
Program  reference  patterns  can  have  a  more  profound  effect on 
paging  performance  in  a  virtual  memory  system  than  page  re- 
placement  algorithms. 

This  paper  describes  experimental  techniques  that  can  sign$- 
cantly  reduce  paging  exceptions  in  existing,  frequently  executed 
programs.  Automated  procedures  reorder  relocatable  program 
sectors,  and  computer  displays of memory  usage  facilitate  fur- 
ther  optimization qf program  structure. 

Program restructuring for virtual memory 
by D. J. Hatfield  and J. Gerald 

Experimental  techniques  have been developed  for improving the 
performance of programs in virtual memory Systems'J by rear- 
ranging, or by duplicating and  rearranging,  relocatable  sectors of 
code. Experimental  results  were  obtained from finished programs, 
rather  than from programs in the design stage.  Improvements in 
paging performance were on  the  order of two-to-one  to  ten-to- 
one. Those  aspects of the  sector  placement problem that can be 
solved without extensive recoding are emphasized. The approach 
used involves a combination of algorithms for  automatic place- 
ment of relocatable  sectors and examination of memory usage 
with the aid of a  computer display. 

virtual Virtual memories allow programs  to  be written as though a 
memory virtually unlimited amount of main storage  space  were available 
systems to them. The large virtual storage  not only relieves programmers 

of planning overlay  structures  for programs larger than available 
physical main storage  space, it makes possible more efficient use 
of computing  system  resources.  Since programs do  not  use all 
of their main storage  space at all times during their  execution, 
it is possible to  keep only small pieces (pages) in main storage 
at any given time. Since virtual memory systems  provide  auto- 
matic address  translation, additional pages can be brought into 
physical memory as they are needed and wherever  there is room 
for them. In this  way,  the pages of many programs  can be in 
main storage  at  the  same  time, with the remaining pages kept 
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For the  purpose of defining a repeatable  environment,  consider 
a single program being executed in a physical memory smaller 
than the  span of virtual memory it uses. One would like to 
minimize the  number of page exceptions  for  a given page size 
(the page size  for virtual and real pages is identical). One way 
to go about this is to study  the effect of the page replacement 
algorithm,S which selects  a page to be removed or written over 
whenever  a new virtual memory page must be brought into phy- 
sical memory. Several comparisons of page replacement  strate- 
gies have  been  made,  often noting as much as 30 to 40 percent 
improvement from one algorithm to  another.  In  particular, an 
algorithm has been found3 that gives the minimum number of 
page exceptions  for  a program. Using this algorithm, one  can 
compare  the  performance of any other algorithm against the 
optimal performance. 

Although there are good reasons  for studying replacement 
algorithms, the  search  for an ideal replacement algorithm is 
complicated by several  factors. The minimum replacement 
algorithm is practically unrealizable, as it requires  a knowl- 
edge of the  future page references of the program every time a 
page fault  occurs.  In  general,  the  better a replacement algorithm, 
the  harder it  is to implement. For instance,  least  recently used 
(LRU) stacks give better  performance than a single resettable 
used bit for  each page, but LRU stacks  are more expensive  to 
implement in hardware.  In  addition,  the algorithm that  overlays 
the  least  recently used page, which works  comparatively well in 
most  situations,  is extremely poor  for  recurrent cyclic excursions 
through a large span of  main storage.  This  request  pattern can 
turn up locally in the  course of an assembly or compilation, or 
during matrix multiplication. To make things a little worse,  a 
multiprogramming environment may bring together  a  spectrum 
of users with different exception  rates  and different responses  to 
changes in their available working space. Thus  the question of 
whose  least  recently  used page becomes important unless all 
users can bring in a new page only on  top of one of their own 
pages (page against themselves). 

Another way of reducing the page exceptions  associated with a 
program is to  have  the program request  fewer pages during the 
course of its exec~t ion .~   For  any program, the  sequence of 
virtual page requests is an absolute  measure of the page re- 
quirements of the  program,  independently of available physical 
space or page replacement algorithm. Anything  that  both  reduces 
the length of the overall sequence and the  number of distinct 
pages used in subsequences should result in reducing the  pro- 
gram’s page exceptions  for  almost all physical memory sizes and 



Assume  that  the page reference  sequence  has been compacted 
to remove all repetitions of single pages, so that b a a . . a c is 
reduced to b a c. Ideally,  the program would have  a page of vir- 
tual  memory removed from physical memory only when there is 
no more need for  the information on that page. As  the  number of 
such  real pages available to it is decreased,  such  a program must 
localize its  use of virtual memory to a correspondingly smaller 
span of pages for longer and longer periods of time. 

An  obvious first guess  as  to how to bring about this localization 
is to take  parts of the program that  are used closely together in 
time and  put  them  close  together in space. For instance,  one 
would put  each  ‘instruction  next  to  the  instruction  or  data loca- 
tion it refers to most. Ignoring the  fact  that  this  often is im- 
possible, as when instruction q is the  most  popular  reference of 
instructions Y, s, and t ,  the size of the problem precludes  an 
optimum solution if one  exists. The resulting program would not, 
in the  vast majority of cases, be processible. But although 
individual instructions  cannot be moved around  at will  in virtual 
memory, larger aggregates of code and data can.  Arrays in FOR- 
TRAN COMMON can be reordered  at compilation time, and sub- 
routines can be  reloaded, as can  the  procedure  and  data  areas of 
many assemblies and compilations. 

