And if desired, new matrices may
be generated periodically on completing a certain number of
instructions, transfers, data references, or additions to Cys and
the individual matrices may be weighted by some function of the
virtual memory space traversed. The space traversed between
two successive additions to c; is a measure of the tendency of
two sectors to cause a page exception if they are needed together
and are not in the same page. It is difficult to quantify this
tendency.

Detailed examination of page exception rates as a function of
available real space does not yield few or simple expressions.
Specifically, the curves are often not well approximated by an
exponential or simple algebraic function of real space. In other
words, a program does not necessarily have one natural size; it
does not degrade uniformly nor sometimes even monotonically.é
In addition, it is not solely the amount of virtual memory tra-
versed but the amount multiplied by the frequency that tends to
cause paging explosions. And until it is known how much real
space will be alloted to the program, it is difficult to decide how
to give weight to the local amounts of virtual space traversed.

To some extent, the tendency of a sector to be found in physical
memory when needed is related to the time since it was last
needed. That time can be measured in terms of the number of
intervening sectors needed (and should be measured in terms of
the number of intervening pages). For instance, if the time is
short since sector j was last referred to and little virtual memory
space was used during that time, it is probable that sector j is
still in real memory and a new reference will not cause a page
exception. As the time between references to j increases, the
probability of an exception increases unless the referencing

No. 3 - 1971 PROGRAM RESTRUCTURING

Figure 2 Memory usage during separate compilations

PAGE NUMBERS

sector and j are in the same page. But here again it is difficult to
assign a weighting function. It seems there is no need for the
weighting function to be monotonic, since, if the time between
references to j is very large, it is not worth placing j on the same
page with the sectors that refer to it if this means displacing sec-
tors referred to more often. But where should the weighting func-
tion peak, and what should be its value if the time between refer-
ences is very small or is very large? At present, little is known
about the desired shape of such a curve or the payoff for using a
curve at all. Therefore, the thrust of the techniques described
here will not be concerned with possible local weightings of the
matrix during its generation.

The criticism that the nearness requirements among a set of
program sectors is a very sensitive function of the data input to
the program is more telling. There is no economy in tracing a
program, massaging the data, reloading sectors, and measuring
changes in paging rate if the improvements only hold for the
particular set of data used when it was being traced. Fortunately,
many commonly used programs are rather insensitive to data or
respond in terms of overlays (new sectors) specific to specific
variations in the data. For example, Figure 2 shows memory
usage during FORTRAN compilations, with and without COMMON
statements, dimensioned arrays, EQUIVALENCE statements, sub-
routines, calls to library mathematical subroutines, secondary
storage, and console 1/0 routines. These plots give little hint of
the functional differences among the source data compiled other
than a stretchout of various phases of the compilation due to the
number of source statements of a specific type. The horizontal
axis represents execution time measured in units of 2500 in-
structions, while the vertical axis represents virtual memory at

HATFIELD AND GERALD IBM SYST J

Pd

#

S —— Vg L
R T

P bt

Y
< BT TOIT T 0nF T T G 1 e

256-byte resolution ruled into 4096-byte pages. The vertical
lines reflect the fact that the corresponding memory regions are
in use. Similarly, the assemblers we have examined are not
particularly sensitive to differences in instruction type. They
call in new procedures and data areas to handle macro expan-
sions, so that the macro phases of the assembler can be treated
separately with respect to the generation of a nearness matrix
and the ordering of extra procedure and data sectors. But it is
certainly true, especially of application programs, that the uni-
formity of sector nearness requirements over a range of input
data should be established before sector reordering on the basis
of a nearness matrix is attempted.

Given the matrix C, possibly corrected for local variations from
the time average, we wish to find a method of ordering the sec-
tors, and thereby ordering the rows and columns of C so as to
bring the largest ¢, values into square submatrices along the
diagonal. These submatrices do not all have to be the same size,
although all are square. Since the length of a relocatable sector
can vary from a few bytes to a few pages, one would expect dif-
ferent numbers of sectors in the different virtual pages and there-
fore submatrices of sizes s, s,, 54, * - -, 5, With no restrictions on
the integer values of the s, Of course, if only one sector or a
fraction of a sector can fit within each virtual page, the effective
virtual page size should be made some multiple of the actual
virtual page size. One cannot cluster many one-foot cubes in a
one-foot cubical box.

