Banking operations often require complex facilities for their
data processing. This application required a multiprocessor
configuration controlled by a single job step running continuously
for many hours a day. Discussed are the special access methods
and recovery procedures designed for this environment. The
paper also describes a particularly efficient sorting technique
evolved for handling large volumes of paper documents.

Design features of a real-time check-clearing system
by J. A. Banham and P. McClelland

The transactions involved in the operations of the banking in-
dustry often require the use of data processing facilities in a
manner that is different from that of other industries. A large
volume of documents must be processed. Many data entries are
made, and the data must be processed quickly to provide a short
turnaround time. The check-clearing operation is typical of the
industry.

The passage taken by a check through a banking system is simi-
lar in all countries; the difference in England lies solely in the
large size of the centralized clearing operation, which is facilitat-
ed by the small number of banks (seven) who operate all the
current (checking) accounts in England and Wales or act as
clearing agents for the others. Among them they have some
10,000 branches of which four banks have over 2,000 each and
of which another has fewer than 10. The seven banks are all
members of the Committee of London Clearing Bankers that
lays down all the standards and procedures involved in the ex-
change of checks among the banks.' These banks clear an aver-
age of about 4,000,000 checks per day, the number rising to twice
that on a peak day.

In this paper, we describe the techniques used in the clear-
ing system of the National Westminster Bank. This large,
real-time, data-entry, document-handling system receives up
to 2,200,000 checks daily, sorts them uniquely for return

NO. 4 - 1972 CHECK-CLEARING SYSTEM

to the bank branches, reconciles the total value with the
presenting bank, and provides output to debit drawers’ ac-
counts. The data processing facilities of the system consist of
an IBM System/360 Model 65 coupled to three 1BM System/360
Model 40s.

Problems encountered in designing the system required certain
facilities for their solution. In the paper, the system is described
as a whole indicating why it became necessary to provide these
facilities. Among the problems was the need for the following:
(1) a powerful restart and recovery technique, (2) unique data
management, (3) an efficient sorting technique, (4) a long job
step, (5) computer-controlled task scheduling, and (6) an easily
varied configuration. Because they are believed to be novel, the
solutions to the first three problems are discussed in detail.

Destruction of the input file by the sorting operation, such that
there can never be any backtracking to a checkpoint, is the rea-
son for the restart and recovery problem. New data management
facilities were required because 4,000 data groups that were
entered at up to 100 entry points had to be indexed, accessed,
concatenated, merged, sorted, split, etc. rapidly. The sort tech-
nique designed for the system sorts in six passes what would
require 20 on a conventional digit sort. It does this by building a
sort table based on the document numbers that actually happen
to be present on a particular day and the sequence in which they
are expected to appear on each pass.

We first describe the system, including the hardware configura-

tion and program architecture. We then discuss the work flow
through the system and certain special features. Finally, the
special access method and the sorting techniques are examined
in detail.

System description

After the close of business each day, the staff in each branch
separate all the checks that have been presented to them that
day, and that are not drawn on accounts held at their branch,
into seven bundles, one for each of the clearing banks. The
checks are then encoded with their amounts in magnetic ink
characters. A control voucher, known as a DCV, is encoded with
the total amount of the bundle. A control list of the amounts in
each bundle is produced as a by-product of the encoding opera-
tion. All the bundles are then mailed together to the Head Office
of the bank in London, where the following morning all the bun-
dles from every branch of that bank are sorted and delivered to
the Head Office of the bank on which the checks were drawn
(see Figure 1).

BANHAM AND MC CLELLAND IBM SYST J

Figure 1 Clearing operation

BRANCHES

Al A2

B,C,D B,C,D B,C,D
A EXCEPT A1 A EXCEPT A2 A2 A EXCEPT A3

RS

C
o}

HEAD OFFICE
A

C's BRANCHES D's BRANCHES

HEAD OFFICE
B

A C,D AC.D A C,D
B EXCEPT Bl B EXCEPT B2 B EXCEPT B3

B2

BRANCHES

REFERENCE LETTERS ON ARROWS INDICATE DIRECTION OF FLOW OF
CHECKS DRAWN ON THE BANK OR BRANCH REFERENCED

Each major bank has a computerized clearing system to handle
the incoming checks. Any automated clearing system must pro-
vide sorting capacity to sort all the checks to branch order, at
least. The complete magnetic ink code line must be captured
from as many of the checks as possible. This data is used to cre-
ate magnetic tapes for use on the bank’s bookkeeping system. It
is also used to provide audit trails both to control payment for
the checks to other banks and also to charge bank branches for
the checks they receive. The movement of checks and control
documents is illustrated in Figure 1. Checks not successfully
read by the reader-sorter machines must be manually posted to
the customer’s account by the branch.

