A general description of the Virtual Storage Access Method
(vsAM) is followed by a qualitative discussion of performance
expectations. VSAM data-set design parameters are discussed
with respect to performance tradeoffs. Analytic techniques are
developed for relating some of the VSAM performance sensitivi-
ties to data set design parameters.

VSAM data set design parameters
by D. G. Keehn and J. O. Lacy

The Virtual Storage Access Method (vsaM)' has been de-
veloped for use with virtual storage operating systems. VSAM
grew out of the need for an access method that allows data to be
accessed both directly by key and sequentially in key-defined
collating order. Conventional index-sequential access methods
that satisfy this need usually use a chaining technique to insert
additions into a file after it has been initially loaded. With these
techniques, performance degrades rather substantially as more
and more additions are made. vSAM has been designed to avoid
performance degradation while retaining the index-sequential
facility. Two new logical concepts defined in vSAM are used to
manage the space associated with data: the Control Area (CA);
and the Control Interval (C/NV). An index is used to address the
records contained in control areas and control intervals. An in-
sertion technique is used that works well even after the file has
had many records added. The result is a sequential direct inser-
tion facility that—compared with conventional chaining tech-
niques — performs well and continues to do so as the file is built
up. Although vSAM has been designed for use with virtual stor-
age operating systems, it may also be used with all of the 05/370
operating systems.

Our purpose Here is to provide concepts to consider when de-
signing a VSAM data set. This paper describes vSAM and then
uses that description to make some qualitative statements about
VSAM performance expectations as compared with other meth-
ods. Some performance tradeoffs are discussed with respect to
VSAM data set design parameters. Finally, analytic techniques
for some of the crucial vsaM performance effects are devel-
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Figure 1 Control area (CA) with sequence sets and control intervals (CINVs)
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oped to help the reader appreciate the VSAM performance sensi-
tivities and to lead the way toward a more detailed understanding
of vSAM and its performance.

The concepts presented here grew out of an effort that resulted
in an APL program to aid vSAM data set design and analysis. As
a consequence of that effort, the analytic techniques have been
applied to some real VSAM data sets, and results of those analy-
ses have been spot checked against detailed measurements of
those same data sets.
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Description of VSAM

VSAM data sets are constructed either as Key Sequenced Data
Sets (KSDS) or Entry Sequenced Data Sets (ESDS). ESDS are
sequential add-on data sets with no index structure. Records
in KSDS have a key embedded in each record that defines a
collating order for the records. The records are initially loaded
in the defined collating order and continue to be accessible in
that order (known as sequential access) as new records are
inserted. An index is provided for keyed direct operations, that
is, not in a predetermined order.

A VSAM data set consists of a number of Control Areas (C4),
each of which consists of a number of Control Intervals (CINV),
which, in turn, consist of a number of records. The records with-
in a CINV are physically maintained in sequence according to
the key embedded in each record. Each CINV also contains con-
trol information regarding where each record starts within the
CINV (so as to allow variable length records). A C4 is often a
cylinder (but may be specified to be smaller) of a Direct Access
Storage Device (DASD). Figure 1 represents three instances of
the same VSAM C4 as situated on a pD4sD cylinder. {The first
track of the c4 is occupied by a sequence set that is to be de-
scribed later in this paper.) Each of the other tracks contains
three cINvs. The shaded areas represent free space.

A vSAM Key Sequenced Data Set (KSDS) has an index for di-
rect operations. Many index entries are stored together on
DASD, and they are accessed in blocked units. Each index rec-
ord is a key-pointer pair where they key is the highest key in the

pointed-to block, and where the pointed-to block is another in-
dex block or Control Interval (C/NV) in the data set. The blocks
make up levels where the highest level consists of a single block,
and each of the lower levels consists of the blocks pointed to
by the next higher level. This may be thought of as a fan-out
effect. Each of the blocks in the lowest level of the index (called
the Sequence Set) addresses a particular Control Area (CA4),
and resolves a key to the c/nv in which the desired record re-
sides (if it exists). Figure 2 represents a fan-out, in tree form
for a three-level vSAM index.

A record is located via this index tree by using a less-than-or-
equal comparison on each level until the appropriate CINV is
located. Optionally, the Sequence Set can be stored with the
data it addresses. If this is the case, the Sequence set occupies
the first track of the c4, and is replicated as many times as will
fit on the track (to save rotational delay —latency —waiting for
the beginning of the desired record to come under the read/write
head). Higher levels of the index may also be replicated. vSAM
compresses the key entries in the index so that redundant key
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information is removed, which also helps to save latency. It is
thus possible for relevant information to be stored in smaller
blocks, which results in more (replicated) blocks per track.
Another effect of key compression is to increase the number of
pointers in each index block, which, in turn, reduces the number
of levels in the index component of the KSDS. Figure 1 shows the
placement of the vSAM Sequence Set on the first track of the cyl-
inder. Index design is discussed in greater detail in Reference 2.

As a vsaM file is loaded, space is left free for future additions.
The space to be left free is specified by the following two param-
eters: (1) the percentage of each loaded ciNV to be left free;
and (2) the percentage of each C4 to be left free. Each cInV is
loaded until it is left with at least that percentage of free space,
and each c4 is loaded until it is left with at most the specified
percentage of free cI~NVs. Thus, before any records are inserted,
each cA4 (except possibly the last) is approximately uniformly
loaded to a certain percentage of fullness. The free c/~Nvs make
up a pool that provides cinvs for records as CINVs become full
and split as described later in relation to the algorithm for mak-
ing insertions. The shaded areas in Figure 1 represent both
forms of free space —the free space within C/NVvs, and the free
CINVs at the bottom of the c4s.

vsAM provides keyed direct operations and data sets by using
the key-index structure just described. Records may be re-
trieved and/or updated by key (and, hence, in any order), and
new records may be inserted in the proper place (according to
their key) in the data set.

