
The design of the  storage  component  is  essential to the  achiev- 
ing of a good overall cost-performance  balance in a  computing 
system. 

A method  is  presented for quickly  assessing  many of the  techno- 
logical and structural  possibilities  that  exist today  for designing 
storage hierarchies. 

The evaluation  is  based  on  a cycling queuing model of the  com- 
puter system and its  programming  environment, which are taken 
into  account by miss  ratio  curves. 

A model for the evaluation of storage  hierarchies 
by J. Gecsei, and J. A. Lukes 

~ The  success of a computing system  depends  not only on its 
technical qualities,  but  also - to a large extent - on  its ability to 
match the  cost,  performance,  and functional requirements of 
users. As a  result,  the design of a competitive data processing 
system  must proceed as a  series of tradeoff  decisions  between 
various technological alternatives, considering their  costs  and 
the  processing  and functional power offered by each  option. 
These tradeoffs are made in nearly all stages of development and 
at all levels of detail. As the  variety of technological alternatives 
available for  a given function  increases,  the  cost-performance 
decisions gain in importance  and  often  override purely technical 
considerations. A classic  example is the  advent of storage hier- 
archies, which combine the  favorable  features of different tech- 
nologies to provide high-speed, low-cost  storage  systems. 

Presented in this  paper  is  a  technique  for  the rapid evaluation of 
technological alternatives in storage  hierarchies. We assume  that 
the  processor and storage  hierarchy of a  computer  system  can 
be represented by a  closed queuing network  where  each  stage in 
the  network  represents  a different level in the  storage  hierarchy. 
Thus  our purpose is to  present  an efficient method of evaluating 
storage  hierarchies  and  not to discuss  a new model. 
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Figure 1 A storage  hierarchy 
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Exact  solutions to  the equilibrium joint probability distribution 
of queue lengths exist  for  some  closed queuing networks.’’‘  T:heir 
computational  requirements,  however, are excessive  for hier- 
archy  evaluation.3  Therefore, we use  an  approximate solution to 
the  steady-state condition of the closed queuing system.  This 
approximation  has  a  computational  growth rate  that is linear- 
computationally efficient-in the  number of network  stages. 

We have successfully correlated  the  results of this  approxima- 
tion technique with results  obtained from both simulation of the 
cyclic queuing system  and  theoretically  exact models. 

A storage  hierarchy is a  convenient way of representing  the mul- 
titude of storage  devices used in computer  systems.  Each level 
of the hierarchy  contains  devices of different physical character- 
istics. A typical hierarchy is shown in Figure 1 .  Higher-he1 
devices  have higher cost, lower access  time,  and  lower stolrage 
capacity. A properly designed hierarchy, as a whole, ideally dis- 
plays the favorable  features of its  elements  and  behaves a 
low-cost,  fast-access  time, large-capacity storage  device.  This 
effect derives from a general property of programs called “lo8cali- 
ty of reference,”  and  can  be  expressed as follows: If  two adja- 
cent storage  device  levels  have  capacities Ci and Ci+l ,  and  each 
has  frequencies of data  requests f i  and then the  concept is 
expressed as follows: 

One can say that the higher-speed storage  tends to  act like a 
cache  for  the lower levels of the  hierarchy. 
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boundary. The access time of devices at levels below the  delay 
boundary are large enough to  warrant  the  suspension of pro- 
cesses  that  generate  requests  to  these  devices  and  to switch 
the CPU to  another  process.  Requests  above  the  delay  boundary 
(at higher levels)  do not typically cause  process switching. 

Storage  hierarchies  constitute  the  hardware  base  for virtual stor- 
age in System/370.  The  System/370 virtual storage  contains up 
to  three hierarchical levels (cache, main storage,  and disk).  It is 
possible to extend  the  hierarchy  concepts  to automatically man- 
age more levels than have been in the  past. Effects of virtual stor- 
age have been included in this study by the  choice of miss ratio 
curve,4  discussed  later in this  paper. 

