Dynamic address translation equipment is key to the design
of System /370 central processing units, and dynamic relocation
is key to the design of Operating System [Virtual Storage 1.

Discussed are the significance and implementation of these
key facilities in the supervisor and job scheduler functions of
virtual storage operating system.

Within the supervisor are presented system initiation, page
management, input/output supervisor, and storage manage-
ment. Within the job scheduler are discussed queue management,
the job entry subsystems, and remote job entry services.

0OS/VS1 concepts and philosophies
by T. F. Wheeler, Jr.

During the past two years, a number of users have been intro-
duced to the dynamic relocation function in the 1BM Operating
System/Virtual Storage 1 (0s/vsi1). Therefore, it is appropriate
to investigate in this paper many of the design concepts that have
proved fundamental to the structure of the 0OS/vS! operating
system.1

In a significant earlier resolution of storage management prob-
lems, the designers of the Ferrante-Atlas computer incorporated
dynamic address translation and a mechanism for expanding
fixed storage capacity.”” Additional innovations in storage tech-
nology throughout the industry made possible variations and
extensions of system design. The introduction of multiple address
spaces”” and segmentation®” also advanced the state of the art.

With this background available to them, the designers of Os/vs1
used virtual storage concepts to significantly extend the ca-
pabilities of the Operating System/Multiprogramming with a
Fixed Number of Tasks (0S/MFT). In addition to the extended
capabilities themselves, a salient philosophy of the design and
structuring of the system was to cause the user of 0S/vSi1 the
least possible disruption in their use of these capabilities. This
objective has been achieved by stabilizing system interfaces and
by reducing the extent of the changed areas as shown in Figure 1.

The use of the enhanced capabilities requires that System /370
central processing units have a facility for Dynamic Address

NO. 3 + 1974 08/vs| CONCEPTS AND PHILOSOPHIES

Figure 1 OS/VS1 viewed as modifications of OS/MFT

COMPILERS

OBJECT PROGRAMS

SERVICE ROUTINES

APPLICATIONS
UNCHANGED LIBRARIES

DATA

CONTROL LANGUAGE

PROCEDURES

SLIGHTLY DATA MANAGEMENT
CHANGED SOME SERVICE ROUTINES

SUPERVISOR

CHANGED JOB SCHEDULER

Translation (DAT). The DAT is a hardware device that auto-

matically makes address adjustments that permit all references
to storage to be made to the virtual range of storage. In effect,
the DAT provides a mapping between a virtual address and the
current physical storage location independently of and trans-
parent to the operating system. The DAT hardware passes control
to the operating system when the data or instructions addressed
are on secondarystorage and not in real storage.

Reflecting a significant change to storage management, the job
scheduling mchanisms have been modified to use a technique of
dynamic relocation.® The concept of job management in OS/MFT
has been broadened to become resource management in OS/VS1.
Perhaps the single most important addition is the incorpora-
tion into the system of the Job Entry Subsystem 1 (ES1) with
Remote Entry Services, which simplify the control paths through
the system.’

Changes have been made to portions of the OS/MFT data man-
agement routines to implement the 1/0 capability in the virtual

partitions. Also portions of data routines that handle input and

WHEELER IBM SYST J

output (SYSIN and SYSOUT) have been modified to ease job entry
interface transparency.

New data and terminal access methods have also been intro-
duced into the system to make use of the dynamic relocation
capabilities. Because both the Virtual Storage Access Method
(vsam)'’ and the Virtual Telecommunications Access Method
(VTAM) require special treatment, they have not been included in
this article.

Supervisor

Virtual storage provides an expansion of address space, thereby
making the total address space appear to be larger than that of
real storage. In OS/vS1, the total address space can be as great as
16,777,216 bytes, which contain the control program, data, and
normal application jobs within partitions. Virtual storage ad-
dresses are not mapped directly to real storage addresses, but
both are broken down into 2,048-byte sections called pages'' in
virtual storage which, in turn, are stored in page frames in real
storage. A collection of pages is called a segment, and, in QS/VS1,
segments are 64K bytes in length.

A study was made to determine the optimum page size for an
0S/VSt environment to be used with a range of real storage sizes
greater than 160K bytes. Involved in the study was a determina-
tion of the effective CPU time for instructions and data within a
page, measurements of interpage and intrapage reference activi-
ties, and the time required to move a page from real storage to
| secondary storage. The 2K-byte page size was found to be an
optimum balance among these considerations.

Similarly, the Direct Access Storage Device (DASD) mapping
algorithm was considered to be a critical parameter for achieving
both the extended capabilities and performance in the midrange
of System/370 computer systems. The direct one-to-one map-
ping of virtual storage space into secondary storage space was
found to greatly simplify the movement of data from real to
secondary storage and to reduce the logic size of the paging
input /output routines. The DASD paging space has its origin at
the upper boundary of the resident supervisor nucleus, and the
virtual space has its origin at zero.

