
Performance analy
terminal system

System performance analysis techniques have been applied to
support the development of a data-communication, data-base
system. These techniques have been applied continuously from
the system planning phase through system testing.

Computer simulative models and computer measurement tools
were used in this analysis.

s for the Skylab

by R. J. Mancini

The National Aeronautics and Space Administration (NASA)
required computing systems for ground support of the Skylab
space station project (1) for controlling the intricate aspects of
manned space flight as in the Apollo missions, (2) for scheduling
mission activities, and (3) for processing a large variety of spe-
cialized experimental data. The system for processing experimen-
tal data, the Skylab Terminal System, is discussed in this paper.
This system permitted scientists and engineers to view telemetry
data (i.e., data transmitted from the spacecraft by radio signals
to receiving ground stations) after the data have been processed
and formatted for output.

The Skylab spacecraft data were transmitted from the orbit-
ing laboratory and received by remote tracking sites. From these
sites, the data were transmitted over communication lines to
the Goddard Space Flight Center for relay to the Mission Con-
trol Center in Houston, Texas. At Houston the data were re-
ceived by a front-end UNIVAC 494 Communications Process
Computer. This computer functioned as a message switch that
routed the data to the Skylab Terminal System within one or
more of the five IBM System/360 Model 75 computers in the
Mi'ssion Control Center. In the Skylab Terminal computers, the
data were routed by the Terminal Support System to the Data
Retrieval System as shown in Figure I . Data were transmitted
to the CDC CYBER 73 Data Base Computer System for storage
by using the Data Storage Subsystem. Data are retrieved from
the Data Base Computer System in response to terminal requests

94 MANCINI IBM SYST J

I Figure 1 Interactive scientific system for the Skylob project

L REMOTE STATIONS

KYLAB TERMINAL SYSTEM

SYSTEM1360
MODEL 755 -*

PATA RETRIEVAL S , v '
1

DATA BASE
COMPUTER

SYSTEM
C Y B E R 7 3

by using the Data Retrieval Subsystem. Scientific and engineer-
ing application programs were part of the Data Retrieval and
Data Storage Subsystems. Included in this paper is an analysis of
the Skylab Terminal System and its interfaces with the CYBER
73 Data Base Computer, and with the UNIVAC 494 Communi-
cations Process Computer.

The system software within the IBM System/360 Model 75 com-
puter represents a three-year development project by IBM. The
resultant large, complex system (approximately 2.5 million bytes
of code) is required to receive and transmit large volumes of
telemetry data according to time constraints concurrently with
the requirement to responsively process terminal user requests.
Therefore, continued performance evaluations were essential
throughout the planning, design, implementation, and testing
phases (summarized in Table 1) to determine whether the given
hardware configuration and the software design satisfactorily
meet the operational system objectives. Such evaluations bene-
fit the developers through improved system design, and benefit
the project through a reduction in the amount of development
rework to meet system objectives. The intent of this paper is to

Table 1 System development and evaluation phases

Development phases Functions of phases Performance evaluation

Planning Define requirements System feasibility

Design Develop architecture System performance
Configuration alternatives

Develop baseline design verification
Design feasibility

Implementation Create integrated program Identify problems
system Compare implementation

with requirements
System testing Verify system meets Verify system performance

requirements Tune system

demonstrate the benefits of using performance evaluation tech-
niques throughout a specific system development. Therefore,
the paper uses examples that illustrate how these techniques can
influence the software design and development rather than em-
phasizing the description of the application or the specific tech-
niques used. The use of such techniques does not guarantee that
all performance problems can be identified early and precluded.
However, continuing system analysis does aid in producing a
system more capable of meeting system requirements within the
schedule constraints than otherwise might be possible.

Growing and changing requirements were a characteristic of the
Skylab Terminal System development project. An example of
this was that although the initial terminal capabilities were en-
visioned as limited, quick looks at incoming scientific (and tra-
jectory) data, the final sytem had extensive terminal support.
Included in the added support was the capability of entering batch
requests'for large amounts of processing, and Input/Output (rlo)
from a terminal. The fact that application requirements changed
points to an increased need for performance analysis of the sys-
tem to evaluate the impact of such changes on the total system.

