
A general  description of the Virtual  Storage Access  Method 
( V S A M )  is followed by  a qualitative  discussion of performance 
expectations. V S A  M data-set  design  parameters are  discussed 
with  respect  to  performance tradeofs. Analytic  techniques  are 
developed  for relating  some of the VSAM performance  sensitivi- 
ties to  data  set  design  parameters. 

VSAM data set design parameters 
by D.  G. Keehn and J. 0. Lacy 

The Virtual  Storage  Access  Method (VSAM)' has  been  de- 
veloped for  use with virtual  storage  operating  systems. VSAM 
grew out of the need for  an  access  method  that allows data  to  be 
accessed  both  directly by key and sequentially in key-defined 
collating order.  Conventional  index-sequential  access  methods 
that  satisfy this need usually use a chaining technique to insert 
additions  into a file after it has  been initially loaded. With these 
techniques,  performance  degrades  rather  substantially  as  more 
and  more  additions are made. VSAM has  been designed to avoid 
performance  degradation while retaining the  index-sequential 
facility. Two new logical concepts defined in VSAM are used to 
manage the  space  associated with data:  the Control  Area (CAI; 
and  the  Control  Interval (crivv). An index is used to  address  the 
records  contained in control  areas  and  control  intervals.  An in- 
sertion  technique  is  used that  works well even  after  the file has 
had many records  added. The result is a sequential  direct  inser- 
tion facility that - compared with conventional chaining tech- 
niques  -performs well and  continues to  do so as  the fiie is built 
up. Although VSAM has been designed for  use with virtual stor- 
age  operating  systems,  it may also  be  used with all of the os/370 
operating  systems. 

Our purpose Iiere is to  provide  concepts  to  consider when de- 
signing a VSAM data  set. This paper  describes VSAM and then 
uses  that  description to make some qualitative  statements about 
VSAM perforniance  expectations as compared with other meth- 
ods.  Some  performance tradeoffs are discussed with respect  to 
VSAM data  set design parameters.  Finally,  analytic  techniques 
for  some of the crucial VSAM performance effects are devel- 
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Description of VSAM 

data  set VSAM data sets are constructed either as Key  Sequenced Data 
structure Sets (KSDS) or Entry Sequenced Data Sets (ESDS). ESDS are 

sequential  add-on data sets with  no  index structure. Records 
in KSDS have a key  embedded in each record that defines a 
collating order for the records. The records are initially  loaded 
in the defined  collating order and continue to  be accessible in 
that order (known as sequential access) as new records are 
inserted. An  index  is  provided for keyed direct operations, that 
is,  not in a predetermined order. 

A VSAM data set consists of a number of Control Areas (CAI,  
each of which consists of a number of Control Intervals ( C I N V ) ,  
which, in turn, consist of a number of records. The records with- 
in a C I N V  are physically  maintained  in sequence according to 
the key  embedded  in each record. Each C I  N V  also contains con- 
trol information  regarding  where each record starts within the 
cf Nv (so as to allow variable length records). A C A  is often a 
cylinder (but may  be  specified to be smaller) of a Direct Access 
Storage  Device (DASD). Figure 1 represents three instances of 
the same VSAM CA as situated on a DA SD cylinder. (The first 
track of the C A  is occupied by a sequence set that is  to  be de- 
scribed later in this paper.) Each of the other tracks contains 
three C I  N vs. The shaded areas represent free space. 

index A VSAM Key  Sequenced Data Set (KSDS) has  an  index for di- 
rect operations. Many  index entries are stored together on 
DASD, and  they are accessed in  blocked  units. Each index rec- 
ord is a key-pointer pair  where  they  key  is the highest  key in the 
pointed-to block,  and where the pointed-to  block  is another in- 
dex  block or Control Interval ( C I N V )  in the data set. The blocks 
make  up  levels  where the highest  level consists of a single  block, 
and each of the lower levels consists of the blocks  pointed  to 
by the next  higher  level. This may  be thought of as  a fan-out 
effect.  Each of the blocks in the lowest  level of the index (called 
the Sequence Set) addresses a particular Control Area (cA) ,  
and  resolves a key to the C I N V  in  which the desired record  re- 
sides (if it exists). Figure 2 represents a fan-out, in tree form 
for a three-level VSAM index. 

A record is located  via  this  index tree by  using a less-than-or- 
equal  comparison on each level  until the appropriate CI  N V  is 
located. Optionally, the Sequence Set can  be stored with the 
data it addresses. If  this  is the case, the Sequence set occupies 
the first track of the C A ,  and  is  replicated as many  times as will 
fit on the track (to save rotational delay- latency - waiting for 
the beginning  of the desired  record to come under the read/write 
head). Higher  levels of the index  may also be replicated. VSAM 
compresses'the key entries in the index so that redundant key 
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Performance implication 

The VSAM design offers some significant methods  for improving 
performance  over other  access methodologies. The new 
methods are explored in this  section, by using comparisons with 
current  index-sequential  procedures. 

The VSAM index  structure has several higher index levels that 
resolve to a Control  Area (CA) index  (Sequence Set).  The Se- 
quence  Set  always  resolves  to  the  desired  Control  Interval 
( C I  N V ) ,  because- when a cf N v  is split-the  Sequence  Set is 
modified to reflect the split. 

