Considerations and techniques are proposed that reduce the
complexity of programs by dividing them into functional modules.
This can make it possible to create complex systems from simple,
independent, reusable modules. Debugging and modifying pro-
grams, reconfiguring 110 devices, and managing large program-
ming projects can all be greatly simplified. And, as the module
library grows, increasingly sophisticated programs can be im-
plemented using less and less new code.

Structured design
by W. P. Stevens, G. J. Myers, and L. L. Constantine

Structured design is a set of proposed general program design
considerations and techniques for making coding, debugging,
and modification easier, faster, and less expensive by reducing
complexity.' The major ideas are the result of nearly ten years
of research by Mr. Constantine.” His results are presented here,
but the authors do not intend to present the theory and derivation
of the results in this paper. These ideas have been called compos-
ite design by Mr. Myers.”” The authors believe these program
design techniques are compatible with, and enhance, the docu-
mentation techniques of HIPO® and the coding techniques of
structured programming.7

These cost-saving techniques always need to be balanced with
other constraints on the system. But the ability to produce sim-
ple, changeable programs will become increasingly important as
the cost of the programmer’s time continues to rise.

General considerations of structured design

Simplicity is the primary measurement recommended for evalu-
ating alternative designs relative to reduced debugging and mod-
ification time. Simplicity can be enhanced by dividing the system
into separate pieces in such a way that pieces can be considered,
implemented, fixed, and changed with minimal consideration or
effect on the other pieces of the system. Observability (the abili-
ty to easily perceive how and why actions occur) is another use-

No. 2 -+ 1974 STRUCTURED DESIGN

115

Figure 1

A structure chart

N ouT
1
116

ful consideration that can help in designing programs that can be
changed easily. Consideration of the effect of reasonable changes
is also valuable for evaluating alternative designs.

Mr. Constantine has observed that programs that were the easi-
est to implement and change were those composed of simple,
independent modules. The reason for this is that problem solv-
ing is faster and easier when the problem can be subdivided into
pieces which can be considered separately. Problem solving is
hardest when all aspects of the problem must be considered
simultaneously. '

The term module is used to refer to a set of one or more contig-
uous program statements having a name by which other parts of
the system can invoke it and preferably having its own distinct
set of variable names. Examples of modules are PL/1 procedures,
FORTRAN mainlines and subprograms, and, in general, subrou-
tines of all types. Considerations are always with relation to the
program statements as coded, since it is the programmer’s abili-
ty to understand and change the source program that is under
consideration.

While conceptually it is useful to discuss dividing whole pro-
grams into smaller pieces, the techniques presented here are for
designing simple, independent modules originally. It turns out to
be difficult to divide an existing program into separate pieces
without increasing the complexity because of the amount of over-
lapped code and other interrelationships that usually exist.

Graphical notation is a useful tool for structured design. Figure
1 illustrates a notation called a structure chart,’ in which:

1. There are two modules, A and B.

2. Module A invokes module B. B is subordinate to A.

3. B receives an input parameter X (its name in module A) and
returns a parameter Y (its name in module A). (It is useful
to distinguish which calling parametérs represent data passed
to the called program and which are for data to be returned
to the caller.)

Coupling and communication

To evaluate alternatives for dividing programs into modules, it
becomes useful to examine and evaluate types of “‘connections”
between modules. A connection is a reference to some label or
address defined (or also defined) elsewhere.

The fewer and simpler the connections between modules, the
easier it is to understand each module without reference to other

STEVENS, MYERS, AND CONSTANTINE IBM SYSTJ

Table 1 Contributing factors

Interface Type of Type of
complexity connection communication
low simple, obvious to module data
by name
COUPLING control
high complicated, to internal hybrid
obscure elements

modules. Minimizing connections between modules also min-
imizes the paths along which changes and errors can propagate
into other parts of the system, thus eliminating disastrous ‘“‘rip-
ple” effects, where changes in one part cause errors in another,
necessitating additional changes elsewhere, giving rise to new
errors, etc. The widely used technique of using common data
areas (or global variables or modules without their own distinct
set of variable names) can result in an enormous number of con-
nections between the modules of a program. The complexity
of a system is affected not only by the number of connections
but by the degree to which each connection couples (associates)
two modules, making them interdependent rather than indepen-
dent. Coupling is the measure of the strength of association es-
tablished by a connection from one module to another. Strong
coupling complicates a system since a module is harder to un-
derstand, change, or correct by itself if it is highly interrelated
with other modules. Complexity can be reduced by designing
systems with the weakest possible coupling between modules.

The degree of coupling established by a particular connection is
a function of several factors, and thus it is difficult to establish a
simple index of coupling. Coupling depends (1) on how compli-
cated the connection is, (2) on whether the connection refers to
the module itself or something inside it, and (3) on what is being
sent or received.

Coupling increases with increasing complexity or obscurity of
the interface. Coupling is lower when the connection is to the
normal module interface than when the connection is to an inter-
nal component. Coupling is lower with data connections than
with control connections, which are in turn lower than hybrid
connections (modification of one module’s code by another
module). The contribution of all these factors is summarized in
Table 1.

When two or more modules interface with the same area of stor-
age, data region, or device, they share a common environment.
Examples of common environments are:

e A set of data elements with the EXTERNAL attribute that is

No. 2 - 1974 STRUCTURED DESIGN

interface
complexity

117

118

copied into PL/I modules via an INCLUDE statement or that
is found listed in each of a number of modules.

¢ Data elements defined in COMMON statements in FORTRAN
modules.

* A centrally located ‘“control block™ or set of control blocks.

* A common overlay region of memory.

* Global variable names defined over an entire program or sec-
tion.

The most important structural characteristic of a common envi-
ronment is that it couples every module sharing it to every other
such module without regard to their functional relationship or its
absence. For example, only the two modules. XVECTOR and
VELOC might actually make use of data element X in an “includ-
ed” common environment of PL/1, yet changing the length of X
impacts every module making any use of the common environ-
ment, and thus necessitates recompilation.

Every element in the common environment, whether used by
particular modules or not, constitutes a separate path along
which errors and changes can propagate. Fach element in the
common environment adds to the complexity of the total system
to be comprehended by an amount representing all possible
pairs of modules sharing that environment. Changes to, and new
uses of, the common area potentially impact all modules in un-
predictable ways. Data references may become unplanned, un-
controlled, and even unknown.

