
The design of the storage component is essential to the achiev-
ing of a good overall cost-performance balance in a computing
system.

A method is presented for quickly assessing many of the techno-
logical and structural possibilities that exist today for designing
storage hierarchies.

The evaluation is based on a cycling queuing model of the com-
puter system and its programming environment, which are taken
into account by miss ratio curves.

A model for the evaluation of storage hierarchies
by J. Gecsei, and J. A. Lukes

~ The success of a computing system depends not only on its
technical qualities, but also - to a large extent - on its ability to
match the cost, performance, and functional requirements of
users. As a result, the design of a competitive data processing
system must proceed as a series of tradeoff decisions between
various technological alternatives, considering their costs and
the processing and functional power offered by each option.
These tradeoffs are made in nearly all stages of development and
at all levels of detail. As the variety of technological alternatives
available for a given function increases, the cost-performance
decisions gain in importance and often override purely technical
considerations. A classic example is the advent of storage hier-
archies, which combine the favorable features of different tech-
nologies to provide high-speed, low-cost storage systems.

Presented in this paper is a technique for the rapid evaluation of
technological alternatives in storage hierarchies. We assume that
the processor and storage hierarchy of a computer system can
be represented by a closed queuing network where each stage in
the network represents a different level in the storage hierarchy.
Thus our purpose is to present an efficient method of evaluating
storage hierarchies and not to discuss a new model.

NO. 2 ’ 1974 EVALUATlON OF STORAGE HIERARCHIES 163

Figure 1 A storage hierarchy

0 CACHE

LEVEL

1

ACCESS TIME
AND CAPACITY t

“-

COST
PER BYTE

7 1 STORAGE

t

2
DELAY
BOUNDARY

3

Exact solutions to the equilibrium joint probability distribution
of queue lengths exist for some closed queuing networks.’’‘ T:heir
computational requirements, however, are excessive for hier-
archy evaluation.3 Therefore, we use an approximate solution to
the steady-state condition of the closed queuing system. This
approximation has a computational growth rate that is linear-
computationally efficient-in the number of network stages.

We have successfully correlated the results of this approxima-
tion technique with results obtained from both simulation of the
cyclic queuing system and theoretically exact models.

A storage hierarchy is a convenient way of representing the mul-
titude of storage devices used in computer systems. Each level
of the hierarchy contains devices of different physical character-
istics. A typical hierarchy is shown in Figure 1 . Higher-he1
devices have higher cost, lower access time, and lower stolrage
capacity. A properly designed hierarchy, as a whole, ideally dis-
plays the favorable features of its elements and behaves a
low-cost, fast-access time, large-capacity storage device. This
effect derives from a general property of programs called “lo8cali-
ty of reference,” and can be expressed as follows: If two adja-
cent storage device levels have capacities Ci and Ci+l , and each
has frequencies of data requests f i and then the concept is
expressed as follows:

One can say that the higher-speed storage tends to act like a
cache for the lower levels of the hierarchy.

164 GECSEI AND LUKES IBM SYST J

” .

boundary. The access time of devices at levels below the delay
boundary are large enough to warrant the suspension of pro-
cesses that generate requests to these devices and to switch
the CPU to another process. Requests above the delay boundary
(at higher levels) do not typically cause process switching.

Storage hierarchies constitute the hardware base for virtual stor-
age in System/370. The System/370 virtual storage contains up
to three hierarchical levels (cache, main storage, and disk). It is
possible to extend the hierarchy concepts to automatically man-
age more levels than have been in the past. Effects of virtual stor-
age have been included in this study by the choice of miss ratio
curve,4 discussed later in this paper.

In this paper, we wish to show the development of a set of eval-
uation tools suitable for solving problems in the following areas
of hierarchy design:

Selection of devices from a set of alternative storage technol-
ogies for each of the levels of the hierarchy. The available
technologies are called the “technology medu.”
Determination of the optimum number of hierarchical levels
and level capacities.
Evaluation of the effects of variations of hierarchy parame-
ters on system performance. Significant conclusions should
be insensitive to expected variations of input parameters.
Assessment of the cost dependence of a technology on its
total production volume.

