

Figure 1 A structure chart

116

ful consideration that can help in designing programs that can be
changed easily. Consideration of the effect of reasonable changes
is also valuable for evaluating alternative designs.

Mr. Constantine has observed that programs that were the easi-
est to implement and change were those composed of simple,
independent modules. The reason for this is that problem solv-
ing is faster and easier when the problem can be subdivided into
pieces which can be considered separately. Problem solving is
hardest when all aspects of the problem must be considered
simultaneously.

The term module is used to refer to a set of one or more contig-
uous program statements having a name by which other parts of
the system can invoke it and preferably having its own distinct
set of variable names. Examples of modules are PL/I procedures,
FORTRAN mainlines and subprograms, and, in general, subrou-
tines of all types. Considerations are always with relation to the
program statements as coded, since it is the programmer’s abili-
ty to understand and change the source program that is under
consideration.

While conceptually it is useful to discuss dividing whole pro-
grams into smaller pieces, the techniques presented here are for
designing.simple, independent modules originally. It turns out to
be difficult to divide an existing program into separate pieces
without increasing the complexity because of the amount of over-
lapped code and other interrelationships that usually exist.

Graphical notation is a useful tool for structured design. Figure
I illustrates a notation called a structure chart: in which:

1 . There are two modules, A and B.
2. Module A invokes module B. B is subordinate to A.
3. B receives an input parameter X (its name in module A) and

returns a parameter Y (its name in module A). (It is useful
to distinguish which calling parameters represent data passed
to the called program and which are for data to be returned
to the caller.)

Coupling and communication

To evaluate alternatives for dividing programs into modules, it
becomes useful to examine and evaluate types of “connections”
between modules. A connection is a reference to some label or
address defined (or also defined) elsewhere.

The fewer and simpler the connections between modules, the
easier it is to understand each module without reference to other

STEVENS, MYERS, AND CONSTANTINE IBM SYST J

Figure 4 Control-coupled
modules

GETCOMM

IN OUT

1 PARSE COMMAND

of alternatives in the switch and the number of levels over which
, i t is passed. Control coupling, where a called module “tells”
its caller what to do, is a more severe form of coupling.

Modification of one module’s code by another module may be
 thought of as a hybrid of data and control elements since the
 code is dealt with as data by the modifying module, while it acts
‘as control to the modified module. The target module is very

 cohesiveness

Coupling is reduced when the relationships among elements not
in the same module are minimized. There are two ways of

 the second method is the subject of this section. “Element” in
1 this sense means any form of a “piece” of the module, such as a
statement, a segment, or a “subfunction”. Binding is the mea-

~ sure of the cohesiveness of a module. The objective here is to

EXECN.

4. Communicational.
5. Sequential.
6 . Functional.

The scale is not linear. Functional binding is much stronger than
all the rest, and the first two are much weaker than all the rest.

tional relationships. The binding between two elements is the
highest classification that applies. We will define each type of

When there is no meaningful relationship among the elements in coincidental
a module, we have coincidental binding. Coincidental binding binding
might result from either of the following situations: (1) An ex-
isting program is “modularized” by splitting it apart into mod-
ules. (2) Modules are created to consolidate “duplicate coding”
in other modules.

As an example of the difficulty that can result from coincidental
binding, suppose the following sequence of instructions ap-
peared several times in a module or in several modules and was
put into a separate module called X:

A = B + C
GET CARD
PUT OUTPUT
I F B = 4 , T H E N E = O

Module X would probably be coincidentally bound since these
four instructions have no apparent relationships among one an-
other. Suppose in the future we have a need in one of the mod-
ules originally containing these instructions to say GET TAPERE-
CORD instead of GET CARD. We now have a problem. If we
modify the instruction in module X, it is unusable to all of the
other callers of X. It may even be difficult tofind all of the other
callers of X in order to make any other compatible change.

It is only fair to admit that, independent of a module’s cohesive-
ness, there are instances when any module can be modified in
such a fashion to make it unusable to all its callers. However,
the probability of this happening is very high if the module is
coincidentally bound.

logical Logical binding, next on the scale, implies some logical relation-
binding ship between the elements of a module. Examples are a module

that performs all input and output operations for the program or
a module that edits all data.