A module interfacing with a common environment for some of
its input or output data is, on the average, more difficult to use in
varying contexts or from a variety of places or in different pro-
grams than is a module with communication restricted to param-
eters in calling sequences. It is somewhat clumsier to establish a
new and unique data context on each call of a module when data
passage is via a common environment. Without analysis of the
entire set of sharing modules or careful saving and restoration of
values, a new use is likely to interfere with other uses of the
common environment and propagate errors into other modules.
As to future growth of a given system, once the commitment is
made to communication via a common environment, any new
module will have to be plugged into the common environment,
compounding the total complexity even more. On this point,
Belady and Lehman,” observe that “a well-structured system,
one in which communication is via passed parameters through
defined interfaces, is likely to be more growable and require less
effort to maintain than one making extensive use of global or
shared variables.”

The impact of common environments on system complexity
may be quantified. Among M objects there are M (M — 1) or-

STEVENS, MYERS, AND CONSTANTINE IBM SYSTJ

dered pairs of objects. (Ordered pairs are of interest because A
and B sharing a common environment complicates both, A being
coupled to B and B being coupled to A.) Thus a common envi-
ronment of N elements shared by M modules results in NM
(M — 1) first order (one level) relationships or paths along which
changes and errors can propagate. This means 150 such paths in
a FORTRAN program of only three modules sharing the COMMON
area with just 25 variables in it.

It is possible to minimize these disadvantages of common envi-
ronments by limiting access to the smallest possible subset of
modules. If the total set of potentially shared elements is subdi-
vided into groups, all of which are required by some subset of
modules, then both the size of each common environment and
the scope of modules among which it is shared is reduced. Using
“named” rather than ‘“blank’ COMMON in FORTRAN is one
means of accomplishing this end.

The complexity of an interface is a matter of how much informa-
tion is needed to state or to understand the connection. Thus,
obvious relationships result in lower coupling than obscure or
inferred ones. The more syntactic units (such as parameters) in
the statement of a connection, the higher the coupling. Thus,
extraneous elements irrelevant to the programmer’s and the
modules’ immediate task increase coupling unnecessarily.

Connections that address or refer to a module as a whole by its
name (leaving its contents unknown and irrelevant) yield lower
coupling than connections referring to the internal elements of
another module. In the latter case, as for example the use of a
variable by direct reference from within some other module, the
entire content of that module may have to be taken into account
to correct an error or make a change so that it does not make an
impact in some unexpected way. Modules that can be used easi-
ly without knowing anything about their insides make for sim-
pler systems.

Consider the case depicted in Figure 2. GETCOMM is a module
whose function is getting the next command from a terminal. In
performing this function, GETCOMM calls the module READT,
whose function is to read a line from the terminal. READT re-
quires the address of the terminal. It gets this via an externally
declared data element in GETCOMM, called TERMADDR. READT
passes the line back to GETCOMM as an argument called LINE.
Note the arrow extending from inside GETCOMM to inside
READT. An arrow of this type is the notation for references to
internal data elements of another module.

Now, suppose we wish to add a module called GETDATA, whose
function is to get the next data line (i.e., not a command) from a

NO. 2 - 1974 STRUCTURED DESIGN

type of
connection

Figure 2 Module connections

GETCOMM Of

READT

IN ouT
[e]

119

TERMADDR

Figure 3

Improved module

connections

GETCOMM

1

GETDATA

READT

IN

2

ouT

TERMADDR

-

LINE

2 |TERMADDR

LINE

type of

communication

Figure 4 Control-coupled

modules

EXECN.
COMM

|

GETCOMM

- IN OuUT

+ [Crse_Tcomum)

120

(possibly) different terminal. It would be desirable to use mod-
ule READT as a subroutine of GETDATA. But if GETDATA modi-
fies TERMADDR in GETCOMM before calling READT, it will cause
GETCOMM to fail since it will “‘get” from the wrong terminal.
Even if GETDATA restores TERMADDR after use, the error can
still occur if GETDATA and GETCOMM can ever be invoked “si-
multaneously” in a multiprogramming environment. READT
would have been more usable if TERMADDR had been made an
input argument to READT instead of an externally declared data
item as shown in Figure 3. This simple example shows how ref-
erences to internal elements of other modules can have an ad-
verse effect on program modification, both in terms of cost and
potential bugs.

Modules must at least pass data or they cannot functionally be a
part of a single system. Thus connections that pass data are a nec-
essary minimum. (Not so the communication of control. In prin-
ciple, the presence or absence of requisite input data is sufficient
to define the circumstances under which a module should be ac-
tivated, that is, receive control. Thus the explicit passing of con-
trol by one module to another constitutes an additional, theoreti-
cally inessential form of coupling. In practice, systems that are
purely data-coupled require special language and operating sys-
tem support but have numerous attractions, not the least of
which is they can be fundamentally simpler than any equivalent
system with control coupling.'®)

Beyond the practical, innocuous, minimum control coupling of
normal subroutine calls is the practice of passing an “element of
control” such as a switch, flag, or signal from one module to
another. Such a connection affects the execution of another
module and not merely the data it performs its task upon by in-
volving one module in the internal processing of some other
module. Control arguments are an additional complication to the
essential data arguments required for performance of some task,
and an alternative structure that eliminates the complication
always exists.

Consider the modules in Figure 4 that are control-coupled by the
switch PARSE through which EXECNCOMM instructs GETCOMM
whether to return a parsed or unparsed command. Separating the
two distinct functions of GETCOMM results in a structure that is
simpler as shown in Figure 5.

The new EXECNCOMM is no more complicated; where once it set
a switch and called, now it has two alternate calls. The sum of
GETPCOMM and GETUCOMM is (functionally) less complicated
than GETCOMM was (by the amount of the switch testing). And
the two small modules are likely to be easier to comprehend
than the one large one. Admittedly, the immediate gains here

STEVENS, MYERS, AND CONSTANTINE IBM SYSTJ

may appear marginal, but they rise with time and the number
of alternatives in the switch and the number of levels over which
it is passed. Control coupling, where a called module “tells”
its caller what to do, is a more severe form of coupling.

