
Discussed  is  an  optimal  programming  model  for  lot-size,  inven- 
tory,  and  work-force  planning  over  a  jinite  planning  horizon  for 
assembly-type  production.  The  object  is  to  prepare  a  minimum 
cost  lot-size  and  work-force  plan  that  meets  the  deterministic 
demands  within  the  resource  constraints.  Planning  for  end-items, 
components,  and  overtime  is  included. 

The  main  feature  of  the  model  is  the  ability  to  plan  for  assembly 
production  having  precedences  with  nonlinear  (set-up)  costs 
using  essentially  linear  programming  computations. 

Programming  for  economic lot-sizes with  precedences 
between  items 

by S. Gorenstein 

In the  manufacture of certain  products  such  as  computers, 
turbines,  and  automobiles,  various  components  and  subassem- 
blies must be combined in a specified assembly order  over  a 
period of time. Certain items must be on hand before  others can 
be  produced,  and  these  requirements are determined by the 
product  structure.  Management's  objective is to  turn  out timely 
products in the  most  economic way possible,  and  they need to 
determine  production  quantities known as lot-sizes  to  achieve 
this  objective. For these  types of products,  a multi-item lot-size 
determination is necessary. 

In this  paper, we are  concerned with an assembly model whose 
purpose is to provide minimum cost  lot-size,  inventory,  and 
work-force plans for  a  particular  type of production  environment. 
The model is a  linear program for determining multi-item 
economic  lot-sizes  to  meet  deterministic  demands  over a finite 
planning horizon with precedence or order relations between 
the items to  be  produced, including set-up  costs. 

The application of linear programming to  economic lot-size 
decisions  for  the  production of independent items made by 
Manne' was extended by Dzielinski,  Baker, and Manne' and 
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Dzielinski and Gomory3  to include inventory and work-force 
decisions.  In this work, we further  extend  the model to  cover 
nonindependent  commodities,  that is, order relations or  prece- 
dences  exist in that  certain items may have to be on hand before 
other  items can be  made,  as in production for assemblies. We 
describe  a program augmented by the  precedence or  order 
relations. 

The object of the program is to  determine  the  economic lot-sizes 
and the work force required to meet given demands  for  items  over 
a planning horizon of T time periods.  Considering material, labor 
(unit and setup), hiring and firing costs, it determines  the lot- 
size for  each item to  be  produced in each time period of the plan- 
ning horizon. 

In this paper, we show in detail how the  constraints  generated 
by the  order relations between items in the program are con- 
structed. We then discuss solution methods  for  the program and 
show explicitly how the  Dantzig and Wolfe4 decomposition prin- 
ciple can be applied to  the  solution. We also  show how the 
decomposition subproblems can be used to  generate  the  produc- 
tion vector to enter the basis of the program with the  order 
relations,  without having explicitly available the columns of the 
original linear program. Then we consider  the  question of integer , solutions to the program. 

The constraints  generated by the  order relations among items are 
not specifically included in the  constraint  matrix,  but  the genera- 
tion of item requirements  takes  them into account.  This is done 
by an  “explosion” within the linear program from the  solutions 
of the  subproblems  for higher-level items to get the  demands 
for  the lower-level items. This maintains the  order  relations 

~ and enables us to get the  same bound on the  number of noninteger 
solutions  as  that  obtained by Grigoriadis’ for  the program with- 
out order relations. 

Description of the  program 

Following along the  same lines as  that in Manne,’ the activities 
of the program are  the  dominant  production  vectors  expressed 
in terms of labor-hour  requirements. There  are various  payment 
classes of labor: straight-time workers,  straight time plus over- 
time workers, and workers  on different shifts,  and  workers can 
be hired and fired. The resource  constraint is represented by the 
total  number of workers  that can work at  a facility, which  is 
assumed  to also represent  the  capacity of the facility in terms of 
its equipment. Thus, it  is immaterial whether  labor hours or ma- 
chine hours  are  considered  as  a  resource. We use labor  hours 
since  we are incorporating  work-force planning into  the program. 
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The linear program requires the following constraint  equations: 

Constraints  to  meet  the  labor-hour  requirements of the domi- 
nant  production  schedules  (represented by Equation 2) 
Constraints  to preserve the  order  relations among the items 
(represented by Equation 3) 
Constraints  to  select  production  schedules from among the 
dominant  ones  (represented by Equation 4) 
Labor balance equations which ensure  that  the  number of 
workers at the beginning of a period equals  the  number  at  the 
end of the  previous period (represented by Equation 5 )  
Capacity  constraints  (represented by Equation 6) 

The variables in the program select  production  schedules  for 
each item and determine the size of the work  force  needed of 
each  payment  class in each  time period - straight  time,  overtime, 
shift. Also, hiring and firing decisions are indicated. The costs 
include the material costs  associated with the  production  sched- 
ules,  the  various  labor  costs,  and  the hiring and firing costs. 

statement 
of the 

program 

In  summation,  we can say  that  the linear program is a production 
planning model that  incorporates  lot-size,  inventory, and work- 
force  decisions  to minimize overall costs. 