Both modeling and measurement techniques were used to sup-
port the performance analysis effort. The techniques that were
used are categorized here according to the terminology defini-
tions listed by Pomeroy.'

Self-driven simulative models were used during the project plan-
ning, design, and implementation phases. During each successive
phase, more detailed application design information was included
in the simulative models, ranging from the functional design level
to the individual program level of information. Both Stanley' and
Seaman3 have illustrated some specific uses of this technique.

In the area of measurement techniques, both hardware and soft-
ware monitors were used during the project implementation and

96 MANCINI
t

IBM SYST J

testing phases. Hook-catching software monitors’ were used to
measure Central Processor Unit (CPU), Input/Output WO), and
main storage usage, as well as transaction response time. Activ-
ity was measured down to the task, program, and control program
service levels. A statistical sampling software monitor’ was used
to measure Large Capacity Storage (LCS). Stanle~,”’~ Bonner:
Hobgood: and Margolin’ have illustrated some uses of these
measurement techniques.

System planning phase

Every system development goes through a transition period dur- ’ ing which raw ideas, needs, and concepts are formulated and
translated into one or more general functional embodiments that
satisfy the requirements. Even during this early system planning
phase, we found it to be both possible and practical to make pre-
dictive evaluation analyses of proposed systems and, thereby,
to make a positive contribution to the success of the project.

The scientific nature of the Skylab project established a require-
ment for an interactive terminal and data base system for the use
of ground-based scientists and other mission personnel. Since a
data base system was not available, much of the performance
analysis work done during the planning phase was the evaluation
of data base configuration options that were based, in turn, on a
conceptualized system design.

Cost versus performance tradeoffs were used in deciding among
data base configuration options. Because ‘of a requirement to
randomly access a data base of over one billion bytes, direct ac-
cess disk storage was selected as the data base storage medium.
It was also known at this time, however, that at least thirty scien-
tific and engineering terminal users were to access the data
base with an average expected response time of five seconds
for the quick-look requests for data. The lowest cost configura-
tion option was simply to add sufficient disk storage devices to
the existing System/360 Model 75 computer systems. What was
not known was whether this configuration wold be responsive to
the terminal users. As a consequence, the following study of this
option, compared to a more costly configuration option, was un-
dertaken.

Two principal data base configuration options (designated A and data, base
B) were considered. Configuration option A would obtain the configuration
necessary data base system at minimal cost by using existing options
System/360 Model 75s to manage the planned data base and by
connecting additional disks through selector channels to make up
the required storage capacity. The data base disks would then be
switchable to any one of the System/360 Model 75 computers.

NO. 2 * 1974 PERFORMANCE EVALUATION $7

Figure 2 Data base occess response time

I

I I I 1
30 60 90 120 150 180

REQUEST RATE LACCESSESISECOND)
a10

With the use of a two-channel switch, the disks could also be
dynamically shared between any two of the computers. The
choice among various types of disks was limited to those types
that were compatible with the given computer system.

Configuration option B specified a separate data base computer
that would be linked to the System/360 Model 75 by way of a
selector channel. The B configuration would be a more open-
ended approach relative to performance considerations. The
disks could be selected for superior performance capabilities,
since they would be required only to be compatible with the con-
figuration B data base computer. Greater flexibility in channel
configurations would also be available. Configuration B could
thereby offer improved performance characteristics over those
of configuration A, but only at added cost. A second data base
computer would be required for a backup in configuration B be-
cause there would be no existing system to fall back on.

The approach used in our data base configuration evaluation had
two basic parts: (1) to estimate and compare the expected per-
formance of the data base hardware devices and configuration
options; and (2) to estimate the expected performance of both
configuration options relative to the terminal response require-
ments for the total systems. The data base hardware evaluation
was necessary to gain insight into the advantages, limitations,
and maximum data access capability of each data base configura-
tion to handle a storage requirement of one billion bytes of data.
Generalized disk usage assumptions, such as that of the use of

98 MANCINI ISM SYST J

There would have been little advantage to adding more disk
packs to design A, because of the high channel loading (69 per-
cent at 40 accesses per second). More disks could be added to
Design B because the channel would be only 40 percent occupied
at the peak request rate as shown in Figure 3. In des@ B the
high utilization of the disks was the limiting factor. More disks,
however, would provide improved performance.

