
Some ways in which the virtual storage systems TSSl360 and CP-
6llCMS have been used in a research environment are described
emphasizing the features of each of these operating systems
found to be most useful. Descriptions of research projects em-
ploying the systems are given with the discussion centering on
the reasons for choosing a particular system in each project.

Uses of virtual storage systems in a scientific environment
by P. H. Callaway, J. P. Considine, and C. H. Thompson

In this paper, we describe some of the ways in which the virtual
storage systems TSSl360 and CP-611CMS have been used by scien-
tists and programmers at the IBM Thomas J. Watson Research
Center. We discuss some of the salient features of the two oper-
ating systems and summarize some of the projects that have
been and are being carried out using these systems. For a more
thorough discussion of the virtual storage concept itself, the
reader is referred to other papers in the l i terat~re.”~

The uses to which these systems are put vary from those that
are relatively small applications, in terms of the demands on the
system and the programming effort involved, to large applica-
tions and systems modifications. Some of the small applications
such as document preparation and batch job preparation occupy
a relatively small portion of the resources of the system but rep-
resent the interests of a large number of users. For instance, on
the TSSl360 system, over half of the commands entered from
terminals are addressed to an editing facility, principally the
REDIT context editor. Although all projects utilize the editing
facilities as an integral part of their programming activities, we
concentrate in this paper on those that represent substantial
nonediting demands on the systems.

As background, we mention that at the Research Center T S S / ~ ~ O
operates on a System/360 Model 67 with one million bytes of
main storage and CP-67 operates on a Model 67 with 768 K bytes
of main storage. In addition, The Research Center has a System/

200 CALLAWAY, CONSIDINE, AND THOMPSON I B M SYST J

360 Model 91 with two million bytes of main storage offering
os1360 with MVT~LASP batch processing and interactive APL
service. There are also several IBM 1800 and 1 130 computers in
the building.

TSS/360 and CP-67 were both designed to utilize the relocation
hardware of the Model 67 of the IBM System/360 to provide
multi-user conversational systems; their approaches, however,
are different. TSS/360 uses the relocation hardware to provide
each user with a maximum virtual storage of either 16 million or
4 billion bytes, depending on the hardware addressing option
selected on the Model 67. The single overall design of T S S / ~ ~ O
attempts to supply a comprehensive system, with supervisor
code, user support code (access methods, etc.) and compilers.3
CP-67 attempts rather to provide each of its multiple users with a
simulated Systeml360 machine - hardware only - in which the
user can then use whatever operating system he wishes; e.g.,
DOS1360, OS/360, CMS. The Cambridge Monitor System (CMS) is
an operating system designed for a single interactive user. It
may be run either on a stand-alone System/360 or on one of the
virtual machines provided by CP-67.4

TSSl360

Some of the features of T S S / ~ ~ O that are used at Research are:
dynamic allocation of resources, the Virtual Access Method
(VAM), the Program Control System (PCS), and sharing of pro-
grams and files.

In addition to these standard features, two important functions
have been added locally. These are the virtual storage context
editor (REDIT) and the remote job entry to the Os/360 batch
machine (NETOS).

Dynamic allocation of resources and VAM are features that are
used more implicitly than explicitly. The resources allocated in-
clude virtual storage and external or file storage space on di-
rect-access devices.

The dynamic allocation of virtual storage is carried out primarily
through the functioning of a program called the dynamic loader.
In general, the dynamic loader is invoked when a program is
executed. It ensures that virtual storage is allocated for all rou-
tines referred to either directly or indirectly by the program.
There are three main features which this program affords the
user:

1. Flexibility in the use of subroutines. The dynamic loader
loads a new version of a subroutine without the necessity of

NO. 3 * 1972 VIRTUAL STORAGE SYSTEMS USE

recompiling the other routines in the program. Although
TSS/360 offers a fully functional linkage editor, most users have
no need of this facility and use only the dynamic loader.

2. Reduction in overhead. Although virtual storage is allocated
for all programs referred to by a program, pages of the pro-
gram that are not referred to during execution are not read
from the program library. In addition, resolution of address
constants is deferred until the page is brought into main stor-
age. Thus, much overhead is not incurred for parts of the
program that are not used.

3. Conservation of virtual storage. It is possible to write a pro-
gram in such a way that virtual storage is not even allocated
for a routine until it is actually needed. A call to the dynamic
loader with the name of a routine as a parameter causes the
loading of that routine in the middle of the execution of a
program. That parameter can be variable so that only rou-
tines needed are loaded and have virtual storage assigned.

The dynamic allocation of file storage is best discussed in con-
junction with VAM. Relocation hardware on the Model 67 dic-
tates a natural unit for the movement of programs and data in
and out of main storage. This unit is the page , which contains
4096 bytes. Thus very efficient supervisor routines have been
developed for processing units of this size. VAM builds on the
existence of these routines by adopting the page as the physical
unit for external or file storage. Direct-access volumes are ar-
ranged in page-size blocks, and data sets are composed of num-
bers of these pages.