An algorithm for keyed direct retrieval and the updating of data
sets is detailed as follows:

. Read (from DASD) and search the high level(s) of the index
by using the key of the desired record. For the high levels of
the index already in main storage, it is not necessary to re-
trieve them from DASD.

. Read and search the sequence set block. The result is the
DASD address of the cINV in which the record is stored in
the file.

. Read that cinv. Using the control information stored in the
CINV, find and return the desired record to the user. If the
request is for a retrieval, the request is complete.

. If the user returns an updated record, VSAM replaces the cor-
responding record in the cINV. Rewrite the CINV onto DASD.
The direct update request is complete.

The VSAM insertion algorithm is designed so that a new record
is stored with records that are close to it in the collating se-
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quence. This effect can bé accomplished because of the free
space allocated when the file is loaded. Usually, an insertion is
performed as a direct update, since the appropriate CINV is read.
The record is inserted into the c/nv, and the CINV is rewritten.
However, if the free space still in the C/NV is not large enough
to accommodate the new record, the C/NV is split into two new
CINVS.

The insertion algorithm is given as follows:

1. Read and search the high levels of the index, using the key of
the new record. If some of the high levels of the index are
already in main storage, it is not necessary to read them.

. Read and search the sequence set block. The result is the
DASD address of the c/Nv in which the record would be
stored if it were already in the file.

. Read that c/Nv. If there is not enough free space in the cIny
for the new record, go to step 5. If there is enough free space,
insert the record into the cinv where it logically belongs,
moving records as needed so that within the cINV the rec-
ords are physically collated. Note that the highest key in this
CiNV does not change, and, hence, the sequence set does not
need to be changed.

. Rewrite the CcINV onto DASD. The record is now inserted
into the file.

. Split the c/Nv. If there are no free C/NVs in the ¢4 (as deter-
mined from the sequence set), go to step 7. If there are free
CINVs, build two new CINVs in storage from the old ciny
and the new record. Write both the c/Nvs onto DASD. This

process (including step 6) is called splitting a Cinv.

. Update the sequence set to reflect the old and new CinNVs in
the collating sequence. Rewrite the sequence set onto D4SD.
The new record is now inserted into the file.

. Split the c4. If no free c/Nvs remain in the ¢4, the C4 must
be split, which involves allocating a new ¢4 from DASD and
writing half the c/~nVs into the new c4.

Figure 1B shows a vsaM-inserted c4 with some split C/NVs.
Figure 1C shows a c4 that is about to split.

Sequential operations are involved in the processing of records,
one by one, in the order defined by the collating order of the
embedded keys. (In 0S/vS VSAM, the sequential retrieval of rec-
ords is accomplished by retrieving the c/NVs in sequence, and
by using the sequence set as a guide to c/NV splitting.) Usually,
CINVs are transferred to and from main storage in groups so that
each access to DASD is amortized over many records. Addition-
ally, if the user has allocated four or more buffers, half are filled
at a time to overlap the DASD access time with the user process-
ing time.
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Performance implication

The vSAM design offers some significant methods for improving
performance over other access methodologies. The new
methods are explored in this section, by using comparisons with
current index-sequential procedures.

The vsSAM index structure has several higher index levels that
resolve to a Control Area {(c4) index (Sequence Set). The Se-
quence Set always resolves to the desired Control Interval
(CINV), because—when a CINV is split—the Sequence Set is
modified to reflect the split.

Index sequential 1SAM) methods use a master index, a cylinder
index, and a track index. Even after resolving to a DASD track,
however, the track must still be searched, with the further possi-
bility of having to follow an overflow chain to retrieve the de-
sired record. In that method, the various indexes themselves
never need to be updated, whereas VSAM must continue to up-
date the index blocks as splits occur. The ISAM method amounts
to spreading the pointing information over the disk surface,
whereas VSAM keeps all the pointers compacted in one index
block (at the expense of continued updating).

Access methods that allow for inserts often have a form of dis-
tributed free space. The vSAM scheme leaves a specified per-
centage of free space in each Cc/NV and a (possibly different)
specified percentage of free space in each c4. Therefore, the
first addition goes into the appropriate c/~NV, and, with a lightly
inserted file, an addition to a vSAM file is much like a direct up-

date. Previous methods provide free space only at physical
boundaries, which implies that additions go immediately into an
overflow area. Chaining is usually used to locate records that
have been inserted.

The vsAM free-space strategy allows additions to be made to the
expected C/NV. When an overflow occurs, the C/INVs are split
and the sequence set is updated, with the result that the inser-
tion technique works well even as the file continues to be added
to. ISAM methods use chaining to overflow records so that, even
with the first few additions, the insertion performance begins to
degrade.

vSAM allows some free space to be left in each ciny as it is
loaded. Hence, at zero or light insertion levels, the VSAM se-
quential performance may suffer compared to a fully utilized
block. However, the splitting strategy results in a continued high
blocking factor, as compared to the overflow chain strategy,
which results in a diminishingly effective blocking factor as addi-
tions are made. As heavy addition levels begin, c4 splitting adds
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c4s to the file and results in longer seeks for direct operations.
An independent overflow area, as used with the overflow chain
strategy, results in extra seeks between the prime and overflow
areas at heavy addition levels.

Before delving into more detailed performance measuring tech-
niques in the following sections, it might be helpful to make a
few prelimary qualitative statements about performance, which
are based on the more detailed material. In practice, this level is
often adequate, because an understanding of the key design de-
pendencies is usually sufficient to make good design choices for
VSAM.

Control interval size. The amount of DASD space required by a
Key Sequenced Data Set (kSDS) and the sequential request
times are sensitive to the choice of CiNV size. A larger CINV
size produces better sequential performance. It is possible, how-
ever, to waste DASD space with certain combinations of CINV
size and record size.