In this paper,  we wish to  show  the  development of a  set of eval- 
uation tools suitable for solving problems in the following areas 
of hierarchy design: 

Selection of devices from a  set of alternative  storage  technol- 
ogies for  each of the levels of the  hierarchy. The available 
technologies are called the  “technology  medu.” 
Determination of the optimum number of hierarchical levels 
and level capacities. 
Evaluation of the effects of variations of hierarchy  parame- 
ters on system  performance. Significant conclusions should 
be insensitive to  expected variations of input  parameters. 
Assessment of the  cost  dependence of a technology on its 
total production volume. 

We begin by representing  a computing system by means of a 
cyclic queuing m0de1.~ The list of system  parameters  required 
by the model is given. The succeeding section  deals in more de- 
tail with the queuing model and  derives  a  fast  approximative 
solution for  the utilization of its  components  that is based on 
steady-state flow equations.  A programmed version of this mod- 
el is described  later as a vehicle for solving the previously dis- 
cussed design problems. Two different criteria of system opti- 
mality are used,  one  for  interactive  systems  and  the  other  for 
batch-oriented  systems. An Appendix is provided in which we 
correlate  the  approximative solution of the queuing model with 
known theoretical  results,  and point to some extensions of the 

An  extensive effort was made to  correlate  the  outputs of an ana- 
lytic model with those  obtained from a simulation model of a  cy- 
clic queuing network. The simulation model was  created  to in- 
vestigate  general  network  queues with a  variety of service  time 
distributions  and queuing disciplines. (A proof has  also been 
worked out by which the  average  queue length at a given hier- 
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signed to  the next  process waiting in a CPU queue. If a refer- 
ence  occurs  to a level above  the  delay  boundary, no process 
switch takes place. In  our system, all storage levels above  the 
delay boundary are clustered  into  a single level Lo (usually 
composed of the  cache  and main storage). Figures 2A and 2B 
show the  correspondence  between  this  system  and  the queuing 

We now describe the parameters of the system  and  its workload 
in terms of the  inputs  required by the queuing model. 

tions &, which are explained later in this  paper. The access 
times include the  seek  and  search  action of the  access mech- 
anisms, the  data transfer time to hierarchical level Lo, but  not 
the waiting times if the  access mechanism is busy. 
Capacities Ci in millions of bytes of the  hierarchical levels. 
The level of multiprogramming m is equal to  the number of 
processes in the queuing system. 

We now introduce  the  concept of miss  ratio  curves.6 Miss  ratio miss 
curves  represent  a  concise  description of the workload of a  sys- ratio 
tem. They also include the effects of programming techniques curves 
and data usage.  A miss-probability curve  (plotted in Figure 3 )  is 
a graph of the probability M ,  that a storage  reference from the 
central  processor is not found in level Lo versus  the  capacity of 
that level. A  miss-ratio  curve, given in Figure 5 in the  Appendix, 
is calculated from the log of the  complement of the hit ratio  ver- 
sus the log  of the  capacity. 

The miss ratio  curve is generated from the reference string, which 
is  the  sequence of pages that is referenced when a program is 
being executed.  An  equivalent  curve is called the  “hit  ratio 
curve,” i. e., the plot of the probability that  a page reference is 
found in a buffer versus  the buffer capacity, provided the page 
replacement algorithm is a stack alg~ri thm.~ 

Figure 3 Example miss 
probability curve 

Such  a  curve is a function of both  the  replacement algorithm 
used for  storage management and  the  type of computing work 
load. As an  approximation,  we  extend  the  interpretation of this 

N + 1 levels of a hierarchy. The hit ratio pI’ is the probability that p2 

tive capacities Ci‘ ,  pi’ is illustrated in Figure 3 and  can be ob- 0 - y  

tained as follows: 

curve to a  representation of the distribution of references to all 

a  storage  reference is satisfied from level i .  Knowing the effec- 
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After being serviced in a  station,  processes are returned  to So. 
The transmission times are considered  to be negligible; hence, 
every  process  must be in one of the  stations So; . S, at  any time. 
A  process in any  station is waiting for  service or being serviced. 