Modification of one module’s code by another module may be
thought of as a hybrid of data and control elements since the
code is dealt with as data by the modifying module, while it acts
as control to the modified module. The target module is very
dependent in its behavior on the modifying module, and the lat-
ter is intimately involved in the other’s internal functioning.

Cohesiveness

Coupling is reduced when the relationships among elements not
in the same module are minimized. There are two ways of
achieving this —minimizing the relationships among modules and
maximizing relationships among elements in the same module.
In practice, both ways are used.

The second method is the subject of this section. “FElement” in
this sense means any form of a “piece” of the module, such as a
statement, a segment, or a ‘“‘subfunction”. Binding is the mea-
sure of the cohesiveness of a module. The objective here is to
reduce coupling by striving for high binding. The scale of cohe-
siveness, from lowest to highest, follows:

Coincidental.
Logical.
Temporal.
Communicational.
Sequential.
Functional.

IS ol ol e

The scale is not linear. Functional binding is much stronger than
all the rest, and the first two are much weaker than all the rest.
Also, higher-level binding classifications often include all the
icharacteristics of one or more classifications below it plus addi-
'tional relationships. The binding between two elements is the
‘highest classification that applies. We will define each type of
‘binding, give an example, and try to indicate why it is found at
its particular position on the scale.

When there is no meaningful relationship among the elements in
a module, we have coincidental binding. Coincidental binding
might result from either of the following situations: (1) An ex-
isting program is ‘“‘modularized” by splitting it apart into mod-
ules. (2) Modules are created to consolidate “duplicate coding”
in other modules.

NO. 2 + 1974 STRUCTURED DESIGN

Figure 5 Simplified coupling

EXECN.
COMM

GETPCOMM

3

GETUCOMM

IN

ouT

COMMAND

COMMAND

COMMAND

coincidental
binding

121

logical
binding

122

As an example of the difficulty that can result from coincidental
binding, suppose the following sequence of instructions ap-
peared several times in a module or in several modules and was
put into a separate module called X:

A=B+C

GET CARD

PUT OUTPUT
IFB=4 THEN E=(

Module X would probably be coincidentally bound since these
four instructions have no apparent relationships among one an-
other. Suppose in the future we have a need in one of the mod-
ules originally containing these instructions to say GET TAPERE-
CORD instead of GET CARD. We now have a problem. If we
modify the instruction in module X, it is unusable to all of the
other callers of X. It may even be difficult to find all of the other
callers of X in order to make any other compatible change.

It is only fair to admit that, independent of a module’s cohesive-
ness, there are instances when any module can be modified in
such a fashion to make it unusable to all its callers. However,
the probability of this happening is very high if the module is
coincidentally bound. '

Logical binding, next on the scale, implies some logical relation-
ship between the elements of a module. Examples are a module
that performs all input and output operations for the program or
a module that edits all data.

The logically bound, EDIT ALL DATA module is often implement-
ed as follows. Assume the data elements to be edited are master
file records, updates, deletions, and additions. Parameters passed
to the module would include the data and a special parameter indi-
cating the type of data. The first instruction in the module is
probably a four-way branch, going to four sections of code —edit
master record, edit update record, edit addition record, and edit
deletion record.

Often, these four functions are also intertwined in some way in
the module. If the deletion record changes and requires a change
to the edit deletion record function, we will have a problem if
this function is intertwined with the other three. If the edits are
truly independent, then the system could be simplified by putting
each edit in a separate module and eliminating the need to de-
cide which edit to do for each execution. In short, logical bind-
ing usually results in tricky or shared code, which is difficult to
modify, and in the passing of unnecessary parameters.

STEVENS, MYERS, AND CONSTANTINE IBM SYSTJ

Temporal binding is the same as logical binding, except the ele-
ments are also related in time. That is, the temporally bound ele-
ments are executed in the same time period.

The best examples of modules in this class are the traditional
“initialization”, ‘‘termination”, ‘‘housekeeping”, and ‘‘clean-up”
modules. Elements in an initialization module are logically
bound because initialization represents a logical class of func-
tions. In addition, these elements are related in time (i.e., at ini-

tialization time).

Modules with temporal binding tend to exhibit the disadvantages
of logically bound modules. However, temporally bound mod-
ules are higher on the scale since they tend to be simpler for the
‘reason that all of the elements are executable at one time (i.e.,
no parameters and logic to determine which element to execute).

A module with communicational binding has elements that are
related by a reference to the same set of input and/or output
data. For example, “print and punch the output file” is commu-
nicationally bound. Communicational binding is higher on the
scale than temporal binding since the elements in a module with
communicational binding have the stronger “bond” of referring
to the same data. ‘ '

When the output data from an element is the input for the next
element, the module is sequentially bound. Sequential binding
can result from flowcharting the problem to be solved and then
'defining modules to represent one or more blocks in the flow-
chart. For example, “‘read next transaction and update master
file’” is sequentially bound.

Sequential binding, although high on the scale because of a close
relationship to the problem structure, is still far from the maxi-
mum — functional binding. The reason is that the procedural pro-
cesses in a program are usually distinct from the functions in a
program. Hence, a sequentially bound module can contain sever-
al functions or just part of a function. This usually results in
higher coupling and modules that are less likely to be usable from
other parts of the system. ‘

Functional binding is the strongest type of binding. In a func-
tionally bound module, all of the elements are related to the per-
formance of a single function.

A question that often arises at this point is what is a function? In
mathematics, Y = F(X) is read “Y is a function F of X.” The
function F defines a transformation or mapping of the indepen-
dent (or input) variable X into the dependent (or return) vari-
able Y. Hence, a function describes a transformation from some

NO. 2 + 1974 STRUCTURED DESIGN

temporal
binding

communicational
binding V

sequential
binding

functional
binding

123

124

input data to some return data. In terms of programming, we
broaden this definition to allow functions with no input data and
functions with no return data.

In practice, the above definition does not clearly describe a
functionally bound module. One hint is that if the elements of
the module all contribute to accomplishing a single goal, then it
is probably functionally bound. Examples of functionally bound
modules are “Compute Square Root” (input and return
parameters) “Obtain Random Number” (no input parameter),
and “Write Record to Output File” (no return parameter).

