


Figure 1 A structure chart  
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ful consideration  that  can help in designing programs that  can be 
changed easily. Consideration of the effect of reasonable  changes 
is also valuable for evaluating alternative  designs. 

Mr. Constantine  has  observed  that  programs  that  were  the easi- 
est  to implement and  change  were  those  composed of simple, 
independent modules. The reason  for  this is that problem solv- 
ing is  faster  and  easier  when  the problem can  be subdivided into 
pieces which can be considered  separately.  Problem solving is 
hardest when all aspects of the problem  must  be  considered 
simultaneously. 

The term module is used to refer  to a set of one  or  more contig- 
uous program statements having a name by which other  parts of 
the  system  can  invoke it and preferably having its  own  distinct 
set of variable names.  Examples of modules are PL/I procedures, 
FORTRAN mainlines and  subprograms,  and, in general,  subrou- 
tines of all types.  Considerations are always with relation to  the 
program statements as coded, since  it is the programmer’s abili- 
ty to  understand  and  change  the source program that is under 
consideration. 

While conceptually it  is useful to  discuss dividing whole pro- 
grams  into  smaller  pieces,  the  techniques  presented  here are  for 
designing.simple,  independent modules originally. It turns  out  to 
be difficult to  divide  an existing program into  separate pieces 
without increasing the  complexity  because of the  amount of over- 
lapped code  and  other  interrelationships  that usually exist. 

Graphical  notation  is  a useful tool for  structured  design.  Figure 
I illustrates a notation called a structure  chart: in which: 

1 .  There  are  two modules, A and B. 
2. Module A invokes module B. B is subordinate to A. 
3. B receives an input  parameter X (its  name in module A) and 

returns a parameter Y (its  name in module A).  (It is useful 
to distinguish which calling parameters  represent data passed 
to the called program and which are for data  to  be returned 
to  the caller.) 

Coupling and communication 

To evaluate  alternatives  for dividing programs into  modules, it 
becomes useful to examine  and  evaluate  types of “connections” 
between modules. A connection is a reference to  some label or 
address defined (or  also  defined)  elsewhere. 

The  fewer and  simpler  the  connections  between  modules,  the 
easier it is to  understand  each module without  reference to  other 
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Figure 4 Control-coupled 
modules 
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of alternatives in the switch and  the  number of levels  over which 
, i t  is passed.  Control coupling, where a called module “tells” 
its  caller  what  to  do, is a more severe form of coupling. 

Modification of one module’s code by another module may be 
 thought of as a hybrid of data and  control  elements  since  the 
 code is dealt with as  data by the modifying module, while it acts 
‘as control  to the modified module. The target module is very 

  cohesiveness 

Coupling is reduced when the  relationships  among  elements not 
in the  same module are minimized. There  are  two ways of 

  the second method is  the  subject of this  section.  “Element” in 
1 this  sense  means  any form of a  “piece” of the module, such as a 
statement, a segment, or a “subfunction”. Binding is the mea- 

~ sure of the  cohesiveness of a module. The objective  here is to 

EXECN. 

4. Communicational. 
5.  Sequential. 
6 .  Functional. 

The scale is not  linear.  Functional binding is much stronger  than 
all the  rest,  and  the first two  are much  weaker  than all the  rest. 

tional relationships. The binding between  two  elements is the 
highest classification that  applies.  We will define each  type of 

When there is no meaningful relationship  among the elements in coincidental 
a module, we  have  coincidental binding. Coincidental binding binding 
might result  from  either of the following situations: ( 1)  An ex- 
isting program is “modularized” by splitting it apart into mod- 
ules. (2) Modules are created  to consolidate  “duplicate coding” 
in other  modules. 



