Discussed is an optimal programming model for lot-size, inven-
tory, and work-force planning over a finite planning horizon for
assembly-type production. The object is to prepare a minimum
cost lot-size and work-force plan that meets the deterministic
demands within the resource constraints. Planning for end-items,
components, and overtime is included.

The main feature of the model is the ability to plan for assembly
production having precedences with nonlinear (set-up) costs
using essentially linear programming computations.

Programming for economic lot-sizes with precedences
between items

by S. Gorenstein

In the manufacture of certain products such as computers,
turbines, and automobiles, various components and subassem-
blies must be combined in a specified assembly order over a
period of time. Certain items must be on hand before others can
be produced, and these requirements are determined by the
product structure. Management’s objective is to turn out timely
products in the most economic way possible, and they need to
determine production quantities known as lot-sizes to achieve
this objective. For these types of products, a multi-item lot-size
determination is necessary.

In this paper, we are concerned with an assembly model whose
purpose is to provide minimum cost lot-size, inventory, and
work-force plans for a particular type of production environment.
The model is a linear program for determining multi-item
economic lot-sizes to meet deterministic demands over a finite
planning horizon with precedence or order relations between
the items to be produced, including set-up costs.

The application of linear programming to economic lot-size
decisions for the production of independent items made by

Manne' was extended by Dzielinski, Baker, and Manne® and
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Dzielinski and Gomory® to include inventory and work-force
decisions. In this work, we further extend the model to cover
nonindependent commodities, that is, order relations or prece-
dences exist in that certain items may have to be on hand before
other items can be made, as in production for assemblies. We
describe a program augmented by the precedence or order
relations.

The object of the program is to determine the economic lot-sizes
and the work force required to meet given demands for items over
a planning horizon of T time periods. Considering material, labor
(unit and setup), hiring and firing costs, it determines the lot-
size for each item to be produced in each time period of the plan-
ning horizon.

In this paper, we show in detail how the constraints generated
by the order relations between items in the program are con-
structed. We then discuss solution methods for the program and
show explicitly how the Dantzig and Wolfe* decomposition prin-
ciple can be applied to the solution. We also show how the
decomposition subproblems can be used to generate the produc-
tion vector to enter the basis of the program with the order
relations, without having explicitly available the columns of the
original linear program. Then we consider the question of integer
solutions to the program.

The constraints generated by the order relations among items are
not specifically included in the constraint matrix, but the genera-
tion of item requirements takes them into account. This is done
by an “explosion’ within the linear program from the solutions
of the subproblems for higher-level items to get the demands
for the lower-level items. This maintains the order relations
and enables us to get the same bound on the number of noninteger
solutions as that obtained by Grigoriadis® for the program with-
out order relations.

Description of the program

Following along the same lines as that in Manne,' the activities
of the program are the dominant production vectors expressed
in terms of labor-hour requirements. There are various payment
classes of labor: straight-time workers, straight time plus over-
time workers, and workers on different shifts, and workers can
be hired and fired. The resource constraint is represented by the
total number of workers that can work at a facility, which is
assumed to also represent the capacity of the facility in terms of
its equipment. Thus, it is immaterial whether labor hours or ma-
chine hours are considered as a resource. We use labor hours
since we are incorporating work-force planning into the program.
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statement
of the
program

The linear program requires the following constraint equations:

¢ Constraints to meet the labor-hour requirements of the domi-
nant production schedules (represented by Equation 2)
Constraints to preserve the order relations among the items
(represented by Equation 3)
Constraints to select production schedules from among the
dominant ones (represented by Equation 4)
Labor balance equations which ensure that the number of
workers at the beginning of a period equals the number at the
end of the previous period (represented by Equation 5)

¢ Capacity constraints (represented by Equation 6)

The variables in the program select production schedules for
each item and determine the size of the work force needed of
each payment class in each time period — straight time, overtime,
shift. Also, hiring and firing decisions are indicated. The costs
include the material costs associated with the production sched-
ules, the various labor costs, and the hiring and firing costs.