The logically bound, EDIT ALL DATA module is often implement-
ed as follows. Assume the data elements to be edited are master
file records, updates, deletions, and additions. Parameters passed
to the module would include the data and a special parameter indi-
cating the type of data. The first instruction in the module is
probably a four-way branch, going to four sections of code - edit
master record, edit update record, edit addition record, and edit
deletion record.

Often, these four functions are also intertwined in some way in
the module. If the deletion record changes and requires a change
to the edit deletion record function, we will have a problem if
this function is intertwined with the other three. If the edits are
truly independent, then the system could be simplified by putting
each edit in a separate module and eliminating the need to de-
cide which edit to do for each execution. In short, logical bind-
ing usually results in tricky or shared code, which is difficult to
modify, and in the passing of unnecessary parameters.

122 STEVENS, MYERS, AND CONSTANTINE IBMSYSTJ I

ments are also related in time. That is, the temporally bound ele- binding
ments are executed in the same time period.

The best examples of modules in this class are the traditional
“initialization”, “termination”, “housekeeping”, and “clean-up”
modules. Elements in an initialization module are logically
bound because initialization represents a logical class of func-
tions. In addition, these elements are related in time (i.e., at ini-
tialization time).

of logically bound modules. However, temporally bound mod-
ules are higher on the scale since they tend to be simpler for the
reason that all of the elements are executable at one time (i.e.,
no parameters and logic to determine which element to execute).

A module with communicational binding has elements that are communicational
related by a reference to the same set of input and/or output binding
data. For example, “print and punch the output file” is commu-
nicationally bound. Communicational binding is higher on the
scale than temporal binding since the elements in a module with
communicational binding have the stronger “bond” of referring

When the output data from an element is the input for the next sequential
element, the module is sequentially bound. Sequential binding binding

can result from flowcharting the problem to be solved and then
defining modules to represent one or more blocks in the flow-

Sequential binding, although high on the scale because of a close

mum- functional binding. The reason is that the procedural pro-

al functions or just part of a function. This usually results in

Functional binding i s the strongest type of binding. In a func- functional
tionally bound module, all of the elements are related to the per- binding

A question that often arises at this point is what is a function? In
mathematics, Y = F (X) is read “Y is a function F of X.” The

dent (or input) variable X into the dependent (or return) vari-
able Y. Hence, a function describes a transformation from some

Predictable modules

A predictable, or well-behaved, module is one that, when given
the identical inputs, operates identically each time it is called.
Also, a well-behaved module operates independently of its envi-
ronment.

To show that dependable (free from errors) modules can still be

used to facilitate double buffering. Should it have multiple users,
each would be required to call it an even number of times before
relinquishing control. Should any of the users have an error that

free. Modules that keep track of their own state are usually not
predictable, even when error-free.

This characteristic of predictability that can be designed into
modules is what we might loosely call “black-boxness.” That is,
the user can understand what the module does and use it with-
out knowing what is inside it. Module “black-boxness” can even
be enhanced by merely adding comments that make the mod-
ule’s function and use clear. Also, a descriptive name and a well-
defined and visible interface enhances a module’s usability and
thus makes it more of a black box.

Tradeoffs to structured design

The overhead involved in writing many simple modules is in the
execution time and memory space used by a particular language
to effect the call. The designer should realize the adverse effect
on maintenance and debugging that may result from striving just
for minimum execution time and/or memory. He should also
remember that programmer cost, is, or is rapidly becoming, the
major cost of a programming system and that much of the
maintenance will be in the future when the trend will be even
more prominent. However, depending on the actual overhead of
the language being used, it is very possible that a structured de-
sign can result in less execution and/or memory overhead rath-
er than more due to the following considerations:

For memory overhead

1. Optional (error) modules may never be called into memory.

structure

charts

Figure 7 Structure chart com-
pared to flowchart

STRUCTURE
CHART FLOWCHART

(- PROCESSING

RETURN

RETURN
PROCESSING

127

Figure 8 Basic form of low-cost implementation

I 1
5 6 . . . I 7

F l lTOB TRANSFORM 1 WRITE

Figure 9 Transaction structure

TRANSACTION

1

TRANSACTION
TRANSACTION

tion and analysis during general program design is the absence in
structure charts of the decision block. Conditional calls can be
so noted, but “decision designing” can be deferred until detailed
module design. This is an example of where the design process
is made simpler by having to consider only part of the design
problem. Structure charts are also small enough to be worked on
all at once by the designers, helping to prevent suboptimizing
parts of the program at the expense of the entire problem.