We denote Qi as  the  average  number of processes found in Si 
(waiting or being served), and Ri is the  average  throughput  rate 
i.e., the flow  in processes  per second).  The following steady- 
state  equations hold for  the  system: 

Ri = p i  R ,  

where 

i =  I;.., N 

and 

N 

e i = m  
i = O  

Equation 2 is the flow conservation  law,  and  Equation 3 shows 
that  each  process  always  exists in one of the  stations. We can 
observe  that  Equation 3 determines  the  values of rates Ri up to 
a single multiplicative constant  (i.e., it gives the  ratios R i / R j ,  
but  not  the  absolute values).  The missing condition  can  obtained 
from Equation 2. 

Each  service  station Si can be viewed as a black box that is 
characterized by the  dependence of Qi on the  rate Ri. We as- 
sume  that  this  dependence is a function of Qi  =&(Ri)  and  that 
functions & are known for all Si stations in the  system.  In this 
view, a station Si is analogous to a  nonlinear  resistance; Si is 
analogous to a current;  and  processes Qi are analogous to  the 
voltage drop  across  the  resistance. 

The concept of describing Si by means  off, is admittedly  an  over- 
simplification, since Qi depends  not only on the  structure of 
the  station,  but also on the  pattern of arrivals of processes. The 
simplifying assumptions are  as follows: 

Arrivals of processes at the  stations are random. 
Arrival times are independent of previous  departures from 
the  same  station. 

Thus&  describes station S i  in an  open-loop  Poisson-arrival  situ- 
ation. This is the  essence of the  approximation  inherent in the 
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subject to  the  constraints 

(10) 

where I is the required number of instructions  per  transaction 

md 

ES Z m ( 1  1 )  

Equations 10 and 1 1 require  some  further  explanation.  Equation 
LO states  that  the CPU can maintain the  desired  processing 
3ower. The left side of Equation 11 is the  average  number of 
:ramactions inside the computing system waiting for  response. 
rhis number  must  not be lower than  the  degree of rnultipro- 
:ramming m used by the model to obtain U,. Also  note  that  the 
lumber of transactions  per  second S is not equal to  the  rate R ,  of 
:he queuing model. The processing of a  transaction may require 
several CPU execution  intervals. 

I 
From  the  description of the queuing model, we know how the 
CPU utilization U ,  is linked with various  system  parameters. 
Thus  for fixed parameters,  one  can  calculate the cost-perfor- 
mance  characteristic of the  system by Equations 8 - 1 1 .  

For the  purpose of solving various optimization problems  such 
as those outlined in the  introduction,  an  optimization program 
has been written  that is based on  an intelligent search. The pro- 
gram is composed of a system of nested loops, each one serving 
to  change  one  parameter or class of parameters  (such as Ci). 
The'innermost loop  contains a cost-performance  calculation. The 
program returns  the hierarchy configuration that yields the low- 
est value of C P .  The various optimization problems  require in- 
dividualized parameter  settings  and  search  strategies.  In  general, 
only a  subset of all parameters is varied for  each  run of the  pro- 
gram, while the  others remain constant. 

Since  the miss-ratio curve  and CPU characteristics are included 
in the input values, it is possible to find optima over a range of 
systems  and  workloads. Thus  the program goes beyond  calculat- 
ing optima  for  hierarchies in a fixed environment.  In  such  cases, 
the program can be made to produce  reports  on  the  numbers of 
times a given technology has been included in the optimum hier- 
archy  and  the total volume (capacity)  represented by these, in- 

I 
clusions. 