Two aspects of the configuration behavior are clear: First, con-
figuration option B is always more responsive to data base re-
quests than is configuration option A; and, second, configuration
option B permits a far greater data base request rate than con-
figuration option A, should the terminal workload require it.
Since we have gained an understanding of the basic behavior of
the two data base configuration options, it is necessary to decide
which one to select for development. Even though data base con-
figuration option A performs less well than option B, it 'is less
costly and could be selected if it provides proper response to
terminal users.

I

System evaluation information about terminal user requests
and computer resources required to handle those requests was
collected to evaluate the performance of the data base configura-
tions in context with the total system performance. Only a best-
estimate type of information could be obtained during the plan-
ning phase. A simulation model was designed to represent a
gross computer system design that would be necessary to service
the terminal workload. Further, the simulation model included
representations of human interaction at terminals, transmission
of remote data, and other factors that might influence total system
performance.

The procedure to study the performance of data base configura-
tion options A and B in the total system environment was that
of a sensitivity analysis. The number of terminals to be supported
by the system was progressively increased and the average re-
sponse time was determined. The terminal response function for
configuration option A is shown as a dotted line Figure 4 and as
a dashed line for configuration B in the same figure. If the system
supports 30 terminals with configuration option A, the average
response time would be 46 seconds. This is unsatisfactory rela-
tive to the five-second terminal response requirement. On the
other hand, configuration option B could easily support 30 ter-
minals and still meet the response requirement. In light of this
study, a decision was made to use a separate data base computer,
as reflected by data base configuration option B.

The terminal response sensitivity study not only showed the
resultant effect on the terminal user, but also provided insight
into planning the organization of the data base. The initial con-

100 MANCINI IBM SYST J

Figure 4 Terminal response sensitivity analysis

60

/CONFIGURATION B

/
....

0
0 20 40 60 80 100

NUMBER OF TERMINALS

cept of organizing the data was based on the chronological se-
quence in which it was generated aboard the Skylab spacecraft.
It was also assumed that there would be greater interest by
users in the more recently acquired data. Our evaluation of the
simulation results showed that data organized by time of origin
could lead to potential performance problems with either of the
candidate design configurations. Disks with the more recently
acquired data would tend to be more heavily used than disks
with older data. The predicted result was that there would be
access contention for the recent data. Therefore, the plan to
organize data solely by time was dropped to avoid such perfor-
mance problems.

System design phase

With the aid of planning-phase study results, system planners
were able to define the system in more formal terms. When the
system developers received the formal system requirements,
basic design work was begun. Although additional requirements
would follow, the basic system architectural design could pro-
ceed, based on the set of baseline requirements derived from the
planning phase. A major part of the system architecture within
the System/360 Model 75 was planned to be a Terminal Support
System. The Terminal Support System was to provide interac-
tive terminal services (e.g., paging, terminal output queueing,