An experiment performed in 1967 by L. W. Comeau5  indicates 
that  the conjunction or disjunction of relocatable  sectors of code 
over  virtual pages can  have  a profound effect on paging perfor- 
mance. Changing the load-time ordering of the modules in a 
monitor system  resulted in a five-to-one reduction in total page 
exceptions  generated during the  course of an  assembly. The four 
deck  orderings  were  compared  under  the  same physical memory 
constraint and the  same  replacement algorithm. The orderings 
were: alphabetical (6500 exceptions),  random (4200 exceptions), 
an arrangement  based on knowledge of the  functions of the 
modules and  awareness of the page size (2400 exceptions),  and 
an arrangement based on knowledge of the modules and a record 
of paging actions  generated while the job was in execution ( 1  200 
exceptions). A subsequent  experiment confirmed the relative 
importance of sector  ordering  over  replacement algorithm for this 
monitor during compilations. The best  ordering in Comeau’s 
original experiment  was made by a  programmer familiar with the 
functional nearness  requirements of the  sectors,  and  aware of 
the page exception  rates of the individual pages. The technique 
of automatic  ordering based on a program’s knowledge of near- 
ness requirements is considered now. 

Automatic sector reordering 

Our aim  is to insure  that  sectors of a program that are needed 
within a relatively short time of one  another are found either in 
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the same virtual page or in pages that would otherwise  tend to  be 
in physical memory at  the  same time. In  order  to define the  prob- 
lem, we make certain simplifications. First,  the replacement 
algorithm is ignored except  that it  is assumed  to bring in and  to 
remove one page at  a time. Second, the  sectors  are  considered  to 
be opaque,  since  we  are  not  concerned with what goes on inside 
each  sector. We assume  that  the  average  size of a relocatable  sec- 
tor is small with respect  to  the  size of a page (between  one-tenth 
and one-third page size). Ideally then each page should be filled 
with sectors  that  communicate  more with one  another  than with 
any  other  sectors. In addition,  each page should be filled with 
sectors  that  are used with nearly the  same  frequency; we defer 
consideration of this until later,  since it is partly achieved as  a 
result of clustering on the basis of sector  communication. 

the Consider  a  set of m relocatable  sectors  occupying n pages in 
nearness virtual memory. Sector i should be near  sector j (both should 

matrix be in physical memory together)  whenever  control is transferred 
from an  instruction in sector i to  one in sectorj,  or whenever 
an instruction in one  sector  refers  to  data in the  other. If  all 
such  transfers of control  and  references are known,  a  nearness 
matrix C, can be constructed. The value of the element cij is 
incremented  whenever  there is a  transfer of control or a  data 
reference from sector i to  sector j .  This  nearness matrix is an 
rn X m matrix, with one row and one column for  each  sector i. 
Corresponding  to each different load ordering of the  sectors, 
there is a  reordering of both rows and columns of the  nearness 
matrix,  and  the load orderings  that  cause  the large values in 
C, to  be clustered  around  the diagonal are  the  “best”  orderings. 
(The diagonal elements  themselves  represent  intrasector com- 
munications.) 

It is desirable  to  have  a  precise  evaluator  for  a given arrangement 
of the rows and columns in the matrix. The evaluator should be 
related  to  the  expected  number of page exceptions  associated 
with a given sector  ordering and a given number r of real page 
frames in physical memory. (A page frame is the block of main 
storage  into which a page is loaded.) If for  the  sake of simplicity 
all sectors  are  the  same  fraction of a page size (no  sector is 
loaded  across  a page boundary),  a  reasonable  evaluator might 
be the  sum 

where cij is the  entry in the  nearness matrix and pij is the  prob- 
ability that  sectors i and j are  both in physical memory whenever 
either is in physical memory. If two  sectors i and j are in the 
same  page, pi j  = 1, so that  for  each page a, 



is a  term in the  evaluator. If sector i is in page a! and sectorj is 
in page p, then 

2 cij p, 
icu 
icP 

is a  term in the  evaluator,  where pap is the probability that 
virtual pages a! and p are  both in physical memory whenever 
either is  in physical memory.  Unfortunately, paB is  difficult to 
estimate,  since it depends on the  number r of real page frames 
and the initial state of the physical memory. One needs  the prob- 
abilities for going from one memory state  to  another,  where a 
memory state is determined by the r pages in physical memory. 
To find them is computationally exorbitant when the  transition 
probabilities among pages are known. And until the  sectors  are 
assigned to pages, these  transition probabilities cannot  even be 
determined. So as a first cut  at finding a good ordering, we de- 
cided to maximize the  sum 

Cij  
i ,  j c a  

for  the virtual  pages a, i.e., maximize the  sum of the values cij 
for  sectors within virtual pages (minimize for  sectors  across 
virtual pages). Still assuming that  each page contains an exact 
integral number of sectors, we  may associate with each page 
containing s sectors an s X s submatrix  about  the diagonal. A 
“good”  ordering is one that maximizes the values of the  nearness 
matrix in the  submatrix positions. Intersector  communications 
for  part of a compiler are  shown in Figure 1. The square  sub- 
matrices about  the diagonal show  the  results of a  random  order- 
ing of sectors  at  Figure lA,  of the  order  used by the compiler 
developers  at B, and of an  automatic reordering of sectors  at  C. 
The dashed lines delimit the  number of transfers  between adja- 
cent  pages; larger numbers  here  are  associated with smaller 
probabilities of generating page exceptions when using a  sector 
that  crosses  a page boundary.  Since only the first 24 rows and 
columns of the matrix are shown, the  sectors involved are  not 
necessarily the  same in  all three  cases. 