In summation, we can say that the linear program is a production
planning model that incorporates lot-size, inventory, and work-
force decisions to minimize overall costs.

Except for Equation 3, the following program is that given by
Dzielinski and Gomory.?

Minimize

$3C0,+SI TR,

FEE T W T W) ()

where 6, represents the fraction of the requirement for the ith
item supplied by the jth production schedule for that item, W, is
the number of workers of payment class » to be employed at
facility k in period 7, W, is the number of additional workers
to be hired, and W, is the number of workers to be fired. The
constant C;; is the material and holding cost associated with
schedule j for item i, R:” is the cost of a worker of payment
class r at facility & during period 7, F;T is the cost of hiring a
worker, and I',__is the cost of firing a worker.

Minimization of the objective function is subject to

ngijkreij_zH;,W;TfO, k=1,2,---K
T T r=1,2,---T

where € er 18 the number of labor hours required at facility 4 in
period 7 to produce item i according to schedule j, and H;_ is
the number of labor hours provided by a worker.

EE)’iijijEO, m=1,2,---, P 3)
i
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where Yijm Tepresents the coefficients generated by the order
relations to ensure technological feasibility.

Ji

EaiJ:L i=1,2,--1 4)
j=1

2 W’:T_ WI-:T+ WI:T_ E W;,1—71 = 0’ all k, T

L .
» Wy = M, first shift
r=1

second shift

W, =< M;, third shift
r=gq+1
where M, _is the bound on the total number of workers of all
payment classes on shift s.

0' W;T’ WI-(:" W}:T 2 0) all k, T

ij?

We now discuss Equation 3, the one generated by the order
relations between items. The order relations are technological
in that we are concerned with the manufacture of a product
which is assembled from other manufactured and/or purchased
items, called details or subassemblies. It also happens that
there are different levels of subassemblies; that is, some sub-
assemblies are manufactured from other subassemblies that
are on a lower level in the assembly process. In order to manu-
facture the final assembly or end product, known quantities of
subassemblies are required and these must be on hand a known
number of time periods in advance of the time when the assembly
in which they are used . is to be completed. The entire techno-
logical structure is known, and a given demand over a number of
time periods for end products will generate a demand over time
for subassemblies.

However,, we have the additional nontrivial complication that
the order relationships must be maintained. For example, if the
demand for end product A in period 10 is to be met by production
in period 9, then all the subassemblies required for item A must
be produced in time so that they will be available for the produc-
tion of A in time period 9. Thus, producing A earlier requires the
earlier production of its components. The object is to produce
according to a schedule that will minimize the costs of meeting
the (deterministic) demands over a number of time periods for
end products, subject to the capacity constraints and the order
relations.

We now construct Equation 3 to ensure that the order relations
will be maintained. Consider a portion of the product structure
as shown in Figure 1. This indicates that a quantity #n,, of item i
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general
considerations

is needed p,, time periods in advance to make or assemble item d.

Suppose further that there were:

J , dominant production schedules for product d
J, dominant production schedules for product i

Then we would have the constraint for the first period

Ji Ta

2 0, x5 = 1y Z b4 Xt

j=1 =1

since the left side is the quantity of item i produced in period 1,
as specified by the solution to the program, and the right side is
the number of item i required in period 1 to produce the pro-
grammed amount of item d in period p,, + 1.

Thus, these constraints can be stated as

Ji m Jd. m

205 D Xy T Mg X 00 D Xy e

=1 = j=1 =1 )
m=1,2,---,T—p,

which gives T — p,, equations, where x;_is the quantity of item
i to be produced in period 7 according to schedule j.

Further, if n,, of product i are required for product d at p,, periods
in advance and n,, of product i are required for product ¢ at p,,
periods in advance, the restrictions become

Ji m Ja m Je m
2 0 E Xy = Ny E 04 E Xdjpig+r + 1y E 6, 2 X ejpip+r (8)
=1 = j=t 1 =t =1

form=1,2,- -, max(T —p,, T — p,,)

Thus, wherever a part is used in other parts, a set of restrictions
such as these would have to be met.