Distributed free space. When designing for random direct addi-
tions, choose the free space in a C/NV larger than the free space
in a c4. The splitting of c4s is better controlled by free space
within the C/NV than free cinvs with a c4. Make the free space
within a CINV at least as large as the design percentage of inser-
tations so that the c4 splitting is small. To avoid degradation of
sequential operations, sufficient free space must be specified.
However, too much free space in a CINV yields a poorly utilized
block for transferring data to and from DASD.

Index bugfers. Buffers for holding the ciNV and c4 indexes in
main storage are not analyzed in this paper, but they are includ-
ed here because of the importance of direct operations. There-
fore, include some extra index buffers when direct operations
are significant for an application. In a purely sequential applica-
tion, two index buffers are usually sufficient. Allow at least one
more index buffer than the number of levels in the index for di-
rect applications. These index buffers allow vSAM to keep the
higher levels of the index in main storage, thus reducing the
number of DASD accesses to the index component.

Data buffers. The number of buffers for holding data in main
storage have a significant impact on the performance of sequen-
tial operations. For applications with direct operations only,
more than two data buffers add little to performance. In general,
as the number of data buffers increases, sequential performance
should improve. A point that should be kept in mind regarding
direct operations with keys that are clustered together is that
vSAM usually checks the current data buffers to determine
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whether the requested record is present. This may reduce the
number of DASD accesses required for an application.

Allocation unit. This unit is a parameter that should be so cho-
sen that vSAM allocates a cylinder for a c4. If allocation units
are specified in terms of records or tracks, a ¢4 of less than a
cylinder can result. When a C4 is less than a cylinder, additional
device interruptions must be handled by VvSAM on sequential
operations.

Index options. vSAM provides four choices of index component.
One may choose to embed the Sequence Set with the data or not
and choose to replicate the nonembedded part of the index or
not. Embedding the Sequence Set can reduce direct retrieval and
insertion times.

Analytic modeling techniques

We now discuss several analytic modeling methods that are use-
ful for understanding the performance of vsaM. The analysis
applies to single-string requests. These are repeated requests of
the same kind from a single task such that each request is syn-
chronous with the completion of the prior request in the repeat-
ed pattern of requests. A stochastic model is first established for
the distribution of split c/nvs and c4s in a vSAM Key Se-
quenced Data Set (KSDS). Given the model, we can then ana-
lyze the DASD space required at various insert levels as well as
the sequential and direct single-string access times.

We first account for c/NV and c4 splitting as a result of direct
additions. From the discussion on making insertions, recall that
when the free space in a CINV is not able to accommodate the
addition at hand, a split C/NV results.

In the analysis, it is necessary first to compute the probability of
a CINV splitting. We begin by defining REC as the number of
records in the KSDS at loading time. The keys of these records
are modeled as random numbers chosen from a distribution of
key values denoted by F,. The loading process puts NrRc/ fixed-
length records into each cinv. Subsequent to the loading pro-
cess, I random additions with keys chosen from F are made. If
m denotes the number of additions falling in any particular load
time CINV, then the probability of exactly m additions in an inter-
val is given as follows:

(1) ) (REC) . __NRcI
m) \NRCI) NRCI+m

w{m/I, REC, NRCI} = ( 7+ REC )

(1)

m + NRCI
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Figure 3 Range of summation of probability of at least one CINV splitting

PCIS
SUMTC OVER THESE
m VALUES

where
0=m=1

The probability of at least one c/Nv split is denoted as PCIs
(REC, NRCI, FREC), and is given by summing Equation 1 over
the number of records that overflow a loaded ci~v. If FREC
denotes the number of free records available in a c/NV after
loading, then

PCIS (REC, NRCI, FREC) = Y {m/I, REC, NRCI} (2)

where the sumination is over all m such that FREC+ | = m =<1

For purposes of data set design, a primary interest is the first
ciNv split after loading. In evaluating Equation 2, only the lead-
ing terms of the sum are significant. Figure 3 shows the relation-
ship between NRCI, FREC, and Pcis. It should be noted here
that «r{m/1, REC, NRCI} and, hence, PCIS (REC, NRCI, FREC)
does not depend on the particular key distribution F. This fact
allows a simple analysis for any monotonic F.

The analysis presented here accounts for two sources of nonuni-
form distribution of records across the cinvs. The first source
occurs at loading time, when the finite number of records in each
CINV results in an uneven distribution of probability values con-
tained in each cinv. Ideally, if the keys of the loaded data set
were perfectly representative of the distribution F,, then each
CINV cofitains equal probabilities of having subsequent inser-
tions fall in that c/nv. The model shows this not to be the case.
Rather, this probability is itself a random variable and its distri-
bution is of interest. The second source of nonuniformity occurs
when insertions are made. The small probability held by each
CciNy implies a large variation in the number of inserted records
across the cinvs. For direct insertions, we do not expect each
cINv to fill up uniformly.
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We now analyze the loading of a KSDS data set, and make compu-
tations to determine the distribution of the probability held by
each cr/NV after the loading process. At loading time, the collec-
tion of records with keys sampled from F are available, so that
we have the following relationships:

Data set keys = {X, X,, ", Xgge)
where

Pr{X, < 1} = F(t)

for each ae(1, 2, -, REC)

These records are soited by key value and grouped into CINVs
with NRCI records in each cInv. The key range assigned to the
ith ciNv by the loading process is given by the random interval,

{Key values in the ith CINV} = (X} | \vper Xivrer)

where the {X_*} are the result of sorting {X_}, ae(1, -+, REC)

This notation leads to asking what the probability is that, subse-
quent to the loading process, a given insert will be placed in the
ith cinv. That is, it is necessary to compute the probability den-
sity of P, where

Pr{Ye(X} Xipe) 1 =P, (3)

(i—1)NRCI® i

and where the inserted key Y also has the probability distribu-
tion F,. With this last fact in mind, Equation 3 may be rewritten
as follows:

P = Fy(Xjper) — Fx (X{_iwmer) )

where

1= i= RECINRCI

Thus the random variables P; depend on the sorted key values
through the cumulative distribution function F.

