
A general description of the Virtual Storage Access Method
(V S A M) is followed by a qualitative discussion of performance
expectations. V S A M data-set design parameters are discussed
with respect to performance tradeofs. Analytic techniques are
developed for relating some of the VSAM performance sensitivi-
ties to data set design parameters.

VSAM data set design parameters
by D. G. Keehn and J. 0. Lacy

The Virtual Storage Access Method (VSAM)' has been de-
veloped for use with virtual storage operating systems. VSAM
grew out of the need for an access method that allows data to be
accessed both directly by key and sequentially in key-defined
collating order. Conventional index-sequential access methods
that satisfy this need usually use a chaining technique to insert
additions into a file after it has been initially loaded. With these
techniques, performance degrades rather substantially as more
and more additions are made. VSAM has been designed to avoid
performance degradation while retaining the index-sequential
facility. Two new logical concepts defined in VSAM are used to
manage the space associated with data: the Control Area (CAI;
and the Control Interval (crivv). An index is used to address the
records contained in control areas and control intervals. An in-
sertion technique is used that works well even after the file has
had many records added. The result is a sequential direct inser-
tion facility that - compared with conventional chaining tech-
niques -performs well and continues to do so as the fiie is built
up. Although VSAM has been designed for use with virtual stor-
age operating systems, it may also be used with all of the os/370
operating systems.

Our purpose Iiere is to provide concepts to consider when de-
signing a VSAM data set. This paper describes VSAM and then
uses that description to make some qualitative statements about
VSAM perforniance expectations as compared with other meth-
ods. Some performance tradeoffs are discussed with respect to
VSAM data set design parameters. Finally, analytic techniques
for some of the crucial VSAM performance effects are devel-

186 K E E H N AND LACY IBM SYST J

Description of VSAM

data set VSAM data sets are constructed either as Key Sequenced Data
structure Sets (KSDS) or Entry Sequenced Data Sets (ESDS). ESDS are

sequential add-on data sets with no index structure. Records
in KSDS have a key embedded in each record that defines a
collating order for the records. The records are initially loaded
in the defined collating order and continue to be accessible in
that order (known as sequential access) as new records are
inserted. An index is provided for keyed direct operations, that
is, not in a predetermined order.

A VSAM data set consists of a number of Control Areas (CAI,
each of which consists of a number of Control Intervals (C I N V) ,
which, in turn, consist of a number of records. The records with-
in a C I N V are physically maintained in sequence according to
the key embedded in each record. Each C I N V also contains con-
trol information regarding where each record starts within the
cf Nv (so as to allow variable length records). A C A is often a
cylinder (but may be specified to be smaller) of a Direct Access
Storage Device (DASD). Figure 1 represents three instances of
the same VSAM CA as situated on a DA SD cylinder. (The first
track of the C A is occupied by a sequence set that is to be de-
scribed later in this paper.) Each of the other tracks contains
three C I N vs. The shaded areas represent free space.

index A VSAM Key Sequenced Data Set (KSDS) has an index for di-
rect operations. Many index entries are stored together on
DASD, and they are accessed in blocked units. Each index rec-
ord is a key-pointer pair where they key is the highest key in the
pointed-to block, and where the pointed-to block is another in-
dex block or Control Interval (C I N V) in the data set. The blocks
make up levels where the highest level consists of a single block,
and each of the lower levels consists of the blocks pointed to
by the next higher level. This may be thought of as a fan-out
effect. Each of the blocks in the lowest level of the index (called
the Sequence Set) addresses a particular Control Area (cA) ,
and resolves a key to the C I N V in which the desired record re-
sides (if it exists). Figure 2 represents a fan-out, in tree form
for a three-level VSAM index.

A record is located via this index tree by using a less-than-or-
equal comparison on each level until the appropriate CI N V is
located. Optionally, the Sequence Set can be stored with the
data it addresses. If this is the case, the Sequence set occupies
the first track of the C A , and is replicated as many times as will
fit on the track (to save rotational delay- latency - waiting for
the beginning of the desired record to come under the read/write
head). Higher levels of the index may also be replicated. VSAM
compresses'the key entries in the index so that redundant key

188 KEEHN AND LACY IBM SYST J

Performance implication

The VSAM design offers some significant methods for improving
performance over other access methodologies. The new
methods are explored in this section, by using comparisons with
current index-sequential procedures.

The VSAM index structure has several higher index levels that
resolve to a Control Area (CA) index (Sequence Set). The Se-
quence Set always resolves to the desired Control Interval
(C I N V) , because- when a cf N v is split-the Sequence Set is
modified to reflect the split.