A useful technique in determining whether a module is func-
tionally bound is writing a sentence describing the function
(purpose) of the module, and then examining the sentence. The
following tests can be made:

1. If the sentence has to be a compound sentence, contain a
comma, or contain more than one verb, the module is proba-
bly performing more than one function; therefore, it probably
has sequential or communicational binding.

2. If the sentence contains words relating to time, such as
“first”, “next”, “then”, “after”, “when”, “start”, etc., then
the module probably has sequential or temporal binding.

3. If the predicate of the sentence doesn’t contain a single spe-
cific object following the verb, the module is probably logical-
ly bound. For example, Edit All Data has logical binding;
Edit Source Statement may have functional binding.

4. Words such as “initialize”, “clean-up”, etc. imply temporal
binding.

Functionally bound modules can always be described by way of
their elements using a compound sentence. But if the above lan-
guage is unavoidable while still completely describing the mod-
ule’s function, then the module is probably not functionally
bound.

One unresolved problem is deciding how far to divide func-
tionally bound subfunctions. The division has probably gone far
enough if each module contains no subset of elements that could
be useful alone, and if each module is small enough that its en-
tire implementation can be grasped all at once, i.e., seldom long-
er than one or two pages of source code.

Observe that a module can include more than one type of bind-
ing. The binding between two elements is the highest that can be

STEVENS, MYERS, AND CONSTANTINE IBM SYSTJ

applied. The binding of a module is lowered by every element
pair that does not exhibit functional binding.

Predictable modules

A predictable, or well-behaved, module is one that, when given
the identical inputs, operates identically each time it is called.
Also, a well-behaved module operates independently of its envi-
ronment.

To show that dependable (free from errors) modules can still be
unpredictable, consider an oscillator module that returns zero
and one alternately and dependably when it is called. It might be
used to facilitate double buffering. Should it have multiple users,
each would be required to call it an even number of times before
relinquishing control. Should any of the users have an error that
prevented an even number of calls, all other users will fail. The
operation of the module given the same inputs is not constant,
resulting in the module not being predictable even though error-
free. Modules that keep track of their own state are usually not
predictable, even when error-free.

This characteristic of predictability that can be designed into
modules is what we might loosely call “‘black-boxness.” That is,
the user can understand what the module does and use it with-
out knowing what is inside it. Module ‘“‘black-boxness” can even
be enhanced by merely adding comments that make the mod-
ule’s function and use clear. Also, a descriptive name and a well-
defined and visible interface enhances a module’s usability and
thus makes it more of a black box.

Tradeoffs to structured design

The overhead involved in writing many simple modules is in the
execution time and memory space used by a particular language
to effect the call. The designer should realize the adverse effect
on maintenance and debugging that may result from striving just
for minimum execution time and/or memory. He should also
remember that programmer cost, is, or is rapidly becoming, the
major cost of a programming system and that much of the
maintenance will be in the future when the trend will be even
more prominent. However, depending on the actual overhead of
the language being used, it is very possible that a structured de-
sign can result in less execution and /or memory overhead rath-
er than more due to the following considerations:

For memory overhead
1. Optional (error) modules may never be called into memory.

NO. 2 + 1974 STRUCTURED DESIGN

125

126

Figure 6 Definitions of symbols used in structure charts

STRUCTURE CHART SYMBOL DEFINITION
A
MODULE
B

PREDEFINED MODULE

A MODULE A INVOKES MODULE B, AND PASSES PARAM-
ETERS X AND Y FROM A TO B. MODULE B PASSES PA-
RAMETER Z TO MODULE A.

MODULE A INVOKES MODULES B AND-C. WHERE POSSI-
BLE, MODULES ARE PLACED LEFT TO RIGHT IN LIKELY
ORDER OF INVOCATION.

B C
B A c MODULE B REFERS TO DATA IN MODULE A, (DATA FLOW
0 [FROM ATO B.) MODULE A CONTAINS A BRANCH TO MOD-
ULEC.

THE MORE COMPREHENSIVE *“PROPOSED STANDARD GRAPHICS FOR PROGRAM STRUCTURE,” PREFERRED BY MR, CON-
STANTINE AND WIDELY USED OVER THE PAST SIX YEARS BY HIS CLASSES AND CLIENTS, USES SEPARATE ARROWS FOR
EACH CONNECTION, SUCH AS FOR THE CALLS FROM A TO B AND FROM A TO C, TO REFLECT STRUCTURAL PROPERTIES
OF THE PROGRAM. THE CHARTING SHOWN HERE WAS ADOPTED FOR COMPATIBILITY WITH THE HIERARCHY CHART OF HIFO.

. Structured design reduces duplicate code and the coding nec-

essary for implementing control switches, thus reducing the
amount of programmer-generated code.

. Overlay structuring can be based on actual operating charac-

teristics obtained by running and observing the program.

. Having many single-function modules allows more flexible,

and precise, grouping, possibly resulting in less memory
needed at any one time under overlay or virtual storage con-
straints.

For execution overhead

[N

. Some modules may only execute a few times.
. Optional (error) functions may never be called, resulting in

zero overhead.

. Code for control switches is reduced or eliminated, reducing

the total amount of code to be executed.

STEVENS, MYERS, AND CONSTANTINE IBM SYSTJ

4. Heavily used linkage can be recompiled and calls replaced by
branches.

S. “Includes” or “performs” can be used in place of calls.
{(However, the complexity of the system will increase by at
least the extra consideration necessary to prevent duplicating
data names and by the difficulty of creating the equivalent of
call parameters for a well-defined interface.)

6. One way to get fast execution is to determine which parts of
the system will be most used so all optimizing time can be
spent on those parts. Implementing an initially structured
design allows the testing of a working program for those criti-
cal modules (and yields a working program prior to any time
spent optimizing). Those modules can then be optimized
separately and reintegrated without introducing multitudes
of errors into the rest of the program.

Structured design techniques

It is possible to divide the design process into general program
design and detailed design as follows. General program design is
deciding what functions are needed for the program (or pro-
gramming system). Detailed design is how to implement the
functions. The considerations above and techniques that follow
result in an identification of the functions, calling parameters,
and the call relationships for a structure of functionally bound,
simply connected modules. The information thus generated
makes it easier for each module to then be separately designed,
implemented, and tested.