When a file is being created, the system assigns a certain number
of pages. If more are needed, they can be obtained dynamically.
The user does not have to preallocate all the space he needs, nor
does he have to consider the type of device his data set is to re-
side on. In general, he may not even know. Also, when he eras-
es data sets, the pages are made available again to the common
pool from which subsequent requests are filled. Because alloca-
tion is in units of a page, there are no requirements for contigui-
ty and no problems with small amounts of unusable space being
scattered around on a volume. In addition, all data sets are cata-
loged, so the user need not keep track of volume information.
The user is thus relieved of many of the bookkeeping duties as-
sociated with creating, maintaining, and erasing files. A rela-
tively high degree of space utilization is also achieved.

The Program Control System (PCS) provides the user with a
means of referencing instruction and data locations within his
program symbolically; i.e., using the symbol rather than some
storage address to specify the location desired. This can be
done while the program continues to execute, or by interrupting
the execution. In addition to displaying and altering variables or

202 CALLAWAY, CONSIDINE, AND THOMPSON IBM SYST J

instructions, the user can also interrupt, and alter or resume the
flow of program execution. When the full capabilities of PCS are
exploited, it becomes a powerful means of specifying a problem
and directing its solution, used in conjunction with the more
conventional language processors such as FORTRAN and the
~ S S / 3 6 0 Assembler.

Central to the symbolic capability of PCS is the existence for
each program of an internal symbol dictionary (ISD). This is a
table of each symbol appearing in the program together with its
location within the program and attributes such as integer, real,
character, halfword, fullword, etc. This table is created by the
compilers and stored with the program in the program library. It
is dynamically loaded into virtual storage when a PCS reference is
made to a symbol within the program; it varies in size from a
few hundred bytes for simple programs to thousands for more
complex ones. Its presence in storage is required for efficient
PCS processing, but it does increase, sometimes substantially,
the storage requirements of the program. Since, however,
there is a very large virtual storage available in TSS/360, this fac-
tor does not present any additional difficulties. To provide a sim-
ilar function in a fixed-size storage system would be more
difficult and costly to the user in terms of either real main stor-
age space or, if the ISD were to be accessed from direct-access
storage, execution time.

The TSS/360 system at the Research Center has a powerful and
efficient locally implemented context editor called REDIT.’ (Most
of the basic commands were adapted from the CMS editor.) All
editing operations are carried out on a copy of the file being edit-
ed. Good performance is achieved primarily because this entire
working copy is maintained in virtual storage throughout the ed-
iting process. (Many editors that run in nonvirtual storage sys-
tems perform a record r/o operation for each request at the cost
of performance.) Modifications are made permanent only when
requested by the user; at that time, the working copy is written
out from virtual storage onto permanent storage. The ability to
acquire large amounts of virtual storage to contain large files
being edited as well as to incorporate additions that might be
made is important to this design. Thus, virtual storage provides
the support for using fast “in-core’’ editing techniques on very
large files. The speed, power, and simplicity of the editor make
it one of the most valuable tools of the Research Center TSS/360
users.

It is clear that we could implement on a nonpaging machine an
editor that did its own software paging. Without the advantage of
hardware interruptions when accessing material not in main
storage, the implementer would have to set up and maintain
tables and check them on each reference.

NO. 3 * 1972 VIRTUAL STORAGE SYSTEMS USE

NETOS' is a facility for sending source programs and data to the
Research Center's System/360 Model 91 for compilation and
execution. Provision is also made for sending data sets produced
on the Model 91 back to T S S / ~ ~ O . Since editing and debugging
are more efficiently done in T S S / ~ ~ O and the execution of large
jobs is more efficiently done on the Model 9 1, the NETOS facility
allows the user to develop and run programs more efficiently and
easily than on either machine alone.

The last of the features of T S S / ~ ~ O to be discussed in this paper is
the sharing of programs and files among users. The ~ s s / 3 6 0 cata-
log structure facilitates sharing of files by allowing a user to as-
sign his own name to a file owned by another user, if the file
owner has granted him access. The owner can grant either read-
only, read-write, or unlimited access. The sharing user can then
utilize this private name as if it were the name of one of his own
files (within the constraints of the type of access granted him).
The virtual storage of the Model 67 is divided by the hardware
into segments. This allows TSS/360 to separate shared programs
and data from private work. Different segment addresses are
assigned to programs that may be shared by more than one user
so that only one copy of a shared program must be in main stor-
age at any time. Each user of a shared program is coupled by the
relocation translation mechanism to the same copy of the shared
program in main storage.

TSS/360 projects

The projects described in this section have been carried out on
T S S / ~ ~ O over the past few years and represent some of the major
demands made on the system resources over that time. Some
projects represent significant increases in function of the basic
TSS/360 system. These include the TSS/360 network development
and the TSS/360 data migration projects.

Some of the projects are major applications heavily dependent
on the unique aspects of large virtual storage and other TSS/360
features. These include the simulation and study of environmen-
tal phenomena, analysis of the behavior of users of the TSS/360
system, automated image processing, the medical data bank and
retrieval system, and the experimental learning projects.

TSS/360 is also used for interactive debugging and editing in con-
junction with production runs on the Model 91 batch machine.
Differential equation solving is an example of this mode of oper-
ation.

One project that has systems orientation but has been imple-
mented as an application is the TSS/360 source library mainte-
nance and retrieval package.