The assumption involved in clustering sectors into submatrices
corresponding to one page (or one effective page) of virtual

memory is not that there will be only one page space available

No. 3 - 1971 PROGRAM RESTRUCTURING

TIME IN NUMBER OF INSTRUCTIONS EXECUTED

reordering
matrix C

matrix
operations

in physical memory. Instead, it is critical to minimize the links
between any page out of physical memory and all the pages in
it. In other words, once a page has been removed from physical
memory, we wish to prolong as much as possible the time until
it is needed again. Treating the problem at a one-page level cor-
responds to assuming that the working set of pages tends to
change incrementally rather than in big jumps. If a working set of
eight or ten pages were always to change completely within a few
instructions but remain relatively undisturbed in between, we
could reasonably cluster at the eight-page level instead of the
one-page level.

We know of no efficient procedure to produce and prove the
optimal ordering of the rows and columns of C to maximize the
sum of the values in the diagonal submatrices,

DI

i,jea

Several heuristic approaches give results that show only limited
additional improvements when operated on by local perturba-
tions. One method uses the eigenvectors of the matrix C. In each
eigenvector, there are some elements that are (absolutely) large
and others that are small. If the elements are taken in this order
and a page is filled with the sectors they correspond to, one can
associate a figure of merit with each eigenvector by comparing
the components of the vector for sectors in the filled page with
all the other components. Ideally, the vector will have large
components associated with enough sectors to just fill up a page,
and very small components elsewhere. In the case of a matrix
that has all its nonzero values clustered in square submatrices
about the diagonal, the eigenvectors will have nonzero values
corresponding only to the members of those clusters. It is as-
sumed that small variations in the values of the elements c;
will produce smaller variations in the distribution of values in the
eigenvectors. As the sectors associated with large values in an
eigenvector are removed from the matrix, new eigenvectors can
be calculated, and the process iterated until all sectors are as-
signed to pages.

An approach that gave slightly better results on the matrices that
we examined can be visualized by considering the sectors to be
physical weightless nodes. Assume also that the value c; in the
nearness matrix is the strength of a spring connecting node i to
node j.” For this analogy to be consistent, matrix C must be sym-
metric; we can insure symmetry by replacing c; with ¢; + ¢;,
for all i # j. This does not vitiate the model since the requirement
that / be near j is equivalent to the requirement that j be near i.
If we fasten each node to the ground with a weak spring of
strength g,® and lift the whole assembly by a node i, we are inter-
ested in the node i that pulls a few other nodes (just enough to

HATFIELD AND GERALD IBM SYST J

fit into a page with it) up close to it and leaves most of the other
nodes near to the ground. For each node i that is pulled up to a
height 4, we need to know the heights of all the other nodes. This
is a simple problem in statics, which can be solved by minimiz-
ing the energy of the system. It turns out that the relative heights
of all nodes below node i are given in the ith row of the inverse
of a matrix D constructed from C as follows:

d;=—c; fori#j
m
dy=>c;+g
j=1
The rows of D inverse are then rated using a figure of merit that
compares for each row i the set of nodes that are raised close to
node i and the remaining set. The size of the set of close nodes is
determined by how many of the sectors will fit into a page with
sector i. The figure of merit compares some function of the sec-
tors in the page with that same function of the rest of the sectors.
We have had equally good results with functions based on the
values of D inverse and C itself. For instance, one can compare
the heights d; of the sectors fitting into a page with the heights d;
of all the excluded sectors, or compare 1/(d; — d;) for i # j, or
dij/(dii — d;). Using the nearness matrix C, one can compare the
nearness values within the proposed page with the nearness
values between those sectors in the page and all other sectors;
specifically,
S ¢y with ¥ e,
1, Jex lea
Jéa
A cluster is made using the candidates in the best row, and the
matrix D! is reduced by the rows and columns of the sectors in
that cluster. Then the rows of D inverse are again ordered by the
figure of merit, and the process of selection is iterated until all
sectors are assigned. For a slight improvement, one can generate
anew D from the reduced C and invert at each stage before select-
ing the best row of D. Ties are handled by tentatively making
each assignment and comparing the next best figures of merit
from the reduced versions of D.

There may come a point when for any possible cluster, the values
of ¢, within the potential cluster are far less than the values
from the cluster to those clusters already formed. At that point,
the strategy changes to clustering so that the sectors all need to
be near the same existing cluster, since clustering nearness across
pages is better than no clustering at all.