Additional requirements for this system included:

Improving the service to the branches by sorting the checks
into serial number within account number order for each
branch ‘

Providing an automated trial balance, so that the value of all
checks received, including those rejected by the reader-sort-
ers, can be reconciled with the other banks more easily
Providing a wide range of statistics, financial summaries, and
a microfilm record of the code line of each check read to
enable subsequent differences to be traced more easily

No. 4 - 1972 CHECK-CLEARING SYSTEM

Figure 2 Hardware configuration

4 1BM 1403 UNITS IBM 2540
SELECTIVE TAPE CARD READ
LisT PUNCH

l 40 |BM 2260

VDUs FOR
RECONCILIATION

SYSTEM/360
MODEL 65
CPU AND STORAGE

LCS
16 IBM 2314 (1 MEGABYTE) (1 MEGABYTE)
DISK DRIVES

IBM 2501
CARD READER
21BM 2311
DISK STORAGE
DRIVES

IBM 1443
PRINTER

IBM 2361

il (] T

I [0 1

15 1BM 2260
OPERATOR
VDUs

[T (L]

[IHl ” [15 IBM 1419 MAGNETIC
CHARACTER READERS
(READERS-SORTERS)

[T] LTI

O -0
O O
-] -0
O s
a -l

I [T 1

The design limit of approximately 3,000,000 checks a day gives
a minimum of over 15,000,000 document passes daily. The
prime requirement is, therefore, to maintain throughput. This
leads to a need for very flexible control so that reader-sorters
can be operating independently on different passes at any time,
and also so that work can easily be transferred from one ma-
chine to another without affecting the whole of the installation.
Hardware switching and rapid restart are also of prime impor-
tance should a major system failure occur.

hardware = The preliminary design study showed that 20 reader-sorters
configuration ~ would eventually be required to handle the predicted peak vol-

332 BANHAM AND MC CLELLAND IBM SYST J

ume of checks. In addition, some 60 to 80 visual display termi-
nals would be required to handle the checks rejected from the
reader-sorters. All the data captured on all of these devices has
to be merged together to produce the required output. The time
scale for doing this, particularly for producing the trial balance,
is such that a multiprocessor system is essential. Figure 2 shows
an outline of the configuration.

The reader-sorter device used, the IBM 1419 Magnetic Charac-
ter Reader, generates an external interruption as soon as it has
read each check. The CPU must then calculate and issue the
stacker select command within 15 milliseconds, or the check is
rejected.’ A simulation study of the stacker-select interruption
handling time and the document processing time showed that
one Model 40 could support up to six reader-sorters and still
maintain full throughput without rejecting many documents. The
configuration that we evolved presently requires three Model
40s. On an average day, six reader-sorters are attached to each
of two Model 40s. On a busy day, additional reader-sorters are
attached to the third Model 40. Eventually the configuration will
grow to four Model 40s, controlling 20 reader-sorters. The Model
65 collates all the data sent to it from the reader-sorters by the
Model 40s. Two groups of visual display terminals (vDUs) are
attached to the Model 65. On the reconciliation group, data is
keyed in from the checks that were rejected by the reader-sorters.
On the operators’ group, the vDUs receive and display messages
for controlling the operation of the system. For backup, a second
Model 65 is available should the first fail.

The Model 65 is controlled by Operating System/360 (0S/360)
with MVT (multiprogramming with a variable number of tasks),
whereas the Model 40s run under the Disk Operating System
(DOS/360). 08/360 was chosen for the Model 65 because of the
need for a variable number of tasks and flexibility of operation.
The main interface with the operating system is the user control
subsystem, which in turn controls the following major applica-
tion subsystems:

Document processing
Reconciliation
Sorting

Batch process

Each application subsystem consists of one or more tasks at-
tached by the control subsystem. To ease control and restart
problems, the application subsystems are not permitted to attach
further tasks.