204 CALLAWAY, CONSIDINE, AND THOMPSON IBM SYST J

The project on simulation and study of environmental phenom-
ena has developed programs on T S S / ~ ~ O to simulate the growth
of forests and the analysis of meteorologic and hydrologic
data.”’ Nearly all of the programs are written in FORTRAN. The
debugging and editing of these programs is done on TSS/360 using
the PCS and REDIT functions. Most of the simulation programs
run interactively, with PCS being used as the master control lan-
guage. By running in this fashion, any subset of the program
variables or parameters can be changed symbolically and the flow
of control altered dynamically from the terminal. This allows for
a great deal of freedom with very little preplanning or recompila-
tion and gives the simulation package user a much more powerful
and easier-to-use tool than could be obtained by any of the con-
ventional alternatives. A typical interactive session with the
simulation programs is one to two hours long.

During the two months development of a forest simulation pro-
gram, many algorithms were tried and discarded. The hierarchy
of assumptions was determined empirically in a strongly interac-
tive mode. The resulting model has been tested against the data
from 10 by 10 meter plots of the Hubbard Brook Ecosystem
Study and found to be quite accurate.

Some of the other programs are heavy CPU users and use large
arrays. Typically these programs are debugged interactively on
T S S / ~ ~ O using PCS and small arrays; they are then sent to the
Model 9 1 osi360 machine via the NETOS command for execution
on the large arrays. When the size of the arrays is very large
(1 400K bytes of data or so), the programs are run on TSS/360
where the large virtual storage is available. Many of the pro-
grams also produce output for pen and ink plotter or microfilm
plotter. (Library subroutines have been added to TSS/360 at the
Research Center for this purpose.)

In another project, images to be processed are acquired by an
IBM 1800 satellite computer and sent to the TSS/360 machine
over the 1800-TsS/360 network to be stored in TSS/360 data
sets. One image currently occupies 128K bytes of storage,
and generally three images are in storage at a time. The pro-
grams currently have an arbitrary limit of 25 images at one time
in storage, but there are plans to raise this limit. It would also
be desirable to process color images and higher resolution
images of 512K and 2048K bytes. Virtual storage allows for
the processing of more and bigger images with a minimum of
additional programming effort.

Three man-years have been spent developing the current pro-
grams in this project which are written in PL/I, FORTRAN, and
Assembler language. The data set sharing facilities of TSS/360 are
used for both programs and data. Various system commands are

NO. 3 1972 VIRTUAL STORAGE SYSTEMS USE

issued from within the programs including data set definition and
editing. Dynamic calls on programs from within other programs
are also made via the TSS/360 dynamic loader. In a nonvirtual
storage system, this sort of dynamic operation would have to be
preplanned, and large sets of programs would have to be recom-
piled and/or link-edited. On TSS/360, these programs can use ei-
ther tape or direct-access data sets as input without modifica-
tions or preplanning. The user also has available a hardware fea-
ture of the IBM 2741 terminal-the attention key -to initiate
specific kinds of processing.

As might be expected, this project makes heavy use of the
graphic output facilities provided by the library subroutines
mentioned earlier. Also, some of the basic image-processing
routines are executed on the OS/360 machine, using the NETOS
facility.

medical data “Present methodology for arriving at data-inferred categories
bank and covers a broad area of loosely related techniques, objectives and

retrieval system concepts. The iterative and interactive nature of the analytic
process and the role of the computer in facilitating this analysis
have been examined in a case study of a real problem- the as-
sessment of the physiologic status of critically ill patients.9
Three stages in the evolution of a severe infectious process pro-
ducing a shock state in these patients were identified based on
quantitative physiologic measurements. These stages were inter-
preted in the larger frame of reference provided by the clinical
record and medical experience in a manner which has important
clinical implications.””

This project has been conducted by Research Center investiga-
tors in collaboration with physicians from the Albert Einstein
College of Medicine. Case histories of critically ill patients have
been stored in T S S / ~ ~ O data sets. A system has been developed
for use by a nonprogrammer physician and/or statistician for
analyzing and interrogating this data base and adding to it. Using
PCS and T S S / ~ ~ O command procedures, researchers have de-
veloped a language that allows users to interrogate the system in
their own terms and direct that various analytical functions be
performed or results displayed. This language allows modifica-
tion by merely editing a command procedure rather than by hav-
ing to recompile a program.

Large blocks of data are accessed randomly by this system, with
the data being handled as arrays in storage by the programs
that refer to them. This feature depends heavily on the avail-
ability of large amounts of storage space, without which a
major redesign would be required. The data are stored as
modules in a library; they can then be loaded by the T S S / ~ ~ O
dynamic loader as required, rather than all data having to be

206 C A I I L A W A Y , CONSIDINE, AND THOMPSON IBM SYST J

processed by r/o routines before execution can begin. This fea-
ture means that the four million-byte data base is available for
the programs in a matter of less than a minute rather than the 30
or more minutes which would be required to process that much
data by the regular I/O routines.

The libraries containing the case histories and the programs are
shared, enabling use by several people more or less concurrent-
ly. About eight million bytes of on-line storage are currently in
use. The programs are written principally in FORTRAN with
some Assembler language coding. A link to the 1800 processor
is used for video display on screens driven by the 1800.

One project is studying the behavior of the interactive users of
TSS/360. All transactions of all users of TSS/360 are recorded and
time-stamped by a program called SIPE." Some data reduction
programs are run against these raw data to sort them by user
identification (USERID). This sorted data base is then processed
further to produce profiles for each user and profiles of total sys-
tem use. The following sort of information is compiled: system
response time, user response time, average number of characters
typed by the user of the system, frequency of use of the various
commands, frequency of user attentions (i.e., the user striking
the ATTN key on his 2741 terminal), and the frequency of suc-
cessful and unsuccessful compilations. The analysis of these
data has produced important insights of value to designers of
future interactive systems.