Index  sequential (ISAM) methods  use a master  index,  a  cylinder index 
index,  and a track  index.  Even  after resolving to a DASD track, 
however, the  track  must still be searched, with the  further possi- 
bility of having to follow an overflow chain to retrieve the de- 
sired  record. In that  method,  the  various  indexes  themselves 
never need to be updated,  whereas VSAM must  continue  to up- 
date  the index blocks as splits occur. The ISAM method  amounts 
to spreading  the pointing information over  the disk surface, 
whereas VSAM keeps all the  pointers  compacted in one  index 
block (at  the  expense of continued  updating). 

Access methods  that allow for  inserts  often  have a form of dis- distributed 
tributed free space. The VSAM scheme  leaves a specified per- free space 
centage of free  space in each C f N v  and a (possibly  different) 
specified percentage of free  space in each CA. Therefore,  the 
first addition goes into  the  appropriate C I N V ,  and, with a lightly 
inserted file, an addition to a VSAM file  is much like a direct up- 
date.  Previous  methods  provide  free  space only at physical 
boundaries, which implies that  additions  go immediately into  an 
overflow area. Chaining is usually used to  locate  records  that 
have been inserted. 

The VSAM free-space  strategy allows additions to be made  to  the 
expected C f N v .  When an overflow occurs,  the C f N v s  are split 
and  the  sequence  set is updated, with the  result  that the inser- 
tion technique  works well even as  the file continues to be added 
to. ISAM methods  use chaining to overllow records so that,  even 
with the first few additions,  the  insertion  performance begins to 
degrade. 

VSAM allows some  free  space to be left in each C f N V  as it is blocks  versus 
loaded. Hence,  at  zero or light insertion  levels,  the VSAM se- CINVS 
quential  performance may suffer compared to a fully utilized 
block. However,  the splitting strategy  results in a continued high 
blocking factor,  as  compared  to  the overflow chain  strategy, 
which results in a diminishingly effective blocking factor  as addi- 
tions are made. As heavy  addition levels begin, CA splitting adds 
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C A S  to the file and results in longer seeks  for  direct  operations. 
An independent overflow area,  as used with the overflow chain 
strategy,  results in extra  seeks between the prime and overflow 
areas at heavy addition levels. 

Before delving into  more detailed performance measuring tech- 
niques in the following sections, it might be helpful to make a 
few prelimary qualitative  statements  about  performance, which 
are based on the  more detailed material. In practice, this level is 
often  adequate,  because  an understanding of the key d.esign de- 
pendencies is usually sufficient to make good design choices  for 
VSAM. 

Control interval size. The amount of DASD space required by a 
Key Sequenced Data  Set (KSDS) and  the  sequential  request 
times are sensitive  to  the choice of CI N v size. A larger C I N V  
size  produces  better  sequential performance. It is possible, how- 
ever,  to  waste DASD space with certain combinations of C I N V  
size  and record size. 

Distributed free  space. When designing for random direct addi- 
tions,  choose  the  free  space in a CI  N v larger than the  free  space 
in a C A .  The splitting of CAS is better controlled by free  space 
within the C I N V  than free C I N V S  with a C A .  Make the  free  space 
within a CI  N v at least as large as the design percentage of inser- 
tations so that  the CA splitting is small. To avoid degradation of 
sequential  operations, sufficient free  space  must  be specified. 
However,  too much free  space in a CI N v yields a poorly utilized 
block for transferring data  to and from DASD. 

Index bufers. Buffers for holding the CI N V  and CA indexes in 
main storage are not analyzed in this paper, but they are includ- 
ed here  because of the  importance of .direct operations.  There- 
fore, include some  extra index buffers when direct  operations 
are significant for  an application. In a purely sequential applica- 
tion,  two index buffers are usually sufficient. Allow at least  one 
more index buffer than the number of levels in the index for di- 
rect applications. These index buffers allow VSAM to keep the 
higher levels of the index in  main storage,  thus reducing the 
number of DASD accesses to the index component. 

Data  bufers. The number of buffers for holding data in main 
storage  have a significant impact on  the  performance of sequen- 
tial operations. For applications with direct  operations  only, 
more  than  two  data buffers add little to performance. In general, 
as  the number of data buffers increases, sequential performance 
should improve. A point that should be  kept in  mind regarding 
direct  operations with keys that are clustered  together is that 
VSAM usually checks  the  current  data buffers to determine 
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whether  the  requested  record is present.  This may reduce the 
number of DASD accesses  required  for an application. 

Allocution unit. This  unit is a parameter  that should be so cho- 
sen  that VSAM allocates a cylinder  for  a CA. If allocation  units 
are specified in terms of records  or  tracks, a CA of less than a 
cylinder can result. When a CA is less  than a cylinder,  additional 
device  interruptions  must  be handled by VSAM on  sequential 
operations. 

Index options. VSAM provides  four  choices of index  component. 
One may choose to embed the  Sequence  Set with the  data  or not 
and  choose  to replicate  the nonembedded part of the index or 
not. Embedding the  Sequence  Set  can  reduce  direct  retrieval  and 
insertion times. 