The work scheduler program forms the heart of the control sub-
system. It drives and is driven by a set of tables that show the

NO. 4 - 1972 CHECK-CLEARING SYSTEM

program
architecture

Figure 3 System structure

THE OPERATING SYSTEM
(IBM 0S/360 MVT)

WORK
SCHEDULER
TABLES

CLEARING CONTROL
SUBSYSTEM

DOCUMENT RECONCILIATION SORTING BATCH
PROCESSING SUBSYSTEM SUBSYSTEM PROGRAMS

MODEL 40
SUBSYSTEM

order in which tasks are to be performed. As each task is com-
pleted, the appropriate table entry is updated; thus the day’s
progress is continuously monitored and controlled.

In the Model 40, the need for very efficient execution and the
limited main storage available led to the choice of DOS/360, using
a single partition and user-written, multiple-wait routine. Each
Model 40 is controlled by the control subsystem in the Model
65. The system structure is illustrated in Figure 3.

System work flow

Checks are received from presenting banks in bundles, one for
each branch, Each bundle is accompanied by a Docket Control
Voucher (DcV) which was encoded with the bundle total in the
branch. The checks arrive in trays of 2,000-3,000 checks. A set
of Charge Identifiers is placed in each tray, which is then known
as a Charge.

Figure 4 shows the sequence of operations in the system. Prime
pass, keyed rejects, and reconciliation are all taking place at the
same time, but any one charge must go through the three pro-
cesses in that sequence. As shown in the figure, the output from
the system consists of:

A —The sorted checks

B — A list of the checks to be returned to the drawee branches

C —Input to the bank’s bookkeeping system with which to debit
the drawers’ accounts

D —The pay figure, i.e., the amount to be paid to the presenting
bank

BANHAM AND MC CLELLAND IBM SYST }

Figure 4 Sequence of operations

CALCULATE PAY FIGURE

PRINT BRANCH LISTS

BOOKKEEPING TAPES

PRIME PASS LOT SORTING

PASS 2 AUDIT

We now describe these operations.

When a Charge is read on the prime pass, the Charge Identifiers
and DCVs are sorted to the reject pocket of the reader-sorter,
together with any checks that could not be read. Data read from
the checks is recorded twice, as follows: (1) in input order, in-
dexed by Charge number on the reconciliation file, and (2) in
output order, with each pocket of each reader-sorter used on the
first pass as a member of the pocket file. So that they can be re-
trieved again easily, these data sets are written on disk using the
special access method described later in this paper.

For each Charge, the total value of the checks, as read by the
reader-sorters and accumulated by the computer, is almost al-
ways different from the totals of the DCVs in the Charge. The
reconciliation operation is carried out to resolve this difference.

In most cases, the addition of the value of checks rejected by
the reader-sorter to the value of checks accepted will resolve the
difference on a DCV. In this system, the value of each check re-
jected is entered at a VDU, enabling the addition to be carried
out by the computer. An exception list of remaining out-of-bal-
ance DCVs is then printed for each Charge. Further investigation
is a clerical operation.

When all Charges have been reconciled, overall agreement has
been reached, and the individual presenting banks can be paid.

At the end of the first pass, the pocket file is sorted on disk into
the final output sequence of the checks themselves. The sorted

No. 4 - 1972 CHECK-CLEARING SYSTEM

reconciliation

further
processing

335

further
sorting

restart,
recovery,
and standby

file is used to create magnetic tapes for updating the customers’
accounts held on the bank’s bookkeeping systems, to create the
sorting pattern for later passes, and to produce a control list to
accompany the checks to each branch.

The fine-sorting technique described later in the section on doc-
ument sorting brings very considerable savings in the number of
document passes per day. On the first two passes, the checks
are sorted into 144 “lots” of roughly equal size, each lot con-
taining all the checks for one or more bank branches. From pass
3 onwards each lot is completely and independently sorted on
one reader-sorter, no further interchange of checks between
reader-sorters being necessary. One of two alternative sorting
techniques can be chosen for each lot: (1) Coarse sorting, using
a conventional programmed sorting technique, takes two further
passes to sort to branch order, (2) Fine sorting, using the new
sorting technique described later, takes four or five further passes,
depending on volume, to sort to serial number within account
number within branch order.

Special features

The system contains many features that we believe would inter-
est those who are using character recognition, data entry termi-
nals, multiprocessing, or even a large multitasking system. We
cannot describe all the features in a paper of this nature, so we
have selected just three for further expansion —the restart and
recovery facilities, the disk-access method, and the document
sorting technique. They were selected in the hope that they will
be of interest to most readers.

The restart and recovery facilities are of paramount importance
on any complex system. The way in which the work scheduler
tables act as an interface between the control program, the appli-
cation program, and the restart routines is of particular interest
in this system. The disk-access method is probably of most in-
terest in systems with a large number of data entry points, and
the document-sorting technique is probably of most use in finan-
cial applications.