The analysis programs are written in PL/I and build large list
structures and tables that require a large amount of storage. EX-
tensive use is made of both the stream and record I/O features of
PL/I in both sequential and indexed access. The programs are
executed interactively so that the human analyst can intervene
in intractable or unforeseen cases. The large virtual storage sys-
tem has greatly simplified the development of these programs.
The input data for these programs are used by other project mem-
bers for other associated investigations. The data-sharing facili-
ties are very valuable in this regard. TSS/360 also provides
temporary storage which is erased at the end of a terminal ses-
sion. This project has found this storage very valuable for scratch
space during program development and testing, since it does not
affect the allocation of permanent storage for each user.

Documentation and reports are prepared using the editing and
documenting facilities of TSS/360.

In another project, an on-line question-answering system had
been developed to study whether or not there can be an effective
learning environment in which the only material presented is
responses to student-initiated questions. A data base, which is

NO. 3 . 1972 VIRTUAL STORAGE S Y S T E M S USE

potentially very large, is completely loaded into virtual storage.
The programs assume that storage is almost infinite in size.

A large amount of direct-access space is required to store the
data bases and associated programs. TSS/360 sharing allows
many students to use the same data base and also removes the
need for multiple copies of programs and data. REDIT and text-
formatting facilities are used extensively for the preparation of
the data base. PCS has been used for much of the debugging to-
gether with a disk-patching utility that enables corrections to be
made to assembled code by storing the correct instructions in
the copy in the program library. The speed of development of
this system has been definitely increased because of the pres-
ence of the large virtual storage and PCS, but as yet no answer to
the original question has been obtained.

source The primary function of the source library maintenance and re-
library trieval project is to maintain strict control of a source library,

specifically the source code for the TSS/360 system, while giving
the user the necessary tools and information to carry out his
modifications with little inconvenience. A library system is es-
tablished, with the data set sharing functions of T S S / ~ ~ O being the
method to give users access to the library. They are supplied
with commands and routines that enable them to request copies
of the source and submit their changes for inclusion in the li-
brary. The system uses VAM and TSs/360 command procedures
and code to handle the movement of data from library to user
and back. It has greatly simplified the modifications and addi-
tions to TSS/360 system code. It can also be applied to private
source libraries simply by changing the identity of the librarian,
a user with special privileges.

solving The applications just described make frequent use of the special
differential features of TSS/360, which are essential to the progress of these
equations projects. We will now mention briefly some more conventional

computing applications that are carried out on TSS/360.

In one instance, differential equations being solved represent the
excitation and propagation of electrical impulses in nerve and
heart tissue. The solutions are arrived at by an iterative process
based on assumed starting values, and the interactive system is
very useful for monitoring the course of the calculations using
PCS. In this fashion, if the solution diverges, the run can be
terminated and better starting values substituted for the next try.
Another set of equations being solved describes the behavior of
electrons in solids.

In both cases, programs are written in FORTRAN and run on ei-
ther TSS/360 or OS/360. Debugging and editing are carried out on

208 CALLAWAY, CONSIDINE, AND THOMPSON IBM SYST J

TSS/360, and production runs are sent to the faster Model 91 for
os/360 processing via the NETOS link. The use of arrays exceed-
ing the capacity of the Model 91 is anticipated. At that point,
execution will then take place under TSS/360 without reprogram-
ming because of the large virtual storage available.

The TSS/MO system has been augmented by the addition of a
large amount of code developed at the Research Center for the
support of inter-processor communication,12 including the basic
teleprocessing routines called the Computer Access Method
(CAM). Beginning with the support of satellite computers such as
IBM 1800’s and IBM 1 130’s the project expanded to include the
ability for TSS/360 systems to transmit data and job requests
from one to another over telephone lines. An additional function
supplied by this effort was the implementation of the NETOS
remote job entry facility for transmission of jobs to the os/360
batch machine and reception of resulting data sets back to the
T S S / ~ ~ O machine. One of the mainstays of this effort was the fact
that TSS/360 has a special access method designed for the sup-
port of nonstandard devices. Using this access method, we can
issue channel programs to any device and handle the returns as
the device requires with the system simply acting as agent. This
project was also aided by the ability of a virtual storage problem
program to communicate with the supervisor and make specific
requests such as task initiation, special message handling, etc.,
which are essential to the transfer of data from T S S / ~ ~ O system to
TSS/360 System.

The implementation of the system was aided by the data and
program-sharing facilities of TSS/360 that enabled the multi-man
project to proceed in awareness of each other’s work. One spe-
cific aspect of this sharing is that the NETOS processor that re-
ceives output from the OS/360 batch machine can utilize the shar-
ing logic of TSS/360 to ensure that the data sets become the prop-
erty of their rightful owners.