For  the programs examined,  the  nearness matrix was  constructed 
by processing  a full instruction  trace of the program. All control 
transfers and data  references  were  recorded.  Input/output com- 
mand chains were not  decoded,  and do data  reference lengths 
were not recorded.  Given  a list of the load points of sectors, all 
virtual addresses could be  translated into sector  references.  Con- 
trol transfers from sector i to  sectorj incremented cij, as did an 
instruction in sector i referring to  data in sectorj. Instructions 
involving multiple data  references  to different sectors  were 
treated  as though the  instruction had referred  to  each  sector 
individually. 

NO. 3 . 1971 PROGRAM  RESTRUCTURING 



102 

90 

54 1  4 
"""" ~ 

I 7 
774 18 9 I 63 9 

1 362  21 6 23 ~6_9"_24"_E 

4 6 1054 

21 1214  72 24 

18 23 6 1009 447 
9 6 74 

21 

39 
6 9C 

1009 25130 129 ""_ 
6 1  447  13906  844 112 
9 1  990 90 

I 
7 63 24 I 72  21 6 129 844 90 7294228  1282 I 24 39 1282  13936 

240 72 

9 60 L - - - - - - - - - 90 112 7641 

246 123 

533 

I 

164 ~ 

15 3 I 24 83 

91 16 ~ 18  24  330 153 

I 8 
27 5 !?"122E"96 

46 350  648  27t 

54 9 

72 

8 4  

42 40 244 

6 270 

39  1316 53 
12 

164 3 91 5 

16 

- - - - - - - - - - -. 
18 58 

24  12 

?46 553 24 330 28t 

'750 
23 83 153  8 2% 

4100 

128 

4886 36: 

362 272C 

'05 123  3708 

14 



The resulting matrix represents  the sum of the program’s incre- 
mental nearness  requirements. As such, it  is open  to  the criticism 
that it does not adequately  represent  the more local nearness 
requirements upon which paging depends. It is also open to  the 
criticism that  one program execution only represents its own 
nearness  requirements, and a new nearness matrix must be gen- 
erated  every time that  the program is run. The only decisive way 
to  answer  these criticisms is  by improving the  techniques  for 
generating the matrix and by showing that  an  ordering  based  on 
the matrix generated from one program run gives improved per- 
formance  over  a range of runs of the  same program using differ- 
ent  data.  This  also  presupposes  agreement on what  subset of 
data samples comprises  a  “typical”  set,  and it  is  difficult to find 
general agreement on what  data is typical for  any program. 

The various local phases of the program may be biased in as 
simple or complicated a  manner  as is desired.  First, it is obvious 
that  whenever  a new overlay of program or  data  sectors is made, 
a new matrix must be started.  And if desired, new matrices may 
be generated periodically on completing a certain  number of 
instructions,  transfers,  data  references, or additions  to cii; and 
the individual matrices may be weighted by some  function of the 
virtual memory space  traversed. The space  traversed  between 
two  successive  additions  to cii is a measure of the  tendency of 
two  sectors to cause  a page exception if they  are needed together 
and are  not in the  same  page, It is  difficult to quantify this 
tendency. 

Detailed examination of page exception  rates  as  a  function of 
available real space  does  not yield few or simple expressions. 
Specifically, the  curves  are  often  not well approximated by an 
exponential  or simple algebraic function of real space.  In  other 
words, a program does not necessarily  have  one  natural  size; it 
does  not  degrade uniformly nor sometimes even monotonically.6 
In  addition, it  is not solely the  amount of virtual memory tra- 
versed but  the  amount multiplied by the  frequency  that  tends  to 
cause paging explosions.  And until it  is known how much real 
space will be alloted to  the  program, it  is  difficult to  decide how 
to give weight to  the local amounts of virtual space  traversed. 

To some extent,  the  tendency of a sector  to  be found in physical 
memory when needed is related  to  the time since it was last 
needed. That time can be measured in terms of the  number of 
intervening sectors needed (and should be measured in terms of 
the number of intervening pages). For instance, if the time is 
short  since sectorj was last referred  to  and little virtual memory 
space was used during that time, it is probable  that sectorj  is 
still in real memory and a new reference will not  cause  a page 
exception. As the time between  references to j increases,  the 



sector and j are in the  same page. But here again it is  difficult to 
assign a weighting function. It seems  there is  no need for  the 
weighting function  to  be  monotonic,  since, if the  time between 
references to j is very  large, it is not worth placing j on  the same 
page with the  sectors  that  refer  to it if this  means displacing sec- 
tors  referred to more often. But where should the weighting func- 
tion peak,  and  what should be  its value if the time between refer- 
ences is very small or is very  large? At present, little is known 
about the desired  shape of such  a  curve or  the payoff for using a 
curve  at all. Therefore,  the  thrust of the  techniques  described 
here will not  be  concerned with possible local weightings of the 
matrix during its  generation. 

The criticism that  the  nearness  requirements among a  set of 
program sectors is a very  sensitive  function of the  data input to 
the program is more telling. There is no economy in tracing a 
program, massaging the  data, reloading sectors,  and measuring 
changes in  paging rate if the  improvements only hold for  the 
particular  set of data used when it was being traced.  Fortunately, 
many commonly used programs  are  rather  insensitive to  data  or 
respond in terms of overlays (new sectors) specific to specific 
variations in the  data. For example,  Figure 2 shows memory 
usage during FORTRAN compilations, with and without COMMON 
statements, dimensioned arrays, EQUIVALENCE statements,  sub- 
routines, calls to  library mathematical subroutines,  secondary 
storage,  and  console I/O routines. These plots give little hint of 
the functional differences among the  source  data compiled other 
than a  stretchout of various phases of the compilation due to the 
number of source  statements of a specific type. The horizontal 
axis represents  execution time measured in units of 2500 in- 
structions, while the vertical axis represents virtual memory at 
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256-byte resolution ruled into  4096-byte pages. The vertical 
lines reflect the  fact  that  the  corresponding memory regions are 
in use. Similarly, the  assemblers we have examined are  not 
particularly sensitive  to differences in instruction  type.  They 
call in new procedures  and  data  areas  to handle macro expan- 
sions, so that  the  macro  phases of the  assembler can be treated 
separately with respect to  the generation of a nearness matrix 
and the  ordering of extra  procedure and data  sectors. But it  is 
certainly true, especially of application programs,  that  the uni- 
formity of sector  nearness  requirements  over  a range of input 
data should be established  before  sector  reordering  on  the  basis 
of a nearness matrix is attempted. 