Solution methods

The method adopted for the solution of the program in the
expressions 1 through 6 depends on a number of factors. In the
rare case where the number of variables is small, say under 100,
a direct integer programming approach might be considered.
Several integer programming algorithms — cutting plane, branch
and bound, partial enumeration—are available, but there have
been no demonstrated successes with large problems. While the
simplex algorithm has performed very well in practice for all
linear programs, that is, the algorithm has reached an optimality
indication within a reasonable amount of time, the same cannot
be said for the integer programming algorithms when it comes to
large problems.
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However, where direct integer programming is not practicable,
as is true in most cases of interest, we can seek a linear program-
ming solution and then apply some heuristic methods to resolve
the problem of getting integer solutions. But we shall see later
that in most cases of interest, and specifically those for which
this model is designed, where I, the number of items, is much
larger than 2K T, the problem of integer solutions mostly takes
care of itself.

In the case of the program without the precedence requirements
(Equation 3), that is, the program represented by Equations 1,
2,4, 5, and 6, it can be shown that there will be at most 2K T non-
integer solutions for the I production schedules. This follows
from there being (3 + 2)KT + I = E equations in the system and
therefore, at most, that many vectors in the basis, or that many
positive variables. However, the I constraints of Equation 4
require at least / positive variables, and the 3K T constraints of
Equation 6 require at least 3K T positive variables. So there can
be at most E — (I + 3KT)=2KT cases where more than one
variable enters at a positive level to satisfy the constraints of
Equations 4 and 6, and these can be any of the variables: produc-
tion schedule or work force. But from the nature of the con-
straints of 4, this means that there will be integer solutions for
production schedules except for, at most, 2KT cases, where
there is a weighting of the production vectors for an item. When
I is much larger than 2K T, some simple rounding process can be
used to select production schedules where there are such non-
integer solutions. Something as simple as using that particular
convex (weighted) combination of the schedules should hardly
affect the feasibility or optimality of the solution.

But where we have precedence requirements the situation may
not be so simple. We have now E + P equations, where P is
the number of precedence requirements that we have to consider.
Of course, there is a theoretical bound, /{7 — 1), on the number
of such equations, but this is not very helpful since it is com-
paratively large. However, in particular applications it may be
that there are relatively (relative to I) few such constraints
since not all details or subassemblies are required for higher
assemblies but may go directly into the end product. Therefore,
it may be worth our while to determine the magnitude of P and
see how it compares to I. If we still find that / is much greater
than 2K T + P, which is now the maximum number of noninteger
solutions for production schedules, we can still use some simple
rounding process on the solution of the linear program. Further,
even if this condition does not hold, 2KT + P is an upper bound
on the number of noninteger solutions; it does not mean that
there will actually be that many. It may pay to solve it as a
linear program and see how many noninteger solutions there
actually are, and then determine if some rounding process will
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decomposition

work adequately or if other methods are required. Such other
methods are discussed later and in Gorenstein.®

While it is possible to view the program in expressions 1 through
6 as a straightforward linear program, an application of the
Dantzig and Wolfe* decomposition principle would provide
computational advantages in most cases when there is a large
number of items.
We rewrite the problem in matrix form as
Min C@ + RW + TF 9
AO+AW+AF=b (10
B0 =b, an
B,W =b, (12)
0,W,F=0

Feasible points can be written as convex combinations of
extreme points

=X =D AN K DA =1, A =0 (13)
k k

W=x,=3 pxye Swe=1,  4,=0 (14)
k k

Then, substituting this in Equations 9 through 12, and setting
P, =4, x;, j=172 (15)
d = ¢ Xy j=1,2 (16)
we have the equivalent program, called the extremal program,
in the following equations.