Another modification to the TSS/360 system was in the area of
the on-line data base and its control. On-line storage is a valu-
able asset, and to ensure maximum utilization with minimum in-
convenience to the user, a system called data migration was in-
stituted.’:’ Data sets that have not been referenced for a certain
period of time are moved from the permanently mounted on-line
volumes to demountable volumes. This process is called “migra-
tion”. The data sets remain in the TSS/360 catalog, and when the
user refers to one, he receives a message advising him of its mi-
grated status. He then issues a simple command to restore it to its
on-line status and uses it normally. The successful operation of
this system depends in great measure on the central catalog of
TSS/360 and on VAM. The cataloging of data sets relieves the
user of the need to know where his data set is and allows the

NO. 3 * 1972 VIRTUAL STORAGE SYSTEMS USE

TSSl360
network
development

data
migration

209

system to keep track of its location for him. Thus even though a
data set has been migrated, the user cannot inadvertently create
a data set with the same name on on-line storage, since the cata-
log allows only one data set of a given name for each user.

VAM makes it possible to move data simply between volumes
without elaborate concern for device type or preallocation of
space, thus making the process of migration and restoring of
data sets a very efficient one. The user is only slightly inconve-
nienced by occasionally having to restore a data set that has been
migrated.

What the system gains for the user is in actuality a much larger
effective on-line storage ration than he could possibly have
otherwise. Since the number of volumes mounted at one time on
the system depends on the number of drives available, an in-
crease in total on-line space available can only come with an
increase in available drives, an expensive proposition. Instead,
the increase in effective storage comes at the expense of an in-
crease of the number of volumes available for migrated storage,
a much less expensive item. The user is relieved of the necessity
of deciding to discard data which he might later need just be-
cause there is no place to store it.

These system modifications made use of some of the strong
points of TSS/360-catalog structure and sharing, VAM, and sup-
port of nonstandard devices.

summary The synopsis just presented of the projects in operation under
TSS/360 gives some indication of the scope of uses to which the
system is put. From the system point of view, the central catalog
and sharing mechanisms and the ease with which nonstandard
devices can be supported have been of greatest utility. Effective
communication between user task and supervisor has also been
very valuable. From the application user’s point of view, the
large virtual storage, data and program sharing, and PCS have
found greatest utility. The existence of the powerful and conve-
nient context editor for programs and text, REDIT, has been inte-
gral to the progress of all users.

CP-67/CMS

features The C P - ~ ~ / C M S users at the Research Center have been attracted
by several major features of the system. These include: (1) vir-
tual machine capability and associated functions, (2) simple, eas-
ily learned command and file system in CMS, including a con-
text editor, (3) os/360 compatible FORTRAN, PL/I, etc. available
at the terminal under CMS, (4) good response to interactive
transactions, and (5) compactness of C P - ~ ~ ~ C M S , with the ability
to easily generate new versions containing local modifications.

210 CALLAWAY, CONSIDINE, AND THOMPSON IBM SYST 1

The virtual machine capability provides the designer, implemen-
ter, or modifier of a System/360 operating system with a con-
venient means of carrying out system development and modifi-
cation. The CP-67 system simulates a standard System/360 hard-
ware environment for each user of the system. The user can
load his system into this virtual machine and test, debug, and
modify the system while sharing the real hardware facility with
other users. Since each user is provided with a separate address
space (virtual storage) starting with address zero, few modifica-
tions to systems being tested are required to take account of this
sharing. By eliminating the usual requirement for stand-alone
machine time for system program testing, more diverse use of
the hardware can be made, and numerous development projects
can proceed in parallel.

Several other aspects are significant. Systems can be developed
for machines that are not available for testing or perhaps do not
even exist. Interprocessor communication systems, for instance,
can be tested by activating two different virtual machines and
communicating between them by means of standard communica-
tion hardware. Because CP-67 simulates the Systeml360 hard-
ware environment for each virtual machine, there is a well-de-
fined interface that provides a unique opportunity for monitoring
the activity of a virtual machine. Static displaying of registers,
program status words, and dumping of miin storage is possible,
as well as dynamic tracing and data collection concerning events
of interest in the virtual machine. Thus program development
and debugging are easier in the virtual machine environment
because pertinent data are more readily available to the user
when his system is operating either normally or abnormally.

In addition, working systems can be operated on virtual ma-
chines in the absence of the real hardware, making possible exten-
sions in capability and availability.

The speed of development efforts is also increased by the avail-
ability on the same system (CP-67) of the Cambridge Monitor
System (CMS). This conversational system, affording simple file
structure, easily learned command structure, and good editing
facilities, facilitates program preparation and testing. Convenient
communication between different CMS virtual machines and
users, and between a CMS virtual machine and a virtual machine
running a large operating system, such as Os/360, greatly speeds
up the edit-compile-test cycle required by the development pro-
cess. The editing facilities also support the preparation of docu-
mentation for systems and applications.

System developers and applications programmers are attracted
by the availability under CMS of OS/360 compatible language pro-
cessors, e.g., FORTRAN and PL/I. This means that the results of

NO. 3 . 1972 VIRTUAL STORAGE SYSTEMS USE

interactive program development can be used directly for pro-
duction processing on an Os/360 batch machine.

CP-67 and the Model 67 hardware make it possible for all CMS
users to share the same copy of the CMS nucleus in real main
storage. This enhances CMS performance by reducing the
amount of paging required for essential CMS operations.