NO. 2 * 1974 PERFORMANCE EVALUATION 101


~~~~~~ ~ ~~~ 

and temporary  report storage)  for  the various  systems to  be 
supported.  Another  major  architectural  decision was to split 
the  Data Retrieval System  into  two  separate  subsystems-  the 
Data Storage and the Data Retrieval Subsystem.  The  Data 
Base Computer  System would intp. tace with these  subsystems. 

The  Data Storage  Subsystem was designated  to  process incoming 
telemetry  data and transmit  the data  to  the  Data Bdse Computer 
for  storage. The data would be processed  to  detect  incorrect data 
points  and would then  be logically organized to facilitate retrieval. 
‘The Data Retrieval Subsystem would retrieve data from the  data 
base and process it i n  response to specific terminal users’  re- 
quests. Kequested data would be processed by performing cer- 
tain tests such as limit checking on the  data points before doing 
special mathematical computations.  Results would then be pre- 
pared for  output in the form of tables or plots. To provide for  data 
base  integrety, only one  system would be  able  to  store in the  data 
base; the majority of terminal users would be able  to  retrieve 
data  only.  This design would also  provide the flexibility to run 
the Data Base Storage and Ketrieval Subsystems in separate 
computers  for possible load sharing or multijobbing with other 
applications. 

Performance  evaluation during the  system design phase  focused 
on system architecture  and  software functional design. The pur- 
pose of the  analysis was to  assist the  designers in assessing  the 
implications of their design decisions on software  design  ade- 
quacy relative to total system  performance  constraints.  Further- 
more, early identification of potential problems provided manage- 
ment with information on which to  base  decisions  to  change 
design, with the intention of avoiding the complications of making 
changes  after designs had reached a firming-up stage. These 
evaluations  covered  such areas as task  structure, disk I/O, and 
computer-to-computer  interfaces. Analytical support  was  pro- 
vided by a simulation model that included representations of the 
multicomputer configuration, the proposed  system  hardware  and 
architecture,  and  the  projected  software design. System  require- 
ments  for terminal inputs and data  transmission from the  remote 
sites  were used to drive  the model. 

Evaluations of system  performance  revealed  potential perform- 
ance  bottlenecks related to  worker  task  management. Worker 
tasks service terminal user  requests  to  generate  reports via the 
Data Retrieval Subsystem. Analysis of terminal response times 
showed that, in a multiterminal environment,  users might ex- 
perience  excessive  response times. If the  number of available 
workcr  tasks was low, requests from terminals would be delayed 
unncccssarily while waiting for a task  to  become  free. This would 
be upsetting to the terminal user.  On  the  other  hand, a large num- 
bcr of tasks would place excessive  demands on other system  re- 

NO. 2 ‘ 1974 



sources.  Since  the final terminal workload and  the  precise  com- 
puter  resource available to  the  Skylab  Terminal  System  were 
not known at this time,  the final design provided an  optional num- 
ber of worker  tasks to  be created at system initialization time. 

Another  task problem showed  up during the  evaluation of tele- 
metry message inputs from remote  sites.  Experienced  judgement 
indicated that  the  amount of processing  done by the  Terminal 
Support  System  to  handle  input  messages  was large compared 
to  the work  accomplished.  Detailed Derformance data  showed 
that  almost  one half  of the CPU resources  were being used by the 
terminal task. This task had been designed to handle  communica- 
tions with each terminal, but it would serve no functional use  for 
telemetry  input  messages  other  than routing them to the appro- 
priate  subsystem. As a result of this  study, its inadequacy  to 
handle high speed  cyclic  telemetry  messages  became  obvious. 
The projected CPU usage was  reduced by modifying the  task 
design. 

The Terminal  Support  System  also had potential local disk rlo 
performance  problems.  This  disk would be used to  store com- 
pleted reports and allow terminal users to retrieve them on re- 
quest. The disk would also  provide  a  temporary  storage facility 
for  each terminal user. Simulation results  revealed  that, with 
multiple terminals  active,  this  disk could become the most highly 
used system  resource.  Disk-busy time was greater  than eighty 
percent, which was  an  unacceptable design level. For certain 