Analytic  modeling  techniques 

We now discuss  several  analytic modeling methods  that are use- 
ful for  understanding the performance of VSAM. The analysis 
applies to single-string requests. These  are repeated  requests of 
the same kind from a single task  such  that  each  request is syn- 
chronous with the  completion of the prior  request in the repeat- 
ed pattern of requests. A stochastic model is first established  for 
the  distribution of split C l N v s  and C A S  in a VSAM Key Se- 
quenced Data Set (KSDS). Given  the model, we  can  then  ana- 
lyze  the DASD space  required at various  insert levels as well as 
the sequential  and  direct single-string access  times. 

I 

We first account  for Cl N V  and CA splitting as a result of direct direct 

additions. From  the discussion  on making insertions,  recall  that insertion 
when the  free  space in a C l N V  is not  able  to  accommodate  the 
addition at hand,  a split C l N V  results. 

In  the analysis, it is necessary first to  compute  the probability of 
a C l N V  splitting. We begin by defining R E C  as  the number of 
records in the KSDS at loading time. The keys of these  records 
are modeled as random  numbers  chosen from a distribution of 
key values  denoted by FK.  The loading process  puts N R C I  fixed- 
length records  into  each C l N V .  Subsequent  to  the loading pro- 
cess, I random  additions with keys  chosen from FK are made. If 
m denotes  the  number of additions falling in any  particular load 
time C l N  v, then  the probability of exactly m additions in an  inter- 
val is given as follows: 

rr{m/I, REC, N R C I )  = (A) * (::E,) N R C l  -k rn 
N R C l  

( 1 )  
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Figure 3 Range of summation of probability of a t  least one CINV splitting 

PCIS 
SUM TC OVER THESE 
rnVALUES 

where 

OTrnTZ 

The probability of at least one C I N V  split  is denoted as PCIS 
( R E C ,  N R C I ,   F R E C ) ,  and  is  given by  summing Equation 1 over 
the number of records that overflow a loaded C I N V .  If F R E C  
denotes the number of free records available in a C I N V  after 
loading,  then 

PCIS   (REC,  N R C I ,  F R E C )  = En- {m/1 ,  R E C ,  N R C I }  (2) 

where  the  summation  is over all m such that F R E C  + I 5 m 5 I 

For purposes of data set design, a primary interest is the first 
CI  N V  split after loading. In evaluating Equation 2, only the lead- 
ing terms of the sum are significant. Figure 3 shows the relation- 
ship  between N R C I ,  F R E C ,  and P C I S .  It should  be  noted here 
that r { m / I ,  R E C ,  N R C I }  and, hence, PCIS ( R E C ,  N R C I ,   F R E C )  
does not  depend  on the particular key  distribution FK. This fact 
allows a simple  analysis for any  monotonic FK. 

The analysis presented herb accounts for two sources of nonuni- 
form distribution of records across the C I N V S .  The first source 
occurs at loading  time,  when the finite  number of records in each 
C I N V  results in an  uneven distribution of probability  values con- 
tained  in each C I  N V .  Ideally, if the keys of the loaded data  set 
were  perfectly representative of the distribution FK,  then each 
C I N V  contains equal  probabilities of having subsequent inser- 
tions  fall in that C I N V .  The model  shows this not  to be the case. 
Rather, this  probability  is  itself a random  variable  and  its distri- 
bution  is of interest. The second source of nonuniformity occurs 
when  insertions are made. The small  probability  held by each 
C I N V  implies a large  variation in the number of inserted records 



We now analyze the loading of a KSDS data  set,  and  make  compu- control 
tations to determine  the  distribution of the probability held by interval 
each Cf N V after  the loading process. At loading time, the collec- probability 
tion of records with keys sampled from FK are available, so that 
we  have  the following relationships: 

Data  set keys = {Xl, X,, . * a, X,,,} 

where 

Pr{Xa 5 t }  = F K ( t )  

for  each ~ ( 1 ,  2;-*, R E C )  

These records are sorted by key value and grouped  into C l N V s  
with NRCl  records in each C I N V .  The key range assigned to  the 
ith cf NV by the loading process is given by the random  interval, 

{Key values in the ith C I N V }  = (X:"-I)NRc,, x ,*: 
where the { X a * }  are  the result of sorting { X , } ,  a&( 1;. -, R E C )  

This  notation  leads  to asking what  the probability is that,,subse- 
quent  to  the loading process, a given insert will be placed in the 
ith C I N V .  That is, it  is necessary  to  compute  the probability den- 
sity of Pi where 

and where  the  inserted  key Y also  has  the probability distribu- 
tion FK. With this last  fact in mind, Equation 3 may be  rewritten 
as follows: 

where 

1 5 i l  RECINRCI 

Thus  the random  variables Pi depend on  the  sorted key values 
through the cumulative  distribution  function FK. 