The objective of general program design is to determine what
functions, calling parameters, and call relationships are needed.
Since flowcharts depict whern (in what order and under what
conditions) blocks are executed, flowcharts unnecessarily com-
plicate the general program design phase. A more useful nota-
tion is the structure chart, as described earlier and as shown in
Figure 6.

To contrast a structure chart and a flowchart, consider the fol-
lowing for the same three modules in Figure 7— A which calls B
which calls C (coding has been added to the structure chart to
enable the proper flowchart to be determined; B’s code will be
executed first, then C’s, then A’s). To design A’s interfaces
properly, it is necessary to know that A is responsible for invok-
ing B, but this is hard to determine from the flowchart. In addi-
tion, the structure chart can show the module connections and
calling parameters that are central to the consideration and tech-
niques being presented here.

The other major difference that drastically simplifies the nota-

No. 2 - 1974 STRUCTURED DESIGN

structure
charts

Figure 7 Structure

chart

com-

pared to flowchart

STRUCTURE
CHART

A
CALLB
A’S CODE

|

B

B'S CODE
CALLC
RETURN

|

C
C'S CODE
RETURN

127

FLOWCHART

B'S

PROCESSING

l

Cc’s

PROCESSING

Y

A'S

PROCESSING

common
structures

128

Figure 8 Basic form of low-cost implementation

DoIT

]
l 5 6], ..l 7 l
TRANSFORM
GETC Ton PUTD
3 I 4 8)
TRANSFORM TRANSFORM
GETB T0C TOE PUTE
2 10 11
T TRANSFORM TRANSFORM T
108 TOF
READ WRITE
IN out

1 A
2 A B
3 B

4 B c
5 c
6 c D
7 D
8 D E
9 3

10 E F

11 F

Figure 9 Transaction structure

HANDLE
TRANSACTION

I
| |

GET TRANSACTION TRANSACTION . TRANSACTION
TRANSACTION 1 2 N

tion and analysis during general program design is the absence in
structure charts of the decision block. Conditional calls can be
so noted, but *‘decision designing” can be deferred until detailed
module design. This is an example of where the design process
is made simpler by having to consider only part of the design
problem. Structure charts are also small enough to be worked on
all at once by the designers, helping to prevent suboptimizing
parts of the program at the expense of the entire problem.

A shortcut for arriving at simple structures is to know the gen-
eral form of the result. Mr. Constantine observed that programs
of the general structure in Figure 8 resulted in the lowest-cost

STEVENS, MYERS, AND CONSTANTINE IBM SYSTJ

Figure 10 Rough structure of simulation system

STABLE
PARAMETERS

VERIFY
REASONABLE
NESS
OF ROW

VALIDATE
FORMAT

BUILD
MATRIX

VALID ROW OF REASONABLE MATRIX
CARDS PARAMETERS ROWS

VARIABLE
PARAMETERS

implementations. It implements the input-process-output type of
program, which applies to most programs, even if the “input” or
“output” is to secondary storage or to memory.

In practice, the sink leg is often shorter than the source one.
Also, source modules may produce output (e.g., error
messages) and sink modules may request input (e.g., execution-
time format commands.)

Another structure useful for implementing parts of a design is
the transaction structure depicted in Figure 9. A “transaction”
here is any event, record, or input, etc. for which various actions
should result. For example, a command processor has this struc-
ture. The structure may occur alone or as one or more of the
source (or even sink) modules of an input-process-output struc-
ture. Analysis of the transaction modules follows that of a trans-
form module, which is explained later.

The following procedure can be used to arrive at the input-pro-
cess-output general structure shown previously.

Step One. The first step is to sketch (or mentally consider) a
functional picture of the problem. As an example, consider a
simulation system. The rough structure of this problem is shown
in Figure 10.

Step Two. 1dentify the external conceptual streams of data. An
external stream of data is one that is external to the system. A
conceptual stream of data is a stream of related data that is inde-
pendent of any physical 1/0 device. For instance, we may have
several conceptual streams coming from one 1/0 device or one
stream coming from several 1/0 devices. In our simulation sys-
tem, the external conceptual streams are the input parameters,
and the formatted simulation the result.

Step Three. ldentify the major external conceptual stream of
data (both input and output) in the problem. Then, using the
diagram of the problem structure, determine, for this stream, the
points of “highest abstraction” as in Figure 11.

NO. 2 - 1974 STRUCTURED DESIGN

FORMAT
RESULTS

RESULT
MATRIX

designing
the structure

129

130

Figure 11 Determining points of highest abstraction

“ J
~"
CENTRAL
TRANSFORMATIONS
MOST ABSTRACT MOST ABSTRACT
INPUT DATA OUTPUT DATA
Figure 12 The top level
IN ouT
1 USUALLY MOST ABSTRACT
A NOTHING INPUT DATA
l 2 MOST ABSTRACT MOST ABSTRACT
L 2] 13 INPUT DATA QUTPUT DATA
B C D 3 MOST ABSTRACT USUALLY
OUTPUT DATA NOTHING

The “point of highest abstraction” for an input stream of data is
the point in the problem structure where that data is farthest re-
moved from its physical input form yet can still be viewed as
coming in. Hence, in the simulation system, the most abstract
form of the input transaction stream might be the built matrix.
Similarly, identify the point where the data stream can first be
viewed as going out —in the example, possibly the result matrix.

Admittedly, this is a subjective step. However, experience has
shown that designers trained in the technique seldom differ by
more than one or two blocks in their answers to the above.

Step Four. Design the structure in Figure 12 from the previous
information with a source module for each conceptual input
stream which exists at the point of most abstract input data; do
sink modules similarly. Often only single source and sink
branches are necessary. The parameters passed are dependent
on the problem, but the general pattern is shown in Figure 12.

Describe the function of each module with a short, concise, and
specific phrase. Describe what transformations occur when that
module is called, not how the module is implemented. Evaluate
the phrase relative to functional binding.

When module A is called, the program or system executes.
Hence, the function of module A is equivalent to the problem
being solved. If the problem is “write a FORTRAN compiler,”
then the function of module A is “‘compile FORTRAN program.”