CP-67KMS projects

In discussing the projects carried out on CP-67, we distinguish
between those that rely on the existence of the private virtual
machine capability and those that are developed in the CMS
framework. Included under the first classification are the inte-
grated computer network and laboratory automation projects.
The second category includes the symbol manipulation project
and the computer-aided circuit design efforts. Two other impor-
tant activities, SystemlA development and the maintenance and
enhancement of CP-67 and CMS themselves, make much use of
both aspects of the CP-67/CMS system.

network The purpose of the integrated computer network projects is to
projects produce modifications and enhancements of OS/360 code to en-

able computer-computer communication over teleprocessing
lines, including transmission of data, jobs, and The
initial decision to use CP-67 was made partly on the basis of the
availability of the virtual machine capability. In particular, test-
ing of the processor-processor communication links was neatly
handled by activating two or three Os/360 virtual machines under
CP-67 and carrying out the communication over standard hard-
ware.

Members of these projects have claimed that debugging in a vir-
tual machine environment is “an order of magnitude easier”
than in a batch environment. For example, the network system
was converted to a new version of o S / 3 6 0 at another location
under a batch system. It is estimated that this process took al-
most five times longer than it would have in the CP-67 environ-
ment, even though the programmers involved were equally
conversant with the procedures of both systems.

New code was prepared, assembled, and partially debugged
under CMS before the object code, together with the job control
language, was shipped to the O s / 3 6 0 virtual machine for link-ed-
iting and testing. Editing and assembly were able to proceed in
parallel by using the CMS batch facility, which enables the user
to ship jobs to a batch CMS virtual machine for asynchronous
execution, The CMS editor was used to produce project docu-
mentation.

212 CALLAWAY, CONSIDINE, AND THOMPSON IBM SYST J

Programmer productivity in the CP-671CMS environment was felt
by project management to have improved. However, the ob-
servation was made that some conversational users lapse into
sloppy habits, knowing that their errors are easily corrected.
Batch users tend to be more careful because of the larger time
penalty for a wasted run.

The main price paid for the virtual machine capability is the in-
crease (by two to four times) in the amount of CPU time required
for a job. This is due to the overhead in the simulation of the
real System/360 interface including the interception, handling,
and reflection of privileged instructions.

Several laboratory automation experiments at the Research
Center were developed around a System/360 Model 44 and its
operating systems ~ s 4 4 and MPS44. The Model 44 was aug-
mented by separate experimental hardware designed to facilitate
highspeed data acquisition and analysis. The programming takes
full advantage of ,the dedicated machine environment of the
Model 44 and the special hardware to provide a multiprogram-
ming system capable of supporting several real-time experiments
concurrently. These include a Scanning Electron Diffracto-
meter and a Scanning Electron Microscope.

For a variety of reasons it became necessary to supply some of
this function in a virtual machine environment. The first problem
encountered was that the Model 44 multiprogramming system
used dynamic channel program modification to process concur-
rent experiments efficiently. This is a function which CP-67 does
not support in its virtual machine environment. A compromise
had to be made; this took the form of providing separate virtual
Model 44 systems for each experiment, allowing CP-67 to handle
the multiprogramming. By this and other manipulations it was
possible to provide an acceptable level of performance to the
experiments with virtual machines running modified Model 44
systems.

Thus, in spite of the fact that real-time data acquisition and
processing are not an application to which the CP-67 virtual
machine environment appeared particularly suited, careful study
and analysis of the problems resulted in a quite viable system
supporting these experiments.

The projects just described typify the kinds of situations in which
the existence of the virtual machine capability is advantageous.
Let us turn now to some applications that are primarily related
to the CMS environment.

The primary goal of the symbol manipulation project'" has been
the design and implementation of a symbolic mathematics facili-

NO. 3 . 1972 VIRTUAL STORAGE SYSTEMS USE

ty, which provides users with a powerful algebraic capability.
Since its very inception, the project has aimed toward making
this capability available in an interactive environment. The re-
sulting system is called SCRATCHPAD.

SCRATCHPAD consists of some 3000 functions written in the LISP
programming language and runs on an experimental System/360
LlsP system. The features of SCRATCHPAD include a concise
input language with notations resembling those of conventional
mathematics, a large library of symbolic facilities, and a flexible
evaluation mechanism that provides the interactive user with
considerable control over a symbolic calculation.

System/360 LISP was initially implemented in a batch environ-
ment because of the early availability of OS/360. Subsequently, a
completely compatible version was developed for CP-67/CMS to
provide the desired interactive environment for SCRATCHPAD.
The most recent version of System/360 LISP used for the
SCRATCHPAD system requires a large (76810 virtual System/360
machine. Such large storage requirements would considerably
impact the availability of SCRATCHPAD were it restricted to the
batch o s / 3 6 0 environment.

During the development of a large system such as SCRATCH-
PAD, functions tend to be defined, or modified, with consider-
able frequency. This fact, coupled with the usual style of writing
LISP functions as short definitions, made the implementation of
SCRATCHPAD considerably more efficient in an interactive envi-
ronment. The debugging process was enhanced by the ability of
the interactive user to utilize the file-handling and editing capa-
bilities of CMS directly from LISP. System/360 LISP also includes
dynamic debugging facilities such as function tracing and the
ability to display the active function stack after errors and inter-
ruptions.