We begin by representing a computing system by means of a
cyclic queuing m0de1.~ The list of system parameters required
by the model is given. The succeeding section deals in more de-
tail with the queuing model and derives a fast approximative
solution for the utilization of its components that is based on
steady-state flow equations. A programmed version of this mod-
el is described later as a vehicle for solving the previously dis-
cussed design problems. Two different criteria of system opti-
mality are used, one for interactive systems and the other for
batch-oriented systems. An Appendix is provided in which we
correlate the approximative solution of the queuing model with
known theoretical results, and point to some extensions of the

An extensive effort was made to correlate the outputs of an ana-
lytic model with those obtained from a simulation model of a cy-
clic queuing network. The simulation model was created to in-
vestigate general network queues with a variety of service time
distributions and queuing disciplines. (A proof has also been
worked out by which the average queue length at a given hier-

NO. 2 * 1974 EVALUATION OF STORAGE HIERARCHIES 165

signed to the next process waiting in a CPU queue. If a refer-
ence occurs to a level above the delay boundary, no process
switch takes place. In our system, all storage levels above the
delay boundary are clustered into a single level Lo (usually
composed of the cache and main storage). Figures 2A and 2B
show the correspondence between this system and the queuing

We now describe the parameters of the system and its workload
in terms of the inputs required by the queuing model.

tions &, which are explained later in this paper. The access
times include the seek and search action of the access mech-
anisms, the data transfer time to hierarchical level Lo, but not
the waiting times if the access mechanism is busy.
Capacities Ci in millions of bytes of the hierarchical levels.
The level of multiprogramming m is equal to the number of
processes in the queuing system.

We now introduce the concept of miss ratio curves.6 Miss ratio miss
curves represent a concise description of the workload of a sys- ratio
tem. They also include the effects of programming techniques curves
and data usage. A miss-probability curve (plotted in Figure 3) is
a graph of the probability M , that a storage reference from the
central processor is not found in level Lo versus the capacity of
that level. A miss-ratio curve, given in Figure 5 in the Appendix,
is calculated from the log of the complement of the hit ratio ver-
sus the log of the capacity.

The miss ratio curve is generated from the reference string, which
is the sequence of pages that is referenced when a program is
being executed. An equivalent curve is called the “hit ratio
curve,” i. e., the plot of the probability that a page reference is
found in a buffer versus the buffer capacity, provided the page
replacement algorithm is a stack alg~ri thm.~

Figure 3 Example miss
probability curve

Such a curve is a function of both the replacement algorithm
used for storage management and the type of computing work
load. As an approximation, we extend the interpretation of this

N + 1 levels of a hierarchy. The hit ratio pI’ is the probability that p2

tive capacities Ci‘ , pi’ is illustrated in Figure 3 and can be ob- 0 - y

tained as follows:

curve to a representation of the distribution of references to all

a storage reference is satisfied from level i . Knowing the effec-

0 1 2
CAPACITY

After being serviced in a station, processes are returned to So.
The transmission times are considered to be negligible; hence,
every process must be in one of the stations So; . S, at any time.
A process in any station is waiting for service or being serviced.

We denote Qi as the average number of processes found in Si
(waiting or being served), and Ri is the average throughput rate
i.e., the flow in processes per second). The following steady-
state equations hold for the system:

Ri = p i R ,

where

i = I;.., N

and

N

e i = m
i = O

Equation 2 is the flow conservation law, and Equation 3 shows
that each process always exists in one of the stations. We can
observe that Equation 3 determines the values of rates Ri up to
a single multiplicative constant (i.e., it gives the ratios R i / R j ,
but not the absolute values). The missing condition can obtained
from Equation 2.

Each service station Si can be viewed as a black box that is
characterized by the dependence of Qi on the rate Ri. We as-
sume that this dependence is a function of Qi =&(Ri) and that
functions & are known for all Si stations in the system. In this
view, a station Si is analogous to a nonlinear resistance; Si is
analogous to a current; and processes Qi are analogous to the
voltage drop across the resistance.

The concept of describing Si by means off, is admittedly an over-
simplification, since Qi depends not only on the structure of
the station, but also on the pattern of arrivals of processes. The
simplifying assumptions are as follows:

Arrivals of processes at the stations are random.
Arrival times are independent of previous departures from
the same station.

Thus& describes station S i in an open-loop Poisson-arrival situ-
ation. This is the essence of the approximation inherent in the

NO. 2 * 1974 EVALUATION OF STORAGE HIERARCHIES

subject to the constraints

(10)

where I is the required number of instructions per transaction

md

ES Z m (1 1)

Equations 10 and 1 1 require some further explanation. Equation
LO states that the CPU can maintain the desired processing
3ower. The left side of Equation 11 is the average number of
:ramactions inside the computing system waiting for response.
rhis number must not be lower than the degree of rnultipro-
:ramming m used by the model to obtain U,. Also note that the
lumber of transactions per second S is not equal to the rate R , of
:he queuing model. The processing of a transaction may require
several CPU execution intervals.