Equation 4 appears to be complicated, but it is easily solved
because of the following two facts:

(a) The sorted distribution of keys F, (X_*) has the same prob-
ability law as an ordered sample of size REC from a uniform
probability distribution on (0, 1). This follows from the fact
that the unsorted random variables F, (X,) are distributed
as follows:

Pr{F . (X,) =t} =1
where

0=r=1
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(b) Also, all the probabilities P, have the same first order prob-
ability distribution. In particular, any P, is distributed as the
first as follows:

P, = Fy(X3per)

To show (a), we note the following conditions placed on F,:

Pr{F,(X,) =t} =Pr{F, 'F(X,) = F, (1)}
=Pr{X,=F, '()} =1

where

0=:=1

The conclusion in (a) follows, since sorting the {X,} and then
F, gives the same result as ordering the F {X,}.

At this point, assume the conclusion for fact (b) and refer to the
Appendix for a proof.

Combining the results of (a) and (b), the distribution of P, can
be completed by finding the distribution of the NRcIth largest
out of REC uniformly distributed random variables on the inter-
val (0,1). LetZ, Z,,- - -, Z,, denote uniformly distributed ran-
dom variables on (0.1), and note that the NRCIth term in an
ordered sequence is less than ¢ if and only if there are least NRC/
out of REC keys that are less than or equal to ¢.

Pr{P.=t}=Pr{atleast NRCIOf Z , Z, ", Z .. = 1} (5)
i 1 2 REC

Since the Z are independent, the computation in Equation 5 is
given by the following binomial distribution:

REC . .
PriPp=t= Y (R’?"C) P (1~ p)REC

Jj=NRCI

Differentiating this expression and evaluating it at t = p yields
the following desired probability density for Equation 3:
d

au Pr {Pi = t}t,:p

REC! _
NRCI—-1 (1

_ REC-NRCI
~ (NRCI — )(REC — ~NrReP (6)

—p)

The derivation of Equation 1 and, hence, the evaluation of
Equation 2 can easily be obtained from the results of Equation
6. Suppose the probability p contained in a C/NV is known. The
probability that m out of I additions fall into the key range
spanned by this c/NV is given by the binomial law as follows:

Pr {m inserts in a CINV/p} = <’;>pmq1_m o

where
ptg=1
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Equation 7 is the conditional probability of the additions falling
within cinv when p is known. Averaging Equation 7 over the
distribution on p values given by Equation 6 yields the prob-
ability of m insertions falling in c/NV as follows:

Pr {m inserts in a CINV} =

(I) fl m I-m REC! NRCI-1 _REC-NRCI
m)), P9 (~rci— DI(ReC — nRCIP 4 P

(8)

The result of Equation 1 is a result of Equation 8 and the defi-
nition of the beta function as given by Feller.?

The techniques of finding the probability of a c4 splitting paral-
lel those used for computing PcCis. The reason for this is the sim-
ilarity of the manner in which free space is allocated with a
cINv and a c4. Figure 1A shows a €4 loaded with free space in
ciNvs and free cinvs within the c4. As additions split a CINV,
a free c/nv is used, and eventually the free cInV pool is deplet-
ed. Figure 1B shows a ¢4 with some split c/~NVs, and Figure 1C
shows a c4 with the free CINV pool depleted. For direct addi-
tions with random keys, only the originally loaded cinvs con-
tribute to the number of splittings because the probability of the
double splitting can be neglected. With this approximation not-
ed, we have the following expression for the probability of a
control area splitting:

Pr {c4 splitting} =
Pr {number of loaded cinV splittings exceeds the number of 3
CINVs within a c4} '

Each originally loaded cinV is a source of CiNV splittings with
probability PcIs. Let cipc4 denote the number of nonempty
CINVS per C4 after loading. Taking the contribution from each
load time cINV as statistically independent, the probability of a
¥ splitting is given by summing the tail of the following binomial
distribution:

pPcas = Pr {Control Area splitting}

CIPCA
CIPCA -
= E ( lm )PCISmQCISCIPCA m (9)

m=1+free
CI per CA

Here, ocis + pcis = 1, and free cINVs denote the free CINVS
within a c4. For purposes of computation, the binomial law in
Equation 9 can be replaced by the Poisson law when c7rc4 is
large (e.g., exceeds 20) and Pcis is small. The parameter in the
Poisson law is given by the product C1Pc4 X PCIS.

At this point a technique for computing PCIis and PCA4S has been
established, given certain data set parameters. It is still neces-
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sary to relate the external data set characteristics to the parame-
ters available to the data set designer. With this relationship
established, the DASD requirements can be computed as a func-
tion of the data set design parameters.

This section gives the facts necessary for relating external data
set characteristics to the variables of the direct insertion model.
The following list represents the parameters needed to define a
VSAM data set.

Data control intervagl size (CNV) must be i X 2" where k < 9.
Physical block size (PBS) is chosen by vs4Mm to be one of
{512, 1024, 2048, 4096}, whichever is the largest divisor of
CNV.

Free space parameter FCi is the percentage of free space in
a CINV, and Fc4 is the percentage of free C/INVs in a C4.
Index options specify whether to imbed the sequence set and
whether to replicate the nonimbedded part of the index. See
Table 1 for a list of possible combinations and numerical set-
tings for the 10 P parameter.

Number of records in the data set at load time is REC.
Average logical record size in bytes is Exsz. Only fixed-
length records are considered; the maximum record size
must fit within one CINV.