As an  example  of  the difficulty that  can  result from coincidental 
binding, suppose  the following sequence of instructions  ap- 
peared  several times in a module or in several  modules  and  was 
put  into  a  separate module called X: 

A = B + C  
GET CARD 
PUT OUTPUT 
I F B = 4 , T H E N E = O  

Module X would probably  be coincidentally bound since  these 
four  instructions  have no apparent  relationships among one an- 
other.  Suppose in the  future we have a need in one of the mod- 
ules originally containing these  instructions to  say GET TAPERE- 
CORD instead of GET CARD. We now have  a  problem. If we 
modify the  instruction in module X, it is unusable to all  of the 
other  callers of X. It may even  be difficult tofind all of the  other 
callers of X in order  to  make  any  other  compatible  change. 

It is only fair  to  admit  that,  independent of a module’s cohesive- 
ness,  there are instances when any module can  be modified  in 
such  a fashion to make it unusable  to all its  callers.  However, 
the probability of this happening is very high if the module is 
coincidentally bound. 

logical Logical binding, next  on the scale, implies some logical relation- 
binding ship between  the  elements of a module. Examples are a module 

that  performs all input  and  output  operations  for  the program or 
a module that  edits all data. 

The logically bound, EDIT ALL DATA module is often implement- 
ed as follows. Assume  the  data  elements  to  be  edited  are  master 
file records,  updates,  deletions,  and  additions.  Parameters  passed 
to  the module would include the  data  and  a special parameter indi- 
cating the  type of data. The first instruction in the module is 
probably a four-way branch, going to  four sections of code - edit 
master  record,  edit  update  record,  edit addition record,  and  edit 
deletion  record. 

Often,  these  four  functions  are  also  intertwined in some way in 
the module. If the  deletion  record  changes  and  requires a change 
to  the  edit  deletion  record  function,  we will have a problem if 
this function is intertwined with the  other  three. If the  edits  are 
truly independent,  then the system  could  be simplified  by putting 
each  edit in a separate module and eliminating the need to  de- 
cide which edit  to do  for  each execution.  In  short, logical bind- 
ing usually results in tricky or shared  code, which is  difficult to 
modify, and in the passing of unnecessary  parameters. 
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ments are also  related in time. That is, the temporally bound ele- binding 
ments are executed in the same  time  period. 

The best  examples of modules in this  class are  the traditional 
“initialization”,  “termination”,  “housekeeping”,  and  “clean-up” 
modules.  Elements in an initialization module are logically 
bound because initialization represents  a logical class of func- 
tions. In addition,  these  elements are related in time (i.e., at ini- 
tialization time). 

of logically bound  modules.  However, temporally bound mod- 
ules are higher on  the  scale  since  they  tend  to be simpler for  the 
reason  that all of the  elements are executable at  one time  (i.e., 
no  parameters and logic to  determine which element to  execute). 

A module with communicational binding has  elements  that are communicational 
related by a reference to  the same  set of input and/or output binding 
data.  For example,  “print  and  punch  the  output file” is commu- 
nicationally bound.  Communicational binding is higher on  the 
scale  than temporal binding since  the  elements in a module with 
communicational binding have  the  stronger  “bond” of referring 

When the  output  data from an  element is the input for  the  next sequential 
element,  the module is sequentially  bound.  Sequential binding binding 

can  result from flowcharting the problem to  be solved and  then 
defining modules  to  represent  one or more blocks in the flow- 

Sequential binding, although high on  the scale  because of a  close 

mum- functional binding. The reason is that  the  procedural pro- 

al functions or  just part of a  function.  This usually results in 

Functional binding i s  the  strongest  type of binding. In  a  func- functional 
tionally bound module, all  of the  elements are related  to the per- binding 

A question that often  arises  at this point is what is a  function?  In 
mathematics, Y = F ( X )  is read “Y is a  function F of X.” The 

dent (or input) variable X into the  dependent  (or  return) vari- 
able Y.  Hence, a  function  describes  a  transformation from some 





Predictable modules 

A  predictable, or well-behaved, module is one  that,  when given 
the identical inputs,  operates identically each time it is called. 
Also, a well-behaved module operates  independently of its  envi- 
ronment. 

To  show  that  dependable  (free  from errors) modules  can still be 

used to  facilitate  double buffering. Should it have multiple users, 
each would be required to call it an  even  number of times before 
relinquishing control.  Should  any of the  users  have  an  error  that 

free.  Modules  that  keep  track of their own state  are usually not 
predictable,  even when error-free. 