Except  for  Equation 3,  the following program is that given by 
Dzielinski and G ~ m o r y . ~  

Minimize 

where eij represents  the  fraction of the requirement  for  the ith 
item supplied by thejth production  schedule  for  that  item, WL7 is 
the  number of workers of payment class r to be employed at 
facility k in period r, W i ,  is the number of additional workers 
to  be hired,  and W,& is the number of workers to be fired. The 
constant C ,  is the material and holding cost  associated with 
schedule j for item i, RLT is the  cost of a  worker of payment 
class Y at facility k during period r,  r& is the  cost of hiring a 
worker,  and is the  cost of firing a  worker. 

Minimization of the  objective  function is subject  to 

where FijkT is the  number of labor  hours required at facility k in 
period r to produce item i according to schedule j ,  and H l r  is 





is needed pi ,  time periods in advance  to make or assemble item d. 

Suppose  further  that  there  were: 

J ,  dominant  production  schedules  for  product d 
J i  dominant  production  schedules  for  product i 

Then we would have  the  constraint  for  the first period 

J i  .',i 

since  the left side is the quantity of item i produced in period 1, 
as specified by the solution to  the program,  and the right side is 
the  number of item i required in period 1 to produce the pro- 
grammed amount of item d in period p i ,  + 1. 

Thus,  these  constraints can be stated  as 

J i  m J d .  m 

*ij x xijr  nid ' d j  2 Xdjpj , j  t 7  
j = 1  r=1 j=1 r=l 

m =  1 ,  2, * * ., T - p i d  

which gives T - p i ,  equations, where xijr is the  quantity of item 
i to be produced in period T according  to  schedule j .  

Further, if nid of product i are required for  product d at p i ,  periods 
in advance and nie of product i are required for  product e at p i ,  
periods in advance,  the  restrictions  become 

J i  m Jd m de m 

*ij X U T  2 'id 'dj Xdjpid+r + n i e  8, 2 Xejpie+7 (8) 
j = 1  ~ = 1  j=1 7=1 j = 1  7=1 

f o r m = 1 , 2 ; . . , m a x ( T - p i d , T - p i , )  

Thus, wherever  a  part is used in other  parts,  a  set of restrictions 
such  as  these would have  to be met. 

Solution methods 

general The method adopted  for  the solution of the program in the 
considerations expressions 1 through 6 depends on a  number of factors. In the 

rare  case  where  the  number of variables is small, say  under 100, 
a  direct  integer programming approach might be considered. 
Several  integer programming algorithms - cutting plane, branch 
and  bound, partial enumeration-are available, but  there  have 
been no demonstrated  successes with large problems. While the 
simplex algorithm has performed very well in practice  for all 
linear  programs,  that  is,  the algorithm has reached  an optimality 
indication within a  reasonable  amount of time,  the  same  cannot 
be said for  the integer programming algorithms when it comes to 
large problems. 
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However,  where  direct integer programming is not  practicable, 
as is true in most cases of interest, we can seek a  linear program- 
ming solution and  then apply some  heuristic  methods  to  resolve 
the  problem of getting integer solutions. But  we shall see  later 
that in most cases of interest, and specifically those  for which 
this model is designed,  where I ,  the  number of items, is  much 
larger than 2 K T ,  the problem of integer solutions mostly takes 
care of itself. 