When all sectors have been assigned, one problem remains: what
to do about page boundaries. Holes in pages can come about
because sectors do not fit evenly into pages. If sectors are not
allowed to cross over page boundaries, there must be empty
space within the page. The alternative is to pack the sectors

No. 3 - 1971 PROGRAM RESTRUCTURING

holés in
pages

page
boundary
crossovers

together across page boundaries, leaving no holes. Experience
to date indicates the relative success of the latter approach. This
is not surprising, since the presence of holes spreads the relocat-
able sectors over a greater virtual address space. This requires
on the average more pages to be in physical memory at once for
the same number of instructions executed without a page excep-
tion or, said differently, more page exceptions for the same num-
ber of pages in physical memory.

If sectors can cross page boundaries, good choices must be made
of what clusters are adjacent, since a sector that crosses a
boundary will probably require that the clusters in both pages
be in physical memory within a short time of one another. In
order to take advantage of this confluence (or equivalently, to
insure that both pages are in physical memory whenever the
crossing sector is needed), we try to put next to one another the
clusters that have the greatest nearness requirements. Since this
involves merely sequencing and not clustering the clusters, the
problem can be solved analytically.

If we think of the nearness requirements between any two clus-
ters o’ and B’ as simply the sum of the Cii from sectors in one
cluster to sectors in another, or

E C;j = Ayg

iea’

JjeB’

we need only solve the maximal tour (traveling salesman) prob-
lem on the matrix A. This means that a circuit is made of the
clusters so that the sum of the transition values Ayg between

adjacent members of the circuit is maximized; corresponding to
the circuit 1, 3, 2, 4, 5, 1 is the sum a, + a,, + a,, + a,, + a,.
Since the last sector of code does not cross over to the first
virtual page, the last term in the sum can always be set to zero.
The choice of a first cluster is often not arbitrary, since the low
addresses in virtual memory are generally used by control pro-
grams in a nonreloadable sense. Therefore, the circuit can be
converted into a sequence without loss of rigor.

Optimizing solutions to the traveling salesman problem by the
nearest city (in our case, farthest city) method have shown better
paging performance than optimal solutions by the branch and
bound method.® The reason for this may be that it is not equally
important that all clusters be adjacent to their favorite neighbors
but that this feature be biased in favor of the clusters most often
in physical memory. These clusters each tend to have large
values for

Apy =, o
i,jec’

and for a_, to clusters B’, which are also often in physical

8

HATFIELD AND GERALD IBM SYST J

memory. Thus initially biasing the traveling salesman problem
by looking for the greatest valued a,, in A can provide a favor-
able bias.

Code usage displays

So far we have not taken into account the finer points of uneven
usage of code within a module and the importance of choosing
the best sector to cross a page boundary. Rather than automate
the description of such complex situations, we have relied on
computer displays to assist us in further reordering of sectors.
Two principle advantages of on-line displays over the hard-copy
output of a plotter are the potential for changing scale rapidly
and the ability to see within seconds the changes in memory
usage density resulting from sector reordering. Twenty to forty
pages can be examined at low resolution and then those places
where a frequently used sector crosses over into a page occupied
otherwise with infrequently used sectors can be looked at in
great detail. By associating the code usage data with individual
sectors rather than with a particular ordering, the effects of a
reordering can be displayed by simply reordering the retrieval
sequence from the data file.

As was previously mentioned, there are cases when the nearness
matrix alone does not have all the information needed for pro-
ducing a good sector ordering. Fortunately in these cases the
memory usage display is a help in deciding how to do relative
scaling of the c¢;. The display gives an indication of the amount
of memory space traversed within different periods of program

execution; this space can be correlated with local paging be-
havior. Or it may happen that an infrequently used sector i is
placed in the same page with a sector j that is used continually
throughout the program. This is due to the fact that, although the
sectors i and j are not often needed together, during the few
times they are together, their activity is intense enough that the
final value of c; is relatively high. In this case, the c;; value is an
inflated estimate of the need to have sectors j and i on the same

page.

So far it has been assumed that the code within a sector is uni-
formly used, and that the sectors within a virtual page are
uniformly used. This is often not the case. There are several
things that can be done. If the low address or high address por-
tion of a sector is used sparsely or not at all, that sector can cross
the bottom or top boundary, respectively, of the page it lies in.
The effect of lightly used code (such as some error-handling rou-
tines in compilers) is very like that of a hole of dead space. Both
spread the heavily used code farther apart and can potentially
cause extra paging.