I
From the description of the queuing model, we know how the
CPU utilization U , is linked with various system parameters.
Thus for fixed parameters, one can calculate the cost-perfor-
mance characteristic of the system by Equations 8 - 1 1 .

For the purpose of solving various optimization problems such
as those outlined in the introduction, an optimization program
has been written that is based on an intelligent search. The pro-
gram is composed of a system of nested loops, each one serving
to change one parameter or class of parameters (such as Ci).
The'innermost loop contains a cost-performance calculation. The
program returns the hierarchy configuration that yields the low-
est value of C P . The various optimization problems require in-
dividualized parameter settings and search strategies. In general,
only a subset of all parameters is varied for each run of the pro-
gram, while the others remain constant.

Since the miss-ratio curve and CPU characteristics are included
in the input values, it is possible to find optima over a range of
systems and workloads. Thus the program goes beyond calculat-
ing optima for hierarchies in a fixed environment. In such cases,
the program can be made to produce reports on the numbers of
times a given technology has been included in the optimum hier-
archy and the total volume (capacity) represented by these, in-

I
clusions.

I Particularly important areas of investigation are sensitivity
studies aimed at determining the degree to which a particular

NO. 2 * 1974 EVALUATION OF STORAGE HIERARCHIES

optimization
procedures

173

conclusion is invariant with variations of system parameters.
One might ask, for example, whether a technology that has been
found to be optimal for the second level of a hierarchy, for a
range of applications is still optimal if its costs is increased by
ten percent.

Concluding remarks

We have described a simple model of a computing system with a
storage hierarcy, based on the view that such a system can be
represented by a cyclic queuing model. Each stage in the system
represents a component in the storage hierarchy with the excep-
tion of one stage that represents a combination of the central
processor and main storage.

The average utilization and queue length of the stages are calcu-
lated by treating each stage as an open loop queue with random
arrivals. Average queue length as a function of average through-
put rate is represented either analytically or by some tabular re-
lationship based on measurements.

We wish to emphasize again that the purpose of the model is not
to provide a detailed evaluation of storage hierarchy perform-
ance. Rather, the goal in formulating this model has been to
create a computationally efficient technique for evaluating the
gross effects on performance of variations in computing work-
load and hierarchical components. The approximative nature of
the model is consistent both with this goal and with the accuracy
of the input data.

Appendix: Model validation and extensions

We now compare results obtained by using the analytic model
with those obtained by using a simulation model of a cyclic
queuing system and with available theoretical results. Also de-
scribed are the following extensions to the model:

Sharing data among tasks on levels of the hierarchy other

Accounting for CPU overhead in switching processes.
The use of a family of miss ratio curves to test the sensitivity
of the optimal storage hierarchy (derived by the model) to
variations in computing environment.

than the archive level.

model validation Since a number of approximations have been made in the formu-
lation of the theoretical model, it is well to begin the model vali-
dation by comparing model results with theoretical results for a

174 GECSEI AND LUKES IBM SYST J

I75

Table 2 Comparison of simulation and analyt ical model ing results

M Tl T2 T, p , m, m3 u, u2 u, Q1 Q, Q3 key

0.995 0.017 0,164 17.8 0.130 0.370 A

1.000 0.017 0.160 17.5 0.136 0.380 S

0.681 0.092 0.225 0.681 0.094 0.225 A

0.681 0.088 0.226 0.681 0.088 0.226 S

0.975 0.017 0.161 3.59 0.107 0.295 A

0.994 0.017 0.166 3.47 0.136 0.392 S

18 160 29 207 0.254 8 2

- ~.

1 160 29 207 0.254 8 2

4 160 29 207 0.254 8 2

0.242 0.321 0.300 5.7 A

0.237 0.303 0.294 6.0 S
6 55 1000 --- ." 15 --- "_ "_

0.918 0.010

0.967 0.010
3 98

1.818 0.185 A

1.722 0.270 S
28 --- "_ 27 --- ." _"

0.870 0.078 0.039 2.300 0.249 0.451 A

0.929 0.077 0.040 2.044 0.328 0.610 S
2 79 28 1000 0.050 4 15

M level of multiprogramming
T, , T, , T , average service time of level i (milliseconds)
P, probability of an access to level 3
m,, m, number of servers of level i S simulation model result

U , , U,, U , utilization of servers of level i
Q, , Q,, Q, average queue length of level i
A analytic model result

shared storage The model, as described in the body of this paper, associates a
fraction of the capacity of each level of the hierarchy (except
the archival level) with a given process as follows:

where

Ci' 1
Ci -m "

is the fraction of the capacity of level i associated with a task
and m is the level of multipramming.

A more accurate view takes into account the sharing of data
among processes. For example, the portion of main storage that
is allocated to operating system programs is shared by all pro-
cesses.