This characteristic of predictability that  can  be designed into 
modules is what we might loosely call “black-boxness.” That is, 
the  user  can  understand  what  the module does  and  use it with- 
out knowing what is inside it.  Module  “black-boxness”  can  even 
be enhanced by merely adding comments  that  make  the mod- 
ule’s function  and  use  clear.  Also,  a  descriptive  name  and  a well- 
defined and visible interface  enhances a module’s usability and 
thus  makes it more of a black box. 

Tradeoffs to structured design 

The overhead involved in writing many simple modules is in the 
execution time and memory space used by a particular language 
to effect the call. The designer should realize  the  adverse effect 
on  maintenance  and debugging that may result from striving just 
for minimum execution time and/or memory. He should also 
remember that programmer  cost, is, or is rapidly becoming, the 
major cost of a programming system  and  that much of the 
maintenance will be in the  future  when  the  trend will be  even 
more prominent.  However,  depending  on  the  actual  overhead of 
the language being used, it is very possible that a structured  de- 
sign can  result in less  execution and/or memory overhead  rath- 
er than  more due  to  the following considerations: 

For  memory  overhead 

1. Optional (error) modules may never be called into memory. 
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Figure 8 Basic form of low-cost implementation 
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Figure 9 Transaction structure 
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tion and analysis during general program design is the  absence in 
structure  charts of the decision block. Conditional calls can  be 
so noted, but “decision designing” can  be  deferred until detailed 
module design. This is an example of where  the design process 
is made simpler by having to consider only part of the design 
problem. Structure  charts  are  also small enough to be worked on 
all at once by the  designers, helping to prevent suboptimizing 
parts of the program at the  expense of the  entire problem. 

common A shortcut  for arriving at simple structures is to know the gen- 
structures eral form of the result. Mr. Constantine  observed  that programs 

of the general structure in Figure 8 resulted in the  lowest-cost 

128 STEVENS, MYERS, AND CONSTANTINE IBM SYST J 









match program 
to problem 

Figure 15 Scope of control 

scopes of 
effect and 

control 

132 

Figure 14 Design form should follow function 
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tions may not be identified if the dividing is  too  conservative at 
this point. 

Design guidelines 

The following concepts  are useful for achieving simple designs 
and  for improving the “first-pass’’ structures. 

One of the  most useful techniques  for reducing the effect of 
changes  on  the program is to make the  structure of the  design 
match the  structure of the problem, that is, form should follow 
function. For example,  consider  a module that dials  a  telephone 
and a module that receives  data. If receiving immediately fol- 
lows dialing, one might arrive  at design A as shown in Figure 
14. Consider,  however,  whether receiving is part of dialing. 
Since it is not  (usually), have DIAL’S caller  invoke RECEIVE as 
in design B. 

If, in this  example, design A were  used,  consider  the effect of a 
new requirement to transmit immediately after dialing. The DIAL 
module receives first and  cannot be used, or a switch must  be 
passed, or  another DIAL module has to  be  added. 

To the  extent  that  the design structure  does  match  the problem 
structure,  changes  to single parts of the problem result in 
changes to single modules. 

The scope of control of a module is that module plus all modules 
that  are ultimately subordinate  to that module. In  the  example of 
Figure 15, the  scope of control of B is B, D, and E. The scope 
of effect of a decision is the  set of all modules  that  contain  some 
code  whose  execution is based upon the  outcome of the  deci- 
sion. The system is simpler when the  scope of effect of a de- 
cision is in the  scope of control of the module containing the 
decision. The following example  illustrates why. 
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If the  execution of some  code in A is dependent  on  the  outcome 
of decision X in module B, then  either  B will have  to  return a 
flag to A or  the decision will have to  be repeated in A. The former 
approach  results in added coding to implement the flag, and  the 
latter  results in some of  B’s function  (decision X) in module A. 
Duplicates of decision X result in difficulties coordinating 
changes to both  copies  whenever  decision X must be changed. 

