The design of the storage component is essential to the achiev-
ing of a good overall cost-performance balance in a computing
system.

A method is presented for quickly assessing many of the techno-
logical and structural possibilities that exist today for designing
storage hierarchies.

The evaluation is based on a cycling queuing model of the com-
puter system and its programming environment, which are taken
into account by miss ratio curves.

A model for the evaluation of storage hierarchies
by J. Gecsei, and J. A. Lukes

The success of a computing system depends not only on its
technical qualities, but also—to a large extent —on its ability to
match the cost, performance, and functional requirements of
users. As a result, the design of a competitive data processing
system must proceed as a series of tradeoff decisions between
various technological alternatives, considering their costs and
the processing and functional power offered by each option.
These tradeoffs are made in nearly all stages of development and
at all levels of detail. As the variety of technological alternatives
available for a given function increases, the cost-performance
decisions gain in importance and often override purely technical
considerations. A classic example is the advent of storage hier-
archies, which combine the favorable features of different tech-
nologies to provide high-speed, low-cost storage systems.

Presented in this paper is a technique for the rapid evaluation of
technological alternatives in storage hierarchies. We assume that
the processor and storage hierarchy of a computer system can
be represented by a closed queuing network where each stage in
the network represents a different level in the storage hierarchy.
Thus our purpose is to present an efficient method of evaluating
storage hierarchies and not to discuss a new model.

NO. 2 + 1974 EVALUATION OF STORAGE HIERARCHIES

Figure 1 A storage hierarchy

ACCESS TIME
AND CAPACITY

DELAY
BOUNDARY

COSsT
PER BYTE DIRECT ACCESS
STORAGE DEVICES

Exact solutions to the equilibrium joint probability distribution
of queue lengths exist for some closed queuing networks.'” Their
computational requirements, however, are excessive for hier-
archy evaluation.” Therefore, we use an approximate solution to
the steady-state condition of the closed queuing system. This
approximation has a computational growth rate that is linear—
computationally efficient —in the number of network stages.

We have successfully correlated the results of this approxima-
tion technique with results obtained from both simulation of the
cyclic queuing system and theoretically exact models.

A storage hierarchy is a convenient way of representing the mul-
titude of storage devices used in computer systems. Each level
of the hierarchy contains devices of different physical character-
istics. A typical hierarchy is shown in Figure 1. Higher-level
devices have higher cost, lower access time, and lower storage
capacity. A properly designed hierarchy, as a whole, ideally dis-
plays the favorable features of its elements and behaves as a
low-cost, fast-access time, large-capacity storage device. This
effect derives from a general property of programs called “locali-
ty of reference,” and can be expressed as follows: If two adja-
cent storage device levels have capacities C; and C,_ , and each
has frequencies of data requests f; and f, ,, then the concept is
expressed as follows:

c, _4

Ci+1 f;-#—l
One can say that the higher-speed storage tends to act like a
cache for the lower levels of the hierarchy.

+17

GECSEI AND LUKES IBM SYST J

Levels of a hierarchy are divided into two groups by a delay
boundary. The access time of devices at levels below the delay
boundary are large enough to warrant the suspension of pro-
cesses that generate requests to these devices and to switch
the CPU to another process. Requests above the delay boundary
(at higher levels) do not typically cause process switching.

Storage hierarchies constitute the hardware base for virtual stor-
age in System/370. The System /370 virtual storage contains up
to three hierarchical levels (cache, main storage, and disk). It is
possible to extend the hierarchy concepts to automatically man-
age more levels than have been in the past. Effects of virtual stor-
age have been included in this study by the choice of miss ratio
curve,’ discussed later in this paper.

In this paper, we wish to show the development of a set of eval-
uation tools suitable for solving problems in the following areas
of hierarchy design:

Selection of devices from a set of alternative storage technol-
ogies for each of the levels of the hierarchy. The available
technologies are called the “technology menu.”
Determination of the optimum number of hierarchical levels
and level capacities.

Evaluation of the effects of variations of hierarchy parame-
ters on system performance. Significant conclusions should
be insensitive to expected variations of input parameters.
Assessment of the cost dependence of a technology on its
total production volume.