Given  the matrix C, possibly corrected  for local variations from 
the time average,  we wish to find a method of ordering  the  sec- 
tors,  and  thereby ordering the rows and columns of C so as  to 
bring the largest cij values  into  square  submatrices along the 
diagonal. These submatrices do not all have to be the  same  size, 
although all are  square. Since the length of a  relocatable  sector 
can vary from a few bytes  to  a few pages, one would expect dif- 
ferent  numbers of sectors in the different virtual pages and there- 
fore  submatrices of sizes s,, s,, sg, * . -, s, with no restrictions on 
the  integer values of the s i .  Of course, if only one  sector  or a 
fraction of a  sector can fit within each virtual page, the effective 
virtual page size should be made some multiple of the  actual 
virtual page size. One cannot  cluster many one-foot cubes in a 
one-foot cubical box. 

The assumption involved in clustering sectors  into  submatrices 
corresponding to  one page (or  one effective page) of virtual 
memory is not that there will be only one page space available 
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in physical memory. Instead, it is critical to minimize the links 
between any page out of physical memory and all the pages in 
it. In  other  words,  once a page has been removed from physical 
memory, we wish to prolong as much as possible the time until 
it is needed again. Treating  the problem at a one-page level cor- 
responds to assuming that  the working set of pages tends  to 
change incrementally rather  than in  big jumps. If a working set of 
eight or ten pages were  always  to  change completely within a few 
instructions  but remain relatively undisturbed in between, we 
could reasonably  cluster at the eight-page level instead of the 
one-page level. 

matrix We know of no efficient procedure  to  produce  and  prove  the 
operations optimal ordering of the rows and  columns of C to maximize the 

sum of the values in the diagonal submatrices, 

i ,  j e a  

Several  heuristic  approaches give results that show only limited 
additional improvements  when  operated on by local perturba- 
tions. One method uses  the  eigenvectors of the matrix C. In  each 
eigenvector,  there are some  elements  that  are (absolutely) large 
and  others  that  are small. If the  elements are taken in this  order 
and a page is filled with the  sectors  they  correspond  to,  one can 
associate a figure of merit with each  eigenvector by comparing 
the components of the  vector  for  sectors in the filled page with 
all the  other  components.  Ideally,  the  vector will have large 
components  associated with enough sectors  to  just fill up a page, 
and  very small components  elsewhere. In  the  case of a matrix 
that  has all its nonzero values clustered in square  submatrices 
about  the diagonal, the eigenvectors will have  nonzero values 
corresponding only to  the members of those  clusters. It is as- 
sumed that small variations in the values of the  elements cij 
will produce  smaller  variations in the distribution of values in the 
eigenvectors.  As  the  sectors  associated with large values in an 
eigenvector  are removed from the  matrix, new eigenvectors  can 
be calculated, and the  process  iterated until all sectors  are as- 
signed to pages. 

An  approach  that  gave slightly better  results on the  matrices  that 
we examined can be visualized by considering the  sectors  to  be 
physical weightless nodes.  Assume also that  the  value cij in the 
nearness matrix is the  strength of a spring connecting  node i to 
n ~ d e j . ~  For this analogy to be  consistent, matrix C must  be sym- 
metric;  we can insure  symmetry by replacing cij with cij + cji 
for all i # j. This  does  not  vitiate  the model since  the  requirement 
that i be nea r j  is equivalent  to  the  requirement t ha t j  be near i. 
If  we fasten  each  node  to  the ground with a weak spring of 
strength g,* and lift the whole assembly by a node i, we are inter- 
ested in the  node i that pulls a few other  nodes  (just enough to 
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fit into  a page with it) up close  to it and leaves most of the  other 
nodes  near  to the ground. For each  node  i  that is  pulled up  to  a 
height hi,  we need to know the heights of  all the  other  nodes.  This 
is a simple problem in statics, which can be solved by minimiz- 
ing the energy of the  system. It turns  out  that the relative heights 
of all nodes below node i are given in the ith row of the  inverse 
of a matrix D constructed from C as follows: 

d.. = “c.. 
11 f o r i # j  

dii = 2 Cij + g 
m 

j = 1  

The rows of D inverse  are  then  rated using a figure  of merit that 
compares for each row i the  set of nodes that  are raised close  to 
node i  and  the remaining set. The size of the  set of close nodes is 
determined by how many of the  sectors will  fit into  a page with 
sector i. The figure of merit compares some function of the  sec- 
tors in the page with that  same  function of the  rest of the  sectors. 
We have had equally good results with functions based on the 
values of D inverse and C itself. For instance,  one can compare 
the heights dij of the  sectors fitting into  a page with the heights dij 
of all the excluded sectors,  or compare l / (d i i  - dij) for i # j, or 
dij/(dii - dij). Using the nearness matrix C, one  can  compare  the 
nearness values within the  proposed page with the  nearness 
values between those  sectors in the page and all other  sectors; 
specifically, 

cij with cu 
i ,  j r a  i e w  

j i a  

A  cluster is made using the  candidates in the  best  row,  and  the 
matrix D - I  is reduced by the  rows and columns of the  sectors in 
that  cluster.  Then  the rows of D inverse are again ordered by the 
figure  of merit,  and  the  process of selection is iterated until all 
sectors  are assigned. For a slight improvement, one can generate 
a new D from  the  reduced C and invert  at  each  stage  before select- 
ing the  best row of D. Ties  are handled by tentatively making 
each assignment and comparing the  next best figures of merit 
from the reduced versions of D. 