Equation 4 appears  to  be complicated,  but it is easily solved 
because of the following two  facts: 

(a)  The sorted  distribution of keys FK (X,*) has the  same  prob- 
ability law as  an  ordered  sample of size R E C  from a uniform 
probability distribution  on (0, 1 ) . This follows from  the  fact 
that  the  unsorted  random  variables FK (Xi) are distributed 
as  follows: 

I where 

I NO. 3 1974 VSAM DATA SET DESIGN 195 I 



probability of a 
control interval 

splitting 

196 

(b) Also, all the probabilities Pi have the same first order  prob- 
ability distribution. In particular,  any Pi is distributed  as the 
first as follows: 

PI = F K  (X&, ) 

To show (a) ,  we  note  the following conditions  placed  on Fk:  

Pr{F,(X,) s t }  = Pr{FK-'FK(Xi) 9 F K - ' ( t ) }  

= Pr{X, s F ~ - '  ( t )  } = t 

where 

The conclusion in (a) follows, since  sorting  the {X,) and  then 
F ,  gives the  same  result as ordering the FK {Xi}. 

At this point,  assume the conclusion  for  fact (b) and  refer to  the 
Appendix  for a proof. 

Combining the  results of (a) and (b),  the distribution of Pi can 
be  completed by finding the distribution of the NRCIth largest 
out of R E C  uniformly distributed  random  variables  on the inter- 
val (0, 1). Let Z,, 2,; * ., ZREC denote uniformly distributed  ran- 
dom  variables  on ( O . l ) ,  and  note  that  the NRCIth term in an 
ordered  sequence is less  than t if and  only if there  are least N R C I  
out of REC keys  that are  less  than  or  equal  to t. 

Pr { P i  9 t }  = Pr{at  least N R C I  of Z, ,  Z,, * 1, ZREC 5 t }  ( 5  1 
Since  the Z are independent,  the  computation in Equation 5 is 
given by  the following binomial distribution: 

Differentiating  this  expression  and evaluating it at t = p yields 
the following desired probability density  for  Equation 3: 

( N R C I  - l ) ! (REC - NRCI)!' ~1 

The derivation of Equation 1 and,  hence,  the  evaluation of 
Equation 2 can easily be  obtained from the  results of Equation 
6.  Suppose  the probability p contained in a CI  N v is known. The 
probability that m out of I additions fall into  the key range 
spanned by this C I N V  is given by the binomial law as follows: 

Pr {m inserts in a CI N V / ~ }  = (7)  

where 

p + q =  1 
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Equation 7 is the  conditional  probability of the additions falling 
within C I N V  when p is known. Averaging Equation 7 over  the 
distribution on p values given by Equation 6 yields the prob- 
ability of rn insertions falling in CI N v as follows: 

Pr { rn inserts in a CI N v }  = 

(8)  
The result of Equation 1 is a result of Equation 8 and  the defi- 
nition of the  beta  function  as given by Feller.3 

The techniques of finding the  probability of a CA splitting paral- 
lel those used for  computing P C I S .  The reason  for  this is the sim- 
ilarity of the  manner in which free  space is allocated with a 
CI N V  and a CA . Figure 1 A  shows a CA loaded with free  space in 
C I N V S  and  free C I N V S  within the CA. As additions split a C I N V ,  
a free C I N V  is used,  and  eventually  the  free C I N V  pool is deplet- 
ed.  Figure 1B shows a CA with some split C I N V S ,  and  Figure 1C 
shows a CA with the free C I N V  pool depleted. For direct  addi- 
tions with random  keys, only the originally loaded C I N V S  con- 
tribute to  the number of splittings because  the probability of the 
double splitting can be neglected. With this  approximation  not- 
ed,  we  have  the following expression  for the probability of a 
control  area splitting: 

Pr {CA splitting} = 
Pr {number of loaded C I N V  splittings exceeds  the  number of 3 
C I N V S  within a C A }  

Each originally loaded C I N V  is a  source of C I   N V  splittings with 
probability P C I S .  Let CI  PCA denote  the  number of nonempty 
C I N V S  per CA after loading. Taking  the  contribution from each 
load  time C I N V  as  statistically  independent, the probability of  a 
splitting is given by summing the tail of the following binomial 
distribution: 

PCAS = Pr (Control  Area splitting} 
CIPCA 

C I P C A - m  

m=l+free 
CI per C A  

probability of a 
control area 
splitting 

Here, ~ c l s  -t P C I S  = 1, and  free C I N V S  denote  the  free C I N V S  
1 within a CA. For purposes of computation, the binomial law in 

Equation 9 can be replaced by the  Poisson law when CIfcA is 
large (e.g., exceeds 20) and PCIS  is small. The parameter in the 

~ Poisson law is given by the product CIPCA X Pas. 

At this  point a technique  for  computing Pcrs and P C A S  has  been 
! established, given certain  data  set  parameters. It is still neces- 
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sary to relate the external data set characteristics to the parame- 
ters available  to the data set designer.  With this relationship 
established, the DASD requirements can  be  computed as  a func- 
tion  of the data set design parameters. 

data set This section  gives the fqcts necessary for relating external data 
design set characteristics to the variables of the direct insertion model. 

parameters The following list represents the parameters needed to define a 
VSAM data set. 

Data control  intervql  size ( C N V )  must  be i X 2', where k i 9. 
Physical  block  size ( P E S )  is chosen by V S A M  to be one of 
(512, 1024, 2048, 4096}, whichever  is the largest divisor of 

Free  space  parameter FCI  is the percentage of free space in 
a C I N V ,  and FCA is the percentage of free C I N V S  in a C A .  
Index  options specify whether to imbed the sequence set and 
whether to replicate the nonimbedded part of the index. See 
Table 1 for a list of possible  combinations  and  numerical set- 
tings for the I O P  parameter. 