No. 3 - 197} PROGRAM RESTRUCTURING

accounting
for code
usage

the
reordering
procedure

Figure 3 Memory usage during third phase of compilation

PR LN RTINSl T
awmhmﬂu&mnw%r
% o

"
AUTOMATICALLY REORDERED ' IMPROVED AUTOMATICALLY REORDERED
AVERAGE WORKING SET=10.25 PAGES AVERAGE WORKING SET= 10.06 PAGES

PAGE NUMBERS

It is often easiest to spot this condition in a display of memory
usage over time. In Figure 3, the time quantum (associated with
the x axis) is 2500 instructions, well within the time it took to
bring in a page from secondary storage on the multiprogramming
system used in this performance study. In this display, during
the third phase of a compilation, virtual page 19 is occupied by
two sectors. The more frequently used one requires that the page
be in physical memory much of the time, but for most of that
time, most of that page is effectively dead space. Placing the
regularly used sector in a page with other regularly used sectors
and the irregularly used sector in a page with other sectors
used at the same times results in reduced page exceptions over
a wide range of available real memory sizes.

In general, one must be careful to prevent frequently used code
from extending even one byte over a page boundary, since the
need for one byte can cause a page exception as surely as a
transfer of 256 bytes into the middle of the page. And if there is
an unused space in the middle of a sector surrounded by uni-
formly used code at both ends, the middie may as well look like
the ends unless it is removed from the sector and combined with
another.

Displays permit the visual effects of real-time reordering to be
examined immediately to insure that the effects of rearrange-
ments over a few pages are nonnegative with respect to the other
pages. For this phase of sector ordering, the use of computer
graphics has produced an order of magnitude speed-up.

The techniques we have discussed so far may be considered as
parts of an interactive process. The procedure foliowed is shown
in the flow chart in Figure 4. There are two primary inputs to the
process: the program to be reordered and the load map of the re-
locatable sectors that comprise it. This load map is usually the
normal list of control sections given to a loader or linkage editor.
In addition, it may include the starting point of procedures and
data arrays that are normally transparent to the linkage editor.

First, a program trace is generated. Then two separate reductions
are applied to the full instruction trace tape. Along one path, the
nearness matrix C and then the derivative matrix D are produced.

HATFIELD AND GERALD IBM SYST J

Figure 4 Sector reordering process

PROGRAM TO
BE EXAMINED

LIST OF [
SECTOR
LOAD POINTS

L

MONITOR GENERATION CLUSTERING

SYSTEM OF M DICES PROCEDURE

REORDERED
LIST OF
SECTORS

ANALY: MATRIX
Of PROGRAM GENERATION
EXECUTION FOR PAGES

ra

PAGE
CARD DECK MEMCRY
FOR PLOTTER USAEE Nl%/l}»\ABI";IEXSS
FiL

DISPLAY

PAGING
SIMULATORS eggR%éng?é

PAGE ON-LINE
EXCEPTION DISPLAY
CURVES

These two matrices, together with the sector load map, are input
to the clustering algorithm, which finds an initial reordering of
sectors for a given page size. This reordering can then be applied
to the original nearness matrix to generate the nearness matrix
for pages.

The other path begins with the application of a sector ordering
to the trace data to produce some representation of program
execution. A page access tape gives the (compressed) sequence
of virtual pages of a specific size needed for program execution.
This tape is then used as input to page replacement simulators,
which measure the paging performance over a range of real
memory sizes. A card deck can be generated for a plotter repre-
sentation of the program’s use of virtual memory over the course
of its execution. For greater detail and additional sector reorder-
ing, this time by human decision directly, a data file is produced
for on-line display, so that the detailed effects of uneven code
density and page boundary crossover can be taken into account.

No. 3 - 1971 PROGRAM RESTRUCTURING

Figure 5 Paging performance for three sector orderings

1000

PAGE EXCEPTIONS

AUTOMATICALLY
REORDERED
SECTORS

RANDOM PAGE
REPLACEMENT

1 1

RANDOM
ORDER

COMPILER
DEVELOPERS'

RANDOM
ORDER

COMPILER

DEVELOPERS®
ORDER

AUTOMATICALLY
REORDERED
SECTORS

RANDOM
ORDER

COMPILER
DEVELOPERS’
ORDER

AUTOMATICALLY
REORDERED
SECTORS

FIFO PAGE
REPLACEMENT

LRU PAGE
REPLACEMENT

80K

120K

120K 160K 0 120K 160K

AVAILABLE MEMORY

Any sector ordering determined at this stage can be fed back
into either path to produce a new page tape and a new page near-
ness matrix.