Minimize
E dlk )\k-f-z de ,uk—i-FF
k k

subject to
2 PuN+ Y Py +AF=b
k k

A =1
k Eﬂk =1
k

Ao iy, F 20,

This is now a program in A iy, F, and if its solution is {)\Z},
{m,}, F°, then the vectors

s, =2\, Xy, 8§, = > My Xppo F (20)
k k
solve the program in the expressions 9 through 12. The solution,
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Figure 2 Assembly of products

using Dantzig-Wolfe decomposition, is discussed in Gorenstein,®
where a ‘“dominance” theorem is proved for this program. The
generalized upper bounding method of Dantzig and Van Slyke’
may also be used. Also see Lasdon and Mackey.®

Level-by-level optimization

We proceed to discuss methods where the precedence relations
need not be explicitly included in the constraints. Before pro-
ceeding to the next suggested method, we will have to define the
concept of “level” in an assembly manufacturing process. For
a more complete discussion, see Loewner.’

If we are considering products such as those shown in Figure 2,
we define the concept of distance 1 for item { in relation to item j
where item 7 is needed directly to make item j. Thus, item 2 is
at distance 1 from item 1, 3, and 4. Similarly, we define distance
2,3, -, and item 2 is also at distance 2 from item 1. We then
define the level of a part as d + 1 where d is the maximum dis-
tance of the part from a final product; each final assembly is
defined as distance zero from itself. This uniquely defines the
level of an item. Thus, level 1 consists of items 1, 4; level 2 of
items 3 and 5; and level 3 has only item 2. In this manner, all
items can be classified into levels —those in the lowest level are
called details. An item in a particular level may be required for
all levels above it but will never be required for levels below its
level. It is this property of levels that is used in the next sug-
gested method.

A method of dealing with the precedences and avoiding the
problem of integer solutions is to solve the problem level by
level. This procedure is suboptimal in that the program is divided
into independent subprograms by means of the levels. It auto-
matically preserves the precedence requirements, and therefore,
Equation 3 no longer appears explicitly. Thus, there will then be,
at most, 2K T noninteger solutions for each level; in most appli-
cations there are usually no more than five or six levels in the
manufacturing process. The procedure is described below.
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The demand of the final products is exploded into its item re-
quirements. Resources, work-force bounds, are then allocated
to the various levels on a pro-rata basis according to the total
demands for the level. Then the program for the first level only
is solved using the allocated pro-rata work force as bounds in
Equation 6. From this, a solution is obtained for level 1. Then
an explosion is made again, this time with the level 1 solution
serving as the end products’ demands. The remaining available
work force (after deducting the level 1 allocation from the first
program) is allocated to levels 2 and below, and then the program
for level 2 is solved using its allocated work force as the bounds
in Equation 6. An explosion follows; this time from level 2 on
down using the solution just obtained for level 2 as the level 2
demand. This action continues until the last level of the process
is reached.

Since the explosion is done after the optimization at each level,
and since the linear program only calls for production earlier
than required, we are assured of a precedence-feasible solution
in this manner. But, we are not assured that the solution will be
optimal unless all parts of the entire problem (Equations 1
through 6) are considered simultaneously.

Explosion within the linear program

We now discuss a method which is similar in concept to the
level-by-level optimization, but will lead to an optimal solution
and at the same time overcome the problem of integer solutions.
This will be accomplished by not explicitly including Equation 3,
but by selecting a production schedule for an item on a level-by-
level basis in the decomposition subprogram.

We are concerned with the program 1, 2, 4, 5, 6, excluding 3.
While Equation 3 is excluded from the specific statement of
the program, the restrictions represented will be considered
during the course of the solution. We will concern ourselves with
the phase 1I part, since starting the algorithm with phase I is
straightforward.