There may come a point when for any possible  cluster,  the values 
of cij within the potential cluster are  far  less  than  the  values 
from  the  cluster  to  those  clusters already formed. At that  point, 
the  strategy changes to clustering so that the  sectors all need to 
be near  the  same existing cluster,  since clustering nearness  across 
pages is better  than no clustering at all. 

When all sectors  have been assigned,  one problem remains: what 
to  do  about page boundaries.  Holes in pages can  come  about 
because  sectors do not fit evenly into pages. If sectors  are  not 
allowed to  cross  over page boundaries,  there  must be empty 
space within the page. The alternative is to pack  the  sectors 
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together  across page boundaries, leaving no holes. Experience 
to  date indicates  the relative success of the  latter  approach.  This 
is not surprising, since  the  presence of holes spreads  the  relocat- 
able  sectors  over  a  greater  virtual  address  space.  This  requires 
on the  average  more pages to  be in physical memory at  once for 
the  same  number of instructions  executed without a page excep- 
tion or, said differently, more page exceptions  for  the  same num- 
ber of pages in physical memory. 

page If sectors can cross page boundaries, good choices  must be made 
boundary of what  clusters  are  adjacent,  since  a  sector  that  crosses  a 

:rossovers boundary will probably require that  the  clusters in both pages 
be in physical memory within a  short  time of one  another.  In 
order  to  take  advantage of this confluence (or  equivalently, to 
insure  that both pages are in physical memory whenever  the 
crossing sector is needed), we try  to  put  next  to  one  another  the 
clusters  that  have  the  greatest  nearness  requirements.  Since this 
involves merely sequencing and  not clustering the  clusters,  the 
problem can be solved  analytically, 

If we think of the nearness  requirements  between  any  two clus- 
ters a’ and p’ as simply the sum of the cij from sectors in one 
cluster  to  sectors in another,  or 

j cP ’  
i d  

we need only solve  the maximal tour (traveling salesman) prob- 
lem on the matrix A. This means that  a  circuit is made of the 
clusters so that  the  sum of the transition values aarP, between 
adjacent members of the circuit is maximized; corresponding  to 
the circuit 1, 3,  2, 4, 5, 1 is the sum aI3 + a?. + aZ4 + u4s + as]. 
Since  the  last  sector of code  does  not  cross  over  to  the first 
virtual page,  the  last  term in the sum can always be set  to  zero. 
The choice of a first cluster is often  not  arbitrary,  since the low 
addresses in virtual memory are generally used by control  pro- 
grams in a nonreloadable  sense.  Therefore,  the circuit can be 
converted  into  a  sequence  without loss of rigor. 

Optimizing solutions  to  the traveling salesman problem by the 
nearest city (in our  case,  farthest city) method have  shown  better 
paging performance than optimal solutions by the branch and 
bound m e t h ~ d . ~  The reason for this may be that it is not equally 
important  that all clusters be adjacent  to  their  favorite neighbors 
but  that  this  feature be biased in favor of the clusters  most  often 
in physical memory. These clusters  each  tend  to  have large 
values for 

and  for aa.,, to  clusters p’, which are  also  often in physical 
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memory. Thus initially biasing the traveling salesman problem 
by looking for  the  greatest valued aaSB, in A can provide a  favor- 
able bias. 

Code usage displays 

So far  we  have  not  taken  into  account  the finer points of uneven 
usage of code within a module and the  importance of choosing 
the  best  sector to  cross a page boundary.  Rather  than  automate 
the  description of such complex situations, we have relied on 
computer displays to  assist  us in further  reordering of sectors. 
Two principle advantages of on-line displays over  the  hard-copy 
output of a  plotter  are  the  potential  for changing scale rapidly 
and the ability to  see within seconds  the changes in memory 
usage density resulting from sector  reordering.  Twenty to forty 
pages can be examined at low resolution and  then  those places 
where  a  frequently used sector  crosses  over  into  a page occupied 
otherwise with infrequently used sectors  can  be looked at in 
great detail. By associating the  code usage data with individual 
sectors  rather  than with a  particular  ordering,  the effects of a 
reordering can be displayed by simply reordering the  retrieval 
sequence from the  data file. 

As was previously mentioned,  there  are  cases when the  nearness 
matrix alone  does  not  have all the information needed for pro- 
ducing a good sector ordering. Fortunately in these  cases  the 
memory usage display is a help in deciding how to  do relative 
scaling of the cij. The display gives an indication of the  amount 
of memory space  traversed within different periods of program 
execution; this space can be  correlated with local paging be- 
havior. Or it may happen  that an infrequently used sector i is 
placed in the same page with a sectorj that is used continually 
throughout  the program. This is due  to the  fact  that, although the 
sectors i and j are not often needed together, during the few 
times they  are  together, their activity is intense enough that  the 
final value of cii is relatively high. In this  case,  the cij value is an 
inflated estimate of the need to  have  sectors j and i on the  same 
page. 