common A shortcut for arriving at simple structures is to know the gen-
structures eral form of the result. Mr. Constantine observed that programs

of the general structure in Figure 8 resulted in the lowest-cost

128 STEVENS, MYERS, AND CONSTANTINE IBM SYST J

match program
to problem

Figure 15 Scope of control

scopes of
effect and

control

132

Figure 14 Design form should follow function

DESIGN A DESIGN B

RECEIVE

RECEIVE

tions may not be identified if the dividing is too conservative at
this point.

Design guidelines

The following concepts are useful for achieving simple designs
and for improving the “first-pass’’ structures.

One of the most useful techniques for reducing the effect of
changes on the program is to make the structure of the design
match the structure of the problem, that is, form should follow
function. For example, consider a module that dials a telephone
and a module that receives data. If receiving immediately fol-
lows dialing, one might arrive at design A as shown in Figure
14. Consider, however, whether receiving is part of dialing.
Since it is not (usually), have DIAL’S caller invoke RECEIVE as
in design B.

If, in this example, design A were used, consider the effect of a
new requirement to transmit immediately after dialing. The DIAL
module receives first and cannot be used, or a switch must be
passed, or another DIAL module has to be added.

To the extent that the design structure does match the problem
structure, changes to single parts of the problem result in
changes to single modules.

The scope of control of a module is that module plus all modules
that are ultimately subordinate to that module. In the example of
Figure 15, the scope of control of B is B, D, and E. The scope
of effect of a decision is the set of all modules that contain some
code whose execution is based upon the outcome of the deci-
sion. The system is simpler when the scope of effect of a de-
cision is in the scope of control of the module containing the
decision. The following example illustrates why.

STEVENS, MYERS, AND CONSTANTINE IBM SYST J

If the execution of some code in A is dependent on the outcome
of decision X in module B, then either B will have to return a
flag to A or the decision will have to be repeated in A. The former
approach results in added coding to implement the flag, and the
latter results in some of B’s function (decision X) in module A.
Duplicates of decision X result in difficulties coordinating
changes to both copies whenever decision X must be changed.

The scope of effect can be brought within the scope of control
either by moving the decision element “up” in the structure, or
by taking those modules that are in the scope of effect but not in
the scope of control and moving them so that they fall within the
scope of control.

Size can be used as a signal to look for potential problems. Look
carefully at modules with less than five or more than 100 execut-
able source statements. Modules with a small number of state-
ments may not perform an entire function, hence, may not have
functional binding. Very small modules can be eliminated by
placing their statements in the calling modules. Large modules
may include more than one function; A second problem with
large modules is understandability and readability. There is evi-
dence to the fact that a group of about 30 statements is the up-
per limit of what can be mastered on the first reading of a module
listing.’’

Often, part of a module’s function is to notify its caller when it
cannot perform its function. This is accomplished with a return
error parameter (preferably binary only). A module that handles
streams of data must be able to signal end-of-file (EOF), preferably
also with a binary parameter. These parameters should not, how-
ever, tell the caller what to do about the error or EOF. Neverthe-
less, the system can be made simpler if modules can be designed
without the need for error flags.

Similarly, many modules require some initialization to be done.
An initialize module will suffer from low binding but sometimes
is the simplest solution. It may, however, be possible to elimi-
nate the need for initializing without compromising “black-box-
ness” (the same inputs always produce the same outputs). For
example, a read module that detects a return error of file-not-
opened from the access method and recovers by opening the file
and rereading eliminates the need for initialization without main-
taining an internal state.

Eliminate duplicate functions but not duplicate code. When a
function changes, it is a great advantage to only have to change
it in one place. But if a module’s need for its own copy of a ran-
dom collection of code changes slightly, it will not be necessary
to change several other modules as well.

NO. 2 1974 STRUCTURED DESIGN

Figure 16 Outline of problem structure

READ FACTORS STORE FACTORS NOTIFY NURSE

FACTORS FACTORS
FACTORS
UNSAFE

isolate
specifications

reduce
parameters

134

Figure 17 Points of highest abstraction

READ FACTORS STORE FACTORS FIND UNSAFE NOTIFY NURSE

MOST ABSTRACT
INPUT DATA

CENTRAL
TRANSFORMATION

MOST ABSTRACl
OUTPUTDATA

If a module seems almost, but not quite, useful from a second
place in the system, try to identify and isolate the useful sub-
function. The remainder of the module might be incorporated in
its original caller.