In a system of this complexity with a hundred or more applica-
tion subtasks working concurrently, any failure must be local-
ized and recovery made as easy as possible.

Extensive use is made of the work scheduler tables to achieve
the necessary flexibility and speed of recovery. In normal opera-
tion, the work scheduler program uses the tables as a reference
to attach application subtasks in the correct sequence through-
out the day. The tables are held in main storage and checkpoint-
ed by the control program each time it updates an entry.

BANHAM AND MC CLELLAND IBM SYST J

The work carried out by an application subtask is known as a
mission. A work scheduler table of Mission Status Blocks
(MSBs) is used to record progress through each mission. The
MSB is the main interface between the control program and the
application subtask. Standard fields within the MSB are set up by
the control program prior to the attachment of the subtask.
These indicate the starting point for the mission and the re-
source allocated. During the progress of the mission, the appli-
cation subtask updates other fields of the MSB (and checkpoints
the table) at intermediate points that are significant to the partic-
ular mission. For example, each prime-pass subtask records the
latest Charge number in the MSB on completing a Charge.

The early part of each day is a prime data capture operation.
This is the critical period because it must always be possible to
identify exactly which checks have been processed. The pro-
cessing destroys the input order; so it is not possible to refeed
checks through a reader-sorter should a failure occur. All data
captured is logged in duplicate during this period.

Later in the day, logging is discontinued when prime data cap-
ture has been completed. Any mission from then on can be re-
run if necessary because the input data remains available until
the end of the day.

The loss of throughput in deactivating the system to take a sys-
tem-wide checkpoint precluded this approach. However, the
combination of data logging and the “minicheckpoints” taken by
each subtask ensure that a rapid, reliable restart can be under-
taken at any time.

The object of writing the log tapes is to record all the checks
read by the system so that if the system fails, it will be possible
to restart the system by reading the magnetic tape instead of re-
feeding the checks.

The Model 65 writes duplicate log tapes of all the data as soon
as it is received from the Model 40s. Each block is preceded
by a time stamp and sequence number. If a complete system
restart is required, the two tapes are played back in parallel (in
case one has an 1/0 error). The end of a particular day’s data is
recognized by a discontinuity in the sequence field or by a tape
marKk if the tapes were closed correctly.

The restart mechanism replays the log tape and feeds the data to
the applications programs exactly as it was originally entered
through the reader-sorters or visual display terminals. At the
end of the tape, the mechanism switches over to reading the data
from the sorters and terminals directly, without the programs
being aware of the change. In a cold restart, the application pro-

NO. 4 - 1972 CHECK-CLEARING SYSTEM

data
logging

337

warm
restart

grams reprocess the data and rewrite the disk files exactly as in
following a normal start. If the failure did not cause loss of data
held on disk, a faster procedure, known as a warm restart, is
used.

When a warm restart is required, the work scheduler reloads the
checkpointed tables as they were at the time of failure. Although
a complete system checkpoint can never be taken, each task can
checkpoint relevant parts of the tables whenever necessary.
This means that the checkpointed tables always contain the lat-
est configuration and a record of all completed tasks and those
that were attached at the time of failure, along with their MSBs.
The work scheduler then merely reattaches the tasks, and they
automatically pick up their MSBs.

If the failure occurred during prime data capture, the work
scheduler reattaches only those tasks that were originally at-
tached at the start of the day and that were not complete at the
time of failure. As the log tape is replayed, a request from it for
a task to be attached is serviced if the task was still active at the
time of failure.

During execution, the prime data collection tasks NOTE (as in
0S/360 macroinstructions®) the starting addresses in the pocket
files of the current Charge and record them in their MSBs. Each
task knows when it is doing a restart and ignores all data from
the tape until it reaches the Charge number recorded in its MSB.
Then it POINTS to the pocket file disk addresses and continues
writing as though nothing had happened. In this way, the restart
runs almost at tape speed until the last few blocks are reached.

Of course, if a warm restart is required after the end of prime
data collection, the tasks merely start again or continue from
whence they left off, without there being any need to replay the
log tape. ‘

Special partitioned access method

At an early stage in the system design, it was realized that a
special access method was required to handle each day’s data.
The peak volume to be handled would fill 16 iBM 2314 disk
packs. For efficient processing, this volume had to be recorded as
10,000 or more data set members. An option was also needed to
allow selected records within a member to be retrieved without
searching sequentially through the member, i.e., it was neces-
sary to NOTE the record address when it was written so that it
was possible to POINT directly to the address later. The access
method had to provide macroinstructions at the GET and PUT
level and deal with space allocation, buffer control, and check-
pointing.