terminal requests,  disk rlo waiting time became  the largest single 
component of overall terminal response time. The remedy pro- 
vided early in the design process  was  the  use of a larger data 
blocking factor, which would avoid significant device  contention. 

A two-task structure  to  facilitate  temporary disk storage  was 
developed  for  the Data Storage  Subsystem  to  service  the incom- 
ing telemetry  data.  Through  this  design,  a  system  requirement 
could be met to examine  the input telemetry  data in context with 
the  previously  received data  to filter out  incorrect  data  points. 
A local disk,  accessed  directly by the  System/360 Model 75, 
was used as a buffer to  accumulate  each  group of data  befare  the 
final processing could be done.  The first pass  task would do  the 
initial processing on the  messages  and  temporarily  store  them on 
the local disk. When a  group of data were  completed,  the  second 
pass  task would do  the final processing on the  data and then  trans- 
mit the  data  to  the  Data Base Computer  for  permanent storage. 

It was found that  the  proposed design for  the Data Storage  Sub- disk 
system could have potential performance  problems  related to f/o 
the flow  of telemetry  messages. An average of twelve messages 
per second for  sustained periods of time was  expected,  but  this 



assure  the flow  of messages  through  the  system,  an  analysis was 
made of contention  for  the  channel,  control  unit,  and  disks to 
determine  whether  the  proposed  system could handle  the  re- 
quired  telemetry  rates.  Results showed that  the  proposed design 
would be feasible if first a  direct  access method was  used; i.e., 
if first, no indices were  used,  and  second, if the  telemetry  mes- 
sages  were blocked (grouped  together) with a minimum block- 
ing factor. 

computer Potential  performance  problems  were investigated for both the 
interface interface of the  Skylab  Terminal  System in the  System/360 

Model 75 computer  to  the  Communications  Processor  Com- 
puter  and  to  the  Data Base Computer  System. The performance 
of these interfaces had to  be understood in order  to design the 
interface  routines  and  establish  computer  interface  performance 
requirements.  On  the  Communications  Processor  interface,  per- 
formance  analysis showed that  an  output message handling con- 
vention then being considered would unnecessarily  throttle  the 
outputs from the  System/360 Model 75 computer.  This would 
be particularly critical in the  case of a system  requirement  to 
transmit large volumes of data from  Houston  to Huntsville. The 
convention was that  successive  output  messages could not be 
sent from the  System/360 Model 75 computer  destined for a 
particular terminal or remote  site until a demand message had 
been  received from the  communications  processor. A perfor- 
mance problem would arise if a heavy volume of input  telemetry 
messages  was being received at the  same  time  the System/360 
Model 75 computer  was trying to  transmit  messages to  another 
remote  site. These longer telemetry  messages would have  caused 
heavy usage of the input channel  to  the  computer, which could 
result in  high channel  contention  between input telemetry mes- 
sages  and  the  demand  messages  needed  to  enable  the  output.  This 
situation  was  subsequently  corrected to give the  shorter  demand- 
message channel priority over  the longer telemetry  messages 
without  any  noticeable ill effects. 

The design of routines used by the  Data Storage  and Data Re- 
trieval Subsystems  that would interface with the  Data Base 
Computer  System  were  also  analyzed.  One design possibility 
would be  to project  potential  performance  improvement on the 
basis  that  tasks within the System/360 Model 75 computer  could 
continue  processing while they had unsatisfied data base  re- 
quests.  The inclusion of  such an overlap  capability  appeared  to 
be  desirable,  but it would require a more sophisticated design. 
An  evaluation was made to determine  the potential performance 
improvements  that would be attributable  to the additional  capa- 
bility. The results  showed that  the design of the  Data Storage 
Subsystem could be  expected  to  keep up with the volume of input 
telemetry  messages only if its data storage  requests could be 
overlapped. In  the  case of the  Data Retrieval  Subsystem,  certain 

104 MANCINI IBM SYST J 



component was necessary 
the  performance  problems 
tion phase. A similar leve 
Data Storage Subsystem. 



and  the  current  uses of the  system. We now discuss  the  evalua- 