Check modules that have many callers or that call many other
modules. While not always a problem, it may indicate missing
levels or modules.

Isolate all dependencies on a particular data-type, record-layout,
index-structure, etc. in one or a minimum of modules. This min-
imizes the recoding necessary should that particular specifica-
tion change.

Look for ways to reduce the number of parameters passed be-
tween modules. Count every item passed as a separate parame-
ter for this objective (independent of how it will be imple-
mented). Do not pass whole records from module to module,
but pass only the field or fields necessary for each module to
accomplish its function. Otherwise, all modules will have to
change if one field expands, rather than only those which direct-
ly used that field. Passing only the data being processed by the
program system with necessary error and EOF parameters is the
ultimate objective. Check binary switches for indications of
scope-of-effect /scope-of-control inversions.

Have the designers work together and with the complete struc-
ture chart. If branches of the chart are worked on separately,
common modules may be missed and incompatibilities result
from design decisions made while only considering one branch.

STEVENS, MYERS, AND CONSTANTINE IBM SYST J

Figure 20 Complete structure chart

MONITOR PATIENTS

1 3 12
I I

OBTAIN A
PATIENT’S FACTORS

4 6
I

15
1

I FACTORS I FIND UNSAFE I UNSAFE FACTORS
NOTIFY STATION OF

I
11 I ’

12, ’“

I I I
I BADTERMINAL I NOTIFY STATION OF I

I10 I I 1 WRITE LINE TO
STAlION I

“ Y I

1 TEMP, PULSE, BP SKINR, PATIENTNUM

2 TEMP, PULSE, BP. SKINR. PATIENTNUM

3 PATlENTNUM&LlSTOFUNSAFEFACTORNAMES&VALUES

4

5 PATIENTNUM

6 PATIENTNUM.TEMP, PULSE. BP. SKINR

7 PATIENTNUM RFnNlIM

LISTOFUNSAFEFACTOR NAMES ANDVALUES

PATIENTNUM

TEMP, PULSE, BP. SKINR, NOTVAL

I - . . . - . . .
8 BEDNUM TEMP, PULSE, BP, SKINR. NOTVAL

9. BEDNUM I

I LINES
FORMAT OUTPUT I

11 PATIENTNUM

12 FACTOR, RANGE

13 LISTOF UNSAFE FACTOR NAMES AND VALUES

TEMPR, PULSER. BPR. SKINRR

UNSAFE

LISTOFLINES

In analyzing the module “OBTAIN A PATIENT’S FACTORS,” we
can deduce from the problem statement that this function has
three parts: (I) Determine which patient to monitor next (based
on their specified periodic intervals). (2) Read the analog de-
vice. (3) Record the factors in the data base. Hence, we arrive
at the structure in Figure 19. (NOTVAL is set if a valid set of fac-
tors was not available.)

Further analysis of “READ VALID SET OF FACTORS”, “FIND

TORS” yields the results shown in the complete structure chart
in Figure 20.

UNSAFE FACTORS” and “NOTIFY STATION OF UNSAFE FAC-

Note that the module “READ FACTORS FROM TERMINAL” con-
tains a decision asking “did we successfully read from the termi-
nal?” If the read was not successful, we have to notify the
nurse’s station and then find the next patient to process as de-
picted in Figure 21.

Modules in the scope of effect of this decision are marked with
an X. Note that the scope of effect is not a subset of the scope

136 STEVENS, MYERS, AND CONSTANTINE IBM SYST J

have more than one function in any module, the-structure chart
should show them in the same block. However, the HIPO Hier-
archy chart would still show all the functions in separate
blocks.) The output of the general program design is the input
for the detailed module design. The HIPO input-process-output
chart is useful for describing and designing each module.