BANHAM AND MC CLELLAND IBM SYST J

The design of a suitable access method required a megabyte of
large core storage (LCS) on the Model 65. This was used to hold
control tables, thus making the access method very efficient. Be-
cause the 10,000 or more members are opened and closed many
times a day, the 0S/360 routines would be unnecessarily powerful
and unnecessarily slow. The open and close routines in the new
access methods are fast because they are dealing with prefor-
matted packs and the allocation is controlled by the tables stored
in LCS.

Head contention problems would normally arise in attempting to
create over 200 members concurrently using a limited number of
disk drives, as is necessary during prime pass. Further conten-
tion could arise later, if, say, a Charge prime pass member and a
pocket file member were stored on the same drive and each
were retrieved at the same time. The second problem is over-
come by allocating files to one of several groups at initialization
time. The total space available is subdivided into groups, the
minimum allocation being one 1BM 2314 disk pack. Thus mem-
bers allocated to different groups cannot be stored on the same
pack. The first problem is overcome by allocating a track at a
time from each pack within the group to members of the group
as they request space. Thus, during the writing of many mem-
bers concurrently, head movement between members is mini-
mized. The members are written to a series of tracks, usually not
contiguous, and checkpointed tables are maintained by the ac-
cess method in LCS to enable the data to be retrieved.

At initialization time, a series of user-supplied card images are
read. Each card defines the following parameters: filename, max-
imum number of members, record length, and group allocation.
A further card image defines the number of drives to be allocat-
ed for each group.

After initialization, special macroinstructions are available to the
application programmer, providing functions equivalent to the
08/360 macroinstructions OPEN, CLOSE, GET, PUT, NOTE, and
POINT.” In general, 0S/360 conventions are observed. For in-
stance, a return code is provided so that successful execution of
the macroinstruction can be checked. To prevent data corrup-
tion, only one task can write to a member at any one time, but
several can read a member concurrently.

A series of tables are set up in LCS from the data supplied at
initialization time to control and record the location of data. The
most important of these tables are:

Filename table — One entry per filename card supplied
Group table —One entry per group defined
Track table(s) —One table is created for each group defined

No. 4 - 1972 CHECK-CLEARING SYSTEM

options

internal
structure

filename
table

Figure 5 Partitioned access method tables
ABSOLUTE NO.
RANGE

NAME LOW HIGH GROUP TRACK TABLES

ADDRESS OF
TRACK TABLE O

ADDRESS OF
TRACK TABLE 1

FILENAME TABLE
ADDRESS OF

TRACK TABLE 2 \
TRACK ALLOCATION

GROUP TABLE FLAGS (MEMBER NO.)

00

o1

1ST TRACK
ALLOCATED 02

03

04

05

“LAST TRACK =]
FOR MEMBER” O
FLAG 07

MEMBER TABLE

—One entry in each table for each track available
to the group
Member table —One entry per member defined

The relationship between these tables is illustrated in Figure 5.

The filename table consists of a series of entries in alphanumeric
sequence. The group number and lowest and highest absolute
member number are recorded with each entry, for example, as
shown in Table 1. The filename table is used to convert the
filename and member number specified by the programmer to
the absolute member number used internally.

The group table contains one entry for each group with the main
storage address of the corresponding track table stored in each
entry. The group table acts as a link between the filename table
and the appropriate track table.

The track table for each group contains one entry per track
available within the group, in allocation sequence, i.e., drive
number within track number. The track table descriptor block at
the head of the track table contains various control fields, in-
cluding the address of the first free entry in the table and the
address of the end of the table.

BANHAM AND MC CLELLAND iBM SYST J

Table 1 Filename table

Absolute member number
Filename Lowest Highest

ALPHA
BRAVO
CHARLIE
DELTA

The member table consists of a series of entries in ascending
member number order. The entry for a given member either
contains the address of the first entry on the appropriate track
for that member or zero.

When a member is opened for output, the following amendments
are made to the track table and member table:

The first free entry in the track table is allocated and the
member number stored in it. The entry is also flagged tempo-
rarily as the last entry allocated to the member.

The first free entry field in the track table descriptor block is
updated.