tion of particular  system  functions during the implementation 
phase. 

terhinal The terminal response  time  that a user would experience  was  the 
activity most visible means of assessing  the  effectiveness of the  system 

design.  A  user  forms his opinion of an  interactive  system on the 
basis of his expectations of terminal response  time.  Therefore, 
it was  necessary to thoroughly investigate  interactive  system 
behavior.  Since  the terminal workload characteristic had been 
defined originally several  months  prior  to  this time, a  comprehen- 
sive reevaluation  was made of the  intended  use of terminals to 
access scientific and engineering data  stored in the  Data Base 
Computer  System. We discovered  that only one  quarter of the 
terminal requests  were  expected  to  be  the quick-look type;  the 
other  three  quarters  were  to be batch  processing  requests  that 
would involve significantly more CPU and I/O resources. 

Results  then  showed  that  the System/360 Model 75 computer 
would become  computation bound because of the high number 
of batch  requests  entered  at  terminals.  Since all terminal requests 
were  to be considered  and handled with equal  priority,  batch  re- 
quests significantly degraded the simulated system  performance 
for quick-look terminal transactions. As system loading by batch 
requests  increased, simulated response  times grew to  as high as 
ten minutes  when,  under more favorable  conditions,  they could 
have  taken only ten  to fifteen seconds.  Such  degraded  system 
response was judged  to be unsatisfactory  to  meet  the  needs of 
those terminal users. 

Given  the  response  problems,  the  Data  Retrieval  Subsystem  de- 
sign was  reexamined.  In  addition,  a  study  was  undertaken  to  de- 
termine the  characteristics of a terminal workload that still met 
the  basic  requirements of the terminal user but did not  impose 
such a severe  process  load on the  Skylab  Terminal  System.  A 
new terminal load was defined to include the following charac- 
teristics: (1) only one-half of the terminal users would make 
batch requests; (2) the  scope  of  the  batch  request  requirements 
would be  reduced;  and ( 3 )  the  number  and  frequency of termi- 
nals making quick-look requests would be  increased so that  the 
total  number of terminal users being serviced would remain con- 
stant. Also, quick-look requests  were simulated as being pro- 
cessed at a higher priority than batch  requests.  The system model 
was run on the  basis of these new conditions,  and  showed  system 
performance  and terminal response to have  returned  to within 
reasonable  ranges. Under  these  conditions,  the model projected 
an  average CPU utilization of less than fifty percent. At this point 
two  recommendations  were made: first,  operational  procedures 
should be initiated that would constrain terminal user  requests, 

106 MANCINI  IBM  SYST J 





OUTPUT 

SEARCH 

RETRIEVAL 

FETCH 

OUTPUT 
SEARCH 
RETRIEVAL 

FETCH 

!RING WIT NG 



Figure 6 Input message queuing  during site selection 

z 100 18 MESSAGES PER SECOND 

z I \  
I \  

I \ 27 MESSAGES PER SECOND 

I 
I 

I 
I 

I 
I 
I 
I 

1 
4 

I 
I 
I 
I 
I 
I 

SIMULATED ELAPSED TIME (SECONDS) 

the  performance of both a first-pass task and a  second-pass  task, 
since  each  was affected differently by the  events being studied. 
Because of the requirement  to  transmit data  to  the  Data Base 
Computer  System,  the  analysis of the second pass  task had to 
consider  data  base  interface  performance. 

The purpose of the first-pass task was to  store  the  input  data on 
a local disk in an organized format. This established a rate 
equivalent to  the flow of messages into  the  computer. The task 
worked  on  one message at a time. If the task was  busy,  addition- 
al messages coming into  the  computer would be placed in an LCS 
storage buffer. The number of messages queued in this buffer 
could  not  exceed  the  capacity of the buffer or  there could  be a 
loss of messages.  (Manual  intervention would then  be  required.) 
Since loss of messages had to be avoided,  events-  such as site 
selection-that  required  the  exclusive  use of the first-pass  task 
were a particular  concern of the  analysis. 

The analysis  revealed  that  site  selection was the most critical 
event  that could affect the  performance of the first pass  task. A 
method of studying the  dynamic  nature of site selection was to 
simulate  the  event in a multitasking system  environment with 
typical message rates (18 messages per second)  and  the  worst 
case (27 messages  per second).  Results of site  selection simula- 