C N  V .  

Number of records in the data set at load  time  is R E C .  
Average logical  record  size in bytes is E X S Z .  Only  fixed- 
length records are considered; the maximum record size 
must fit  within one CI N v. 
Space  allocation units for the data component are specified 
by cylinder, track, or record. 
Key length is K E Y L E N .  Also specify  and estimate the com- 
pressed key  size JCKS). 

I DASD space computation  algorithm 

The following  algorithmic steps are  a reasonably accurate repre- 
sentation of the computations necessary to load a vSAM data 
set. Throughout this  algorithm, the APL language  is  used  to  ex- 
press the algebraic operations. 

1. Number of records in a data CI N v ( N R C I ) .  For fixed-length 
records, an overhead of 10 bytes per C I N V  is required. The 
free space parameter FCI specifies the minimum amount of 
free space in the CI N V .  Compute first 

NRCI + L((-lo) i- ( 1  - F C I )  X C N V )  + E X S Z  (10) 

2. Maximum  number of records in a CI N V  ( M R C I ) .  When  all 
the free space in a C I N V  is  filled  with records, compute M R C I  
as  a preliminary step to computing PCIS 

3.  Number of dafg C I N V S  per  track ( C I P T R K ) .  Compute C I P T R K  
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from the physical blocks per track ( P B T R K )  and C I N V  size 
( C N V ) .  

C I P T R K  -+ P B T R K  + C N V  + PBS 

All terms are defined except P B T R  K ,  which  is computed 
from device characteristics as follows: 

P B  T R  K -+ 1 + 1 ( (track capacity-last block) 
f (length of other blocks) 

In  applying  this formula, use the DASD overhead values 
without keys. The explicit  values for such terms as track 
capacity depend on the device type. 

4. Information regarding the units of space allocation for the 
data component, which  is a key  variable throughout this 
algorithm, is the number of tracks in a C A  ( T R P C A ) .  The 
algorithm starts by assigning a value to T R  P C A ,  but later this 
variable  may  be decreased to satisfy certain index compo- 
nent constraints. There  are three ways to assign T R P C A .  

If space is  specified in cylinders and the sequence set is ad- 
jacent to the data, assign tracks per cylinder less one, other- 
wise take tracks per cylinder. 

T R P C A  -+ tracks per cylinder - I O P  5 2 

If space is  specified  in units of tracks, take the smallest 
number of primary tracks, secondary tracks, and tracks per 
cylinder as T R P C A .  Adjust this value  by subtracting one 
track if l o p  5 2 .  

If space is  specified in units of records, convert the primary 
and secondary record values to tracks as follows, using r ,  
the ceiling function: 

Primary  tracks -+ i- E X S Z  X primary  records + (PBS 
X P B T R  K ) ;  

Secondary  tracks -+ ~ E X S Z  X secondary  records f ( P B S  
X P B T R K ) .  

Apply the space specified in units of tracks to compute 
T R P C A  following the procedure as though  it  had  been 
originally  specified in units of tracks. 

5.  Maximum  number of C I N V S  per CA ( M C I P C A )  is computed 
as follows: 

M C I P C A  +- L C I P T R K  x T R P C A  

Since a C I N V  cannot span a C A ,  the  floor  function 1 is  ap- 
plied to the product of C I N V S  per track  and tracks per C A .  
Note that all the C I N V S  in a C A  are pointed to by a sequence 
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set entry. This fact may require a change to this  value far- 
ther on  in the algorithm. 

6. Loading  time records per CA ( R E C P C A )  is a quantity that is 
basic to computing the number of tracks required for the 
data component  at  loading  time  as  well as after inserts, and 
is  computed as follows: 

R E C P C A  + N R C I  x ( M C I P C A  - L F C A  X M C I P C A )  

This equation states that the number of records in a CA at 
loading  time  is the product of the number of records loaded 
per CI N v with the number of loaded CI N V S  in each CA . 
Note that the product F C A  X M C I P C A  is  rounded down, 
which indicates that the maximum percentage of free CI N vs 
in a CA is  bounded  by F C A .  This is in contrast to the impact 
of F C I  on the percentage of free space in a C I N V .  An exami- 
nation of Equation 10 shows that FCI  is the minimum 
amount of free space within a C I N V .  

7. Number of tracks required by the data component  is  com- 
puted. Consider the following  zero-insertion case first: 

X r ( R E C + R E C P C A )  (11) 

The factor on the far right  is just the total records divided 
by the loading  time records per CA from step 6. This factor 
is  multiplied  by the number of tracks per CA as computed in 
step 4. If the sequence set is  imbedded  with the data, the 
track for it  is  allocated  from the data component. 