The address of the first track table entry for the member is
stored in the member table.

If a further track is required for a member, no amendments are
needed to the member table. The following amendments are
made to the track table:

The first free entry in the track table is allocated and the
member number stored in it. The entry is flagged as the last
entry allocated, and this flag removed fram the previous en-
try for the member.

The first free entry field in the track table descriptor block is
updated.

A specific example may clarify the space allocation technique
used by the access method. Suppose five members, say member
numbers 101 through 105 of a particular group, are opened for
creation concurrently, and drives 1, 2, and 3 are allocated to the
group. Thus we have the following setup:

Drive 1 Drive 2 Drive 3
Track 1 101 102 103
Track 2 104 105 Free

Suppose now that member number 102 has sufficient data for
two more tracks, member 104 has sufficient data for one more

NO. 4 - 1972 CHECK-CLEARING SYSTEM

member
table

use of
access
method

sort
pattern
theory

track, and no further space is required for the others. Then the
final track allocation at this stage may be according to this setup:

Drive 1 Drive 2 Drive 3
Track 1 101 102 103
Track 2 104 105 102
Track 3 102 104 Free

To retrieve, say, member 104, the entry 104 in the member table
is used to find the first track allocated (track 2, drive 1). After
retrieving this track, the track table is searched until the next
member number 104 is found (track 3, drive 2). In this case, the
entry is found to be flagged as the last for that member, and the
search is terminated.

Document sorting

The bank wished to return the checks to the branches already
fine-sorted into a serial number (six digits) within an account
number (eight digits) within a branch code (six digits) sequence.
This sorting would require 20 passes of a conventional digit sort.
However, the design limit of the system is three million checks
a day, and it is theoretically possible to sort nearly that number of
documents uniquely in six passes on a 12-stacker machine
(12° = 2.99 million). To do this, a sort pattern must be calcu-
lated that is based only on those documents that happen to be
present on a particular day.

During prime pass, the data is captured and recorded on the
pocket files so that the fine-sort tables for passes 3 and higher in
sequential order can be calculated during pass 2. The first two
passes are fixed, table look-up sorts to block sort the checks into
144 lots, each containing branches with the same dispatch dead-
line.

It can be shown that the maximum number of unique destina-
tions M into which any number of items can be sorted in p pass-
es on a machine with S stackers is given by

M=S" (1)

or more generally by

M=58x8,X8 %X ...X8§,
where §, is the number of stackers used on the particular pass 1
to n. Since we wish to sort all the documents into unique as-
cending sequence, the number of destinations equals the number
of documents.

BANHAM AND MC CLELLAND IBM SYST J

Table 2 Sorting pattern for three stackers

Output Document Fine-sort pocket number
sequence identity Pass 3 Pass 2 Pass 1

Nl BN e NEW RN SUETS SN Y
“ECHUIIZARACTOTO
e =m0 0000 OoOC O
—_ = OO ONNN - = OO C
N, ON—,ONN—~,ON—,ON—O

Consider an example in which we have to sort 15 documents,
each identified by a single letter, into alphabetic sequence on a
three-stacker machine:

Input sequence 1234567 89101112131415
Identifier SIJIAHRYGKTUCP WE M

If the identifier on each document is known before the first fine-
sort pass, an optimized sorting pattern for the particular identi-
fiers present can be developed.

Rearranging Equation 1

_log M
P log S

in this case

log 15
log 3

2.5

Thus the optimum number of fine-sort passes is 2.5. For simplic-
ity, the sorting pattern is generated for the next higher whole
number of passes, in this case, three. If it is assumed that the
stackers are numbered 0, 1, 2, the sorting pattern needed is
shown in Table 2. The technique for allocating pocket numbers
for each document on each fine-sort pass can be inferred from
the table.

The document images are sorted into the desired output se-
quence; then stacker allocations are appended to each image in
sequence. For an § stacker-sorter, with a “lot” of checks requir-
ing p passes, a number consisting of p digits is appended. The
radix in each column equals the number of stackers available in

No. 4 - 1972 CHECK-CLEARING SYSTEM

practical
considerations

Table 3 Sorting pattern in input sequence for first fine-sort pass

Final pass Document Pocket number
output sequence identity Pass 3 Pass 2 Pass 1

ZHmETOCHRO<II> "W
CO—R OO~ — OO~ =,OOO =
NO=NO—RONR=,ORO~,O
—_N = N=ONOONO—ON—=

that pass. Thus, in our example, a three-digit number to the base
three is required for each image. The values are in the range
000, to 112,.