I Particularly  important areas of investigation are sensitivity 
studies aimed at determining  the  degree  to which a particular 
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conclusion is invariant with variations of system  parameters. 
One might ask,  for  example,  whether  a technology that  has been 
found to  be optimal for  the second level of a  hierarchy,  for a 
range of applications  is still optimal if its costs is increased by 
ten percent. 

Concluding remarks 

We have  described a simple model of a computing  system with a 
storage  hierarcy, based on the view that  such  a  system can be 
represented by a cyclic queuing model. Each  stage in the  system 
represents  a  component in the  storage  hierarchy with the  excep- 
tion of one  stage  that  represents a combination of the central 
processor  and main storage. 

The average utilization and  queue length of the  stages are calcu- 
lated by treating  each  stage as  an  open loop  queue with random 
arrivals.  Average  queue length as a function of average through- 
put  rate is represented  either analytically or by some  tabular  re- 
lationship  based  on  measurements. 

We wish to  emphasize again that  the  purpose of the model is not 
to  provide  a  detailed  evaluation of storage  hierarchy perform- 
ance.  Rather,  the goal in formulating this model has been to 
create  a  computationally efficient technique  for  evaluating the 
gross effects on performance of variations in computing work- 
load and  hierarchical  components. The approximative  nature of 
the model is  consistent  both with this goal and with the  accuracy 
of the  input  data. 

Appendix: Model validation and extensions 

We now compare  results  obtained by using the  analytic model 
with those  obtained by using a simulation model of a  cyclic 
queuing system and with available theoretical  results. Also de- 
scribed are  the following extensions  to  the model: 

Sharing data among tasks  on levels of the  hierarchy  other 

Accounting  for CPU overhead in switching processes. 
The use of a family  of miss ratio  curves  to  test  the sensitivity 
of the optimal storage  hierarchy  (derived by the  model)  to 
variations in computing environment. 

than  the  archive level. 

model validation Since  a  number of approximations  have  been made in the formu- 
lation of the  theoretical model, it  is  well to begin the model vali- 
dation by comparing model results with theoretical  results  for a 
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Table 2 Comparison of simulation  and  analyt ical   model ing  results  

M Tl T2 T, p ,  m, m3 u, u2 u, Q1 Q, Q3 key 

0.995 0.017 0,164 17.8 0.130 0.370 A 

1.000 0.017 0.160 17.5 0.136 0.380 S 

0.681 0.092 0.225 0.681 0.094 0.225 A 

0.681 0.088 0.226 0.681 0.088 0.226 S 

0.975 0.017 0.161 3.59 0.107 0.295 A 

0.994 0.017 0.166 3.47 0.136 0.392 S 

18 160 29  207 0.254  8 2 

- ~. 

1 160 29 207 0.254 8 2 

4 160 29 207 0.254 8 2 

________ 
0.242 0.321 0.300  5.7 A 

0.237 0.303 0.294 6.0 S 
6 55 1000 --- ." 15 --- "_ "_ 

0.918 0.010 

0.967 0.010 
3 98 

1.818 0.185 A 

1.722 0.270 S 
28 --- "_ 27 --- ." _" 

0.870 0.078 0.039 2.300 0.249 0.451 A 

0.929 0.077 0.040 2.044 0.328 0.610 S 
2 79 28 1000 0.050 4 15 

M level of multiprogramming 
T, ,  T, ,  T ,  average service time of level i (milliseconds) 
P,  probability of an access to level 3 
m,, m, number of servers of level i S simulation model result 

U , ,  U,, U ,  utilization of servers of level i 
Q, ,  Q,, Q, average queue length of level i 
A analytic model result 

shared  storage The model, as described in the body of this  paper,  associates a 
fraction of the capacity of each level of the hierarchy  (except 
the archival level) with a given process  as follows: 

where 

Ci' 1 
Ci -m " 

is the  fraction of the  capacity of level i associated with a  task 
and m is the level of multipramming. 