Index sequential (ISAM) methods use a master index, a cylinder index
index, and a track index. Even after resolving to a DASD track,
however, the track must still be searched, with the further possi-
bility of having to follow an overflow chain to retrieve the de-
sired record. In that method, the various indexes themselves
never need to be updated, whereas VSAM must continue to up-
date the index blocks as splits occur. The ISAM method amounts
to spreading the pointing information over the disk surface,
whereas VSAM keeps all the pointers compacted in one index
block (at the expense of continued updating).

Access methods that allow for inserts often have a form of dis- distributed
tributed free space. The VSAM scheme leaves a specified per- free space
centage of free space in each C f N v and a (possibly different)
specified percentage of free space in each CA. Therefore, the
first addition goes into the appropriate C I N V , and, with a lightly
inserted file, an addition to a VSAM file is much like a direct up-
date. Previous methods provide free space only at physical
boundaries, which implies that additions go immediately into an
overflow area. Chaining is usually used to locate records that
have been inserted.

The VSAM free-space strategy allows additions to be made to the
expected C f N v . When an overflow occurs, the C f N v s are split
and the sequence set is updated, with the result that the inser-
tion technique works well even as the file continues to be added
to. ISAM methods use chaining to overllow records so that, even
with the first few additions, the insertion performance begins to
degrade.

VSAM allows some free space to be left in each C f N V as it is blocks versus
loaded. Hence, at zero or light insertion levels, the VSAM se- CINVS
quential performance may suffer compared to a fully utilized
block. However, the splitting strategy results in a continued high
blocking factor, as compared to the overflow chain strategy,
which results in a diminishingly effective blocking factor as addi-
tions are made. As heavy addition levels begin, CA splitting adds

NO. 3 * 1974 VSAM DATA SET DESIGN 191

C A S to the file and results in longer seeks for direct operations.
An independent overflow area, as used with the overflow chain
strategy, results in extra seeks between the prime and overflow
areas at heavy addition levels.

Before delving into more detailed performance measuring tech-
niques in the following sections, it might be helpful to make a
few prelimary qualitative statements about performance, which
are based on the more detailed material. In practice, this level is
often adequate, because an understanding of the key d.esign de-
pendencies is usually sufficient to make good design choices for
VSAM.

Control interval size. The amount of DASD space required by a
Key Sequenced Data Set (KSDS) and the sequential request
times are sensitive to the choice of CI N v size. A larger C I N V
size produces better sequential performance. It is possible, how-
ever, to waste DASD space with certain combinations of C I N V
size and record size.

Distributed free space. When designing for random direct addi-
tions, choose the free space in a CI N v larger than the free space
in a C A . The splitting of CAS is better controlled by free space
within the C I N V than free C I N V S with a C A . Make the free space
within a CI N v at least as large as the design percentage of inser-
tations so that the CA splitting is small. To avoid degradation of
sequential operations, sufficient free space must be specified.
However, too much free space in a CI N v yields a poorly utilized
block for transferring data to and from DASD.

Index bufers. Buffers for holding the CI N V and CA indexes in
main storage are not analyzed in this paper, but they are includ-
ed here because of the importance of .direct operations. There-
fore, include some extra index buffers when direct operations
are significant for an application. In a purely sequential applica-
tion, two index buffers are usually sufficient. Allow at least one
more index buffer than the number of levels in the index for di-
rect applications. These index buffers allow VSAM to keep the
higher levels of the index in main storage, thus reducing the
number of DASD accesses to the index component.

Data bufers. The number of buffers for holding data in main
storage have a significant impact on the performance of sequen-
tial operations. For applications with direct operations only,
more than two data buffers add little to performance. In general,
as the number of data buffers increases, sequential performance
should improve. A point that should be kept in mind regarding
direct operations with keys that are clustered together is that
VSAM usually checks the current data buffers to determine

192 KEEHN AND LACY IBM SYST J

whether the requested record is present. This may reduce the
number of DASD accesses required for an application.

Allocution unit. This unit is a parameter that should be so cho-
sen that VSAM allocates a cylinder for a CA. If allocation units
are specified in terms of records or tracks, a CA of less than a
cylinder can result. When a CA is less than a cylinder, additional
device interruptions must be handled by VSAM on sequential
operations.

Index options. VSAM provides four choices of index component.
One may choose to embed the Sequence Set with the data or not
and choose to replicate the nonembedded part of the index or
not. Embedding the Sequence Set can reduce direct retrieval and
insertion times.

Analytic modeling techniques

We now discuss several analytic modeling methods that are use-
ful for understanding the performance of VSAM. The analysis
applies to single-string requests. These are repeated requests of
the same kind from a single task such that each request is syn-
chronous with the completion of the prior request in the repeat-
ed pattern of requests. A stochastic model is first established for
the distribution of split C l N v s and C A S in a VSAM Key Se-
quenced Data Set (KSDS). Given the model, we can then ana-
lyze the DASD space required at various insert levels as well as
the sequential and direct single-string access times.