We begin by representing a computing system by means of a
cyclic queuing model." The list of system parameters required
by the model is given. The succeeding section deals in more de-
tail with the queuing model and derives a fast approximative
solution for the utilization of its components that is based on
steady-state flow equations. A programmed version of this mod-
el is described later as a vehicle for solving the previously dis-
cussed design problems. Two different criteria of system opti-
mality are used, one for interactive systems and the other for
batch-oriented systems. An Appendix is provided in which we
correlate the approximative solution of the queuing model with
known theoretical results, and point to some extensions of the
method.

An extensive effort was made to correlate the outputs of an ana-
lytic model with those obtained from a simulation model of a cy-
clic queuing network. The simulation model was created to in-
vestigate general network queues with a variety of service time
distributions and queuing disciplines. (A proof has also been
worked out by which the average queue length at a given hier-

NO. 2 + 1974 EVALUATION OF STORAGE HIERARCHIES

Figure 2 Relationship between
storage hierarchy and
cyclic queuing system.
A. Storage hierarchy;
B. Cyclic queuing
system

CPU

ACCESS
LEVEL TIME CAPACITY
CACHE AND

MAIN L C
STORAGE 0 ¢

DELAY BOUNDARY

tes{ DASD 2

the computing
system

archical stage is shown to have the same form as that given by
Gordon and Newell," Jackson,” and Buzen.?)

Our verification effort proceeded first by correlating the results
of the simulation model with results obtained from theoretical
models."”” We then compared the results obtained from the ana-
lytic model described here with comparable simulation results
for a variety of situations, i.e., two- and three-level storage hier-
archies, multiserver stages, and varying levels of multiprogram-
ming. In total, more than forty comparisons were made. (Table
2 of the Appendix shows representative results obtained from
these comparisons.)

The approach described in this paper assumes the validity of the
verification results and also depends on the validity of the cyclic
queuing model as a satisfactory representation storage hier-
archies in actual use. We have investigated current computer
systems with this model and have found that optimal configura-
tions for given workloads generated by the model correlate well
with actual configurations associated with the given workloads.
The model that we now describe has also been used for the evalu-
ation of new storage mechanisms.

A model of the CPU and storage hierarchy

The problems we have just outlined are basically those of optimi-
zation that require the evaluation and comparison of many al-
ternative hierarchical configurations. This task is accomplished
in two steps. We first give the description of a model that incor-
porates the hierarchy into a multiprogrammed system. This sys-
tem and its workload are defined by using only a few significant
parameters. The output of the model yields the utilizations of
the system components, i.e., the fractions of busy times of the
processor and the levels of the storage hierarchy. The second
step —the inclusion of cost information, the derivation of cost-
performance values from CPU utilization, and the organization
of optimization procedures—is accomplished in the succeeding
section.

The framework for the subsequent hierarchy evaluations is a
simple system consisting of a CPU coupled with storage hier-
archy. The system is supposed to operate in a multiprogramming
mode, with a fixed degree of multiprogramming m. All m pro-
cesses are statistically equivalent, and there is no priority
scheme involved in assigning resources to the processes. Once a
process is assigned to the CPU, the process uses the CPU until
arequest is presented to a storage level below the delay bounda-
ry. At that time, a process switch occurs, and the CPU is as-

GECSEI AND LUKES IBM SYST J

signed to the next process waiting in a CPU queue. If a refer-
ence occurs to a level above the delay boundary, no process
switch takes place. In our system, all storage levels above the
delay boundary are clustered into a single level L; (usually
composed of the cache and main storage). Figures 2A and 2B
show the correspondence between this system and the queuing
model.

We now describe the parameters of the system and its workload
in terms of the inputs required by the queuing model.

* Average access times in seconds T, - - - T, and the structures
of the hierarchical levels to be used for the arrival rate func-
tions f;, which are explained later in this paper. The access
times include the seek and search action of the access mech-
anisms, the data transfer time to hierarchical level L, but not
the waiting times if the access mechanism is busy.

Capacities C, in millions of bytes of the hierarchical levels.
The level of multiprogramming m is equal to the number of
processes in the quening system.