Paging performance

Generally, the paging reduction associated with the automatic
sector ordering plus hand finishing have been in the range of
two-to-one to ten-to-one.!® We treat a specific example in some
detail. The program involved is a highly modular compiler.’! It
has three phases and uses between 70 and 100 modules per
phase, most of which are overlaid. It uses about 40 pages of
virtual memory for procedures and data. The nucleus of the sup-
porting operating system was also reordered.

Figure 5 shows the performance of three load orderings of the
sectors of the compiler: a random order derived by randomizing
the compiler order; the order used by the compiler developers
themselves; and the automatic order, produced by clustering the
nearness matrix for the compilation under examination. Three
different page replacement strategies were used in each case:
random, first-in first-out (FiFo), and least recently used.'? The
system nucleus was locked into storage for these tests. Figure 6
shows the page exception rate during program execution for the
FIFO algorithm and the three different orderings. The automatic
ordering was later improved with the aid of a memory usage dis-
play to give an ordering that produced about 20 percent fewer
exceptions than the automatic over the range of real memory
sizes. Figure 7 shows plots of memory usage for the random
order, the compiler order, the automatic order, and the improved

HATFIELD AND GERALD IBM SYST J

Figure 6 Page exceptions for three sector orderings

PAGE EXCEPTIONS

200

RANDOM
ORDER

COMPILER
DEVELOPERS'
ORDER

Figure 7 Memory usage for four sector orderings

@
©
ul
o
=
=2
F4
w
1%
<
[

62

50 =

48 5

l 12 PAGES

E 16 PAGES
! 20 PAGES

25 PAGES

AUTOMATICALLY
REORDERED

2 SEC.

TIME IN SECONDS

ih“ﬂf

sl

T gi,,, [Tyt P

P i LA

RANDOM ORDER
AVERAGE WORKING SET=13.17 PAGES

- 1971

|[| HU
LTI i

,:.?FR'F 1
m :

Wi‘

HETRIERI—

COMPILER ORDER AUTOMATICALLY REORDERED

AVERAGE WORKING SET = 12.29 PAGES AVERAGE WORKING SET =10.25 PAGES

PROGRAM RESTRUCTURING

185

IMPROVED AUTOMATICALLY REORDERED
AVERAGE WORKING SET = 10.06 PAGES

ordering
evaluator

automatic order, the principal evident difference between the
last two being the overall use density within pages and the re-
lation of memory use to page boundaries.

One characteristic of the relative performances of good and bad
orderings (Figure 8) seems worth noting: the greatest improve-
ment in performance occurs not at the severest real memory
constraint but in the middle range. This can be (but is not neces-
sarily) explained by the following situation: the better orderings
not only concentrate appropriate sectors into pages, but these
pages also naturally cluster into larger units that satisfy nearness
requirements on the page level —and cluster better than do the
pages of the other orderings. Therefore, when there is space for
twenty or so virtual pages to be in physical memory together,
both kinds of improvements are seen. But when there are only
five or ten pages available, the effect of page clustering is much
less important for all orderings and the effect of clustering sec-
tors into pages alone predominates. This only means that the
nearness matrix is such that clustering sectors into pages also
clusters pages into larger units. Such a distribution of values in
C is not improbable if the nearness requirements between each
sector and all the others do not cut off abruptly at the number of
sectors that will fill a page.

For a poor ordering, the nearness matrix for pages is much more
uniform than for a good ordering; in the case of the good order-
ing with nearly enough real space, the real pages removed from
physical memory are much less strongly tied to the pages in
physical memory. But when there is very little real space, there
are ties between pages in and pages out of physical memory for
both orderings but for different reasons. The poor ordering often
has sectors in one page that are most strongly tied to sectors in
another page. The good ordering clusters sectors well, but now
the well-clustered pages are split apart by the severe physical
space constraint. The good ordering is still better than the poor,
but relatively not so good as when there is more physical space.
An examination of the page nearness matrices for the random
and the automatic ordering gives support to this interpretation
(Figure 9).