I

We first account for Cl N V and CA splitting as a result of direct direct

additions. From the discussion on making insertions, recall that insertion
when the free space in a C l N V is not able to accommodate the
addition at hand, a split C l N V results.

In the analysis, it is necessary first to compute the probability of
a C l N V splitting. We begin by defining R E C as the number of
records in the KSDS at loading time. The keys of these records
are modeled as random numbers chosen from a distribution of
key values denoted by FK. The loading process puts N R C I fixed-
length records into each C l N V . Subsequent to the loading pro-
cess, I random additions with keys chosen from FK are made. If
m denotes the number of additions falling in any particular load
time C l N v, then the probability of exactly m additions in an inter-
val is given as follows:

rr{m/I, REC, N R C I) = (A) * (::E,) N R C l -k rn
N R C l

(1)

VSAM DATA SET DESIGN 193

Figure 3 Range of summation of probability of a t least one CINV splitting

PCIS
SUM TC OVER THESE
rnVALUES

where

OTrnTZ

The probability of at least one C I N V split is denoted as PCIS
(R E C , N R C I , F R E C) , and is given by summing Equation 1 over
the number of records that overflow a loaded C I N V . If F R E C
denotes the number of free records available in a C I N V after
loading, then

PCIS (REC, N R C I , F R E C) = En- {m/1 , R E C , N R C I } (2)

where the summation is over all m such that F R E C + I 5 m 5 I

For purposes of data set design, a primary interest is the first
CI N V split after loading. In evaluating Equation 2, only the lead-
ing terms of the sum are significant. Figure 3 shows the relation-
ship between N R C I , F R E C , and P C I S . It should be noted here
that r { m / I , R E C , N R C I } and, hence, PCIS (R E C , N R C I , F R E C)
does not depend on the particular key distribution FK. This fact
allows a simple analysis for any monotonic FK.

The analysis presented herb accounts for two sources of nonuni-
form distribution of records across the C I N V S . The first source
occurs at loading time, when the finite number of records in each
C I N V results in an uneven distribution of probability values con-
tained in each C I N V . Ideally, if the keys of the loaded data set
were perfectly representative of the distribution FK, then each
C I N V contains equal probabilities of having subsequent inser-
tions fall in that C I N V . The model shows this not to be the case.
Rather, this probability is itself a random variable and its distri-
bution is of interest. The second source of nonuniformity occurs
when insertions are made. The small probability held by each
C I N V implies a large variation in the number of inserted records

We now analyze the loading of a KSDS data set, and make compu- control
tations to determine the distribution of the probability held by interval
each Cf N V after the loading process. At loading time, the collec- probability
tion of records with keys sampled from FK are available, so that
we have the following relationships:

Data set keys = {Xl, X,, . * a, X,,,}

where

Pr{Xa 5 t } = F K (t)

for each ~ (1 , 2;-*, R E C)

These records are sorted by key value and grouped into C l N V s
with NRCl records in each C I N V . The key range assigned to the
ith cf NV by the loading process is given by the random interval,

{Key values in the ith C I N V } = (X:"-I)NRc,, x ,*:
where the { X a * } are the result of sorting { X , } , a&(1;. -, R E C)

This notation leads to asking what the probability is that,,subse-
quent to the loading process, a given insert will be placed in the
ith C I N V . That is, it is necessary to compute the probability den-
sity of Pi where

and where the inserted key Y also has the probability distribu-
tion FK. With this last fact in mind, Equation 3 may be rewritten
as follows:

where

1 5 i l RECINRCI

Thus the random variables Pi depend on the sorted key values
through the cumulative distribution function FK.

Equation 4 appears to be complicated, but it is easily solved
because of the following two facts:

(a) The sorted distribution of keys FK (X,*) has the same prob-
ability law as an ordered sample of size R E C from a uniform
probability distribution on (0, 1) . This follows from the fact
that the unsorted random variables FK (Xi) are distributed
as follows:

I where

I NO. 3 1974 VSAM DATA SET DESIGN 195 I

probability of a
control interval

splitting

196

(b) Also, all the probabilities Pi have the same first order prob-
ability distribution. In particular, any Pi is distributed as the
first as follows:

PI = F K (X&,)

To show (a) , we note the following conditions placed on Fk:

Pr{F,(X,) s t } = Pr{FK-'FK(Xi) 9 F K - ' (t) }

= Pr{X, s F ~ - ' (t) } = t

where

The conclusion in (a) follows, since sorting the {X,) and then
F , gives the same result as ordering the FK {Xi}.

At this point, assume the conclusion for fact (b) and refer to the
Appendix for a proof.