We now introduce the concept of miss ratio curves.® Miss ratio
curves represent a concise description of the workload of a sys-
tem. They also include the effects of programming techniques
and data usage. A miss-probability curve (plotted in Figure 3) is
a graph of the probability M that a storage reference from the
central processor is not found in level L, versus the capacity of
that level. A miss-ratio curve, given in Figure 5 in the Appendix,
is calculated from the log of the complement of the hit ratio ver-
sus the log of the capacity.

The miss ratio curve is generated from the reference string, which
is the sequence of pages that is referenced when a program is
being executed. An equivalent curve is called the ‘hit ratio
curve,” i. e., the plot of the probability that a page reference is
found in a buffer versus the buffer capacity, provided the page
replacement algorithm is a stack algorithm.?

Such a curve is a function of both the replacement algorithm
used for storage management and the type of computing work
load. As an approximation, we extend the interpretation of this
curve to a representation of the distribution of references to all
N + 1 levels of a hierarchy. The hit ratio p,’ is the probability that
a storage reference is satisfied from level i. Knowing the effec-
tive capacities C,’, p;’ is illustrated in Figure 3 and can be ob-

(3

tained as follows:
Py =1—M,
py=M,_,

and

EVALUATION OF STORAGE HIERARCHIES

miss
ratio
curves

Figure 3 Example miss

probability curve

MISS PROBABILITY

CAPACITY

p/=M,_, —M,

1

where
i=1,,N

In this paper, we assume that a miss ratio curve corresponds to
an individual process. All m processes have the same statistical
behavior (i.e., the same curve). All storage levels except the last
are divided into m equal parts, and a process has the effective
capacity C;' = C,/m at each level i.

In some systems, information used by a process may be shared
with other processes as well. In such cases, the effective capaci-
ty is C;/ = C,/m, and the extreme case is C,' = C; when all pro-
grams and data in the system are shared concurrently by all m
processes.

The average CPU instruction rate G is the average number of
instructions per second executed under the assumption that all
programs and data are found in level L. G is used to derive the
mean CPU execution interval T,, the time during which a pro-
cess uses the CPU before it generates a request across the delay
boundary. The mean execution time is given as follows:

1
0T 2XG XM,

T

where M is the probability of a miss from level L , and the con-
stant 2 reflects the assumption that there are two storage refer-
ences per instruction.

The cyclic queuing model

The purpose of the cyclic queuing model is to determine the uti-
lization of the CPU and storage levels of the computing system
previously introduced. The model is composed of N + 1_stations
S, Sy, where S is interpreted as the CPU of a single pro-
cessor system and all storage above the delay boundary. Stations
S0+ S, represent the levels of a storage hierarchy below the
boundary. A constant number m processes circulate in the sys-
tem. When a task completes its CPU service interval, it leaves
level S, and it is routed to S, - - -, S, with probabilities p,,- -, p,.
These are obtained from the hit ratios:

i
i 1—P0'

GECSEI AND LUKES IBM SYST J

After being serviced in a station, processes are returned to S .
The transmission times are considered to be negligible; hence,
every process must be in one of the stations S, - -, S, at any time.
A process in any station is waiting for service or being serviced.

We denote Q, as the average number of processes found in §;
(waiting or being served), and R, is the average throughput rate
i.e., the flow in processes per second). The following steady-
state equations hold for the system:

R,=p,R, (2)

where

(3)

Equation 2 is the flow conservation law, and Equation 3 shows
that each process always exists in one of the stations. We can
observe that Equation 3 determines the values of rates R; up to
a single multiplicative constant (i.e., it gives the ratios R;/R;,
but not the absolute values). The missing condition can obtained
from Equation 2.

Each service station S, can be viewed as a black box that is
characterized by the dependence of Q, on the rate R, We as-
sume that this dependence is a function of Q, = f;(R;) and that
functions f; are known for all §; stations in the system. In this
view, a station §; is analogous to a nonlinear resistance; S; is
analogous to a current; and processes Q; are analogous to the
voltage drop across the resistance.

The concept of describing S; by means of f; is admittedly an over-
simplification, since @, depends not only on the structure of
the station, but also on the pattern of arrivais of processes. The
simplifying assumptions are as follows:

e Arrivals of processes at the stations are random.
e Arrival times are independent of previous departures from

the same station.