After stacker allocation, the images are sorted back to the ex-
pected input order for the first fine-sort pass. These images then
form the Predicted Input Flow List (PIFL) for this pass. Table 3
shows the sequence.

The stacker select routine then merely selects the incoming
documents to the given stacker numbers going sequentially
down the right-hand column. (How the images are matched and
the inevitable errors are handled is described later near the end
of the paper.)

The input sequence for the next pass will be as in Table 4. The
PIFL for this pass is created in very much the same way as the
checks are sorted. The PIFL for the preceding pass is read and
the check records with their pocket numbers are written to the
pocket files using the special access method. These pocket files
are concatenated to form the PIFL for the next pass which is used
for sorting and for creating the PIFL for the final pass shown in
Table 5. After this pass, the documents will be in the required
alphabetic sequence.

We have described the theory on which the sorting pattern is
based. We next describe solutions to the practical problems of
gathering the data from which to create the tables, of generating
the predicted input flow lists (PIFL) for each pass, and of asso-
ciating the stacker select command inside the computer with
each physical check outside of it.

BANHAM AND MC CLELLAND IBM SYST J

Table 4 Sorting pattern input sequence for second fine-sort pass

Final pass
output sequence

Document
identity

Pocket Number
Pass 3 Pass 2

2E0T® CRO®>

o

From
pocket 0
on pass 1

From
pocket 1
on pass 1

From
pocket 2
on pass 1

Table 5 Sorting pattern in final pass input sequence

Output
sequence

Document
identity

Number

1
10
11

2
12

3

4

TER <-EICO mHOwE>

From
pocket 0
on pass 2

From
pocket 1
on pass 2

From
pocket 2
on pass 2

The sequence of operations for generating the fine-sort tables is
shown in Figure 6 as:

generating
the sort
tables

. Insert the lot and input sequence number into each check

record.

. Sort the records to the required output sequence.
. Insert the stacker numbers for each pass into each check

record.

. Re-sort all the records back to the input sequence for pass 3.
. Shorten the records and write the pass 3 PIFL files.

No. 4 - 1972

CHECK-CLEARING SYSTEM

Figure 6 Fine-sort table generation

POCKET NUMBERS
1 2 12
° 8 @ B
- QNE FILE MEMBER
LOGICAL 1@ FOR EACH POCKET
READER ON EACH READER-
SORTER SORTER ON PRIME
l l l PASS
g @ B B

NUMBERS

INPUT TO FACH RUN,
ONE POCKET FROM
ALL READER-SORTERS INSERT LOT NO.
AND INPUT
SEQUENCE NO.

SORT TO
OUTPUT
SEQUENCE

INSERT STACKER
NUMBERS FOR
EACH PASS

SORT TO
INPUT
SEQUENCE

ABBREVIATE EACH
RECORD FOR PIFL
MATCHING

CREATE TWELVE
PIFL FILES
FOR PASS 3

ONE FOR EACH LOT
IN THE SUPERLOT

—00-0

The records on the pocket files written by the prime pass con-
tain the complete check image, the input sequence number, and
the number of the pocket to which the check was sorted on prime
pass. To these must be added the pass 2 pocket number since the
pass 1 and pass 2 pocket numbers together make up the lot
number.

BANHAM AND MC CLELLAND IBM SYST J

All the records are then sorted into the required output se-
quence. During the input phase, the records in each lot are
counted so that the sort pattern can be calculated in the exit
from the output phase. The stacker numbers for up to five fine-
sort passes are inserted in each record according to the algo-
rithm already described. The records are finally re-sorted back
to the sequence in which they are presented to pass 3.

The records are then abbreviated to contain only that data ac-
tually required for the subsequent sorting. The check data is
reduced to the low order half of each serial number, account
number, and branch number and packed to reduce the length of
the subsequent compare instruction. The sequence fields for re-
sort to input are also dropped. This represents the PIFL
(predicted input flow list) for pass 3.

The pass 4 PIFL is created by reading the pass 3 file sequentially
and copying the records to one of 12 pocket files according to
the stacker for which the check will be selected on pass 3. The
pass 5 PIFL is similarly created by concatenating the pass 3
pocket files and splitting them according to the pass 4 stacker
selections. (See Figure 7.) The compacted check images on the
PIFL should be in exactly the same sequence as the check file
input to each pass, but inevitably there are discrepancies.