Combining the results of (a) and (b), the distribution of Pi can
be completed by finding the distribution of the NRCIth largest
out of R E C uniformly distributed random variables on the inter-
val (0, 1). Let Z,, 2,; * ., ZREC denote uniformly distributed ran-
dom variables on (O . l) , and note that the NRCIth term in an
ordered sequence is less than t if and only if there are least N R C I
out of REC keys that are less than or equal to t.

Pr { P i 9 t } = Pr{at least N R C I of Z, , Z,, * 1, ZREC 5 t } (5 1
Since the Z are independent, the computation in Equation 5 is
given by the following binomial distribution:

Differentiating this expression and evaluating it at t = p yields
the following desired probability density for Equation 3:

(N R C I - l) ! (REC - NRCI)!' ~1

The derivation of Equation 1 and, hence, the evaluation of
Equation 2 can easily be obtained from the results of Equation
6. Suppose the probability p contained in a CI N v is known. The
probability that m out of I additions fall into the key range
spanned by this C I N V is given by the binomial law as follows:

Pr {m inserts in a CI N V / ~ } = (7)

where

p + q = 1

KEEHN AND LACY IBM SYST J

Equation 7 is the conditional probability of the additions falling
within C I N V when p is known. Averaging Equation 7 over the
distribution on p values given by Equation 6 yields the prob-
ability of rn insertions falling in CI N v as follows:

Pr { rn inserts in a CI N v } =

(8)
The result of Equation 1 is a result of Equation 8 and the defi-
nition of the beta function as given by Feller.3

The techniques of finding the probability of a CA splitting paral-
lel those used for computing P C I S . The reason for this is the sim-
ilarity of the manner in which free space is allocated with a
CI N V and a CA . Figure 1 A shows a CA loaded with free space in
C I N V S and free C I N V S within the CA. As additions split a C I N V ,
a free C I N V is used, and eventually the free C I N V pool is deplet-
ed. Figure 1B shows a CA with some split C I N V S , and Figure 1C
shows a CA with the free C I N V pool depleted. For direct addi-
tions with random keys, only the originally loaded C I N V S con-
tribute to the number of splittings because the probability of the
double splitting can be neglected. With this approximation not-
ed, we have the following expression for the probability of a
control area splitting:

Pr {CA splitting} =
Pr {number of loaded C I N V splittings exceeds the number of 3
C I N V S within a C A }

Each originally loaded C I N V is a source of C I N V splittings with
probability P C I S . Let CI PCA denote the number of nonempty
C I N V S per CA after loading. Taking the contribution from each
load time C I N V as statistically independent, the probability of a
splitting is given by summing the tail of the following binomial
distribution:

PCAS = Pr (Control Area splitting}
CIPCA

C I P C A - m

m=l+free
CI per C A

probability of a
control area
splitting

Here, ~ c l s -t P C I S = 1, and free C I N V S denote the free C I N V S
1 within a CA. For purposes of computation, the binomial law in

Equation 9 can be replaced by the Poisson law when CIfcA is
large (e.g., exceeds 20) and PCIS is small. The parameter in the

~ Poisson law is given by the product CIPCA X Pas.

At this point a technique for computing Pcrs and P C A S has been
! established, given certain data set parameters. It is still neces-

~ NO. 3 * 1974 VSAM DATA SET DESIGN 197

sary to relate the external data set characteristics to the parame-
ters available to the data set designer. With this relationship
established, the DASD requirements can be computed as a func-
tion of the data set design parameters.

data set This section gives the fqcts necessary for relating external data
design set characteristics to the variables of the direct insertion model.

parameters The following list represents the parameters needed to define a
VSAM data set.

Data control intervql size (C N V) must be i X 2', where k i 9.
Physical block size (P E S) is chosen by V S A M to be one of
(512, 1024, 2048, 4096}, whichever is the largest divisor of

Free space parameter FCI is the percentage of free space in
a C I N V , and FCA is the percentage of free C I N V S in a C A .
Index options specify whether to imbed the sequence set and
whether to replicate the nonimbedded part of the index. See
Table 1 for a list of possible combinations and numerical set-
tings for the I O P parameter.

C N V .

Number of records in the data set at load time is R E C .
Average logical record size in bytes is E X S Z . Only fixed-
length records are considered; the maximum record size
must fit within one CI N v.
Space allocation units for the data component are specified
by cylinder, track, or record.
Key length is K E Y L E N . Also specify and estimate the com-
pressed key size JCKS).

I DASD space computation algorithm

The following algorithmic steps are a reasonably accurate repre-
sentation of the computations necessary to load a vSAM data
set. Throughout this algorithm, the APL language is used to ex-
press the algebraic operations.