A more  accurate view takes  into  account  the  sharing of data 
among processes. For example,  the portion of main storage  that 
is allocated  to  operating  system  programs is shared by all pro- 
cesses. 

As mentioned in the first section of this  paper,  sharing can ex- 
tend to the auxiliary storage, including the  extreme  case in 
which a  process  shares all auxiliary storage with other pro- 
cesses. The concept of the  capacity of level i associated with a 



We note  that  the level of multiprogramming cannot become zero. 
Here S i  is the  fraction of level i storage  that is shared. The last 
(slowest) level of the  hierarchy  always  has  a  value of Si= 1 since 
the  data  base is  held at this level. The effect of storage  sharing is 
to increase  the probability of  finding requested information in 
shared  storage. 

As an illustration of this concept,  consider  a  situation wherein I four million bytes of main storage are available,  and the level of 
multiprogramming m is 4. The resident  operating  system pro- 
grams  take up one million bytes of main storage. The probability 
of a miss from main storage is given as if the  operating sys- 
tem is not  considered as shared among all processes,  since  each 
process  has  one million bytes  associated with it. If the  sharing 
concept is employed,  the miss ratio is 2 X because  the  pro- 
cess has  one million of the  operating  system  storage plus 0.75 
million bytes (4MB - I/4(4MB - IMB) ] of private  storage  as- 
sociated with it.  This  example  illustrates  that knowledge of the 
amount of shared  storage  at  each level of the  storage  hierarchy 
is important  for an accurate  evaluation. 

The concept of multiprogramming is used in computing  systems process 
to  increase  resource utiliztion by allowing many processes  to switching 
use main storage  concurrently. As a consequence,  the  execution 
of a  process  that  requires  data in auxiliary storage  can be sus- 
pended and  another  process  that is waiting to use the  central 
processor  can begin execution. 

Multiprogramming does,  however, impose added  overhead on 
the  central  processor,  since  the  process  presently in execution 
must  be  suspended while a  process waiting for  the CPU is se- 
lected.  If  the  average  execution time associated with process 
switching T ,  is known, the effect of this overhead can be ac- 
counted  for in the following manner: 

1. Increase  the  average time T o  that  a  process is in execution by 
the  process switching time. 
2. Modify the CPU utilization generated by the model by the 
following rule: 

Effective CPU utilization = model CPU utilization X ____ T ,  + T o  

The effective CPU utilization then  represents  the  percentage  of 
time  that  the CPU is executing  process  instructions. 

TO 

We now propose  one solution to  the problem of defining a  com- miss ratio 
puter workload by means of a miss ratio  curve. If one  knows curves 
from measurements  the  bounds on the  distribution of storage 
references to the levels of the  hierarchy,  a useful technique  for 
evaluating  a  hierarchy is to  create a family of miss ratio  curves 
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that  represent  these  bounds.  For  example,  assume  that  a miss 
ratio  curve is given for  a specific workload as shown by the solid 
line in Figure 5 ,  and measurements  show  that  the  bounds in the 
miss ratio  curve are represented by the  set of points P ,  through 
P ,  in that figure. We then  take as  the family of curves  a  set of 
the general shape of the solid curve  that  pass through these 
points. The dashed  curves of Figure 5 illustrate  such  a family of 
curves. 

A set of modeling runs can then be made,  one  for  each miss ra- 
tio  curve,  and  the resulting hierarchies may be  compared. Should 
vastly different hierarchy configurations result,  then one  has  an 
indication that  the  combination of technologies that has been 
selected  for  the  hierarchy is very  sensitive to variations in work- 
loads,  and a carefully designed measurement of workload is re- 
quired.  Conversely, minor variations in hierarchy configurations 
with variations in miss ratio  curves lead to  the conclusion that 
the hierarchy  is relatively insensitive  to  the  extremes of the  ex- 
pected  workload. 
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