Thus f; describes station S, in an open-loop Poisson-arrival situ-
ation. This is the essence of the approximation inherent in the

NO. 2 -+ 1974 EVALUATION OF STORAGE HIERARCHIES

service station

utilization
factors and
examples of
stations

examples

present analysis. The advantage of the black, box analogy is that
it provides a uniform way of characterizing each station, regard-
less of the technological and structural features of its inner con-
struction. All structural features of S, relevant to this analysis
should be projected into the nature of f;, Now we can rewrite
Equation 2 as follows:

Q,=fi(p,* R,) (4)
where -
i=0,--,N

We can also rewrite Equation 3 as follows:

N N
S0, =S fip; - R) =f(R,) (5)

If f; are continuous, monotonically increasing functions in R,
then fis also continuous and monotonically increasing in R,

Equation 5 thus uniquely determines the value of R, and,
through Equation 2, determines the values of all other through-
puts R;. Therefore, from a knowledge of m, functions f; and
probabilities p,, it is possible to find the rates R; and average
number of processes Q, in the service stations.

In reality, each service station has some of the internal organiza-
tion of waiting queues, service disciplines, and servers. By serv-
ers we mean the active elements in a station e.g., the CPU or
various access mechanisms and ports into storage. There may
be one or more servers (of the same type) in any station. The
time spent by a process in a station (i.e., the time between its
arrival and departure) is composed of two parts: wuaiting time
(time spent in queues, which may be zero), and service time
(time the process keeps one of the servers busy). The average
service time in S, is denoted 7',. We define the utilization factor
U, of a server as the fraction of time the server is busy:

U,=RT,/D, (6)
where
i=0,--,N

and where D;, is the number of servers in §;. All servers in a sta-
tion are assumed to have the same utilization.

Five examples are now given to illustrate the hierarchy model-
ing principles as they apply to the processes inside a service sta-
tion.

Example 1. The service station is a single server with exponen-
tially distributed service time and with mean value 7. From

Reference 7 the function f is then

GECSE{ AND LUKES IBM SYST J

_ ., RT
=/ (1—RT)
This structure typically corresponds to a CPU with exponential-
ly distributed execution intervals.

Example 2. There are D servers in a station with exponentially
distributed service times (of mean value T). A separate queue is
associated with each server, and incoming processes go to any
queue with equal probability 1/D. This service station may cor-
respond to a disk facility with K actuators.

In this case, the function f'is as follows:

DRT
(D —RT)

Q=f=

Example 3. The station shown in Figure 4 is acting as a delay
element with mean delay T. Each process is serviced immedi-
ately upon its arrival, regardless of the other process being ser-
viced at the same time. Note that, since there is no waiting
queue, the utilization of the delay element may be greater than
one. The behavior of the station is expressed by the following
equation:

Q =RT

A disk subsystem with a separate actuator assigned to each pro-
cess is representative of this structure.

Example 4. In general, any analytic results available from
queuing theory are applicable for expressing f (multiserver sys-
tems, nonexponential service times other than FIFO queuing
disciplines). A particularly useful relation is the Khintchine-
Pollaczek equation, given in Reference 7, for single server, gen-
eral service time distribution (M /G /1) systems:
U*(1+C°

1= 0) (7)

Q=U+

where C is the coefficient of variation of the service time and
U = RT. This relationship is used in the programmed version of
our method to allow for fitting the first two moments of empiri-
cally obtained service time distributions (such as for disk access
times and CPU execution intervals).

Example 5. In cases where the complexity of a station (storage
hierarchy level) does not permit the use of results from queuing
theory, the function Q, = f;(R;) can be obtained by simulation.
Such may be the case when the station contains a channel, sev-
eral control units with sector queuing, and queue sorting. In
general, functions f; serve as a uniform means for defining the
behavior of hierarchy levels.

No. 2 + 1974 EVALUATION OF STORAGE HIERARCHIES

Figure 4 Service station acting
as a delay line

Q

cost-performance

The algorithm for solving Equation 5 for the queuing model
equilibrium, depends on the way functions f, are defined. Since a
purely analytic solution is seldom possible, a simple binary
search with less than ten iterations was adopted in the program
used for optimizations. The result is a general solution with ac-
ceptable speed.