In  the  case of the program without  the  precedence  requirements 
(Equation 3),  that is, the program represented by Equations 1, 
2,  4, 5 ,  and 6, it can be  shown  that  there will be  at most 2 K T  non- 
integer solutions  for  the I production  schedules.  This follows 
from there being (3  + 2)KT + Z = E equations in the  system and 
therefore,  at  most,  that many vectors in the  basis,  or that many 
positive variables. However,  the Z constraints of Equation 4 
require  at  least I positive  variables,  and  the 3KT constraints of 
Equation 6 require at least 3KT positive  variables. So there can 
be at most E - ( I  + 3 K T )  = 2KT cases  where more than  one 
variable enters  at a positive level to  satisfy the constraints of 
Equations 4 and 6, and  these  can  be  any of the variables:  produc- 
tion schedule or work force. But from the  nature of the con- 
straints of 4, this means  that  there will be integer  solutions  for 
production  schedules  except for,  at most, 2 K T  cases,  where 
there is a weighting of the  production  vectors  for  an  item. When 
I is much larger than 2 K T ,  some simple rounding process  can  be 
used to  select  production  schedules  where  there are such non- 
integer  solutions. Something as simple as using that  particular 
convex (weighted) combination of the  schedules should hardly 
affect the feasibility or optimality of the  solution. 

But where we have  precedence  requirements the situation may 
not  be so simple. We have now E + P equations, where P is 
the  number of precedence  requirements  that  we  have  to  consider. 
Of course,  there is a  theoretical  bound, I (T  - l ) ,  on  the  number 
of such  equations,  but this is not very helpful since it  is com- 
paratively large. However, in particular  applications it  may be 
that  there  are relatively (relative to I )  few  such  constraints 
since  not all details or subassemblies  are required for higher 
assemblies  but may  go directly into  the  end  product.  Therefore, 
it may be  worth  our while to  determine the magnitude of P and 
see how it compares  to Z. If we still find that I is much greater 
than 2KT + P ,  which is now the maximum number of noninteger 
solutions  for  production  schedules, we can still use some simple 
rounding process on the solution of the linear program. Further, 
even if this condition does  not  hold, 2KT + P is an upper bound 
on the  number of noninteger  solutions; it does not mean that 
there will actually be that many. It may  pay to  solve it as a 
linear program and see how many noninteger solutions  there 







The demand of the final products is exploded  into  its item re- 
quirements.  Resources,  work-force  bounds, are then  allocated 
to  the  various levels on a  pro-rata basis according  to  the total 
demands  for  the level. Then  the program for  the first level only 
is solved using the allocated pro-rata work force as bounds in 
Equation 6. From this,  a solution is obtained  for level 1. Then 
an explosion is made again, this time with the level 1 solution 
serving as  the end products’  demands. The remaining available 
work force (after deducting the level 1 allocation from the first 
program) is allocated to levels 2 and below, and  then  the program 
for level 2 is solved using its allocated work force  as  the  bounds 
in Equation 6. An explosion follows;  this  time from level 2 on 
down using the solution just obtained  for level 2 as  the level 2 
demand.  This  action  continues until the  last level of the  process 
is reached. 

Since  the explosion is done  after  the optimization at  each level, 
and since  the  linear program only calls for  production  earlier 
than required, we are  assured of a  precedence-feasible solution 
in this manner.  But, we are  not  assured  that  the solution will be 
optimal unless all parts of the  entire problem (Equations 1 
through 6) are  considered simultaneously. 

Explosion within the  linear program 

We now discuss  a method which is similar in concept  to  the 
level-by-level optimization,  but will lead to  an optimal solution 
and  at  the  same time overcome  the problem of integer  solutions. 
This will be accomplished by not explicitly including Equation 3 ,  
but by selecting a  production  schedule  for  an item on a level-by- 
level basis in the  decomposition  subprogram. 

We are  concerned with the program 1, 2,  4, 5 ,  6, excluding 3. 
While Equation 3 is excluded from the specific statement of 
the  program, the restrictions  represented will be considered 
during the  course of the solution.  We will concern  ourselves with 
the  phase I1 part,  since  starting  the algorithm with phase I is 
straightforward. 

We use the revised simplex method for  the program 1 , 2 , 4 ,  5 ,  6 
rewritten in matrix form as  9,  10, 11, 12. However,  since  we 
exclude  the  constraints of 3 ,  the  elements of A ,  consist only of 
the Fijk7 and do  not include the y,,, the  elements related to  the 
precedences. Thus, A ,  has 2 K T  rows of which the  last K T  are 
all zero.  Therefore, in the  transformation  to  the  extremal pro- 
gram, 17, 18, 19,  the  vectors Pjk = Aj xjk will have 2 K T  com- 
ponents  instead of 2KT + P .  The extremal problem thus  has  a 
total of 2KT + 2 rows,  compared  to  the 2 K T  + 2 + P rows in 
the  formulation  that included Equation 3.  
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To perform an iteration of phase 11, we have  at hand 2KT + 2 
basic variables and their associated  columns, which together 
with their  cost  components form the basis matrix B". We also 
have the inverse of the  basis, B*", the first row of which con- 
tains the prices (dual variable values), ( 1 ,  n, +). To determine 
the  vector  to  enter  the basis we are led to a  subproblem. Solving 
this program leads either to a  vector  to  enter  the  basis or  to an 
optimality indication, at which point the program is solved. 
However, in solving the  program, or, more particularly that 
part of it related to  the  production  schedule variable x,, we 
have to introduce  a  procedure  that will preserve  the  precedences. 
We  wish to make certain  that  each  production plan vector, Plk, 
to be considered for introduction into  the  basis, will be prece- 
dence  feasible,  that  is, will satisfy the  precedence  requirements. 
In  order  to  ensure  this, we introduce  a level-by-level explosion 
as we proceed with the item-by-item determination of the 
solution. 