The characteristics of a symbolic computation using SCRATCH-
PAD are a small number of input/output requests, relatively
widely scattered storage references, and a high CPU utilization.
The typical ratio of virtual CPU activity to overhead activity is
often 9: 1 or higher. Primitive functions and common data ob-
jects have been collected into a small area of storage to improve
paging characteristics. Still, the high requirement for storage and
the large demands on the CPU make it impractical to operate
more than a few SCRATCHPAD systems in the CP-671CMS environ-
ment when a large number of other users are on the system, or
when all SCRATCHPAD users are simultaneously carrying out
large-scale symbolic calculations. Other System/360 LISP activ-
ities place an appreciably lighter load on CP-67/CMS.

Since March 197 1 , approximately 30 user problems have been

214 CALLAWAY, CONSIDINE, AND THOMPSON I B M SYST J

attempted on the SCRATCHPAD symbolic mathematics system.
In many cases, the interactive use of SCRATCHPAD was of con-
siderable benefit in achieving results, either because of the im-
mediate response that it gave, or because of the necessity of try-
ing alternate paths before completing the computation.

Algorithms have been developed using FORTRAN programming
to assist in the design of semiconductor integrated circuits and
device~. '~ The major computing requirements involve compiling
a design engineer-oriented input language into a large sparse sys-
tem of linear algebraic equations and solving them. The develop-
ment of the programs has been done by a group of people who
have found that the management, coordination, and productivity
of the group has been enhanced by working in a time-sharing
environment rather than in a batch environment. The availability
of os/360-compatible compilers in the interactive CMS environ-
ment has given them the best of both worlds by making the re-
sults of the interactive development efforts directly available for
processing on the fast Model 9 1 oW60 batch machine.

The inherently large scale of the applications and the necessity
for generality in the design language make the total program
package reasonably large (about 200 routines, comprising some
60,000 cards for the source decks). Main storage and disk re-
quirements are correspondingly large, so that the assignable vir-
tual machine size and disk-linking features of CMS become im-
portant, as well as, of course, its responsiveness.

One project begun on CP-67 was an experimental multiprocess-
ing operating system for System/370 hardware called System/A.
This project relied heavily on the existing and somewhat modi-
fied resources of CP-671CMS for nearly all aspects of its comput-
ing requirements. The major portion of the programs was being
written, compiled, and debugged under CMS, conversationally or
in batch. System components were to be integrated and tested
using a new test environment dependent on the CP-67 virtual
machine principle, with CMS providirig system maintenance cap-
abilities and used to monitor and debug the multiprocessor soft-
ware that would run in a virtual machine suitably tailored to
simulate the hardware.

There are three major reasons why cP-67/CMS was chosen to
provide the support for this project:

1. PL/I was chosen as the language in which the system would
be written for reasons of programmer productivity, language
features, and capabilities. The PL/I optimizing compiler was
needed for maximum efficiency of the resulting code. Exami-
nation of alternatives led to the decision that this compiler
could be installed under CMS without undue effort.

NO. 3 . 1972 VIRTUAL STORAGE SYSTEMS USE

2. The CP-67 virtual machine capability provided the most
straightforward possibility of modeling the System/370 envi-
ronment and gaining months of development time prior to the
availability of the actual hardware.

3. CP-67/CMS is small and manageable enough that a small num-
ber of people could undertake to modify and enhance it suffi-
ciently to create an environment suitable for the development
of the system. This supposition has been supported by the
speed and ease with which a host of features and functions
have been added to CMS.

system One of the functions carried out on the C P - ~ ~ / C M S system is
programming work on the system itself. This includes maintenance, enhance-

ment, measurement, and analysis of CP-67 and CMS. The virtual
machine capability of CP-67 includes the ability to model a
Model 67 with its relocation hardware as well as the standard
Systems/360 line. The running and testing of new versions of
CP-67 in a virtual Model 67 created by CP-67 constitutes a rela-
tively light load on the system. Consequently, such activities
may take place at any time of the day. Several development cy-
cles (updating, generating a new system, running the new ver-
sion in a virtual Model 67, finding bugs and correcting them)
may be achieved in a morning’s work. Thus development of
measurement and analysis tools and incorporation of additional
CP-67 functions have been able to proceed at a far faster pace
than was possible prior to the existence of the virtual Model 67
function. New program features can easily be received, applied,
tested, and installed on the floor system within the space of a few
hours if necessary, with little effect on the day-to-day running of
the system except for reloading the floor system with the new
items included.

CMS systems programming is similarly straightforward. A stable
CMS virtual machine is used to provide all the support pro-
cedures and utilities to create updated versions of CMS, which
can then be tested from the same virtual machine. A new CMS
component may be created, link-edited into the nucleus and test-
ed in a matter of minutes. Nonresident or transient modules may
be handled even faster. All together, with the aid of the powerful
CMS procedures for program preparation, CMS and CP-67 systems
programming proceeds rapidly without the need for off-hours
testing and stand-alone machine time.

summary This synopsis of the projects undertaken on CP-67/CMS indicates
the uses to which the unique features of that system have been
put at the Research Center. For systems programmers and ap-
plications programmers who wish an interactive system with
OS/360-compatible language processors, the C P - ~ ~ ~ C M S combina-
tion has proved quite satisfactory. While the availability of the

216 CALLAWAY, CONSIDINE, AND THOMPSON IBM SYST J

. I virtual ented application-oriented users machine on the function system, users leads who there to find a are large their still number a requirements number of systems-ori- of primarily satisfied

by the system.