STEVENS, MYERS, AND CONSTANTINE IBM SYSTJ

Module B’s function involves obtaining the major stream of
data. An example of a “typical module B” is “get next valid
source statement in Polish form.”

Module C’s purpose is to transform the major input stream into
the major output stream. Its function should be a nonprocedural
description of this transformation. Examples are ‘“‘convert Polish
form statement to machine language statement” or ‘‘using key-
word list, search abstract file for matching abstracts.”

Module D’s purpose is disposing of the major output stream.
Examples are “produce report” or “display results of simula-
tion.”

Step Five. For each source module, identify the last transforma-
tion necessary to produce the form being returned by that mod-
ule. Then identify the form of the input just prior to the last
transformation. For sink modules, identify the first process nec-
essary to get closer to the desired output and the resulting out-
put form. This results in the portions of the structure shown in
Figure 13.

Repeat Step Five on the new source and sink modules until the
original source and final sink modules are reached. The modules
may be analyzed in any order, but each module should be done
completely before doing any of its subordinates. There are, un-
fortunately, no detailed guidelines available for dividing the
transform modules. Use binding and coupling considerations,
size (about one page of source), and usefulness (are there sub-
functions that could be useful elsewhere now or in the future) as
guidelines on how far to divide.

During this phase, err on the side of dividing too finely. It is
always easy to recombine later in the design, but duplicate func-

Figure 13 Lower levels

1 4

GETC PUTD

2 3 5" 6

TRANSFORM TRANSFORM
GET B T0C TOE PUTE
IN ouT N out
1 C 4 D
2 B 5 D E
3 B C 6 £

NO. 2 ¢+ 1974 STRUCTURED DESIGN

131

match program
to problem

Figure 15 Scope of control

A

-

<=

scopes of
effect and
control

132

Figure 14 Design form should follow function

DESIGN A DESIGN B

= I_j—_l1

DIAL DIAL RECEIVE

RECEIVE

tions may not be identified if the dividing is too conservative at
this point.

Design guidelines

The following concepts are useful for achieving simple designs
and for improving the “first-pass” structures.

One of the most useful techniques for reducing the effect of
changes on the program is to make the structure of the design
match the structure of the problem, that is, form should follow
function. For example, consider a module that dials a telephone
and a module that receives data. If receiving immediately fol-
lows dialing, one might arrive at design A as shown in Figure
14. Consider, however, whether receiving is part of dialing.
Since it is not (usually), have DIAL’s caller invoke RECEIVE as
in design B.

If, in this example, design A were used, consider the effect of a
new requirement to transmit immediately after dialing. The DIAL
module receives first and cannot be used, or a switch must be
passed, or another DIAL module has to be added.

To the extent that the design structure does match the problem
structure, changes to single parts of the problem result in
changes to single modules.

The scope of control of a module is that module plus all modules
that are ultimately subordinate to that module. In the example of
Figure 15, the scope of control of B is B, D, and E. The scope
of effect of a decision is the set of all modules that contain some
code whose execution is based upon the outcome of the deci-
sion. The system is simpler when the scope of effect of a de-
cision is in the scope of control of the module containing the
decision. The following example illustrates why.

STEVENS, MYERS, AND CONSTANTINE IBM SYSTJ

If the execution of some code in A is dependent on the outcome
of decision X in module B, then either B will have to return a
flag to A or the decision will have to be repeated in A. The former
approach results in added coding to implement the flag, and the
latter results in some of B’s function (decision X) in module A.
Duplicates of decision X result in difficulties coordinating
changes to both copies whenever decision X must be changed.

The scope of effect can be brought within the scope of control
either by moving the decision element “‘up” in the structure, or
by taking those modules that are in the scope of effect but not in
the scope of control and moving them so that they fall within the
scope of control.

Size can be used as a signal to look for potential problems. Look
carefully at modules with less than five or more than 100 execut-
able source statements. Modules with a small number of state-
ments may not perform an entire function, hence, may not have
functional binding. Very small modules can be eliminated by
placing their statements in the calling modules. Large modules
may include more than one function. A second problem with
large modules is understandability and readability. There is evi-
dence to the fact that a group of about 30 statements is the up-
per limlilt of what can be mastered on the first reading of a module
listing.

Often, part of a module’s function is to notify its caller when it
cannot perform its function. This is accomplished with a return
error parameter (preferably binary only). A module that handles
streams of data must be able to signal end-of-file (EOF), preferably
also with a binary parameter. These parameters should not, how-
ever, tell the caller what to do about the error or EOF. Neverthe-
less, the system can be made simpler if modules can be designed
without the need for error flags.

Similarly, many modules require some initialization to be done.
An initialize module will suffer from low binding but sometimes
is the simplest solution. It may, however, be possible to elimi-
nate the need for initializing without compromising ‘“‘black-box-
ness” (the same inputs always produce the same outputs). For
example, a read module that detects a return error of file-not-
opened from the access method and recovers by opening the file
and rereading eliminates the need for initialization without main-
taining an internal state.

Eliminate duplicate functions but not duplicate code. When a
function changes, it is a great advantage to only have to change
it in one place. But if a module’s need for its own copy of a ran-
dom collection of code changes slightly, it will not be necessary
to change several other modules as well.

No. 2 - 1974 STRUCTURED DESIGN

module
size

error and
end-of-file

intialization

selecting
modules

133

isolate
specifications

reduce
parameters

134

Figure 16 OQutline of problem structure

\ FIND UNSAFE
READ FACTORS \ STORE FACTORS \ ACTORS

FACTORS FACTORS UNSAFE
FACTORS

Figure 17 Points of higi\esi abstraction

FIND UNSAFE
READ FACTORS STORE FACTORS / \ w

MOST ABSTRACT CENTRAL MOST ABSTRACT
INPUT DATA TRANSFORMATION OUTPUT DATA

If a module seemis almost, but not quite, useful from a second
place in the system, try to identify and isolate the useful sub-
function. The remainder of the module might be incorporated in
its original caller.

Check modules that have many callers or that call many other
modules. While not always a problem, it may indicate missing
levels or modules.

Isolate all dependencies on a particular data-type, record-layout,
index-structure, etc. in one or a minimum of modules. This min-
imizes the recoding necessary should that particular specifica-
tion change.