We have the subproblem program 

min (TA,  - c l )  xI 

subject  to 

. x l i j =  I ,  i =  1 , 2 , .  . .) I 
.i 

where 

x, = (X , , ,?  . . ., x, ,J1,  x,,,, > X,4J,' . . ' 7  x1/,> . . ., x,/,,/) . . .  

This involves selecting for  each i, the minimum component of 

(T.4 1 - c1 ) 

If the minimum  is the coefficient of .xlij,), then x I i j , ,  is set equal to 1 
and the  other xlij equal  to 0. Or,  schedulej,) for item i is selected. 
However,  to  preserve  the  precedences,  the I items are first 
placed in level order so that  the I items are placed in L classes, 
with level 1 in class I ,  level 2 in class 2,  etc. The minimization is 
first performed for level 1 items.  Then using this level 1 solution, 
an explosion takes place to produce  a demand for level 2  items. 
The dominant level 2  schedules  are then computed from this 
demand, and this set of schedules for a level 2 item will be a sub- 
set of the dominant schedules related to an explosion of the 
original level 1 demand.  (Proof of this appears in Gorenstein.6) 
Then, using only this  set of schedules  for level 2  items, which 
are precedence-feasible since  they result from an explosion of a 
level 1 solution, perform the minimization for level 2 items. This 
means, in effect, that  the matrix A , has had some level 2 columns 
removed for this iteration, and the minimization is over  the  set 
of precedence-feasible  columns  that  have  remained. If the mini- 
mum for level 2 item i, is achieved  for  schedule jl, then x . . 

is set  equal  to 1 and x,ilj is set  equal  to 0 f o r j  # j,. This is done 
1ZlJ 1 



for all level 2 items,  and  the level 2 schedules are procured. 
Again,  an explosion takes  place  to level 3 items,  and  this is used 
as  the level 3 demand. We proceed in this  manner  through all 
levels. Thus,  the solution for  the kth iteration, x lk ,  is precedence- 
feasible,  and this is transformed  to P,,, the  candidate  to  enter  the 
basis, with cost dlk ,  by use of Equations 15 and 16. 

The production plan solution given by Equation 20, 

‘1 = 2 *! X l k  
k 

is a  convex combination of precedence-feasible  solutions  and  is, 
therefore, itself precedence-feasible.  (See proof in Gorenstein.‘) 

In this  manner, by performing the minimization over  precedence- 
feasible  production  plans, we produce  at  each  iteration a candi- 
date production  vector to  enter  the basis which is precedence- 
feasible. This is done  without specifically introducing the con- 
straints of 3,  thus enabling us to work with a smaller extrema1 
problem at  the expense of having to perform the  explosions. But, 
we  have  the  most  important additional advantage - we will have, 
at most, 2KT noninteger solutions  for  production  plans,  since 
the P constraints of Equation 3 are no longer part of the program. 
Therefore,  the  basic solution has, at most, 2 K T  noninteger solu- 
tions. 

Summary 

The model of this paper  results in a near-optimal solution to a 
production,  inventory, and work-force planning problem where 
the  number of items is large compared to  the number of facilities 
and time periods in the planning horizon. It extends  the work of 
Dzielinski and Gomory3  to assembly production. Based on the 
product  structures,  constraints  are  generated  to maintain the 
precedence relations among items and solution methods are 
discussed. Dantzig-Wolfe decomposition is applied to  the pro- 
gram and it is noted  that generalized upper bounding may also 
be  used. A suboptimal  procedure  that  does  a level-by-level 
bptimization is presented,  and it may  be satisfactory in many 
applications. The optimal procedure involves a consideration of 
all levels simultaneously. 
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