1. Number of records in a data CI N v (N R C I) . For fixed-length
records, an overhead of 10 bytes per C I N V is required. The
free space parameter FCI specifies the minimum amount of
free space in the CI N V . Compute first

NRCI + L((-lo) i- (1 - F C I) X C N V) + E X S Z (10)

2. Maximum number of records in a CI N V (M R C I) . When all
the free space in a C I N V is filled with records, compute M R C I
as a preliminary step to computing PCIS

3. Number of dafg C I N V S per track (C I P T R K) . Compute C I P T R K

198 KEEHN AND LACY IBM SYST J

from the physical blocks per track (P B T R K) and C I N V size
(C N V) .

C I P T R K -+ P B T R K + C N V + PBS

All terms are defined except P B T R K , which is computed
from device characteristics as follows:

P B T R K -+ 1 + 1 ((track capacity-last block)
f (length of other blocks)

In applying this formula, use the DASD overhead values
without keys. The explicit values for such terms as track
capacity depend on the device type.

4. Information regarding the units of space allocation for the
data component, which is a key variable throughout this
algorithm, is the number of tracks in a C A (T R P C A) . The
algorithm starts by assigning a value to T R P C A , but later this
variable may be decreased to satisfy certain index compo-
nent constraints. There are three ways to assign T R P C A .

If space is specified in cylinders and the sequence set is ad-
jacent to the data, assign tracks per cylinder less one, other-
wise take tracks per cylinder.

T R P C A -+ tracks per cylinder - I O P 5 2

If space is specified in units of tracks, take the smallest
number of primary tracks, secondary tracks, and tracks per
cylinder as T R P C A . Adjust this value by subtracting one
track if l o p 5 2 .

If space is specified in units of records, convert the primary
and secondary record values to tracks as follows, using r ,
the ceiling function:

Primary tracks -+ i- E X S Z X primary records + (PBS
X P B T R K) ;

Secondary tracks -+ ~ E X S Z X secondary records f (P B S
X P B T R K) .

Apply the space specified in units of tracks to compute
T R P C A following the procedure as though it had been
originally specified in units of tracks.

5. Maximum number of C I N V S per CA (M C I P C A) is computed
as follows:

M C I P C A +- L C I P T R K x T R P C A

Since a C I N V cannot span a C A , the floor function 1 is ap-
plied to the product of C I N V S per track and tracks per C A .
Note that all the C I N V S in a C A are pointed to by a sequence

NO. 3 * 1974 VSAM DATA SET DESIGN 199

set entry. This fact may require a change to this value far-
ther on in the algorithm.

6. Loading time records per CA (R E C P C A) is a quantity that is
basic to computing the number of tracks required for the
data component at loading time as well as after inserts, and
is computed as follows:

R E C P C A + N R C I x (M C I P C A - L F C A X M C I P C A)

This equation states that the number of records in a CA at
loading time is the product of the number of records loaded
per CI N v with the number of loaded CI N V S in each CA .
Note that the product F C A X M C I P C A is rounded down,
which indicates that the maximum percentage of free CI N vs
in a CA is bounded by F C A . This is in contrast to the impact
of F C I on the percentage of free space in a C I N V . An exami-
nation of Equation 10 shows that FCI is the minimum
amount of free space within a C I N V .

7. Number of tracks required by the data component is com-
puted. Consider the following zero-insertion case first:

X r (R E C + R E C P C A) (11)

The factor on the far right is just the total records divided
by the loading time records per CA from step 6. This factor
is multiplied by the number of tracks per CA as computed in
step 4. If the sequence set is imbedded with the data, the
track for it is allocated from the data component.

To obtain the number of tracks in the data component after
inserting, note that each loading time CA contributes either
one (if there is no splitting) or two (if CA is split) to the to-
tal required number of tracks. Neglect double splittings be-
cause they have a small probability over the range of inser-
tion levels investigated here. 'The average number of CAS
per loading time CA is computed as follows:

i 1 Average number
of CAS per
loading time CA

+- (1 - P C A S) + 2 x PCAS = 1 + PCAS

(12)
For the range of insertion levels of interest, multiply Equa-
tions l l and 12 to compute the number of tracks per data
component at insertion level I N S as follows:

Tracks for the
data component) + (TRPCA + l o p s 2)

X r (REC f RECPCA) x (1 -k P C A S) (13)

200 KEEHN AND LACY IBM SYST J

14. The number of third and higher level index blocks is com-
puted as follows:

(third level)
C I N V S On t r (C I N V S on second) + m

This process is continued by dividing the number of index
C I N V S on the current level, and rounding up until we have
just one highest level index C I N V .

15. The total number of C I N V S in higher level indexes (H L I
C I N V S) is computed by summing over the number of index
C I N V S generated in steps 13 and 14. This term is useful for
considering the index options specified by I O P . Table 1
shows the relations between index options and the requisite
equation for computing tracks for the index.