The Model 40 receives an MSB from the work scheduler specify-
ing the lot number to be processed (and in the case of a restart,
the starting check sequence number within that lot). The Model
40 then retrieves the PIFL data for the particular lot and stores it
on an IBM 2311 disk before engaging the reader-sorter allocated.
Sufficient PIFL data is held in main storage to overlap reader-
sorter operation and retrieval of PIFL data from the disk.

To allow for documents rejected on previous passes, the image
comparison routine includes a forward search of the pIFL file of
up to five images, should the document not match the first im-
age. One feature of the system is that the documents are distrib-
uted approximately equally between the pockets. This means
that if a block of 24 documents were rejected on one pass, only
two, on average, will be missing from each pocket, and a for-
ward search of five positions usually enables the correct com-
parison to be made.

If a forward search of five positions on the PIFL is still unsuc-
cessful, the document is rejected, and the search for the next
image is resumed at the original point of failure. If five succes-
sive documents are rejected for this reason, all subsequent docu-
ments are rejected until the next control voucher is read and the
PIFL can be realigned. Major mishandling of complete pockets
would be detected as a control voucher sequence error, causing
the reader sorter to be disengaged immediately.

NO. 4 - 1972 CHECK-CLEARING SYSTEM

Figure 7 Splitting to the PIFL for

each pass

WRITTEN SELECTIVELY

READ SEQUENTIALLY

WRITTEN SELECTIVELY

READ SEQUENTIALLY

CHECK IMAGES ARE WRITTEN TO 12 MEMBERS
CORRESPONDING TO THE POCKETS INTO WHICH
THEY WILL BE SORTED ON PASS 3. THE 12
MEMBERS ARE THEN CONCATENATED TO FORM
THE PIFL FOR PASS 4. THIS IS THEN SPLIT
ACROSS A FURTHER 12 MEMBERS TO FORM
THE PIFL FOR THE NEXT PASS, AND SO ON.

operational
problems

Obviously a comparison of only a part of the check code line
with the compacted PIFL image could result in incorrect sorting,
but the probability of that happening is less than 1 in 10",

The document-handling operation in such a system is particularly
important as the predicted input sequence must be preserved.
To reduce the possibility of operator errors (which can occur as
early as stacking the output from pass 1), a system of sequence
control vouchers is used.

If a control voucher sequence error is detected, the Model 40
disengages the reader-sorter, and the operator’s visual display
terminal indicates the number that was expected. The operator
can then correct the input stream, but the reader-sorter can only
be restarted by a command keyed in on the supervisor’s termin-
al.

In spite of these difficulties, experience gained so far shows that,
if operator training is good, this sorting technique is viable, and
the reject rate per pass is at least as low as on more conventional
systems. The total volume of rejects is less due to the much
smaller number of passes.

Summary comment

The main objectives of this banking operation —to provide a full
check-sorting service to the bank branches and to maintain tight
control of the operation—led to the system and, in particular,
to the special features just described.

The sorting technique provides an improved service to many
branches, without the need for time-consuming, off-line sorting.
The special access method gives a means of real-time collation
of several thousand data set members, enabling the financial ac-
counting operations to be very closely controlled. The restart
and recovery methods enable the operation to meet delivery
deadlines consistently, in spite of the occasional equipment
malfunction which is inevitable on a system of this size.

ACKNOWLEDGMENTS

The authors wish to thank Mr. B. J. Keyte, Head of Data Pro-
cessing, National Westminster Bank, for his personal help in
reviewing this article. Our thanks are also due to many of his
staff for the opportunity to discuss the presentation of some of
the more detailed sections.

REFERENCES

1. Requirement for Automatic Cheque Processing, Committee of London Bank-
ers Publication ESC/7 (August 1962). (Due for revision; new publication ex-
pected by the end of 1972.)

i

BANHAM AND MC CLELLAND IBM SYST J

2. 1219 Reader Sorter— 1419 Magnetic Character Reader, No. GA24-1499,
IBM Corporation, Data Processing Division, White Plains, New York. De-
scribes the timing and programming techniques required for the IBM 1419
check reader-sorter.

. O8/360 Supervisor and Data Management Services, No. C28-6646, IBM
Corporation, Data Processing Division, White Plains, New Y ork.

. Integrated Check-Processing System at the Federal Reserve Bank of Phila-
delphia, No. K20-0523, IBM Corporation, Data Processing Division, White
Plains, New York. Describes another use of image matching,

CHECK-CLEARING SYSTEM 349