tion in terms of the buildup of messages in the input buffer are 
shown in Figure 6. We concluded from the  analysis  that a signifi- 
cant buildup of messages could be expected during site selec- 
tion. This buildup was  used  to  establish the size of the input 

PERFORMANCE  EVALUATION 



buffer. We also  concluded  that  the  task as designed could work 
off the buildup of input messages  and  store  them  on disk well 
before  another  site selection event. 

The purpose of the second pass  task  was to retrieve data from a 
local disk, do secondary  processing,  and  then  transmit  the data 
to  the  Data Base Computer  System. The execution of this 
task  was  asynchronous with the input message rate in that  data 
were  retrieved only after  a  complete grouping of the  data  that 
were to reside  there. Because of this  type of execution, a sepa- 
rate  analytical  approach  was  needed  to  determine  whether the 
design could maintain the  over-all input flow through the system. 
By simulating the design in a typical multitasking environment, 
it was found that  the  second  pass  task,  once  activated, could 
service input data  at a rate  equivalent to 33 messages  per  sec- 
ond. This  rate  appeared  to be satisfactory  because  it  was well 
above  the  worst-case message loading rate.  However,  there 
remained  a  question of performance  relative  to  such  events as 
site  selection,  site  discontinuation,  and  data-base  deletion. A 
determination  was  made of the  rate  at which the second  pass 
task  must  handle messages to be sure  that  the  system could ser- 
vice  the nominal rate of input,  even when these  events  were 
occuring  simultaneously. To answer  this,  various  events  were 
simulated to provide information needed  to  establish a design 
acceptance  rate  at which the  second  pass  task  must  be  able  to 
perform. This  acceptance  rate was set  at 30 messages a second. 
The then  current  evaluations  showed  that, in a normal case,  the 
design could exceed this performance  acceptance  rate. 

System  testing phase 

System testing was  the final and  independent  evaluation of the 
Skylab  Terminal  System in a  near-operational  environment. All 
components had to be integrated  into a working system.  Accep- 
tance testing was also performed to  be  sure  that  the system  satis- 
fied all the functional requirements.  During  this  period,  future 
operating personnel were being trained.  Because additional sys- 
tem capabilities being implemented much of the testing period 
was  overlapped with development  and integration activities. 

Performance is key to testing because  a  system should perform 
the way the  user requires.  System  performance monitoring and 
evaluation in parallel with system testing can  answer  perfor- 
mance  questions.  During  the testing phase, much of the perfor- 
mance  analysis  activity  was  directed  toward  the tracking of 
known potential resource  problems,  checking  out specific prob- 
lems,  and analyzing operational  procedures  that might affect per- 
formance. A study of the  operational  environment  was made to 
determine the compatibility of the  subsystems with other appli- 
cations in Houston  that would be  sharing  the  same  resources. 

I 10 MANCINI  IBM SYST J 



Tracking the CPU usage of the Data Storage  Subsystem  was of 
particular  importance  because of the requirements  to  handle 
input messages in real time. The projected CPU usage also  var- 
ied with the input message rate  and  the specific type of data being 
transmitted.  Analysis of the first system  test  series  showed  that 
CPU usage would increase by an unexpected 30 percent at  the 
nominal message input  rate as compared with previous projec- 
tions. 

This CPU usage increase was traced  to  extensive  use of a special 
facility to  determine  the  Greenwich  Mean  Time  for tagging in- 
put  messages.  Time tagging had required little programming 
effort, and it had quickly become  part of the  system. But this 
minor modification had been made without considering its per- 
formance implications. Analysis of the time tagging method re- 
vealed that  the facility to  determine time had not been designed 
to be executed at a  rate  equivalent  to  the input message rate. 
Further investigation revealed  that this time tagging was a dupli- 
cation of a similar time tagging already being done by the Termi- 
nal Support  System with much less CPU usage per tag. As a 
result of the  analysis,  the  system  was modified so that  the orig- 
inal time tagging operation could serve  the  new  requirement as 
well. Although the solution was  obvious  after  the problem had 