Depending on the index option selected, the following equa-
tions apply:

Track for higher (level index

Tracks for higher) I(HLI number C I N V S of) : (per track (level index
Index C I N V S -

In the case of Equation 18, the sequence set is allocated
from the data component and each higher level (H L I) index
CI N v uses one track.

Equation 19 requires a computation of the number of index
C I N V S that fit on one track. Finally, the following computa-
tion with physical block size equal to I C N V S is required.
This equation applies when no replication is requested:

L

When replicating all of the VSAM KSDS index component,
use the following equation:

(Tracks for) t ember 03 + (sequence set C I N V S)
whole index LI C I N V S

Sequential operations model

We now present techniques for developing a model of VSAM
single-string sequential operations. The objective of this section
is to discuss the analytic formulas that relate I/O device char-
acteristics, VSAM .data set parameters, and CPU instruction pro-

204 KEEHN AND LACY IBM SYST J

Figure 5 VSAM rquential reading and clutch point action

e
n
L
0
Y n
3
u)

5

. .
TIME UF
ClNV RE
. IlTS ADll

CLUTC
POINT

CHANNEL SEARCH
FOR ClNVs 3 & 4

t
CLUTCH

VISSED
H POINT

CHANNEL SEARCH
FOR ClNVs 5 & 6

c
~ L U T C H

CLUTCH POINT
POINT

I -
ClNV
3 4

r-rl

1 5 1 6 1
1 1 1
I ClNV I

I l l

cessing time to the single-string processing time per record. First
to be examined are the equations that hold only foran uninserted
KSDS, and then discover how clutch-point effects (analogous
to card feeding) can be accounted for in this case. The next
step is to consider the sequential operations for accessing an in-
serted file with split and overflow CAS. This is followed by look-
ing at sequential performance as a function of insertion level.

To time a sequence of VSAM KSDS sequential read operations, it
is necessary to consider the VSAM buffer scheduling rules under
o s l v s l and o s l v s 2 . Take the number of data buffers and sub-
tract 1. (This buffer is used for C I N V splittings and is not sched-
uled in sequential reading operations.) If the remaining number
of buffers is equal to or exceeds 4, schedule half of this number
(rounded up) for each rlo read channel program. Otherwise,
schedule all the available buffers. In API,, these considerations
can be expressed as follows:

S C H B ~ r (D B F - l) t 1 + D O U B t (D B F - l) 1 4 (2 2)

The rule for determining the number of buffers to schedule in
one I/O channel program (S C H B) applies to sequential updating
as well. In Equation 22 , DBF denotes the user-specified number
of data buffers. DO U B is a logical variable that specifies whether
the buffers are scheduled in two sets or one. s C H B is also the
number of free buffers required before a sequential read opera-
tion can be started.

The following discussion has an analogy with card readers in
which the clutch rotates constantly. The maximum rate of card
demand is the rotational rate of the clutch. A demand rate just
slightly less than the clutch rotation rate halves the card transport
rate. As the card demand rate decreases, each time it becomes
less than a unit rotation time, the card transport rate is reduced.

NO. 3 - 1974 VSAM DATA SET DESIGN

The clutch point effect in DASD devices is illustrated in Figure 5 .
At the start of the 0th rotation, a clutch point occurs for C I N V S
1 and 2 together because buffers have been scheduled two at a
time (S C H B = 2) . These two C I N V S are read in from the six C I N V S
per track (C I P T R K = 6) . The channel search for C I N V S 3 and 4
must begin before the clutch point for 3 . For illustrative purposes,
Figure 5 shows a mismatch between the channel search and the
DASD. Since the channel search is shown beginning at (or after)
the next clutch point in sequence, the next regular clutch point
for C I N V S 3 and 4 has been missed. That is, C I N V 3 has partially
passed under the DASD reading head by the time the channel
search has completed execution. Therefore, reading cannot take
place until the next C I N V 3 and 4 clutch point, which occurs on
DASD rotation 2 .

Again a channel search (this time for C I N V S 5 and 6) prevents
the reading of C I N vs 5 and 6 on the next clutch point - units 5 and
6 on rotation 3 . C I N V S 5 and 6 must wait to be read on rotation
4, which is only partially shown. Thus, in this example, five DASD
rotations and five clutch points are required to read three units
of two buffers each (DBF = 3) .

Instead of adding up the number of revolutions for the pattern
to repeat itself, define a random variable that accounts for the
transition time between C I N V reads. Figure 6 shows the values
and probabilities attached to each value for the case of D O U B = 0.

This analysis can be checked by setting S C H B = 2 and C I P T R K
= 6 (assuming that the CPU time is small enough), and then
computing R O T X [+ X Q + + x Q] = Q ROT as the average
of Tu, which is the average time to read the control interval. This
agrees with hand timing results.