The scope of effect can  be  brought within the  scope of control 
either by moving the  decision  element  “up” in the  structure, or 
by taking those modules that  are in the  scope of effect but  not in 
the  scope of control  and moving them so that  they fall within the 
scope of control. 

Size can be used as a signal to look for potential problems.  Look 
carefully at modules with less than five or more  than 100 execut- 
able  source  statements.  Modules with a small number of state- 
ments may not perform an  entire  function,  hence, may not  have 
functional binding. Very small modules can  be eliminated by 
placing their  statements in the calling modules.  Large modules 
may include more than  one  function; A second problem with 
large modules is understandability  and  readability. There is evi- 
dence  to  the fact  that  a  group of about 30 statements is the  up- 
per limit of what  can  be  mastered on the first reading of a module 
listing.’’ 

Often,  part of a module’s function is to notify its caller  when it 
cannot perform its function. This is accomplished with a return 
error  parameter  (preferably binary only). A module that  handles 
streams of data must be  able to signal end-of-file (EOF), preferably 
also with a binary parameter. These parameters should not, how- 
ever, tell the caller  what  to do  about  the  error  or EOF. Neverthe- 
less, the system  can be made simpler if modules can be designed 
without the need for  error flags. 

Similarly, many modules require  some initialization to be done. 
An initialize module will suffer from low binding but  sometimes 
is the  simplest  solution. It may,  however, be possible  to elimi- 
nate  the need for initializing without compromising “black-box- 
ness” (the same  inputs always produce  the  same outputs). For 
example,  a  read module that  detects a return error of file-not- 
opened from the  access method and  recovers by opening the file 
and  rereading  eliminates  the need for initialization without main- 
taining an internal state. 

Eliminate duplicate  functions  but  not  duplicate  code. When a 
function  changes, it  is a great  advantage to only have  to  change 
it in one place. But if a module’s need for  its  own  copy of a ran- 
dom collection of code  changes slightly, it will not be necessary 
to change  several  other modules as well. 
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Figure 16 Outline of problem structure 
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Figure 17 Points of highest  abstraction 
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If a module seems  almost,  but  not  quite, useful from a second 
place in the  system,  try  to identify and isolate the useful sub- 
function. The remainder of the module might be  incorporated in 
its original caller. 

Check  modules  that  have many callers or that call many other 
modules. While not  always a problem, it may indicate missing 
levels or modules. 

Isolate all dependencies on a particular  data-type,  record-layout, 
index-structure,  etc. in one  or a minimum of modules. This min- 
imizes the recoding  necessary should that  particular specifica- 
tion change. 

Look for ways to  reduce  the  number of parameters passed be- 
tween  modules.  Count  every item passed as a  separate  parame- 
ter  for  this  objective  (independent of how it  will be imple- 
mented). Do not pass whole records from module to module, 
but  pass only the field or fields necessary  for  each module to 
accomplish  its  function.  Otherwise, all modules will have  to 
change if one field expands,  rather  than  only  those which direct- 
ly used that field. Passing only the  data being processed by the 
program system with necessary  error  and EOF parameters is the 
ultimate objective.  Check binary switches  for indications of 
scope-of-effect /scope-of-control  inversions. 

Have  the designers  work  together  and with the  complete  struc- 
ture  chart. If branches of the chart  are worked  on  separately, 
common  modules may be missed and incompatibilities result 
from design decisions made while only considering one  branch. 
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Figure 20 Complete structure chart  
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In analyzing the module “OBTAIN A PATIENT’S FACTORS,” we 
can  deduce  from  the problem statement  that  this  function  has 
three  parts: ( I )  Determine which patient  to  monitor  next  (based 
on  their specified periodic intervals). ( 2 )  Read  the analog de- 
vice. ( 3 )  Record  the  factors in the  data  base.  Hence,  we  arrive 
at  the  structure in Figure 19. (NOTVAL is set if a valid set of fac- 
tors was not  available.) 