Look for ways to reduce the number of parameters passed be-
tween modules. Count every item passed as a separate parame-
ter for this objective (independent of how it will be imple-
mented). Do not pass whole records from module to module,
but pass only the field or fields necessary for each module to
accomplish its function. Otherwise, all modules will have to
change if one field expands, rather than only those which direct-
ly used that field. Passing only the data being processed by the
program system with necessary error and EOF parameters is the
ultimate objective. Check binary switches for indications of
scope-of-effect / scope-of-control inversions.

Have the designers work together and with the complete struc-
ture chart. If branches of the chart are worked on separately,
common modules may be missed and incompatibilities result
from design decisions made while only considering one branch.

STEVENS, MYERS, AND CONSTANTINE IBM SYSTJ

Figure 18 Structure of the top level

IN out
MONITOR TEMP, PULSE, BP,
PATIENTS ! NOTHING SKINR, PATIENTNUM
LIST OF UNSAFE
TEMP, PULSE, BP,
1 2% E 2| SKINR, PATIENTNUM | TACTOR NAMES
: AND VALUES
NOTIFY
OBTAIN A FIND STATION PATIENTNUM AND LIST
PATIENT'S UNSAFE OF UNSAFE 3] OF UNSAFE FACTOR NOTHING
FACTORS FACTORS ok NAMES AND VALUES
Figure 19 Structure of next level
IN out
OBTAIN A
PATIENT'S | SOURCE 4 NOTHING PATIENTNUM
FACTORS
] TEMP, PULSE, BP,
4] 5] 6 5| PATIENTNUM SKINR, NOTVAL
FIND NEXT READ VALID STORE
PATIENT TO SET OF FACTORS IN PATIENTNUM, TEMP, NOTHING
MONITOR FACTORS DATA BASE PULSE, BP, SKINR
SOURCE SOURCE SINK
An example

The following example illustrates the use of structured design:

A patient-monitoring program is required for a hospital. Each
patient is monitored by an analog device which measures factors
such as pulse, temperature, blood pressure, and skin resistance.
The program reads these factors on a periodic basis (specified
for each patient) and stores these factors in a data base. For
each patient, safe ranges for each factor are specified (e.g., pa-
tient X’s valid temperature range is 98 to 99.5 degrees
Fahrenheit). If a factor falls outside of a patient’s safe range, or
if an analog device fails, the nurse’s station is notified.

In a real-life case, the problem statement would contain much
more detail. However, this one is of sufficient detail to allow us
to design the structure of the program.

The first step is to outline the structure of the problem as shown
in Figure 16. In the second step, we identify the external con-
ceptual streams of data. In this case, two streams are present,
factors from the analog device and warnings to the nurse. These
also represent the major input and output streams.

Figure 17 indicates the point of highest abstraction of the input
stream, which is the point at which a patient’s factors are in the
form to store in the data base. The point of highest abstraction of
the output stream is a list of unsafe factors (if any). We can now
begin to design the program’s structure as in Figure 18.

NO. 2 - 1974 STRUCTURED DESIGN

135

Figure 20 Complete structure chart

MONITOR PATIENTS
1 2 3
f 1 .]
OBTAIN A FIND UNSAFE NOTIFY STATION OF
PATIENT'S FACTORS FACTORS UNSAFE FACTORS
4 T5 6 11 T 12 14 13
[1 [1
FIND NEXT PATIENT READ VALID SET STORE FACTORS IN OBTAIN PATIENT'S DETERMINE IF FORMAT OUTPUT
TO MONITOR OF FACTORS DATA BASE SAFE RANGES FACTOR IS UNSAFE LINES
7 T 8
[
CONVERT PATIENT READ FACTORS FROM
NO. TO BED ADDRESS TERMINAL

o

NOTIFY STATION OF
BAD TERMINAL

l‘° [

WRITE LINE TO
STATION
IN ouT
1 TEMP, PULSE, BP. SKINR, PATIENTNUM
2| TEMP, PULSE, BP, SKINR, PATIENTNUM LIST OF UNSAFE FACTOR NAMES AND VALUES
3| PATIENTNUM & LIST OF UNSAFE FACTOR NAMES & VALUES e —
4 — PATIENTNUM
5 | PATIENTNUM TEMP, PULSE, BP, SKINR, NOTVAL
6 | PATIENTNUM, TEMP, PULSE, BP. SKINR
7 | PATIENTNUM BEDNUM
8| BEDNUM TEMP, PULSE, BP, SKINR, NOTVAL
9| BEDNUM
10,14 | LINE
11| PATIENTNUM TEMPR, PULSER, BPR, SKINRR
12 | FACTOR, RANGE UNSAFE
13 | LIST OF UNSAFE FACTOR NAMES AND VALUES LIST OF LINES

136

In analyzing the module “OBTAIN A PATIENTS FACTORS,” we
can deduce from the problem statement that this function has
three parts: (1) Determine which patient to monitor next (based
on their specified periodic intervals). (2) Read the analog de-
vice. (3) Record the factors in the data base. Hence, we arrive
at the structure in Figure 19. (NOTVAL is set if a valid set of fac-
tors was not available.)

Further analysis of “READ VALID SET OF FACTORS”, “FIND
UNSAFE FACTORS” and ‘“NOTIFY STATION OF UNSAFE FAC-
TORS” yields the results shown in the complete structure chart
in Figure 20.

Note that the module “READ FACTORS FROM TERMINAL” con-
tains a decision asking “‘did we successfully read from the termi-
nal?” If the read was not successful, we have to notify the
nurse’s station and then find the next patient to process as de-
picted in Figure 21.