Space allocation units for the data component are specified
by cylinder, track, or record.

Key length is KEYLEN. Also specify and estimate the com-
pressed key size (CKS).

DASD space computation algorithm

The following algorithmic steps are a reasonably accurate repre-
sentation of the computations necessary to load a vSAM data
set. Throughout this algorithm, the APL language is used to ex-
press the algebraic operations.

1. Number of records in a data cINV (NRCI). For fixed-length
records, an overhead of 10 bytes per CINV is required. The
free space parameter FCI specifies the minimum amount of
free space in the c1 Nv. Compute first

NRCI — | ((=10) + (1 — FCI) X CNV) +~ EXSZ (10)

. Maximum number of records in a cINV (MRCI). When all
the free space in a CINV is filled with records, compute MRCI
as a preliminary step to computing PCIS

MRCI < L((—10) + CNV) + EXSZ
. Number of data CINVs per track (C1PTRK). Compute CIPTRK
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from the physical blocks per track (PBTRK) and CINV size
(CNV).

CIPTRK <= PBTRK +~ CNV =+ PBS

All terms are defined except PBTRK, which is computed
from device characteristics as follows:

PBTRK < 1+ | ((track capacity-last block)
-+ (length of other blocks)

In applying this formula, use the DASD overhead values
without keys. The explicit values for such terms as track
capacity depend on the device type.

4. Information regarding the units of space allocation for the
data component, which is a key variable throughout this
algorithm, is the number of tracks in a €4 (TRPCA). The
algorithm starts by assigning a value to TRPCA4, but later this
variable may be decreased to satisfy certain index compo-
nent constraints. There are three ways to assign TRPCA.

If space is specified in cylinders and the sequence set is ad-
jacent to the data, assign tracks per cylinder less one, other-
wise take tracks per cylinder.

TRPCA < tracks per cylinder — jop = 2

If space is specified in units of tracks, take the smallest
number of primary tracks, secondary tracks, and tracks per
cylinder as TRPC4. Adjust this value by subtracting one
track if 70P =< 2.

If space is specified in units of records, convert the primary
and secondary record values to tracks as follows, using [,
the ceiling function:

Primary tracks < [ ExSzZ X primary records < (PBS
X PBTRK);

Secondary tracks < [ EXSz X secondary records <+ (PBS
X PBTRK).

Apply the space specified in units of tracks to compute
TRrCc4 following the procedure as though it had been
originally specified in units of tracks.

5. Maximum number of CINVs per CA (MCIPCA) is computed
as follows:
MCIPCA < | CIPTRK X TRPCA

Since a C/NV cannot span a CA4, the floor function | is ap-
plied to the product of c/nvs per track and tracks per C4.
Note that all the C/NVs in a C4 are pointed to by a sequence
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set entry. This fact may require a change to this value far-
ther on in the algorithm.

. Loading time records per C4 (RECPCA) is a quantity that is
basic to computing the number of tracks required for the
data component at loading time as well as after inserts, and
is computed as follows:

RECPCA < NRCI X (MCIPCA — LFCA X MCIPCA)

This equation states that the number of records in a C4 at
loading time is the product of the number of records loaded
per c/INV with the number of loaded cinNvs in each ca4.
Note that the product FC4 X MCIPCA is rounded down,
which indicates that the maximum percentage of free CINVs
in a c4 is bounded by Fc4. This is in contrast to the impact
of Fcr on the percentage of free space in a CINV. An exami-
nation of Equation 10 shows that Fcr is the minimum
amount of free space within a CINV.

. Number of tracks required by the data component is com-
puted. Consider the following zero-insertion case first:

<Tracks for the data

<z
component of KSDS) < (TRPCA +10P=2)

x [ (REC=RECPC4) (11)

The factor on the far right is just the total records divided
by the loading time records per C4 from step 6. This factor
is multiplied by the number of tracks per c4 as computed in
step 4. If the sequence set is imbedded with the data, the
track for it is allocated from the data component.

To obtain the number of tracks in the data component after
inserting, note that each loading time c4 contributes either
one (if there is no splitting) or two (if c4 is split) to the to-
tal required number of tracks. Neglect double splittings be-
cause they have a small probability over the range of inser-
tion levels investigated here. The average number of C4s
per loading time C4 is computed as follows:

‘Average number
of c4s per — (1 —PCAS) +2 X PcAaS =1+ PCAS
loading time Cc4

(12)

For the range of insertion levels of interest, multiply Equa-
tions 11 and 12 to compute the number of tracks per data
component at insertion level /NS as follows:

( Tracks for the

<<
data component) < (TRPCA+ 10P=2)

X [ (REC + RECcPcA) X (1+ pcas) (13)
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Figure 4 Expected DASD tracks for data component of VSAM KSDS
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We digress from the description of the DASD space compu-
tation algorithm to study Equation 13 as a function of Fci,
FCA4, and INs. To do this, it is necessary to relate Equations
2,9, and 13 to the data set design parameters. Starting with
Equation 2, all the terms have been defined except for
FREC, which is given by the difference MRCI— NRCI. (NRCI
is given by Equation 10.) The free c/INVs in a C4 and ciPc4
need to be specified to allow evaluation of Equation 9. c1Pc4
is computed as the number of loaded c/nVs as follows:

CIPCA < MCIPCA — |LFCA X MCIPCA (14)

Finally, the free c/NVs in a €4 are given by the following
equation:

(Free CINVS) < FCA X MCIPCA (15)

All the terms in Equation 13 are now related to the data set
design parameters.

Figure 4 shows the effect of two different choices of free
space parameters on the direct access storage required by a
VSAM KSDS. For a given design, the curve of DASD tracks
versus insertion level is rather steep. For Fcr = 20% and
FC4 = 10% design, c4 splitting occurs after the ten to
twelve percent insertion level has passed. We would then
expect a rapid expansion of the space requirements after
some design point insertion level has been exceeded. The
reason for the expansion in DASD space is C4 splitting
which, for random keys, tends to occur in a band of inser-
tion levels.