Figure 6 shows that, for the values assigned to the random vari-
able Tu, the (R O T I C I P T R K) corresponds to reading within a sched-
uled buffer set. The ROT X [1 + 1 / C I P T R K] corresponds to
reading the first C I N V of a newly scheduled set of buffers. The 1
in the second term follows from the assumption that it takes just
one revolution to move from reading the second CI N v to reading
the third CI N v. If the CPU time is not small enough, additional
rotations may be involved in this transition. Let P S R denote the
amount of CPU time from the completion of the reading of one
set of scheduled buffers until the start rlo for the next set. A
more general expression for the average time to read one C I N V
can be written as follows:

206 KEEHN AND LACY IBM SYST J

Figure 6 Random variable pattern for average time T, to read a control interval

(1 - SCHB L) 1 SCHB

a L ROT

rn
"-L

TIME DELAY BETWEEN
CONTROL INTERVALS

This expression is derived by including in the right-hand term in
Figure 5 the effects of multiple device revolutions between the
scheduling of new sets of buffers. The right-hand term in Equa-
tion 24 is the ceiling function of the ratio P S R i R O T , and repre-
sents a whole number of revolutions required between sched-
uled sets of buffers.

Sequential operations with control area splitting

This section indicates how to generalize so as to account for the
effects of CI N v and C A splitting on sequential operations. Recall
from Figure 1 that, for split C I N V S , the key sequence order does
not correspond to the physical order on a DASD track. In addi-
tion, a split or overflowed C I N V can have a reduced number of
records just after the splitting. To account for these effects, we
develop a methodology in this section that allows for a mixture
of C A and C l N V types. The average time to GET a record se-
quentially from a KSDS is computed as the following ratio:

PuNuTu + P,N,T, -4- Po,Yo,To, i- C C S R

R E C O R D S
T S R =

Here, the terms in the numerator are defined for unsplit (u) ,
split (s) , and overflow (ov) C A S . Pu is the probability or propor-
tion of unsplit C A S in the KSDS. N u is the number of C I N V S in an
unsplit C A , and Tu is the average time to read a C I N v in unsplit
C A . All terms depend on the percentage of insertions made into
the KSDS. Similar definitions apply to the remaining terms for
split and overflow C A S . The term C C S R accounts for the C A - t o -
C A overhead. R E C O R D S is the average number of records in a
control C A , and can be computed as an average over unsplit, spl t,
and overflow C A S .

Rather than derive the equation for each term, the behavior of
Equation 25 is discussed in a qualitative way as the number of
additions to the KSDS grows. At low insertion levels, R E C O R D S
increases in proportion to the level of additions. If there is suffi-

direct
addition

time
versus

addition
level

Figure 7 Sequential retrieval time versus insertion level for several choices of free
space parameters

0 5 I I I
10 20 30 40

INSERTION LEVEL (PERCENTAGE OF LOADTIME RECORDS)

main zero. Under these circumstances, T S R decreases. As the
level of additions grows, Ps and Po, become significant. It follows
that R E C O R D S decreases, since C I N V splittings tend to halve the
number of records contained within a CI N V . At large insertion
levels, the terms Tu, T,, and To, grow, since these CAS have
many CI N V S out of physical sequential order.

Figure 7 shows how T S R depends on the insertion level for sev-
eral values of the free space parameters FCI and F C A . Notice
that both the (20, 10) and (30, 10) designs show a decrease in
T S R at a five percent insertion level. The (30, 10) design has
poorer sequential performance at the zero insertion level, since
the added free space carries no records. The (20, 10) design
shows a balance of good zero-insertion performance and a mod-
erate increase in T S R up to the fifteen percent insertion level.

As a final illustration of the techniques used to understand VSAM
performance, we now analyze the time to make a direct addition,
using the computation of PCIS in Equation 2 and P a s in Equa-
tion 9. Recall that a direct addition results in three kinds of re-
sponse from VSAM. If free space is available, the addition looks
very similar to a direct update. If there is inadequate free space
in a target C I N V , then a split CI N V occurs. If, in this last case, no
free C l N v is available, a CA splitting occurs.