An (computationally) inexpensive evaluator of sector orderings
is needed so that a new ordering can be estimated as better or
worse than an old ordering without emulating paging performance
over a range of physical memory sizes and page replacement
algorithms. Given the requirement of independence of replace-
ment algorithm, two data sources would seem appropriate: the
nearness matrix for pages and the plot of memory use over time.
The nearness matrix can potentially be used for establishing a
figure of merit based on the probability p,, of virtual pages being
in physical memory together. Unfortunately, as previously indi-

HATFIELD AND GERALD IBM SYST J

Figure 8 Relative performance for different orderings and page sizes

10

1 EXCEPTION RATIOS:
__ RANDOM
REORDERED
COMPILER _
REORDERED

8K PAGES

RELATIVE PERFORMANCE

4K PAGES

2K PAGES

RANDOM ORDERING
AVERAGE
PAGE TIME WORKING
SiZE QUANTUM SET SIZE

COMPILER ORDERING
AVERAGE
PAGE TIME WORKING
SIZE QUANTUM SET SIZE

AUTOMATICALLY REORDERED
AVERAGE

PAGE TIME WORKING

SIZE QUANTUM SET SIZE

4K 2500 inst . 4K 2500 inst 12.29 4K
5000 5000 15.31

17.05

18.38

8.77

2500 inst
5000

SIZES OF DOTS REFLECT NUMBERS OF REFERENCES

cated, the rigorous solution for all pairs @ and B in an m virtual
page set in n physical pages involves the solution of » () simul-
taneous equations, a solution computationally infeasible for the
m and n we usually consider (m > 20 and n > 5). And so far, we
have not found a reasonable simplifying assumption that will
reduce the number of relevant initial states from # (7).

Evaluations based either on only the diagonal of the page near-
ness matrix or only the diagonal and the » — 1 largest entries

1971 PROGRAM RESTRUCTURING

defining
new sector
boundaries

in each row have failed to give figures of merit consistent with the
relative performances under the paging simulator. Our experi-
ence with the memory use plots has been more encouraging.
Since localization of virtual memory use implies the reduction
of the size of the short-term working set of pages,’® we can
calculate an integral of the working set size as a figure of merit
for a particular sector ordering, and get the average size by divid-
ing that integral by the time for program execution.

Since the working set becomes exceedingly small for one in-
struction (averaging around two pages for the programs we have
examined), the question of the magnitude of the instruction
quanta arises. Again there are obvious reasons for choosing an
interval of the same order of magnitude as the time to replace a
single page. For the 1BM System/360 Model 67 with an 18M 2301
paging drum, this figure is around 5000 instructions. Working
with data at a time resolution of 2500 instructions and a memory
space resolution of 32 bytes, the average working set size in
pages was calculated for various sector orderings, and for time
intervals of 2500, 5000, 7500, and 10,000 instructions. The
evaluator is monotonic, in that figures of merit are lower for
sector orderings that page less (Figure 7). The figures of merit
are monotonic for page sizes other than the size for which the
reorderings are performed (4K) although not as sensitive for the
smaller page sizes.

At present, work is continuing on this problem of calibrating
estimators, including estimations of the joint probability p_, that
two pages will be in physical memory at once. In addition, the
approach of packing sectors into pages so as to minimize the

average size of the working set is being investigated.

One advantage of simulating performance on the basis of a trace
rather than a real program is that low-density areas within sectors
can be rearranged in virtual memory during the simulation with-
out any recoding of the program. Since the simulator that gen-
erates the page request sequence for a given sector ordering does
its own address mapping, sectors can be split and merged at
will, as well as reordered. By defining new sector boundaries
between the high-density and low-density areas of a sector, one
can measure the effect of taking code out of line without recod-
ing the program under examination. One can cluster these sec-
tors, generated purely on the basis of density of code use, and
get an estimate of the upper bound on the improvement possible
without changing the programming strategy and/or storage
strategy.

Displays of main storage usage are good indicators in themselves
of the effectiveness of such strategies and are fast ways to spot

the interaction of procedures and data once a hardware or soft-

HATFIELD AND GERALD IBM SYST J§

Figure 10 Memory usage by two assemblers

1 I
ﬁ“]‘l\ HM u

HL i

LESS LOCALIZED MORE LOCAUIZED

ware trace has been taken. For instance, the comparison of two
assemblers processing the same source listing shows that while
the techniques of one do not imply localized use of virtual
memory, the techniques of the other while performing the same
function generate more localized code (Figure 10).