In the example, most C4s split between the ten and fifteen
percent addition levels. Note that the DASD track curve
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looks quite different for the Fcr = 5% and Fc4 = 5% de-
sign. The addition level at which c4 splitting occurs is much
smaller, and the space required at loading time is also
smaller. Hence, a performance-space tradeoff occurs be-
tween these designs. The design with the greater free space
allows a large number of insertions before c4 splitting oc-
curs. The FCc1 = 5% and FCA = 5% requires less space, but
c4 splitting starts occurring at around the four percent in-
sertion level.

We now resume the DASD computation algorithm. This part
of the algorithm is used to compute the number of index
CINVs required to point to the data component. The pro-
cedure starts with the smallest allowable index c/INV size
(512) and with a test to determine whether two basic con-
straints are satisfied (Equations 16 and 17). If the value for
the index cInV is too small, the algorithm chooses the next
largest value for index cinV size. If the allowable values of
index CINV size are exhausted, the algorithm reduces the
number of tracks in a ¢4 (TRPCA4) until the constraints are
satisfied. If this last action is taken, it is necessary to recom-
pute tracks for the data component starting at step 5 in
which TRPCA is first used.

. The Index Control Interval Size ¢CNVS) has certain con-
straints. The index c/iNV must exceed a minimum byte val-
ue as determined by X and Y defined in the following equa-
tions:

X< 314+ (3X MCIPCA) +2 X KEYLEN + 2 (16)

Y < 31+ ((5+ CKS) X MCIPCA) + 2 X McipCcA* 0.5
(17)

Equations 16 and 17 account for the space required for in-
dex entries in the index cinv. Note that MCIPCA is usually
the dominant variable in setting the lower bound on ;CNVS.

. Selecting 1cNvs. The following equation sets ICNVS to the
smallest allowable value that satisfies the constraints re-
quired by Equations 16 and 17:

ICNVS <= 2%13 —+/[2] (Y T X) = (512 1024 2048 4096)

If 1cNVs is less than or equal to 4096, skip from step 10 and
gotostep 11.

. Decrease TRPCA4 in steps of one track until Equations 16
and 17 are satisfied with rcNVS = 4096. Go back and re-
compute the number of tracks in the data component, begin-
ning at step 5, using the new value of TRPCA.
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Table 1 Index options related to the equation for tracks required by index component.

Sequence set Replicate 1OP Equation for
adjucent to higher level value tracks for
data index index component

Yes Yes
Yes No
No No
No Yes

. The number of CiNVs in the sequence set is just equal to the
number of C4s as shown in the following equation:

<Sequence set

) «— [ REC + RECPCA
CINVS

. Higher level index ci/NVvs are used for the remaining levels
of the index. Two quantities are needed to give the number
of cinvs at higher levels: the maximum number of CINVs
on level i/ that can be pointed to by one index on the next
higher level i + 1; and the number of CiNVs on level i.

3

Fori=1 this number is the number of sequence set CINVs.

Compute the maximum number of C/NVs on level i that can
be pointed to by one index on the next higher level by solv-
ing constraint Equation 16 and 17 in the reverse direction.
Let m denote the maximum number of pointers in an index.
Then m < m/|.m, where we choose m, and m, to be the
largest integers to satisfy the following equations:

ICNVS Z 314+ (3 X m,) +2 X (KEYLEN + 2)
ICNVS =31 + ((5§ + CKS) X m,) + 2 X m,*0.5

The Compressed Key Size ¢k s has been observed to be larg-
er in the second and higher levels of the index when com-
pared with the sequence set entries. This model requires one
to estimate CK S from the key structure of an application. CK S
of approximately three bytes has been measured for many
sets of artificially generated keys at the sequence set level.

. Compute the number of second-level index ciNvs as fol-
lows:

( CINVS on
second level

) <« [ (sequence set CINVS) ~ m

where m is computed in step 12.
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14. The number of third and higher level index blocks is com-
puted as follows:

(CIN Vs on
third level

) <« [(cinvs on second) +~ m

This process is continued by dividing the number of index
CINVs on the current level, and rounding up until we have
just one highest level index CINV.

. The total number of CINVs in higher level indexes (HLI
CINVs) is computed by summing over the number of index
CINvs generated in steps 13 and 14. This term is useful for
considering the index options specified by ropr. Table 1
shows the relations between index options and the requisite
equation for computing tracks for the index.

Depending on the index option selected, the following equa-
tions apply:

(Track for higher) - (number of )

level index HLI CINVS (18)

(Tracks for higher) - Knumber of) . (Index CINVS) (19)
level index HLI CINvs] =\ per track

In the case of Equation 18, the sequence set is allocated
from the data component and each higher level (#L/) index
CINV uses one track.

Equation 19 requires a computation of the number of index
CINVs that fit on one track. Finally, the following computa-
tion with physical block size equal to /CNVS is required.
This equation applies when no replication is requested:

HLI CINVS
Index CINVs per track

( Tracks for
whole index

) [<number of) + (sequence set CINVS)

(20)

When replicating all of the VSAM KSDS index component,
use the following equation:

( Tracks for ) (’r;umber o
e

. + (sequence set CINVS
whole index LI CINVS (seq )

(21)
Sequential operations model
We now present techniques for developing a model of vsAM
single-string sequential operations. The objective of this section
is to discuss the analytic formulas that relate 1/0 device char-

acteristics, VSAM data set parameters, and CPU instruction pro-
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Figure 5 VSAM squential reading and clutch point action
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cessing time to the single-string processing time per record. First
to be examined are the equations that hold only foran uninserted
KSDS, and then discover how clutch-point effects (analogous
to card feeding) can be accounted for in this case. The next
step is to consider the sequential operations for accessing an in-
serted file with split and overflow c4s. This is followed by look-
ing at sequential performance as a function of insertion level.