So far it has been assumed  that  the  code within a  sector is uni- 
formly used,  and  that  the  sectors within a virtual page are 
uniformly used. This is often not the  case. There  are several 
things that can be  done. If the low address or high address  por- 
tion of a sector is used sparsely or not at all, that  sector can cross 
the  bottom  or  top  boundary,  respectively, of the page it lies in. 
The effect of lightly used code (such as some error-handling rou- 
tines in compilers) is very like that of a hole of dead  space. Both 
spread  the heavily used code  farther  apart and can potentially 
cause  extra paging. 
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Figure 3 Memory  usage  during  third  phase of compilation 
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AVERAGE WORKINGSET= 10.06 PAGES 

It is often  easiest  to  spot  this condition in a display of memory 
usage over time. In  Figure 3 ,  the time quantum  (associated with 
the x axis) is 2500 instructions, well within the time it took to 
bring in a page from secondary  storage on  the multiprogramming 
system used in this performance  study.  In  this  display, during 
the third  phase of a compilation, virtual page 19 is occupied by 
two  sectors.  The more  frequently used one  requires  that  the page 
be in physical memory much of the  time,  but  for  most of that 
time,  most of that page is effectively dead  space. Placing the 
regularly used sector in a page with other regularly used  sectors 
and the irregularly used sector in a page with other  sectors 
used at the  same times results in reduced page exceptions  over 
a wide range of available real memory sizes. 

In  general,  one  must be careful to  prevent  frequently used code 
from extending  even  one  byte  over  a page boundary,  since  the 
need for  one  byte can cause  a page exception as surely as a 
transfer of 256 bytes  into  the middle of the page. And if there is 
an  unused  space in the middle of a  sector  surrounded by uni- 
formly used code  at both  ends,  the middle may as well look like 
the  ends unless it is removed from the sector  and combined with 
another. 

Displays  permit  the visual effects of real-time reordering  to be 
examined immediately to  insure  that  the effects of rearrange- 
ments  over  a  few pages are nonnegative with respect  to  the  other 
pages. For this phase of sector  ordering,  the  use of computer 
graphics  has  produced an order of magnitude speed-up. 

the The techniques  we  have  discussed so far may be considered  as 
reordering parts of an interactive  process. The procedure followed is shown 
procedure in the flow chart in Figure 4. There  are two primary inputs  to  the 

process:  the program to be reordered and the load map of the  re- 
locatable  sectors  that  comprise  it.  This  load  map is usually the 
normal list of control  sections given to  a  loader or linkage editor. 
In addition, it may include the  starting point of procedures and 
data  arrays  that  are normally transparent  to the linkage editor. 

First, a program trace is generated. Then two  separate  reductions 
are applied to  the full instruction  trace  tape. Along one  path,  the 
nearness matrix C and then the derivative matrix D are produced. 
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Figure 4 Sector reordering process 
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These  two matrices,  together with the  sector load map,  are  input 
to the clustering algorithm, which finds an initial reordering of 
sectors for a given page size.  This  reordering  can  then  be applied 
to  the original nearness matrix to  generate  the  nearness matrix 
for pages. 

The  other path begins with the application of a  sector  ordering 
to  the  trace  data to produce  some  representation of program 
execution. A page access  tape gives the  (compressed)  sequence 
of virtual pages of a specific size  needed  for program execution. 
This  tape is then used as  input to page replacement  simulators, 
which measure  the paging performance  over a range of real 
memory sizes. A card deck can  be  generated  for  a  plotter  repre- 
sentation of the program’s use of virtual memory over  the  course 
of its  execution. For greater detail and additional sector  reorder- 
ing, this time by human decision directly,  a data file  is produced 
for on-line display, so that  the  detailed effects of uneven  code 
density and page boundary  crossover  can  be  taken  into  account. 
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Figure 5 Paging  performance  for  three sector orderings 
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Any sector  ordering  determined  at this stage can be fed back 
into  either  path  to  produce  a new page tape and a new page near- 
ness matrix. 

Paging performance 

Generally,  the paging reduction  associated with the  automatic 
sector  ordering plus hand finishing have  been in the range of 
two-to-one  to  ten-to-one.lo  We  treat  a specific example in some 
detail. The program involved is a highly modular compiler." It 
has three  phases  and  uses  between 70 and 100 modules per 
phase,  most of which are overlaid. It uses  about 40 pages of 
virtual memory for  procedures and data. The nucleus of the  sup- 
porting operating  system was also reordered. 

Figure 5 shows  the  performance of three load orderings of the 
sectors of the compiler: a random order derived by randomizing 
the compiler order;  the  order used by the compiler developers 
themselves;  and  the  automatic order, produced by clustering the 
nearness matrix for  the compilation under  examination. Three 
different page replacement  strategies  were used in each  case: 
random, first-in first-out (FIFO), and  least recently used.I2 The 
system nucleus was locked into  storage  for  these  tests.  Figure 6 
shows the page exception  rate during program execution for the 
FIFO algorithm and the  three different orderings. The automatic 
ordering  was  later improved with the aid  of a memory usage dis- 
play to give an ordering  that  produced  about 20 percent  fewer 
exceptions  than  the  automatic  over  the  range of real memory 
sizes.  Figure 7 shows plots of memory usage for  the random 
order,  the compiler order,  the  automatic  order, and the improved 
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Figure 6 Page exceptions for  three sector orderings 
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Figure 7 Memory  usage  for  four sector orderings 
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automatic  order,  the principal evident difference between  the 
last  two being the overall use  density within pages and  the  re- 
lation of memory use  to page boundaries. 