Concluding remarks

Our general experience so far has shown the display of a virtual
memory use pattern to be a good diagnostic tool. The automatic
sector reordering technique brings noticeable improvements in
paging performance where there is room for improvement, re-
ducing the necessary working space (for a given number of excep-
tions) by as much as one-third to one-half. We have worked
entirely in the environment of a simple hierarchy of main memory
and a uniform speed replacement memory, with all replacement
blocks having the same size. We have found that the reordering
process, assuming a page size of 4K bytes, also produces im-
provements on pages of 8K and 2K bytes with the improvements
favoring the doubled page size over the halved. This is consistent
with a tendency we have noticed in the programs we have ex-
amined for better packed memory to favor larger page sizes. But
the page size for clustering bears a direct relationship to the
program sectors themselves. It has not proved effective to cluster
at the physical page size when the average sector size is half as
large or more. The optimal page size for a program depends on
(besides physical 1/o timings) complicated patterns in the use of
virtual memory, about which very little is known.

+ 1971 PROGRAM RESTRUCTURING

extensions

The techniques that apply to a simple memory hierarchy also can
be used for nested hierarchies with nested replacement sizes,
such as paged memories with caches. Corresponding to the
nested memories must be nested localization, with memory use
first clustered at the smallest replacement size, then these clus-
ters clustered at the next smallest replacement size, etc. Tech-
nigues must be tailored to particular hardware characteristics,
such as a difference between the replacement size and the valida-
tion size of a memory, but the principles of compaction, even
use density, and nearness in time requiring nearness in space
still apply.

Not all problems arising from the over lavish use of memory can
be solved by moving around sectors. Initialization of working
space should be done incrementally as each page worth of space
is used. Localized or “bucket” sorts are important. A sector that
has different nearness requirements in different phases of a pro-
gram’s execution can be duplicated (which is easier to do if it
is read-only) and put near the relevent code and/or data each time
it is used. This increases the total virtual memory requirement
but reduces the local virtual memory requirements. The prin-
ciple that a program should go from one place to another with
the fewest possible steps through distinct pages has obvious im-
plications to list processing and other memory management
strategies. In general, it is best not to anticipate the use of
memory but to realize that where it is needed must be closely
tied to when it is needed.

Besides the obvious extension to slightly different machine
architectures mentioned above, it would seem appropriate to
apply these packing techniques to the following areas.

Sector duplication, based on an analysis of the weighted com-
munications matrix, may be desirable. Simply, if a read-only
sector in one page can be duplicated in another so that the total
communication within all pages is increased and between all
pages is decreased without a major change in the number of
pages needed “‘at once,” such duplication should be performed.
The relevant sector calls and returns must then be updated. Re-
lated to this is the possibility of duplicating specific sectors of the
nucleus of an operating system so that the set of nucleus sectors
needed for FORTRAN compilation would be optimally arranged
with respect to one another. Similarly, the set needed for an
assembly, a coBoL sort, an edit program, etc., would be rear-
ranged. The compiler, assembler, sort, and edit program would
each be using different copies of some parts of the nucleus.

A comparison of the number of communications among sectors
to the number of communications within sectors can be used to

measure the goodness of the modularity of the program.

HATFIELD AND GERALD IBM SYST J

Data areas in a program may be defined as sectors and their
communications examined either through a trace or by examina-
tion of their nearness in the source listing. Thus, any statement
referring to both data areas 4 and B is considered as a com-
munication between 4 and B, and increments c,, and c,,. This
intelligence could be built into an optimizing compiler. Such a
compiler could be aided by its own or user-supplied estimates of
the probability of taking any branch of code, and could insert
such measurement probes into the compiled program.

Specifically, a slight modification of present compilers can pro-
duce information that will be valuable to the applications pro-
grammer in a relocation environment. The modification consists
of the assembly language statements necessary to update a
counter, or an element in a counter array, whenever a transfer is
made to the code representing a labeled source statement. At
the end of program execution, these counters could be dumped
and the programmer could examine them in order to decide how
to group the often used procedure sectors together. If, in addition,
a variable is allocated to contain the number of the last labeled
source statement active, an entire nearness matrix for the cor-
responding procedure sectors could be given to assist the pro-
grammer.

Considering the low cost at both compile and execution time and
the value of the information, this modification would seem to
make a useful optimization option for programs to be executed
under relocation with dynamic address translation.