Further analysis of “READ VALID SET OF FACTORS”, “FIND 

TORS” yields the  results  shown in the  complete  structure  chart 
in Figure 20. 

UNSAFE FACTORS” and “NOTIFY STATION  OF UNSAFE FAC- 

Note  that  the module “READ FACTORS FROM TERMINAL” con- 
tains  a  decision asking “did we successfully read from  the termi- 
nal?” If  the  read was not  successful,  we  have to notify the 
nurse’s station  and  then find the  next  patient  to  process as  de- 
picted in Figure 21. 

Modules in the  scope of effect of this  decision are marked with 
an X. Note  that the  scope of effect is not a  subset of the  scope 
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have more than  one  function in any module, the-structure  chart 
should show  them in the  same block. However,  the HIPO Hier- 
archy  chart would still show all the  functions in separate 
blocks.) The output of the  general program design is the  input 
for  the  detailed module design. The HIPO input-process-output 
chart is useful for  describing  and designing each module. 

Structured design considerations could be used to review pro- 
gram designs in a walk-through environment." These  concepts 
are also useful for evaluating alternative  ways  to comply with 
the  requirement of structured programming for  one-page seg- 
m e n t ~ . ~  

Structured design reduces the effort needed  to fix and modify 
programs. If  all programs  were  written in a form where  there 
was one module, for  example, which retrieved a record from the 
master file given the key, then changing operating  systems, file 
access  techniques, file blocking, or I/O devices would be greatly 
simplified. And if all programs in the installation retrieved from 
a given file with the  same module, then  one  properly  rewritten 
module would have all the installation's programs working with 
the new constraints  for  that file. 

However,  there  are  other  advantages. Original errors  are  re- 
duced when the problem at hand is simpler. Each module is self- 
contained  and  to  some  extent may be programmed independent- 
ly of the  others in location,  programmer, time, and language. 
Modules  can  be  tested  before all programming is done by 
supplying simple "stub" modules that merely return  preformat- 
ted results  rather  than calculating them.  Modules critical to 
memory or execution  overhead  can  be optimized separately  and 
reintegrated with little or no impact.  An  entry or  return  trace- 
module becomes  very feasible, yielding a very useful debugging 
tool. 

Independent of all the  advantages previously mentioned,  struc- 
tured design would still be valuable to solve  the following prob- 
lem alone. Programming can be considered as  an  art where  each 
programmer usually starts with a blank canvas  -techniques,  yes, 
but still a blank canvas.  Previous coding is often not used be- 
cause  previous modules usually contain,  for  example, at  least 
GET and EDIT. If the EDIT is not  the  one  needed,  the GET will 
have  to be recoded  also. 

Programming can be brought  closer to a  science  where  current 
work is built on  the  results of earlier  work.  Once  a module is 
written  to get a  record  from  the  master file given a key, it can  be 
used by all users of the file and need not  be  rewritten  into  each 
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table search,  anyone  can  use it. And,  as  the module library 
grows,  less and less new code  needs  to be written  to implement 
increasingly sophisticated  systems. 

Structured design concepts  are  not  new. The whole assembly- 
line idea is one of isolating simple functions in a way that still 
produces a complete,  complex  result.  Circuits are designed by 
connecting  isolatable,  functional  stages  together,  not by design- 
ing one big, interrelated  circuit. Page numbering is being increas- 
ingly sectionalized (e.g., 4- 101) to minimize the  “connections” 
between written  sections, so that expanding one section  does 
not  require renumbering other  sections.  Automobile  manufactur- 
ers, who  have  the  most  to gain from shared  system  elements, 
finally abandoned  even  the coupling of the windshield wipers to 
the engine vacuum due  to effects of the engine load on the  per- 
formance of the wiping function.  Most other industries .know 
well the  advantage of isolating functions. 

It is becoming increasingly important  to the data-processing 
industry  to be able  to  produce  more programming systems  and 
produce  them with fewer  errors,  at a faster  rate,  and in a way 
that modifications can be accomplished easily and  quickly. 
Structured design considerations  can help achieve this goal. 
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