Structured design considerations could be used to review pro-
gram designs in a walk-through environment." These concepts
are also useful for evaluating alternative ways to comply with
the requirement of structured programming for one-page seg-
m e n t ~ . ~

Structured design reduces the effort needed to fix and modify
programs. If all programs were written in a form where there
was one module, for example, which retrieved a record from the
master file given the key, then changing operating systems, file
access techniques, file blocking, or I/O devices would be greatly
simplified. And if all programs in the installation retrieved from
a given file with the same module, then one properly rewritten
module would have all the installation's programs working with
the new constraints for that file.

However, there are other advantages. Original errors are re-
duced when the problem at hand is simpler. Each module is self-
contained and to some extent may be programmed independent-
ly of the others in location, programmer, time, and language.
Modules can be tested before all programming is done by
supplying simple "stub" modules that merely return preformat-
ted results rather than calculating them. Modules critical to
memory or execution overhead can be optimized separately and
reintegrated with little or no impact. An entry or return trace-
module becomes very feasible, yielding a very useful debugging
tool.

Independent of all the advantages previously mentioned, struc-
tured design would still be valuable to solve the following prob-
lem alone. Programming can be considered as an art where each
programmer usually starts with a blank canvas -techniques, yes,
but still a blank canvas. Previous coding is often not used be-
cause previous modules usually contain, for example, at least
GET and EDIT. If the EDIT is not the one needed, the GET will
have to be recoded also.

Programming can be brought closer to a science where current
work is built on the results of earlier work. Once a module is
written to get a record from the master file given a key, it can be
used by all users of the file and need not be rewritten into each

138 STEVENS, MYERS, AND CONSTANTINE IBM SYST J

table search, anyone can use it. And, as the module library
grows, less and less new code needs to be written to implement
increasingly sophisticated systems.

Structured design concepts are not new. The whole assembly-
line idea is one of isolating simple functions in a way that still
produces a complete, complex result. Circuits are designed by
connecting isolatable, functional stages together, not by design-
ing one big, interrelated circuit. Page numbering is being increas-
ingly sectionalized (e.g., 4- 101) to minimize the “connections”
between written sections, so that expanding one section does
not require renumbering other sections. Automobile manufactur-
ers, who have the most to gain from shared system elements,
finally abandoned even the coupling of the windshield wipers to
the engine vacuum due to effects of the engine load on the per-
formance of the wiping function. Most other industries .know
well the advantage of isolating functions.

It is becoming increasingly important to the data-processing
industry to be able to produce more programming systems and
produce them with fewer errors, at a faster rate, and in a way
that modifications can be accomplished easily and quickly.
Structured design considerations can help achieve this goal.

CITED REFERENCES AND FOOTNOTES
1 . This method has not been submitted to any formal IBM test. Potential users

should evaluate its usefulness in their own environment prior to implementa-

publication by Prentice-Hall, Englewood Cliffs, New Jersey.
3. G . J. Myers, Composite Design: The Design of Modular Progrums, Techni-

cal Report TR00.2406, IBM, Poughkeepsie, New York (January 29, 1973).
4. G. J. Myers, “Characteristics of composite design,” Datamution 19, No. 9,

100- 102 (September 1973).
5 . G. J. Myers, Reliable Softwure through Composite Design, to be published

Fall of 1974 by Mason and Lipscomb Publishers, New York, New York.
6. HIPO- Hierarchical Input-Process-Output documentation technique. Au-

dio education package, Form No. SR20-9413, available through any IBM
Branch Office.

7. F. T. Baker, “Chief programmer team management of production program-
ming,”IBMSystemsJournalll,No. 1,56-73 (1972).

8. The use of the HIPO Hierarchy charting format is further illustrated in Fig-
ure 6, and its use in this paper was initiated by R. Ballow of the IBM Pro-
gramming Productivity Techniques Department.

9. L. A. Belady and M. M. Lehman, Programming System Dynamics or the
Metudynamics of Systems in Maintenance and Growth”, RC 3546, IBM
Thomas J . Watson Research Center, Yorktown Heights, New York (1971).

10. L. L. Constantine, “Control of sequence and parallelism in modular pro-
grams,” AFlPS Conference Proceedings, Spring Joint Computer Confer-
ence 32,409 (1968).

1 1 . G. M. Weinberg, PLII Programming: A Manual of Style, McGraw-Hill,
New York, New York (1970).

12. Improved Programming Technologies: Management Overview, IBM Cor-
poration, Data Processing Division, White Plains, New York (August 1973).