As mentioned in the first section of this paper, sharing can ex-
tend to the auxiliary storage, including the extreme case in
which a process shares all auxiliary storage with other pro-
cesses. The concept of the capacity of level i associated with a

We note that the level of multiprogramming cannot become zero.
Here S i is the fraction of level i storage that is shared. The last
(slowest) level of the hierarchy always has a value of Si= 1 since
the data base is held at this level. The effect of storage sharing is
to increase the probability of finding requested information in
shared storage.

As an illustration of this concept, consider a situation wherein I four million bytes of main storage are available, and the level of
multiprogramming m is 4. The resident operating system pro-
grams take up one million bytes of main storage. The probability
of a miss from main storage is given as if the operating sys-
tem is not considered as shared among all processes, since each
process has one million bytes associated with it. If the sharing
concept is employed, the miss ratio is 2 X because the pro-
cess has one million of the operating system storage plus 0.75
million bytes (4MB - I/4(4MB - IMB)] of private storage as-
sociated with it. This example illustrates that knowledge of the
amount of shared storage at each level of the storage hierarchy
is important for an accurate evaluation.

The concept of multiprogramming is used in computing systems process
to increase resource utiliztion by allowing many processes to switching
use main storage concurrently. As a consequence, the execution
of a process that requires data in auxiliary storage can be sus-
pended and another process that is waiting to use the central
processor can begin execution.

Multiprogramming does, however, impose added overhead on
the central processor, since the process presently in execution
must be suspended while a process waiting for the CPU is se-
lected. If the average execution time associated with process
switching T , is known, the effect of this overhead can be ac-
counted for in the following manner:

1. Increase the average time T o that a process is in execution by
the process switching time.
2. Modify the CPU utilization generated by the model by the
following rule:

Effective CPU utilization = model CPU utilization X ____ T , + T o

The effective CPU utilization then represents the percentage of
time that the CPU is executing process instructions.

TO

We now propose one solution to the problem of defining a com- miss ratio
puter workload by means of a miss ratio curve. If one knows curves
from measurements the bounds on the distribution of storage
references to the levels of the hierarchy, a useful technique for
evaluating a hierarchy is to create a family of miss ratio curves

NO. 2 1974 EVALUATION OF STORAGE HIERARCHIES 117

5 A family of miss rat io
curves

LOG.. CAPACll

that represent these bounds. For example, assume that a miss
ratio curve is given for a specific workload as shown by the solid
line in Figure 5 , and measurements show that the bounds in the
miss ratio curve are represented by the set of points P , through
P , in that figure. We then take as the family of curves a set of
the general shape of the solid curve that pass through these
points. The dashed curves of Figure 5 illustrate such a family of
curves.

A set of modeling runs can then be made, one for each miss ra-
tio curve, and the resulting hierarchies may be compared. Should
vastly different hierarchy configurations result, then one has an
indication that the combination of technologies that has been
selected for the hierarchy is very sensitive to variations in work-
loads, and a carefully designed measurement of workload is re-
quired. Conversely, minor variations in hierarchy configurations
with variations in miss ratio curves lead to the conclusion that
the hierarchy is relatively insensitive to the extremes of the ex-
pected workload.

CITED REFERENCES
1 . W. J . Gordon and G. S. Newell, “Closed queuing systems with exponential

servers,” Operutions Rrserrrch 15, 2, 254-265 (April 1967).
2. J. R. Jackson. “Jobshop-like queuing systems,” Munagernenr Science 10, 1 ,

13 1 - 142 (October 1963).
3 . J . P. Buzen, “Computational algorithm for closed queuing networks with ex-

ponential servers,” Communicutions (@’the A C M 16, 9, 527-53 1 (September
1973).

4. I. L. Traiger and R. L. Mattson, The Evaluution und Selection vf Technol-
ogies for Computer Sroruge Sys/rrn.s. IBM Research Report RJ 967, Febru-
ary 1972, may be obtained from the IBM Research Laboratory, Monterey and
Cottle Roads, San Jose, California 95193.

5. G. S. Shedler, “A queuing model of the multiprogrammed computer system
with a two-level storage system,” Communications c1j /he ACM 16, 3- 10
(January 1973).

6. R. L. Mattson, J . Gecsei, D. R. Slutz, and 1. L. Traiger, “Evaluation tech-
niquesfor storage hierarchies,”IBM SysternsJournul9,2,78- I17 (1970).

7. L. Takacs, “A single-server queue with Poisson input,” Operations Resrurch
10, 3 (1962).

178 GECSEI AND LUKES IBM SYST J