Optimal hierarchies

Since storage hierarchies are usually not end products, but, rath-
er, components of data processing systems, it would make little
sense to optimize an isolated hierarchy, regardless of the system
context. We consider that a hierarchy is optimal if the system
that incorporates it cannot be made better by changing the hier-
archy parameters alone.

The goodness of a system as judged by a user is generally a
complex mixture of his estimate of the raw processing power,
system cost (purchase or rental), compliance with specified
functional requirements (such as response time), and many intu-
itive factors (such as ease of operation, maintenance, etc.) Any
attempt to quantize the goodness function is clearly an approxi-
mation; however, such formalization is useful and necessary to
assist intuition, which can easily fail in complex situations. We
shall call the cost-performance function cp and designate it to
be any such quantitative expression. The system that yields the
minimum value of CP is said to correspond to the best system.
We shall use two representative ¢ functions: (1) for batch sys-
tems (CPy); and, (2) for interactive systems (cP,). The best
batch system is one that performs a job most economically. We
choose the cost-performance function for a batch-oriented sys-
tem as follows:

system rental per second
P, = ; -
B average number of instructions per second

N
K'+3 CK,

0 . .
GU, dollars per instruction (8)
Here K’ is the CPU rental; C, is the capacity of hierarchical
level i in millions of bytes; K, is the rental of level i; U, is the
CPU utilization; and G is the execution rate of the CPU.

Interactive systems are required to meet given specifications of
throughput rate § (in transactions per second) and response
time E (in seconds). The better the interactive system, the
lower the cost at which it meets these requirements. The cost-
performance characteristic of an interactive system is expressed
as follows:

GECSEI AND LUKES IBM SYST J

N
K'+3 CK,
-]
cP, = GU,

subject to the constraints

IS=ZGU, (10)
where I is the required number of instructions per transaction

and
ES=m (1)

Equations 10 and 11 require some further explanation. Equation
10 states that the CPU can maintain the desired processing
power. The left side of Equation 11 is the average number of
transactions inside the computing system waiting for response.
This number must not be fower than the degree of multipro-
gramming m used by the model to obtain U,. Also note that the
number of transactions per second S is not equal to the rate R of
the queuing model. The processing of a transaction may require
several CPU execution intervals.

From the description of the queuing model, we know how the
CPU utilization U is linked with various system parameters.
Thus for fixed parameters, one can calculate the cost-perfor-
mance characteristic of the system by Equations 8—11.

For the purpose of solving various optimization problems such
as those outlined in the introduction, an optimization program
has been written that is based on an intelligent search. The pro-
gram is composed of a system of nested loops, each one serving
to change one parameter or class of parameters (such as C;).
The innermost loop contains a cost-performance calculation. The
program returns the hierarchy configuration that yields the low-
est value of cp,. The various optimization problems require in-
dividualized parameter settings and search strategies. In general,
only a subset of all parameters is varied for each run of the pro-
gram, while the others remain constant.

Since the miss-ratio curve and CPU characteristics are included
in the input values, it is possible to find optima over a range of
systems and workloads. Thus the program goes beyond calculat-
ing optima for hierarchies in a fixed environment. In such cases,
the program can be made to produce reports on the numbers of
times a given technology has been included in the optimum hier-
archy and the total volume (capacity) represented by these in-
clusions. ’

Particularly .important areas of investigation are sensitivity
studies aimed at determining the degree to which a particular

NO. 2 - 1974 EVALUATION OF STORAGE HIERARCHIES

optimization
procedures

model validation

conclusion is invariant with variations of system parameters.
One might ask, for example, whether a technology that has been
found to be optimal for the second level of a hierarchy, for a
range of applications is still optimal if its costs is increased by
ten percent.

Concluding remarks

We have described a simple model of a computing system with a
storage hierarcy, based on the view that such a system can be
represented by a cyclic queuing model. Each stage in the system
represents a component in the storage hierarchy with the excep-
tion of one stage that represents a combination of the central
processor and main storage.

The average utilization and queue length of the stages are calcu-
lated by treating each stage as an open loop queue with random
arrivals. Average queue length as a function of average through-
put rate is represented either analytically or by some tabular re-
lationship based on measurements.