An intelligent compiler could be extended to reorganize its out-
put object code and data into blocks for improved paging per-
formance.!* Decisions could be made about when to put data next
to code and what data areas to put together. Eventually such a
compiler should also address the whole problem of storage rep-
resentation of data structures (such as pointer vs. matrix vs,
hashed representation of a list data structure), since something
is already known about performance in these areas. Assuming
that software-implemented source languages remain popular
for a few more years, there is an even greater need to provide a
more sophisticated interface between the computer user and
increasingly complicated software.

ACKNOWLEDGMENTS

The authors are grateful for the advice and assistance of the
following members of the IBM Cambridge Scientific Center:
R. J. Adair and P. V. Mockaptetris for adapting the tracing pro-
gram to our particular needs; D. Ecklein, E. C. Hendricks, J. S.
Moore, D. Tuttle, and W. Walker for support programs used in
the generation of graphic displays; Y. Bard and S. G. Greenburg
for discussions of the theoretical aspects of the problem; and

No. 3 - 1971 PROGRAM RESTRUCTURING

M. Dunn, M. Fleming, and other members of the operations
group for generous support on an IBM System/360 Model 67
computer.

FOOTNOTES AND REFERENCES

1.

2.

P. J. Denning, “Virtual Memory,” Computing Surveys 2, No. 3, 153-189
(September 1970).

Some computers that have used or are using address translation for virtual
memory facility or memory hierarchy for improved performance are the
1.C.T. Atlas, the IBM System/360 Model 67, GE 645, IBM System/360
Models 85 and 195, X.D.S. Sigma 7, and RCA Spectra 70/46.

. L. A, Beiady, *“A study of replacement algorithms for a virtual-storage

computer,” IBM Systems Journal 5, No. 2, 78 -101 (1966).

. B. S. Brawn, F. G. Gustavson, and E. S. Mankin, “Sorting in a paging envi-

ronment,” Communications of the ACM 13, No. 8, 483 —484 (August 1970).

. L. W. Comeau, “A study of user program optimization in a paging system,”

ACM Symposium on Operating System Principles, Gatlingburg, Tennessee
(October 1967).

. L. A. Belady, R. A. Nelson, and G. S. Shedler, ‘““An anomaly in space-time

characteristics of certain programs running in a paging machine,” Communi-
cations of the ACM 12, No. 6, 349-353 (1969).

. H. R. Charney and D. L. Plato, “Efficient partitioning of components,”

SHARE/ACM/IEEE Design automation workshop, Washington, D.C.
(July 1968).

. A workable value for g in the context of the nearness matrices we have ex-

amined is g = 2m. In particular, see Charney and Plato, op cit.

. J. D. C. little, K. G. Murty, D. W. Sweeney, and C. Karel, “An algorithm

for the traveling salesman problem” Operations Research 11, 6 (November —
December 1963).

. Various runs of four compilers, four assemblers, two edit programs, and five

applications programs have been examined. Execution time for the tracing
program averages from thirty to sixty times the run time of the program
traced, as does the time for generation of the nearness matrix C, or a page
accessing tape. The clustering program takes from one to two minutes for
a matrix of size 100 X 100. Since the work was done on a time-shared IBM
System/360 Model 67, the tape 1/O could be overlapped with CPU process-
ing for other uses; run in batch mode, this I/O implies an additional 200- or
300-to-1 stretchout. For the example discussed in this paper, a total of four
man-days of an analyst’s time and one-half man-day of one of the compiler
developers’ time was involved. Five hours of computer time was used in
tracing, generating matrices, reordering sectors, and displaying resuits. Page
replacement costs on the System/360 Model 67 can result in a five- or ten-
to-one stretchout per assembly or compilation.

. The compiler is for AED, a computer aided design language developed under

D. Ross at MIT. It is currently developed and maintained by the SOFTECH
Corporation, Waltham, Massachusetts.

. A total of eleven different replacement algorithms were used in comparing

the performance of sector orderings, including all feasible (in the sense that
they did not generate infinite loops) combinations of FIFO used and changed
bits. In all cases, there was a marked reduction of page exceptions for the
automatic ordering of sectors.

. P. J. Denning, “The working set model for programming behavior,” Com-

munications of the ACM 11, No. 5, 323-333 (1968).

. Algorithms based on recognizing loops in source programs, keeping the

loops from crossing page boundaries, and placing in sequence source pro-
gram statements that transfer to one another have already been examined.
See W. W. Ver Hoef, “Automatic Program Segmentation Based on Boolean
Connectivity,” Proceedings SJCC (1971).

HATFIELD AND GERALD IBM SYST J