To obtain the number of tracks in the data component after 
inserting,  note that each loading  time CA contributes either 
one (if there is  no splitting) or two (if CA is split) to the to- 
tal  required  number of tracks. Neglect double splittings  be- 
cause they  have a small  probability over the range of inser- 
tion  levels  investigated here. 'The average number of CAS 
per loading  time CA is computed as follows: 

i 1 Average  number 
of CAS per 
loading  time CA 

+- (1  - P C A S )  + 2 x PCAS = 1 + PCAS 

(12) 
For the range of insertion levels of interest, multiply  Equa- 
tions l l and 12 to compute the number of tracks per data 
component at insertion level I N S  as follows: 

Tracks for the 
data component ) + (TRPCA + l o p s  2)  

X r (REC f RECPCA)  x (1 -k P C A S )  (13)  
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14. The number of third  and higher level  index  blocks is com- 
puted as follows: 

(third level) 
C I N V S  On t r ( C I N V S  on  second) + m 

This  process is continued  by dividing the  number of index 
C I N V S  on the  current  level,  and  rounding up until we  have 
just  one highest level index C I N V .  

15. The total  number of C I N V S  in higher level indexes ( H L I  
C I N V S )  is  computed by summing over  the  number of index 
C I N V S  generated in steps 13 and 14. This  term is useful for 
considering the  index  options specified by I O P .  Table 1 
shows  the  relations  between  index  options  and the requisite 
equation  for  computing  tracks  for  the index. 

Depending on the  index  option  selected,  the following equa- 
tions  apply: 

Track  for higher ( level index 

Tracks  for higher) I( HLI number C I N V S  of) : ( per  track ( level index 
Index C I N V S  - 

In  the  case of Equation 18, the  sequence  set is allocated 
from the  data component  and  each higher level ( H L I )  index 
CI N v uses  one  track. 

Equation 19 requires  a  computation of the  number of index 
C I N V S  that fit on one  track.  Finally,  the following computa- 
tion with physical block size  equal  to I C N V S  is required. 
This equation  applies when no replication is requested: 

L 

When replicating all of the VSAM KSDS index  component, 
use  the following equation: 

( Tracks  for ) t ember 03 + (sequence  set C I N V S )  
whole index LI C I N V S  

Sequential  operations  model 

We now present  techniques  for developing a model of VSAM 
single-string sequential  operations. The objective of this  section 
is to  discuss  the  analytic  formulas  that  relate I/O device  char- 
acteristics, VSAM .data  set  parameters,  and CPU instruction  pro- 
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Figure 5 VSAM rquential  reading and clutch point action 
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cessing time  to  the single-string processing time per  record.  First 
to be examined are  the  equations  that hold only foran uninserted 
KSDS, and then discover how clutch-point effects (analogous 
to  card feeding) can  be  accounted  for in this case. The next 
step is to consider  the  sequential  operations  for  accessing  an in- 
serted file with split and overflow CAS.  This is followed by look- 
ing at sequential  performance as a  function of insertion level. 

To time a sequence of VSAM KSDS sequential  read  operations, it 
is necessary  to  consider the VSAM buffer scheduling rules under 
o s l v s l  and o s l v s 2 .  Take  the number of data buffers and  sub- 
tract 1. (This buffer is used for C I N V  splittings and is not  sched- 
uled  in sequential reading operations.) If the remaining number 
of buffers is equal to  or  exceeds 4, schedule half of this  number 
(rounded  up)  for  each rlo read  channel program. Otherwise, 
schedule all the available buffers. In API,, these  considerations 
can  be  expressed as follows: 

S C H B ~ r ( D B F - l ) t 1 + D O U B t ( D B F - l ) 1 4  ( 2 2 )  

The rule  for determining the  number of buffers to schedule in 
one I/O channel program ( S C H B )  applies to sequential updating 
as well. In Equation 22 ,  DBF denotes  the user-specified number 
of data buffers. DO U B  is a logical variable that specifies whether 
the buffers are scheduled in two  sets  or  one. s C H B  is also the 
number of free buffers required  before a sequential  read  opera- 
tion can  be  started. 

The following discussion  has an analogy with card  readers in 
which the  clutch  rotates  constantly. The maximum rate of card 
demand is the rotational  rate of the  clutch. A demand  rate just 
slightly less than the  clutch  rotation  rate halves the card  transport 
rate. As the  card  demand  rate  decreases,  each time it becomes 
less than  a unit rotation  time,  the  card  transport rate is reduced. 
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The clutch point effect in DASD devices is illustrated in Figure 5 .  
At  the  start of the 0th  rotation, a clutch point occurs  for C I N V S  
1 and 2 together  because buffers have been scheduled  two at a 
time ( S C H B  = 2 ) .  These two C I N V S  are read in from the six C I N V S  
per track ( C I P T R K  = 6) .  The channel  search  for C I N V S  3 and 4 
must begin before  the  clutch point for 3 .  For illustrative  purposes, 
Figure 5 shows  a mismatch between the  channel  search  and  the 
DASD. Since  the  channel  search is shown beginning at  (or after) 
the  next clutch point in sequence,  the  next regular clutch point 
for C I N V S  3 and 4 has been missed. That is, C I N V  3 has partially 
passed under  the DASD reading head by the time the  channel 
search  has  completed  execution.  Therefore, reading cannot  take 
place until the  next C I N V  3 and 4 clutch  point, which occurs on 
DASD rotation 2 .  