Modules in the scope of effect of this decision are marked with
an X. Note that the scope of effect is not a subset of the scope

STEVENS, MYERS, AND CONSTANTINE IBM SYSTJ

Figure 21 Structure as designed
OBTAIN A
PATIENT'S
FACTORS
FIND NEXT READ VALID STORE
PATIENT TO SET OF FACTORS IN
MONITOR FACTORS DATA BASE
CONVERT
PATIENT NUMBER READ FACTORS
TO BED ADDRESS FROM TERMINAL
X
NOTIFY
STATION OF
BAD TERMINAL
X
Figure 22 Scope of effect within scope of control
OBTAIN A
PATIENT'S
FACTORS
READ NEXT STORE
PATIENT'S FACTORS IN
FACTORS DATA BASE
FIND NEXT CONVERT NOTIFY
PATIENT TO PATIENT NUMBER STATION OF
MONITOR TO BED ADDRESS BAD TERMINAL
X X

of control. To correct this problem, we have to take two steps.
First, we will move the decision up to “READ VALID SET OF
FACTORS.” We do this by merging “READ FACTORS FROM TER-

MINAL” into its calling module. We now make “FIND NEXT PA-
TIENT TO MONITOR” a subordinate of “READ VALID SET OF
FACTORS.” Hence, we have the structure in Figure 22. Thus, by
slightly altering the structure and the function of a few modules,
we have completely eliminated the problem.

Concluding remarks

~ The HIPO Hierarchy chart is being used as an aid during general
- systems design. The considerations and techniques presented
here are useful for evaluating alternatives for those portions of
the system that will be programmed on a computer. The charting
technique used here depicts more details about the interfaces
than the HIPO Hierarchy chart. This facilitates consideration
during general program design of each individual connection and

No. 2 - 1974

STRUCTURED DESIGN

137

138

its associated passed parameters. The resulting design can be
documented with the HIPO charts. (If the designer decides to
have more than one function in any module, the structure chart
should show them in the same block. However, the HIPO Hier-
archy chart would still show all the functions in separate
blocks.) The output of the general program design is the input
for the detailed module design. The HIPO input-process-output
chart is useful for describing and designing each module.

Structured design considerations could be used to review pro-
gram designs in a walk-through environment."”” These concepts
are also useful for evaluating alternative ways to comply with
the rec71uirement of structured programming for one-page seg-
ments.

Structured design reduces the effort needed to fix and modify
programs. If all programs were written in a form where there
was one module, for example, which retrieved a record from the
master file given the key, then changing operating systems, file
access techniques, file blocking, or 1/0 devices would be greatly
simplified. And if all programs in the installation retrieved from
a given file with the same module, then one properly rewritten
module would have all the installation’s programs working with
the new constraints for that file.

However, there are other advantages. Original errors are re-
duced when the problem at hand is simpler. Each module is self-
contained and to some extent may be programmed independent-
ly of the others in location, programmer, time, and language.
Modules can be tested before all programming is done by
supplying simple “stub” modules that merely return preformat-
ted results rather than calculating them. Modules critical to
memory or execution overhead can be optimized separately and
reintegrated with little or no impact. An entry or return trace-
module becomes very feasible, yielding a very useful debugging
tool.

Independent of all the advantages previously mentioned, struc-
tured design would still be valuable to solve the following prob-
lem alone. Programming can be considered as an art where each
programmer usually starts with a blank canvas —techniques, yes,
but still a blank canvas. Previous coding is often not used be-
cause previous modules usually contain, for example, at least
GET and EDIT. If the EDIT is not the one needed, the GET will
have to be recoded also.

Programming can be brought closer to a science where current
work is built on the results of earlier work. Once a module is
written to get a record from the master file given a key, it can be
used by all users of the file and need not be rewritten into each

STEVENS, MYERS, AND CONSTANTINE IBM SYSTJ

succeeding program. Once a module has been written to do a
table search, anyone can use it. And, as the module library
grows, less and less new code needs to be written to implement
increasingly sophisticated systems.

Structured design concepts are not new. The whole assembly-
line idea is one of isolating simple functions in a way that still
produces a complete, complex result. Circuits are designed by
connecting isolatable, functional stages together, not by design-
ing one big, interrelated circuit. Page numbering is being increas-
ingly sectionalized (e.g., 4—101) to minimize the “connections”
between written sections, so that expanding one section does
not require renumbering other sections. Automobile manufactur-
ers, who have the most to gain from shared system elements,
finally abandoned even the coupling of the windshield wipers to
the engine vacuum due to effects of the engine load on the per-
formance of the wiping function. Most other industries know
well the advantage of isolating functions.

It is becoming increasingly important to the data-processing
industry to be able to produce more programming systems and
produce them with fewer errors, at a faster rate, and in a way
that modifications can be accomplished easily and quickly.
Structured design considerations can help achieve this goal.

CITED REFERENCES AND FOOTNOTES

1. This method has not been submitted to any formal IBM test. Potential users
should evaluate its usefulness in their own environment prior to implementa-
tion.

2. L. L. Constantine, Fundamentals of Program Design, in preparation for
publication by Prentice-Hall, Englewood Cliffs, New Jersey.

3. G.J. Myers, Composite Design: The Design of Modular Programs, Techni-
cal Report TR00.2406, IBM, Poughkeepsie, New York (January 29, 1973).

4. G. J. Myers, “Characteristics of composite design,” Datamation 19, No. 9,
100-102 (September 1973).

5. G. J. Myers, Reliable Software through Composite Design, to be published
Fall of 1974 by Mason and Lipscomb Publishers, New York, New York.

6. HIPO — Hierarchical Input-Process-Output documentation technique. Au-
dio education package, Form No. SR20-9413, available through any IBM
Branch Office.

7. F. T. Baker, “Chief programmer team management of production program-
ming,” IBM Systems Journal11,No. 1,56-73 (1972).

8. The use of the HIPO Hierarchy charting format is further illustrated in Fig-
ure 6, and its use in this paper was initiated by R. Ballow of the IBM Pro-
gramming Productivity Techniques Department.

9. L. A. Belady and M. M. Lehman, Programming System Dynamics or the
Metadynamics of Systems in Maintenance and Growth”, RC 3546, IBM
Thomas J. Watson Research Center, Yorktown Heights, New York (1971).

10. L. L. Constantine, “Control of sequence and parallelism in modular pro-
grams,” AFIPS Conference Proceedings, Spring Joint Computer Confer-
ence 32, 409 (1968).

11. G. M. Weinberg, PL/I Programming: A Manual of Style, McGraw-Hill,
New York, New York (1970).

12. Improved Programming Technologies: Management Overview, IBM Cor-
poration, Data Processing Division, White Plains, New York (August 1973).

NO. 2 - 1974 STRUCTURED DESIGN

139