One characteristic of the relative performances of good and bad 
orderings  (Figure 8) seems worth noting: the  greatest improve- 
ment in performance  occurs not at  the  severest  real memory 
constraint  but in the middle range. This  can be (but is not  neces- 
sarily) explained by the following situation:  the  better  orderings 
not only concentrate  appropriate  sectors  into  pages,  but  these 
pages also naturally cluster  into  larger  units  that satisfy nearness 
requirements on  the page level - and cluster  better  than do  the 
pages of the  other  orderings.  Therefore, when there is space  for 
twenty or so virtual pages to  be in physical memory together, 
both kinds of improvements are seen. But when there  are only 
five or  ten pages available, the effect of page clustering is much 
less  important  for all orderings  and  the effect of clustering  sec- 
tors  into pages alone  predominates. This only means  that  the 
nearness matrix is such  that clustering sectors  into pages also 
clusters pages into larger units. Such a  distribution of values in 
C is not improbable if the  nearness  requirements  between  each 
sector and all the  others  do not  cut off abruptly  at  the  number of 
sectors  that will fill a page. 

For a poor  ordering,  the  nearness matrix for pages is much more 
uniform than  for  a good ordering; in the  case of the good order- 
ing with nearly enough real  space,  the  real pages removed  from 
physical memory are much less strongly tied to  the pages in 
physical memory. But when there is very little real  space,  there 
are ties between pages in and pages out of physical memory for 
both  orderings  but  for different reasons. The poor  ordering  often 
has  sectors in one page that  are  most strongly tied to  sectors in 
another page. The good ordering  clusters  sectors well, but now 
the well-clustered pages are split apart by the  severe physical 
space  constraint. The good ordering is still better  than  the  poor, 
but relatively not  so good as when there is more physical space. 
An examination of the page nearness  matrices  for  the random 
and  the  automatic  ordering gives support  to this interpretation 
(Figure 9). 

An  (computationally)  inexpensive  evaluator of sector  orderings 
is needed so that a new ordering can be  estimated  as  better or 
worse  than  an old ordering without emulating paging performance 
over  a range of physical memory sizes  and page replacement 
algorithms. Given  the  requirement of independence of replace- 
ment algorithm,  two data  sources would seem  appropriate:  the 
nearness matrix for pages and  the  plot of memory use  over time. 
The nearness  matrix  can potentially be  used  for establishing a 
figure of merit based on the probability p ,  of virtual pages being 
in physical memory together.  Unfortunately,  as  previously indi- 
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Figure 8 Relative  performance for different  orderings  and  page sizes 
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Figure 9 Page nearness matrices for  three sector orderings 
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cated,  the rigorous solution for all pairs a and /3 in an rn virtual 
page set in n physical pages involves the solution of n (C) simul- 
taneous  equations,  a solution computationally infeasible for  the 
rn and n we usually consider ( r n  > 20 and n > 5 ) .  And so far, we 
have  not  found  a  reasonable simplifying assumption  that will 
reduce  the  number of relevant initial states from n (,"). 

Evaluations based either on only the diagonal of the page near- 
ness matrix or only the diagonal and  the n - 1 largest  entries 
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in each row have failed to give figures of merit consistent with the 
relative  performances  under the paging simulator. Our experi- 
ence with the memory use  plots  has been more encouraging. 
Since localization of virtual memory use implies the  reduction 
of the  size of the  short-term working set of  pages,'3 we  can 
calculate an integral of the working set  size  as  a  figure,of merit 
for  a  particular  sector  ordering, and get the average  size by divid- 
ing that integral by the time for program execution. 

Since  the working set  becomes exceedingly small for  one in- 
struction (averaging around  two pages for  the  programs we have 
examined), the question of the magnitude of the  instruction 
quanta  arises. Again there  are  obvious  reasons  for choosing an 
interval of the  same  order of magnitude as  the time to  replace  a 
single page. For  the IBM System/360  Model 67 with an IBM 2301 
paging drum,  this figure is around 5000 instructions. Working 
with data  at a time resolution of 2500  instructions  and  a memory 
space  resolution of 32 bytes,  the  average working set size in 
pages was calculated for  various  sector  orderings,  and  for time 
intervals of 2500, 5000, 7500, and  10,000  instructions. The 
evaluator is monotonic, in that figures of merit are lower  for 
sector  orderings  that page less (Figure 7). The figures of merit 
are  monotonic  for  page  sizes  other  than the size  for which the 
reorderings  are performed (4K) although not  as  sensitive  for  the 
smaller page sizes. 

At  present, work is continuing on this problem of calibrating 
estimators, including estimations of the  joint probability pap that 
two pages will be in physical memory at  once.  In  addition,  the 
approach of packing sectors  into pages so as  to minimize the 
average size of the working set is being investigated. 

defining One advantage of simulating performance  on the basis of a trace 
new  sector rather  than  a real program is that low-density areas within sectors 
boundaries can be rearranged in virtual memory during the simulation with- 

out any recoding of the program. Since the simulator that gen- 
erates  the page request  sequence  for  a given sector  ordering  does 
its own address mapping, sectors can be split and merged at 
will, as well as  reordered. By defining new sector  boundaries 
between  the high-density and low-density areas of a  sector,  one 
can  measure  the effect of taking code  out of line without  recod- 
ing the program under examination. One can  cluster  these  sec- 
tors,  generated purely on the basis of density of code  use, and 
get  an  estimate of the upper bound on  the improvement  possible 
without changing the programming strategy  and/or  storage 
strategy. 

Displays of main storage usage are good indicators in themselves 
of the effectiveness of such  strategies  and  are  fast ways to  spot 
the  interaction of procedures  and  data once a  hardware or soft- 
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LESS LOCALIZED MORE LOCALIZED 

ware  trace  has  been  taken. For instance,  the comparison of two 
assemblers  processing  the  same  source listing shows  that while 
the  techniques of one  do  not imply localized use  of virtual 
memory,  the  techniques of the  other while performing the  same 
function  generate  more localized code  (Figure 10). 