To time a sequence of VSAM KSDS sequential read operations, it
is necessary to consider the vsam buffer scheduling rules under
os/vst and 0s/vs2. Take the number of data buffers and sub-
tract 1. (This buffer is used for cinv splittings and is not sched-
uled in sequential reading operations.) If the remaining number
of buffers is equal to or exceeds 4, schedule half of this number
(rounded up) for each 1/0 read channel program. Otherwise,
schedule all the available buffers. In APL, these considerations
can be expressed as follows:

SCHB — [ (DBF— 1) = 1+ DpoUB <« (DBF— 1) = 4 (22)

The rule for determining the number of buffers to schedule in
one 1/0 channel program (sCHB) applies to sequential updating
as well. In Equation 22, bBF denotes the user-specified number
of data buffers. Do UB is a logical variable that specifies whether
the buffers are scheduled in two sets or one. SCHB is also the
number of free buffers required before a sequential read opera-
tion can be started.

The following discussion has an analogy with card readers in
which the clutch rotates constantly. The maximum rate of card
demand is the rotational rate of the clutch. A demand rate just
slightly less than the clutch rotation rate halves the card transport
rate. As the card demand rate decreases, each time it becomes
less than a unit rotation time, the card transport rate is reduced.
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The clutch point effect in DASD devices is illustrated in Figure 5.
At the start of the Oth rotation, a clutch point occurs for C/NVs
1 and 2 together because buffers have been scheduled two at a
time (SCHB=2). These two CINVs are read in from the siX CINVs
per track (C/PTRK = 6). The channel search for c/Nvs 3 and 4
must begin before the clutch point for 3. For illustrative purposes,
Figure 5 shows a mismatch between the channel search and the
DASD. Since the channel search is shown beginning at (or after)
the next clutch point in sequence, the next regular clutch point
for ciNvs 3 and 4 has been missed. That is, C/INV 3 has partially
passed under the DASD reading head by the time the channel
search has completed execution. Therefore, reading cannot take
place until the next c/Nv 3 and 4 clutch point, which occurs on
DASD rotation 2.

Again a channel search (this time for c/NVs 5 and 6) prevents
the reading of c7/nvs 5 and 6 on the next clutch point — units 5 and
6 on rotation 3. c/Nvs 5 and 6 must wait to be read on rotation
4, which is only partially shown. Thus, in this example, five DASD
rotations and five clutch points are required to read three units
of two buffers each (pBrF = 3).

Instead of adding up the number of revolutions for the pattern
to repeat itself, define a random variable that accounts for the
transition time between CINV reads. Figure 6 shows the values
and probabilities attached to each value for the case of pous =0.

This analysis can be checked by setting SCHB = 2 and CIPTRK
= 6 (assuming that the CPU time is small enough), and then
computing ROT X [2X4%+1ix%]=%RorT as the average
of T,, which is the average time to read the control interval. This
agrees with hand timing results.

Figure 6 shows that, for the values assigned to the random vari-
able T, the (ROT/CIPTRK) corresponds to reading within a sched-
uled buffer set. The RoT X [1 + 1/CIPTRK] corresponds to
reading the first cINV of a newly scheduled set of buffers. The 1
in the second term follows from the assumption that it takes just
one revolution to move from reading the second c/NV to reading
the third c/~v. If the CPU time is not small enough, additional
rotations may be involved in this transition. Let PSR denote the
amount of CPU time from the completion of the reading of one
set of scheduled buffers until the start 1/0 for the next set. A
more general expression for the average time to read one C/INV
can be written as follows:

1
CIPTRK SCHB

X[ PSR + ROT) 24)

Tu=ROTX<
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Figure 6 Random variabie pattern for average time T, to read o control interval
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This expression is derived by including in the right-hand term in
Figure 5 the effects of multiple device revolutions between the
scheduling of new sets of buffers. The right-hand term in Equa-
tion 24 is the ceiling function of the ratio PSR +~ ROT, and repre-
sents a whole number of revolutions required between sched-
uled sets of buffers.

Sequential operations with control area splitting

This section indicates how to generalize so as to account for the
effects of CInNv and c4 splitting on sequential operations. Recall
from Figure 1 that, for split ciNVs, the key sequence order does
not correspond to the physical order on a DASD track. In addi-
tion, a split or overflowed c/~NV can have a reduced number of
records just after the splitting. To account for these effects, we
develop a methodology in this section that allows for a mixture
of c4 and cINV types. The average time to GET a record se-
quentially from a KSDS is computed as the following ratio:

o PN Tut PNT + Py, Ty, + CCSR 5)
RECORDS

Here, the terms in the numerator are defined for unsplit (u),
split (s), and overflow (ov) Ca4s. P, is the probability or propor-
tion of unsplit C4s in the KSDS. N, is the number of C/NVs in an
unsplit 4, and T, is the average time to read a ¢/NV in unsplit
cA4. All terms depend on the percentage of insertions made into
the KSDS. Similar definitions apply to the remaining terms for
split and overflow c4s. The term CCSR accounts for the Cc4-to-
CcA overhead. RECORDS is the average number of records in a
control €4, and can be computed as an average over unsplit, splt,
and overflow C4s.

Rather than derive the equation for each term, the behavior of
Equation 25 is discussed in a qualitative way as the number of
additions to the KSDS grows. At low insertion levels, RECORDS
increases in proportion to the level of additions. If there is suffi-
cient free space, N, or T, does not increase, and P, and P, re-
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Figure 7 Sequential retrieval time versus insertion level for several choices of free
space parameters
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main zero. Under these circumstances, 7SR decreases. As the
level of additions grows, P_and P, become significant. [t follows
that RECOR DS decreases, since CINV splittings tend to halve the
number of records contained within a C/NV. At large insertion
levels, the terms T,, T, and T, grow, since these CAs have

many CI Nvs out of physical sequential order.