Again a  channel  search (this time  for C I N V S  5 and 6) prevents 
the reading of C I N  vs 5 and 6 on the  next  clutch point - units 5 and 
6 on rotation 3 .  C I N V S  5 and 6 must wait to  be  read on rotation 
4, which is only partially shown. Thus, in this  example, five DASD 
rotations and five clutch  points  are  required  to  read  three  units 
of two buffers each ( DBF = 3) .  

Instead of adding up the  number of revolutions  for  the  pattern 
to  repeat itself, define a random variable that  accounts  for  the 
transition time between C I N V  reads.  Figure 6 shows  the values 
and probabilities attached to each value for  the  case of D O U B  = 0. 

This  analysis  can  be  checked by setting S C H B  = 2 and C I P T R K  
= 6 (assuming  that  the CPU time is small enough),  and then 
computing R O T  X [+ X Q + + x Q] = Q ROT as  the average 
of Tu,  which is the average time to  read  the  control interval. This 
agrees with hand timing results. 

Figure 6 shows  that,  for  the values assigned to  the  random vari- 
able Tu,  the ( R O T I C I P T R K )  corresponds  to reading within a sched- 
uled buffer set. The ROT X [ 1 + 1 / C I P  T R  K ]  corresponds  to 
reading the first C I N V  of a newly scheduled set of buffers. The 1 
in the  second  term follows from  the  assumption  that it takes just 
one  revolution  to move from reading the  second CI N v to reading 
the third CI N v. If the CPU time is not small enough,  additional 
rotations may be involved in this  transition. Let P S R  denote  the 
amount of CPU time from the completion of the reading of one 
set of scheduled buffers until the  start rlo for  the  next  set. A 
more  general  expression  for  the  average time to  read one C I N V  
can be written  as follows: 

206 KEEHN AND LACY IBM SYST J 



Figure 6 Random variable  pattern for average time T, to read a control interval 
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This expression is derived by including in the right-hand term in 
Figure 5 the effects of multiple device revolutions between the 
scheduling of new sets of buffers. The right-hand term in Equa- 
tion 24 is the ceiling function of the  ratio P S R  i R O T ,  and repre- 
sents  a whole number of revolutions required between  sched- 
uled sets of buffers. 

Sequential  operations with control area splitting 

This section  indicates how to  generalize so as  to  account for  the 
effects of CI N v and C A  splitting on  sequential  operations. Recall 
from Figure 1 that,  for split C I  N V S ,  the key sequence  order  does 
not  correspond  to  the physical order on a DASD track.  In addi- 
tion, a split or overflowed C I N V  can have  a  reduced  number  of 
records just after the splitting. To account  for  these effects, we 
develop a methodology in this  section  that allows for  a  mixture 
of C A  and C l N V  types. The average time to GET a record se- 
quentially from a KSDS is computed as the following ratio: 

PuNuTu + P,N,T, -4- Po,Yo,To, i- C C S R  

R E C O R D S  
T S R  = 

Here,  the  terms in the numerator are defined for unsplit ( u )  , 
split (s ) ,  and overflow (ov) C A S .  Pu is the probability or propor- 
tion of unsplit C A S  in the KSDS. N u  is the number of C I N V S  in an 
unsplit C A  , and Tu is the  average  time to read  a C I N  v in unsplit 
C A .  All terms  depend  on the percentage of insertions  made  into 
the KSDS. Similar definitions apply to  the remaining terms  for 
split and overflow C A S .  The term C C S R  accounts  for  the C A - t o -  
C A  overhead. R E C O R D S  is the  average  number of records in a 
control C A ,  and  can  be  computed as an  average  over  unsplit, spl t, 
and overflow C A S .  

Rather  than  derive  the  equation  for  each  term,  the behavior of 
Equation 25 is discussed in a qualitative way as the number of 
additions  to the KSDS grows. At low insertion levels, R E C O R D S  
increases in proportion  to  the level of additions. If there is suffi- 
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Figure 7 Sequential  retrieval  time  versus  insertion  level  for  several  choices  of  free 
space   parameters  
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main zero. Under  these  circumstances, T S R  decreases. As the 
level of additions  grows, Ps and Po, become significant. It follows 
that R E C O R D S  decreases,  since C I N V  splittings tend to halve the 
number of records  contained within a CI  N V .  At large insertion 
levels, the  terms Tu, T,, and To, grow, since  these CAS have 
many CI N V S  out of physical sequential  order. 

Figure 7 shows how T S R  depends on  the insertion level for sev- 
eral values of the  free  space  parameters FCI and F C A .  Notice 
that both the (20, 10) and (30, 10) designs show a  decrease in 
T S R  at a five percent insertion level. The (30, 10) design has 
poorer sequential performance at  the  zero insertion level, since 
the added free  space  carries  no records. The (20, 10) design 
shows  a balance of good zero-insertion performance and a mod- 
erate  increase in T S R  up to  the fifteen percent insertion level. 

As a final illustration of the  techniques used to  understand VSAM 
performance, we now analyze  the time to make a  direct  addition, 
using the computation of PCIS  in Equation 2 and P a s  in Equa- 
tion 9. Recall that  a  direct addition results in three kinds of re- 
sponse from VSAM. If free  space is available, the addition looks 
very similar to a  direct  update. If there  is  inadequate  free  space 
in a  target C I N V ,  then  a split CI N V  occurs. If, in this last  case, no 
free C l N v  is available, a CA splitting occurs. 