Summary comment

This paper described some of the uses to which the virtual stor-
age systems are being put at the IBM Thomas J . Watson Re-
search Center. In addition to these relatively large-scale uses of
the systems, a number of people are using the systems primarily,
or even exclusively, for editing and document preparation. The
interactive nature of these systems commends them to this ap-
plication, and the presence of powerful editors simplifies it fur-
ther.

To summarize the Research Center experience with interactive
virtual storage systems, we can say that when functions exist,
users will find ways to exploit them for the solution of their
problems. Problems undertaken on a system tend to reflect the
functional capabilities of that system, and the ease with which
that system can be used. The users at the Research Center have
found ~ S S / 3 6 0 and C P - ~ ~ E M S useful tools in the furtherance of
their research goals.

ACKNOWLEDGMENT
The authors would like to thank the users of virtual storage sys-
tems at the Research Center for the time they have spent with
us, discussing the uses to which they are putting these comput-
ing systems. We hope we have faithfully if not adequately pre-
sented their work.

CITED REFERENCES
I . R. P. Parmelee, T. 1. Peterson, C. C. Tillman, and D. J. Hatfield, “Virtual

storage and virtual machine concepts”, IBM Systems Journal 11, No. 2,
99-130(1972).

2. B. W. Arden, B. A. Caller, T. C. O’Brien, and F. H. Westervelt, “Program
and addressing structure in a time-sharing environment,” Journal of the
A C M 13, No. 1, 1 - 16 (1969).

3. A. S. Lett and W. L. Konigsford, “TSS/360: A time-shared operating sys-
tem”, AFIPS Conference Proceedings, Fall Joint Computer Conference 33,
IS-28 (1968). Also, TSS/360 Concepts and Facilities, C28-2003, IBM
Corporation, Data Processing Division, White Plains, New York (1968).

4. R. A. Meyer and L. H. Seawright, “A virtual machine time-sharing system,”
IBM Systems Journal9, No. 3, 199-218 (1970).

5 . C. H. Thompson, User‘s guide to the Research Context Editor, Research
Report RA 28, IBM Thomas J. Watson Research Center, Yorktown Heights,
New York (November 1971).

6. W. S. Hobgood, “Evaluation of an interactive-batch system network”, IBM
Systems Journul 11, No. I , 2 - IS (1972).

7. D. B. Botkin, J. F. Janak, and J . R. Wallis, “Rationale, limitations, and as-
sumptions of a northeastern forest growth simulator,’’ IBM Journal of Re-
search and Development 16, No. 2, 101 - 116 (March 1972).

NO. 3 . 1972 VIRTUAL STORAGE SYSTEMS USE 217

8. N. C. Matalas and J. R. Wallis, “In hydrology h is a household word,” Pro-
ceedings of the Warsaw Symposium of the International Association of Sci-
entijic Hydrology 1, 375-393 (1971).

9. R. M. Goldwyn, L. Loh, and J. H. Siegel, “The analysis of physiologic ab-
normalities in the critically ill using a time-shared system for the conversa-
tional manipulation of a large data bank”, Proceedings of Princeton Confer-
ence on Information Sciences and Systems, 317 (1969).

10. R. M. Goldwyn, H. P. Friedman, and H. H. Siegel, “Iteration and interac-
tion in computer data bank analysis: A case study in the physiologic classifi-
cation and assessment of the critically ill”, Computers and Biomedical Re-
search 4,607 -622 (1971).

11. W. R. Deniston, “SIPE: A TSS/360 Software Measurement Technique”,
Proceedings of the 24th National Conference of the ACM, 229-245 (1969).

12. R. M. Rutledge, A. L. Vareha, L. C. Varian, A. H. Weis, S. F. Seroussi, J.
W. Meyer, J . F. Jaffe, and M. A. K. Angell, “An interactive network of
time-sharing computers”, Proceedings of the 24th National Conference of
the A C M , 431-441 (1969).

13. J . P. Considine and A. H. Weis, “Establishment and maintenance of a stor-
age hierarchy for an on-line data base under TSS/360”, AFIPS Conference
Proceedings, Fall Joint Computer Conference 35, 433 -440 (1969).

14. D. Fredericksen and R. W. Ryniker, “A computer network interface for
OS/MVT”, Proceedings ofSHAREXXXVI(1971) (in press).

15. D. B. McKay, D. P. Karp, J. W. Meyer, and R. S. Nachbar, “Exploratory
research in netting”, Chapter 12 of Computer Communication Networks,
edited by N. Abramson and F. Kuo, Prentice-Hall, Englewood Cliffs, New
Jersey (in press).
Research Center, Yorktown Heights, New York.

16. J . H. Griesmer and R. D. Jenks, “SCRATCHPAD/I-An interactive facili-
ty for symbolic mathematics”, Proceedings of the 2nd Symposium on Sym-
bolic and Algebraic Manipulation, Editor, S. R. Petrick, Association for
Computing Machinery, New York, New York, 42-58 (1971).

17. G. Hachtel, F. Gustavson, R. Brayton, and T. Grapes, “A sparse matrix
approach to network analysis”, Computerized Electronics, Proceedings of
the 2nd Cornell Electrical Engineering Conference, School of Electrical
Engineering, Cornell University, Ithaca, New York, 68-82 (1969).

218 CALLAWAY, CONSIDINE, AND THOMPSON