Suppose I = INS X REC additions are made, and the average in-
sertion time for all these additions is to be computed. Let B
denote the fraction of the additions that cause at least a CI N V
splitting. From Equations 14 and 1 1 , there are CIPCA load-time
CINVS per C A and ~ R E C f RECPCA load-time CAS. Define the
parameter B as follows:

B + PClS X CIPCA X (F R E C f RECPCA) f (REC X INS) (26)

since PCIS X CICPCA is the average number of split CINVS. The
computation that results in Equation 26 includes those CINV-

, splitting additions that result in CA splittings. Let C denote the
fraction of c~-splitting additions as follows:

c PCAS x (F R E C f RECPCA) f (REC X I N S)

The average insertion time can be written as an average of three
times as follows:

AIT +- (T S C A X c) + (TSCI X (B - c)) i- (1 - B) X TD, (27)

The term TSCA is the time for a CA splitting; TSCI is the time for
a CI N v splitting; and T D , is the time for a direct updating. For-
mulas are not derived for these terms, but the relative size of
each term is noted. TSCA is large, i.e, of the order of seconds.
T S C I is of the order of hundreds of milliseconds; and TD, is usu-
ally less than a hundred milliseconds.

It might be expected that AIT increases as B and C increase with
insertion level. Since each CA splitting creates free space, after
many CA splittings, the effect of T S C A and T S C I is expected to
lessen. A I T is the average over all additions up to the current
insertion level. We can derive the average value of an insertion
in a small band of insertions from Equation 27. The value ob-
tained in this way depends on how small a band is taken. Figure
8 shows the derived AIT value for three designs: (5 , 5) , (20,
lo), and (30, 10). Note the increase in A I T due to CA splitting.
After these C A splittings occur, further additions find free space
in the CINVS, and the A I T decreases to a value moderately
higher than the zero insertion value. This happens because the
extent of the KSDS has expanded and unsplit CINVS continue to
split even after the data set has doubled in size.

Concluding remarks

Our intention has been to offer an appreciation of vSAM perfor-
mance sensitivities and to relate those sensitivities to data set
design parameters. This has been done in the hope that design-
ers may become more aware of the effects of their choices
among those parameters. This discussion has been restricted to
VSAM as it applies to IBM operating systems. Effects of paging,

NO. 3 * 1974 VSAM DATA SET DESIGN 209

Figure 8 Average insertion time versus insertion level for three choices of free space
parameters

50 I I I 1
0 10 20 30 40

INSERTION LEVEL(PERCENTAGE0FLOADTIME RECORDS)

the VSAM catalogue, and VSAM multirequest strings -which may
be important in some cases -have not been included.

Two main areas for attaining data set performance objectives
using VSAM have been presented. In direct operations, VSAM
performance tends not to degrade as new records are added to a
file. Also, sequential operations in an inserted file tend to per-
form as well as in an uninserted file. In both cases, infrequent
reorganization of the data set is required.

Although VSAM offers gains in performance, these gains depend
on the proper planning of the data set layout. There is thus a
need for analysis of the expected data set usage and need for
mapping that usage into the design parameters available.

APPENDIX

To prove that all Pi have the same probability distribution we
introduce a new set of random variables {Q , , i = 1, 2, . . ., R E C }
which have a symmetric distribution, and are simply related to
the {Pi, i = 1,2; * * R E C / N R C f } . ,

'he { P i } are related to the { Q i } by the following equations: I
' 1 = Q , + Q Z + . . . + Q , w c ,

'z = QNRcI+l +. * . + Qz.vncI

'REcINncI = Ql+(i-l)Nnc, +' ' ' + Qimcr

{quation 29 is understood by noting that the FK(Xol*) cancel in
my sum except for the leading and trailing terms. If we show that
he {Q,} are symmetrically distributed, then it follows that the
P i } are identically distributed. This last step is taken by explic-
tly computing the density of the Q from the known density of
he F,(X,*).

:eller3 gives probability density of the F K (X a *) as follows. Sim-
dify notation by defining

I z k = F K (X k *) k = 1, 2;*., R E C

vhere

The density for { Z l , Z,; . ., Z,,,} is given by

"(zl, z,, . . *, znEc) = R E C !

or

1 f z , 5 z 2 5 . . * 5 ZnEc

Vow invert the relationship given in Equation 28. The inverse
.ransformation is shown in Equation 30 as follows:

Z, = Q ,

Z 2 = Q , + Q,
Z,E,= Q 1 + Q, +' * ' + QREc

The Jacobian of the transformation in Equations 30 is clearly 1.
Hence the density for the {Q,} ,has the following simple form:

ACKNOWLEDGMENT

The authors wish to acknowledge the support of Harry Hill and
Stephen Goldstein in carrying out the work reported here.

CITED REFERENCES
1. OSIVS Virtual Storage Access Method (V S A M) Planning Guide , Form No.

GC26-3799, IBM Corporation, Data Processing Division, White Plains,
New York 10504.

2. R. E. Wagner, “Indexing design considerations,” IBM Systems Journul, 12,

3. W. Feller, A n Introduction to Probubility Tlzeory and its Applications, Vol-
4, 351-367 (1973).

ume 11, John Wiley and Sons, New York, New York (1971).

212 KEEHN AND LACY