We wish to emphasize again that the purpose of the model is not
to provide a detailed evaluation of storage hierarchy perform-
ance. Rather, the goal in formulating this model has been to
create a computationally efficient technique for evaluating the
gross effects on performance of variations in computing work-
load and hierarchical components. The approximative nature of
the model is consistent both with this goal and with the accuracy
of the input data.

Appendix: Model validation and extensions

We now compare results obtained by using the analytic model
with those obtained by using a simulation model of a cyclic
quening system and with available theoretical results. Also de-
scribed are the following extensions to the model:

~ Sharing data among tasks on levels of the hierarchy other
than the archive level.
Accounting for CPU overhead in switching processes.
The use of a family of miss ratio curves to test the sensitivity
of the optimal storage hierarchy (derived by the model) to
variations in computing environment.

Since a number of approximations have been made in the formu-
lation of the theoretical model, it is well to begin the model vali-

dation by comparing model results with theoretical results for a

GECSEI AND LUKES IBM SYST J

Table 1 Comparison of theoretical and analytical modeling results

U, v,
T, T, y (model) (theory)

0.249 0.250
0.246 0.243
0.249 0.247
0.490 0.499
0.481 0.482
0.488 0.465
0.807 0.821
0.784 0.756
0.788 0.713

0.25
0.25
0.50
0.50
0.50
0.90
0.90
0.90

PO = = DO o DD =
O~ OO~ DO —=O

service time of CPU cache main storage
service time of auxiliary storage
coefficients of variation of level i
utilization of level i

simple system so as to gain a measure of confidence in the mod-
el. The simple system is a two-level storage hierarchy with a
multiprogramming level of four. Theoretical modeling results are
summarized in Table 1. In five of the nine cases of input varia-
tion, the theoretical and modeling results are within one percent
of each other. In three of the remaining four cases, the outputs
differ by less than three percent. In one case, the difference is
less than eight percent. '

A simulation model of a cyclic quening system has been de-
veloped to further investigate the validity or assumptions made
in the analytic model. Both the analytic model and simulation
model were modified to include stages with identical multiple
queues. This modification allows us to analyze more accurately
storage hierarchies with a multiplicity of independent data paths
to a given level, as in the case of a direct access storage device
with several arms.

Table 2 summarizes the results obtained from both models. A
comparison of the average queue length and utilization for com-
parable stages in the cyclic queuing network demonstrates that
the analytic model results correlate well with those of the simu-
lation model. All stages in the model have exponentially distrib-
uted service times. Since our use of the model has been confined
to exponentially distributed service times, correlations of the
analytic mode! with other distributions have not been consid-
ered.

The purpose of the analytic model is to approximate efficiently
the behavior of a computer system with a storage hierarchy.
This validation effort demonstrates that answers generated by
the model are consistent with this goal.

NO. 2 + 1974 EVALUATION OF STORAGE HIERARCHIES

Table 2 Comparison of simulation and analytical modeling results

Ul U2 U3 Ql QZ Q3

0995 0.017 0.164

1.000 0.017 0.160

0.681 0.092 0.225

0.681 0.088 0.226

0975 0.017 0.161

0.994 0.017

0.242 0.321

0.237 0.303

0918 0.010

0967 0.010

0.870 0.078 0.039

0.929 0.077 0.040 2.044

M level of multiprogramming

U,, U,, U, utilization of servers of level i

T,, T,, T, average service time of level i (milliseconds) Q. Q,, Q, average queue length of level i

P, probability of an access to level 3
m,, m, number of servers of level i

shared storage

A analytic mode! result
S simulation model resuit

The model, as described in the body of this paper, associates a
fraction of the capacity of each level of the hierarchy (except
the archival level) with a given process as follows:

where

c/ 1

C. m

1

is the fraction of the capacity of level i associated with a task
and m is the level of multipramming.

A more accurate view takes into account the sharing of data
among processes. For example, the portion of main storage that
is allocated to operating system programs is shared by all pro-
cesses.

As mentioned in the first section of this paper, sharing can ex-
tend to the auxiliary storage, including the extreme case in
which a process shares all auxiliary storage with other pro-
cesses. The concept of the capacity of level i associated with a
process is given by the following relationship:

(C,—5.C)
C/ =8, +——1

GECSEl AND LUKES IBM SYST J

We note that the level of multiprogramming cannot become zero.
Here S, is the fraction of level i storage that is shared. The last
(slowest) level of the hierarchy always has a value of §;= 1 since
the data base is held at this level. The effect of storage sharing is
to increase the probability of finding requested information in
shared storage.