We use the revised simplex method for the program 1, 2,4,5,6
rewritten in matrix form as 9, 10, 11, 12. However, since we
exclude the constraints of 3, the elements of 4, consist only of

the ¢, and do not include the y,,, the elements related to the
precedences. Thus, 4, has 2KT rows of which the last KT are
all zero. Therefore, in the transformation to the extremal pro-
gram, 17, 18, 19, the vectors P, = A, x;, will have 2KT com-
ponents instead of 2K7T + P. The extremal problem thus has a
total of 2KT + 2 rows, compared to the 2KT + 2 + P rows in

the formulation that included Equation 3.
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To perform an iteration of phase 1I, we have at hand 2KT + 2
basic variables and their associated columns, which together
with their cost components form the basis matrix B*, We also
have the inverse of the basis, B*~!, the first row of which con-
tains the prices (dual variable values), (1, 7, 7). To determine
the vector to enter the basis we are led to a subproblem. Solving
this program leads either to a vector to enter the basis or to an
optimality indication, at which point the program is solved.
However, in solving the program, or, more particularly that
part of it related to the production schedule variable x,, we
have to introduce a procedure that will preserve the precedences.
We wish to make certain that each production plan vector, P,,,
to be considered for introduction into the basis, will be prece-
dence feasible, that is, will satisfy the precedence requirements.
In order to ensure this, we introduce a level-by-level explosion
as we proceed with the item-by-item determination of the
solution.

We have the subproblem program
min (w4, — c¢,) x,

subject to

"x .’x

w2y X T xu,/,)

14, Xigps © 7
This involves selecting for each i, the minimum component of
(mA, — ¢,)

If the minimum is the coefficient of Xyijo0 then X\iio is set equal to 1
and the other x, i equal to 0. Or, schedule j, for item i is selected.
However, to preserve the precedences, the / items are first
placed in level order so that the I items are placed in L classes,
with level 1 in class 1, level 2 in class 2, etc. The minimization is
first performed for level 1 items. Then using this level 1 solution,
an explosion takes place to produce a demand for level 2 items.
The dominant level 2 schedules are then computed from this
demand, and this set of schedules for a level 2 item will be a sub-
set of the dominant schedules related to an explosion of the
original level 1 demand. (Proof of this appears in Gorenstein.®)
Then, using only this set of schedules for level 2 items, which
are precedence-feasible since they result from an explosion of a
level 1 solution, perform the minimization for level 2 items. This
means, in effect, that the matrix 4, has had some level 2 columns
removed for this iteration, and the minimization is over the set
of precedence-feasible columns that have remained. If the mini-
mum for level 2 item i, is achieved for schedule j,, then Xiig,
is set equal to 1 and Xy 5 is set equal to 0 forj # j,. This is done
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for all level 2 items, and the level 2 schedules are procured.
Again, an explosion takes place to level 3 items, and this is used
as the level 3 demand. We proceed in this manner through all
levels. Thus, the solution for the kth iteration, x*, is precedence-

feasible, and this is transformed to P, > the candidate to enter the

basis, with cost d,,, by use of Equations 15 and 16.

The production plan solution given by Equation 20,
$ = ; AR Xik

is a convex combination of precedence-feasible solutions and is,
therefore, itself precedence-feasible. (See proof in Gorenstein.?)

In this manner, by performing the minimization over precedence-
feasible production plans, we produce at each iteration a candi-
date production vector to enter the basis which is precedence-
feasible. This is done without specifically introducing the con-
straints of 3, thus enabling us to work with a smaller extremal
problem at the expense of having to perform the explosions. But,
we have the most important additional advantage —we will have,
at most, 2K T noninteger solutions for production plans, since
the P constraints of Equation 3 are no longer part of the program.
Therefore, the basic solution has, at most, 2K T noninteger solu-
tions.

Summary

The model of this paper results in a near-optimal solution to a
production, inventory, and work-force planning problem where
the number of items is large compared to the number of facilities
and time periods in the planning horizon. It extends the work of
Dzielinski and Gomory? to assembly production. Based on the
product structures, constraints are generated to maintain the
precedence relations among items and solution methods are
discussed. Dantzig-Wolfe decomposition is applied to the pro-
gram and it is noted that generalized upper bounding may also
be used. A suboptimal procedure that does a level-by-level
optimization is presented, and it may be satisfactory in many
applications. The optimal procedure involves a consideration of
all levels simultaneously.
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