Suppose I = INS X REC additions are made,  and the average  in- 
sertion time  for  all these additions  is  to be computed. Let B 
denote the fraction of the additions that cause at least a CI N V  
splitting. From Equations 14  and 1 1 ,  there are CIPCA load-time 
CINVS per C A  and ~ R E C  f RECPCA load-time CAS. Define the 
parameter B as follows: 

B + PClS X CIPCA X ( F R E C  f RECPCA)  f (REC X INS) (26)  

since PCIS X CICPCA is the average number of split CINVS. The 
computation that results in Equation 26 includes those CINV- 

, splitting additions that result in CA splittings. Let C denote the 
fraction of c~-splitting additions as follows: 

c PCAS x ( F R E C  f RECPCA)  f (REC X I N S )  

The average insertion  time  can  be  written as an average of three 
times as follows: 

AIT +- ( T S C A  X c) + (TSCI X ( B  - c)) i- ( 1  - B )  X TD, (27) 

The term TSCA is the time  for a CA splitting; TSCI is the time for 
a CI N v splitting;  and T D ,  is the time for a direct updating. For- 
mulas are not  derived for these terms, but the relative size of 
each term is noted. TSCA is large,  i.e, of the order of seconds. 
T S C I  is of the order of hundreds of milliseconds;  and TD, is  usu- 
ally  less  than a hundred  milliseconds. 

It might be expected that AIT  increases as B and C increase with 
insertion  level.  Since each CA splitting creates free space, after 
many CA splittings, the effect of T S C A  and T S C I  is expected to 
lessen. A I T  is  the average over all additions up to the current 
insertion  level. We can derive the average  value of an  insertion 
in a small  band of insertions from  Equation 27. The value  ob- 
tained  in  this  way depends on  how  small a band  is  taken. Figure 
8 shows the derived AIT  value for three designs: ( 5 ,  5 ) ,  (20, 
lo),  and (30, 10). Note  the increase in A I T  due to CA splitting. 
After these C A  splittings occur, further additions find free space 
in the CINVS, and the A I T  decreases to a value  moderately 
higher  than the zero insertion value. This happens because the 
extent of the KSDS has  expanded  and  unsplit CINVS continue to 
split  even after the data set has  doubled in size. 

Concluding remarks 

Our intention  has  been to offer  an  appreciation of vSAM perfor- 
mance  sensitivities  and to relate those sensitivities to data set 
design parameters. This has  been done in the hope that design- 
ers may become  more aware of the effects of their choices 
among those parameters. This discussion has  been restricted to 
VSAM as it applies to IBM operating systems. Effects of paging, 
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Figure 8 Average insertion time versus insertion level  for  three choices of free space 
parameters 
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the VSAM catalogue,  and VSAM multirequest  strings  -which may 
be  important in some cases -have  not  been included. 

Two main areas  for  attaining  data  set  performance  objectives 
using VSAM have been presented. In direct  operations, VSAM 
performance  tends  not to degrade  as  new  records are added to a 
file. Also,  sequential  operations in an  inserted file tend to  per- 
form as well as in an  uninserted file. In both cases,  infrequent 
reorganization of the  data  set is required. 

Although VSAM offers gains in performance,  these gains depend 
on the  proper planning of the data set layout. There is thus  a 
need for  analysis of the  expected data  set usage and need for 
mapping that usage into the design parameters available. 

APPENDIX 

To prove  that all Pi have  the  same probability distribution  we 
introduce a new set of random variables {Q , ,  i = 1, 2, .  . ., R E C }  
which have  a  symmetric  distribution,  and are simply related to 
the {Pi, i = 1,2; * * R E C / N R C f } . ,  



'he { P i }  are related to  the { Q i }  by the following equations: I 
' 1 = Q , + Q Z + . . . + Q , w c ,  

'z = QNRcI+l  +. * . + Qz.vncI 

'REcINncI = Ql+(i-l)Nnc, +' ' ' + Qimcr 

{quation 29  is understood by noting that  the FK(Xol* )  cancel in 
my sum except  for  the leading and trailing terms. If we show  that 
he {Q,}  are symmetrically distributed,  then it follows that  the 
P i }  are identically distributed. This last  step is taken  by explic- 
tly computing the  density of the Q from the known density of 
he F,(X,*). 

:eller3 gives probability density of the F K ( X a * )  as follows. Sim- 
dify notation by defining 

I z k = F K ( X k * )  k =  1, 2;*., R E C  

vhere 

The density  for { Z l ,  Z,;  . ., Z,,,} is given by 

"(zl, z,, . . *, znEc) = R E C !  

or 

1 f z ,  5 z 2 5  . . * 5 ZnEc 

Vow invert  the  relationship given in Equation 28. The inverse 
.ransformation is shown in Equation 30 as follows: 

Z, = Q ,  

Z 2  = Q ,  + Q, 
Z,E,= Q 1  + Q, +' * ' + QREc 

The Jacobian of the  transformation in Equations 30 is clearly 1. 
Hence the density for  the {Q,} ,has the following simple form: 
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