Figure 7 shows how 7SR depends on the insertion level for sev-
eral values of the free space parameters FC/ and FCA. Notice
that both the (20, 10) and (30, 10) designs show a decrease in
TSR at a five percent insertion level. The (30, 10) design has
poorer sequential performance at the zero insertion level, since
the added free space carries no records. The (20, 10) design
shows a balance of good zero-insertion performance and a mod-
erate increase in 7SR up to the fifteen percent insertion level.

As a final illustration of the techniques used to understand vSAM
performance, we now analyze the time to make a direct addition,
using the computation of pc1s in Equation 2 and Pc4s in Equa-
tion 9. Recall that a direct addition results in three kinds of re-
sponse from vsaM. If free space is available, the addition looks
very similar to a direct update. If there is inadequate free space
in a target C/NV, then a split cINV occurs. If, in this last case, no
free ci/NV is available, a 4 splitting occurs.
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Suppose [ = INS X REC additions are made, and the average in-
sertion time for all these additions is to be computed. Let B
denote the fraction of the additions that cause at least a CINV
splitting. From Equations 14 and 11, there are C/PCc4 load-timé
CINVs per C4 and [ REC + RECPCA load-time C4s. Define the
parameter B as follows:

B < prcis X cipca X (| REC + RECPCA) = (REC X INS) (26)

since PCIS X CICPCA is the average number of split C/Nvs. The
computation that results in Equation 26 includes those CiNV-
splitting additions that result in ¢4 splittings. Let C denote the
fraction of c4-splitting additions as follows:

C < pPcas X (| REC + RECPCA) + (REC X INS)

The average insertion time can be written as an average of three
times as follows:

AIT < (15CA X C) + (15ci X (B—C)) + (1 —B) X 1D, (27)

The term 7SC4 is the time for a C4 splitting; 751 is the time for
a CINv splitting; and 7D, is the time for a direct updating. For-
mulas are not derived for these terms, but the relative size of
each term is noted. 7sC4 is large, i.e, of the order of seconds.
rsc1 is of the order of hundreds of milliseconds; and 7D, is usu-
ally less than a hundred milliseconds.

It might be expected that 4/T increases as B and C increase with
insertion level. Since each C4 splitting creates free space, after
many CA splittings, the effect of 7SC4 and 75C1 is expected to
lessen. 4/7 is the average over all additions up to the current
insertion level. We can derive the average value of an insertion
in a small band of insertions from Equation 27. The value ob-
tained in this way depends on how small a band is taken. Figure
8 shows the derived 4IT value for three designs: (5, 5), (20,
10}, and (30, 10). Note the increase in 4IT due to C4 splitting.
After these c4 splittings occur, further additions find free space
in the c/nvs, and the 4/7 decreases to a value moderately
higher than the zero insertion value. This happens because the
extent of the KSDS has expanded and unsplit CINVs continue to
split even after the data set has doubled in size.

Concluding remarks

Our intention has been to offer an appreciation of vsaM perfor-
mance sensitivities and to relate those sensitivities to data set
design parameters. This has been done in the hope that design-
ers may become more aware of the effects of their choices
among those parameters. This discussion has been restricted to
VSAM as it applies to IBM operating systems. Effects of paging,
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Average insertion time versus insertion level for three choices of free space
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the VSAM catalogue, and VSAM multirequest strings —which may
be important in some cases —have not been included.

Two main areas for attaining data set performance objectives
using VSAM have been presented. In direct operations, VSAM
performance tends not to degrade as new records are added to a
file. Also, sequential operations in an inserted file tend to per-
form as well as in an uninserted file. In both cases, infrequent
reorganization of the data set is required.

Although vsaM offers gains in performance, these gains depend
on the proper planning of the data set layout. There is thus a
need for analysis of the expected data set usage and need for
mapping that usage into the design parameters available.

APPENDIX

To prove that all P, have the same probability distribution we

introduce a new set of random variables {Q,,i=1, 2, -, REC}.
which have a symmetric distribution, and are simply related to

the {P,,i=1,2," - REC/INRCl}.,

Q, = Fg(X,*)

Q, = F(X,*) — F(X,*) (28)

QREC = FK(X:EC) - FK(X;EC—-I)
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The {P,} are related to the {Q,} by the following equations:
P=0Q,+0,+t + Qe
P, = Qurerir Tt Qonger (29)

Preevrer = Cuviconrer T T Qineer

Equation 29 is understood by noting that the F (X _*) cancel in
any sum except for the leading and trailing terms. If we show that
the {Q,} are symmetrically distributed, then it follows that the
{P;} are identically distributed. This last step is taken by explic-
itly computing the density of the Q from the known density of
the F, (X,*).

Feller® gives probability density of the F £ (X, *) as follows. Sim-
plify notation by defining '

Z,=F(X,*) k=1,2,"+-, REC

where

0<2,<2,<<Z,.=<1I

The density for {Z,, Z,," -, Z,, ..} is given by

S (25 295 Zgpe) = REC!

for

s <T .. e =<
— 4 — 2 —="""= Zpge

Now invert the relationship given in Equation 28. The inverse
transformation is shown in Equation 30 as follows:

Zl:Ql
Z,=Q,+0Q,
Zppe= Q1 t @yt + Qpye

The Jacobian of the transformation in Equations 30 is clearly 1.
Hence the density for the {Q,} has the following simple form:

foldp @y s rpe) = R!
for

0= g,

Gt @t G =1

Since this density is uniform in all its variables, it follows from
Equation 29 that all {P,} have the same density.
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