Concluding remarks 

Our general  experience so far has shown the display of a virtual 
memory use  pattern to  be a good diagnostic  tool. The automatic 
sector reordering technique brings noticeable  improvements in 
paging performance where there is room for  improvement,  re- 
ducing the  necessary working space (for a given number of excep- 
tions) by as much as one-third to one-half. We have  worked 
entirely in the  environment of a simple hierarchy of  main memory 
and a uniform speed  replacement  memory, with all replacement 
blocks having the  same  size. We have found that  the  reordering 
process, assuming a page size of 4K bytes,  also  produces im- 
provements on pages of 8K and 2K bytes with the  improvements 
favoring the doubled page size over  the halved. This is consistent 
with a  tendency we have noticed in the programs we have ex- 
amined for  better packed memory to  favor larger page sizes. But 
the page size  for clustering bears a direct  relationship to the 
program sectors  themselves. It has  not proved effective to  cluster 
at the physical page size when the average  sector  size is  half as 
large or more. The optimal page size  for  a program depends on 
(besides physical I/O timings) complicated patterns in the  use of 
virtual memory, about which very little is known. 
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The techniques  that apply to  a simple memory hierarchy also can 
be used for  nested  hierarchies with nested  replacement  sizes, 
such  as paged memories with caches.  Corresponding to  the 
nested memories must be nested  localization, with memory use 
first clustered at the smallest replacement  size,  then these clus- 
ters  clustered  at  the  next smallest replacement  size,  etc.  Tech- 
niques  must  be tailored to particular  hardware  characteristics, 
such  as a difference between  the  replacement size and  the valida- 
tion size of a  memory,  but the principles of compaction,  even 
use  density,  and  nearness in time requiring nearness in space 
still apply. 

Not all problems arising from  the  over lavish use of memory can 
be solved by moving around  sectors. Initialization of working 
space should be  done  incrementally  as  each page worth of space 
is used. Localized or  “bucket”  sorts  are important. A sector  that 
has different nearness  requirements in different phases of a  pro- 
gram’s execution can be duplicated (which is easier  to  do if it 
is  read-only)  and  put  near  the  relevent  code and/or  data  each time 
it  is used.  This  increases  the  total virtual memory requirement 
but  reduces  the local virtual memory requirements. The prin- 
ciple that  a program should go from  one place to  another with 
the  fewest  possible  steps through distinct pages has  obvious im- 
plications to list processing  and  other memory management 
strategies. In general, it is best  not to anticipate  the  use of 
memory but  to realize that  where it  is needed  must be closely 
tied to when it  is needed. 

extensions Besides the  obvious  extension  to slightly different machine 
architectures mentioned above, it would seem  appropriate  to 
apply these packing techniques  to  the following areas. 

Sector  duplication, based on an  analysis of the weighted com- 
munications matrix, may be desirable. Simply, if a read-only 
sector in one page can be duplicated in another so that  the total 
communication within all pages is increased  and  between all 
pages is decreased without a major change in the  number of 
pages needed “at once,”  such  duplication should be performed. 
The relevant  sector calls and returns  must  then be updated.  Re- 
lated to this is the possibility of duplicating specific sectors of the 
nucleus of an operating  system  so  that  the  set of nucleus sectors 
needed  for FORTRAN compilation would be optimally arranged 
with respect  to  one  another. Similarly, the  set  needed  for  an 
assembly, a COBOL sort, an  edit  program,  etc., would be rear- 
ranged. The compiler, assembler,  sort,  and  edit program would 
each  be using different copies of some  parts of the  nucleus. 

A comparison of the  number of communications among sectors 
to the  number of communications within sectors can be used to 
measure the goodness of the modularity of the program. 
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Data  areas in a program may be defined as  sectors  and  their 
communications examined either through a  trace  or by examina- 
tion of their  nearness in the  source listing. Thus, any statement 
referring to both data  areas A and B is considered  as  a com- 
munication between A and B ,  and  increments cAH and cHA. This 
intelligence could be built into an optimizing compiler. Such a 
compiler could be aided by its own or user-supplied estimates of 
the probability of taking any branch of code,  and could insert 
such measurement  probes  into  the compiled program. 

Specifically, a slight modification of present compilers can pro- 
duce information that will be valuable to  the applications pro- 
grammer in a relocation environment. The modification consists 
of the assembly language statements  necessary to update  a 
counter,  or an element in a  counter  array,  whenever a transfer is 
made to  the code  representing a labeled source  statement. At 
the end of program execution,  these  counters could be  dumped 
and the  programmer could examine them in order  to  decide how 
to  group  the  often used procedure  sectors  together.  If, in addition, 
a variable is allocated to  contain the number of the  last labeled 
source  statement  active, an entire  nearness matrix for  the  cor- 
responding procedure  sectors could be given to assist  the  pro- 
grammer. 

Considering the low cost  at both compile and  execution time and 
the  value of the information, this modification would seem  to 
make a useful optimization option  for programs to  be  executed 
under  relocation with dynamic  address  translation. 

An intelligent compiler could be  extended  to  reorganize its out- 
put  object  code and data  into blocks for  improved paging per- 
formance.I4 Decisions could be made about when to put  data  next 
to  code and what data  areas  to put  together. Eventually such a 
compiler should also address  the whole problem of storage rep- 
resentation of data  structures  (such  as  pointer vs. matrix vs. 
hashed  representation of a list data  structure),  since something 
is already known about  performance in these  areas. Assuming 
that software-implemented source languages remain popular 
for  a few more years,  there is an even  greater need to provide  a 
more sophisticated  interface between the  computer  user and 
increasingly complicated software. 
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