As an illustration of this concept, consider a situation wherein
four million bytes of main storage are available, and the level of
multiprogramming m is 4. The resident operating system pro-
grams take up one million bytes of main storage. The probability
of a miss from main storage is given as 10~* if the operating sys-
tem is not considered as shared among all processes, since each
process has one million bytes associated with it. If the sharing
concept is employed, the miss ratio is 2 X 10™ because the pro-
cess has one million of the operating system storage plus 0.75
million bytes [4MB — Y4(4MB — IMB)] of private storage as-
sociated with it. This example illustrates that knowledge of the
amount of shared storage at each level of the storage hierarchy
is important for an accurate evaluation.

The concept of multiprogramming is used in computing systems
to increase resource utiliztion by allowing many processes to
use main storage concurrently. As d consequence, the execution
of a process that requires data in auxiliary storage can be sus-
pended and another process that is waiting to use the central
processor can begin execution.

Multiprogramming does, however, impose added overhead on
the central processor, since the process presently in execution
must be suspended while a process waiting for the CPU is se-
lected. If the average execution time associated with process
switching T, is known, the effect of this overhead can be ac-
counted for in the following manner:

1. Increase the average time T, that a process is in execution by
the process switching time.

2. Modify the CPU utilization generated by the model by the
following rule:

Effective CPU utilization = model CPU utilization X

0
T,+1T,

The effective CPU utilization then represents the percentage of
time that the CPU is executing process instructions.

We now propose one solution to the problem of defining a com-
puter workload by means of a miss ratio curve. If one knows
from measurements the bounds on the distribution of storage
references to the levels of the hierarchy, a useful technique for
evaluating a hierarchy is to create a family of miss ratio curves

No. 2 - 1974 EVALUATION OF STORAGE HIERARCHIES

process
switching

miss ratio
curves

Figure 5 A fdmily of miss ratio

L0G,, MISS RATIO

curves

LOG,, CAPACITY

178

that represent these bounds. For example, assume that a miss
ratio curve is given for a specific workload as shown by the solid
line in Figure S, and measurements show that the bounds in the
miss ratio curve are represented by the set of points P, through
P, in that figure. We then take as the family of curves a set of
the general shape of the solid curve that pass through these
points. The dashed curves of Figure 5 illustrate such a family of
curves.

A set of modeling runs can then be made, one for each miss ra-
tio curve, and the resulting hierarchies may be compared. Should
vastly different hierarchy configurations result, then one has an
indication that the combination of technologies that has been
selected for the hierarchy is very sensitive to variations in work-
loads, and a carefully designed measurement of workload is re-
quired. Conversely, minor variations in hierarchy configurations
with variations in miss ratio curves lead to the conclusion that
the hierarchy is relatively insensitive to the extremes of the ex-
pected workload.

CITED REFERENCES

1. W.J. Gordon and G. S. Newell, “Closed queuing systems with exponential
servers,” Operations Research 15, 2, 254265 (April 1967).

2. J. R. Jackson, “Jobshop-like queuing systems,” Muanagement Science 10, 1,
131142 (October 1963).

. 1. P. Buzen, “Computational algorithm for closed queuing networks with ex-
ponential servers,” Communications of the ACM 16,9, 527-531 (September
1973).

. L. L. Traiger and R. L. Mattson, The Evaluation and Selection of Technol-
ogies for Computer Storage Systems, IBM Research Report R} 967, Febru-
ary 1972, may be obtained from the IBM Research Laboratory, Monterey and
Cottle Roads, San Jose, California 95193,

. G. S. Shedler, “A queuing model of the multiprogrammed computer system
with a two-level storage system,” Communications of the ACM 16, 3-10
(January 1973).

. R. L. Mattson, J, Gecsei, D. R. Slutz, and I. L. Traiger, “Evaluation tech-
niques for storage hierarchies,” IBM Systems Journal 9,2,78-117 (1970).

. L. Takacs, “A single-server queue with Poisson input,” Operations Research
10, 3 (1962).

GECSEI AND LUKES IBM SYST J