been  discovered,  the  igplications of a seemingly minor program- 
ming change  can easily be  overlooked in a large  development 
effort.  System  performance  tracking during system  integration, 
and testing can be a safety check  on  such  changes. 

CPU usage  projections  for  the Data Storage  Subsystem  were 
based on early measurements of a  particular  type of data.  There- 
fore, it was  necessary  to  determine  whether  the CPU usage 
would vary significantly with other  types of input  data.  Analysis 
and  measurements  resulted in CPU projections at nominal load- 
ings for  various  types  and mixes of data.  The projected CPU 
usage for  one  type of input data was high enough that special 
operational  restrictions  were  established  to  handle it. 

One of the  functions performed during acceptance  testing was to 
identify discrepancies so that  they could be corrected.  System 
funcitonal capabilities and  responsiveness  to  users’  requests 
were  both  assessed.  In one  case,  computer  measurements 
showed that  two load modules  were looping-giving control to 
one  another-and  thereby causing excessive CPU usage. Correc- 
tive programming was initiated as a  result of analysis. 

A different type of performance problem arose with an  applica- 
tion that was designed to send a large volume of data  over  a 
transmission line to a remote  location. The application  control- 
lers said they could not  drive  the  transmission line at  the  capaci- 
ty they  wanted. Three major causes of performance  degradation 

NO. 2 1974 PERFORMANCE  EVALUATION 





testing  phase  to  simulate  operational  environments  that could 
not  be  tested  directly,  such as  the full complement of terminal 
users  who would want to use  the  system. 

Concluding remarks 

Analytical techniques applied throughout  the  development  cycle 
can  contribute significantly to  the  development of a successful 

~ computer  system.  In  this  paper, we have tried to illustrate  the 
value of doing the  appropriate level of performance  evaluation 
at each  stage of a  development cycle. The particular  types of 
techniques used depend on the level of complexity  and perfor- 
mance considerations  associated with a particular  project.  A sim- 
ple pencil and  paper  approach with observations of program exe- 
cution may  suffice for  a small project.  On  a large system  develop- 
ment  project  where  the  performance of more complex computers 
and  other  resources  are critical, more  extensive  techniques are 
usually required. Here it may be  necessary  to  judge  the  adequacy 
of system  design,  details of software  design,  and  computer con- 
figurations in the  expected  total  system  environment. The anal- 
yst, using the  techniques of digital simulation models and com- 
puter  system  monitors,  can  take this perspective.  This was the 
course followed in the  development of the  Skylab  Terminal  Sys- 
tem described in this  paper. 

The preventive  nature of performance  analysis  often  makes it 
difficult to  assign  actual  cost savings for  performance  problems 
that are avoided.  This  paper  has  tried, through an  illustrative 
system  development  example,  to  show how one can  improve  the 
visibility and  control of a system  development effort by applying 
performance  evaluation  and analysis. Experience with the Skylab 
Terminal  System  shows  that  system  developers  can  depend on 
predictive  techniques  and  the kind of analyses  described  to guide 
complex  system  development efforts. 

ACKNOWLEDGMENT 
The  author is pleased to acknowledge  the  supportive  assistance 
of his colleauges who  have  who  have  contributed  to  the  overall 
system  evaluation effort discussed in this  paper. He especially 
wishes  to  acknowledge  Wayne  Stanley. 

CITED  REFERENCES 
1. J .  W. Pomeroy, “A guide to programming tools and techniques,” I B M  Sys-  

2. W. 1. Stanley and H. F. Hertel,  “Statistics gathering and simulation for the 
temsJournul11,No. 3,234-254 (1972). 



3. P. H. Seaman  and R. C .  Soucy, “Simulating operating  system,” IBM Systems 

4. W. I. Stanley,  “Measurement of system operational statistics,” IBM Systems 

5. A. J. Bonner,  “Using system  monitor  output  to improve performance,” IBM 

6. W. S. Hobgood,  “Evaluation of an  interactive-batch  system  network,” I B M  

7. B. H. Margolin, R. P. Parmelee,  and M. Schatzoff,  “Analysis of free  storage 

Journal8,No. 4,264-279  (1969). 

Journal 8,No. 4,299-308  (1969). 

Systems Journal 8, No. 4,290-298  (1969). 

System Journal 11, No. I ,  2- 15 (1972). 

algorithms,” IBM Systems Journal 10, No. 4, 283 - 304 (197 1) .  

I 14 MANCINI 