In the following sections we discuss the implementations of
algorithms in the principle supervisor nucleus subcomponents

that are resident in main storage.

The Nucleus Initialization Program (N1P) performs many of the
basic housekeeping requirements for the 0S/vs1 system, which

No. 3 - 1974 08/Vs] CONCEPTS AND PHILOSOPHIES

system
initialization

215

page manage-
ment

include the calculation of initial values for the paging tables (such
as the real storage page tables) and the completion of resident
parameter lists. Information for NIP processing comes largely
from system generation options and from variations of those
options that are entered by the operator.

Early in the design of the system, it was decided to make more
effective use of parameter entries during the execution of the NIP.
This has made it possible to assign addresses for many of dy-
namic relocation and JES1 related options after the Initial Pro-
gram Loading (PL). Thus it is also possible for modifications
to be made to the tailored system during the early stages of ini-
tialization. Also, the automation of the initialization program
reduces the role of the operator, thereby speeding up the initial-
ization process.

Computer configurations that use 0S/vS1 as their operating
system are termed demand paging systems in the sense that new
pages are read into real storage when the DAT detects that a
referenced item is not present in real storage. Page management
is the key component in the management of storage in a demand
paging system. The page management component is accessed
directly by the System/370 hardware when a page exception
(or page fault) occurs. A page exception occurs when the Dy-
namic Address Translation (DAT) feature is unable to resolve a
virtual address to a real storage location. At this point of the page
exception procedure, page management assumes responsibility
for further storage management operations. A key objective of
a paging system is to reduce page exceptions (faults) to a
minimum level, and simultaneously to optimize the use of real
storage.

0S/VS1 uses an algorithm' that maintains a list of page frames
that are available for replacement by a demanded page. To do
this, the system uses several pointer queues to manage a least-
recently-used page replacement algorithm. The pointer queues
also regulate the flow of pages to and from external page storage.
Storage management of this kind implicitly requires the capability
of predicting the hit ratio' of the system, i.e., the probability
of finding the referenced frame. We summarize the capabilities
of the following four pointer queues that are involved in carrying
out the page replacement algorithm.

In-use queues contain the addresses of currently active page
frames.'* These queues are arranged in the order of ascending
activity of frame references to the frames located in each queue.
The number of in-use queues is a variable that depends on the
number of active partitions and active tasks, including system
tasks. Included among the in-use queues are the following types:

WHEELER IBM SYST J

Figure 2 Page supervisor queves

AVAILABLE LOW ACTIVITY QUEUES HIGH ACTIVITY QUFUES

n-3

QUTPUT LOGICAL FIX
QUEUE QUEUE

INPUT QUEUE R _© ADDR

R C ADDR !0|llB3|
Lolol w | [ofs] s |

olo| a [o]2] o7]

available (for replacement), activity (ranged from low to high),
input, output, and logical fix. Figure 2 shows these in-use queues,
with the queue containing the highest activity frames in the sys-
tem at a given time.

Available page frame queue contains addresses of frames that
are available for program replacement when a page exception
occurs. During execution of the NIP, all Real Storage Page Table
Entries (RSPTEs) that represent real storage block addresses that
are greater than the fixed supervisor nucleus are entered into this
queue. As the NIP is executed, the Available Page Queue is

maintained at a threshold that is just sufficient to minimize the
conditions of no replacements possible (lockout) and excessive
replacements (thrashing).”

Page input / output device queues contain the addresses of frames
that are being used for page 1/0. The input queue represents the
list of frame addresses that are currently being filled from ex-
ternal page storage (SYS1.PAGE). This process has been called
pulling (or “‘creation”). The output contains the addresses of
the least referenced pages that are about to be stored on external
page storage (SYSI.PAGE), and has been called pushing (or
“annhilation””). The management of 1/0 page frames in a timely
fashion reduces the backing storage delay referred to by Joseph.”

Logical fix queues contain the addresses of both short-term fixed
page frames and long-term fixed page frames, and derive from the
fact that some components cannot tolerate a page exception.
Therefore some pages are fixed or locked in real storage with a
duration based upon the content of the pages and the time re-
quirements of the system. With the availability of Release 3 of

.3 - 1974 08/vS] CONCEPTS AND PHILOSOPHIES

0s/vst1, the user can force some of his application pages on this
queue by means of the applicable macroinstructions.'®

Fundamental to page frame management are the change bit and
the reference bit in the page and segment mapping tables. Both
bits are originally set by hardware, and they are reset in the pro-
cess of paging by the page management routines. The change bit
indicates whether the contents of a given page frame have been
modified since the page was brought into real storage. This bit is
reset only when the page is moved to the external page file. The
reference bit is turned on when reference is made to the contents
of a page frame, and it remains on until the bit is reset as a result
of a new page measurement process.

At periodic intervals, based on task switches or a set time valué,
the status of the in-use queue frames is adjusted. This process
involves the migration of all unreferenced page frames to the
next lower queue and all referenced frames to the highest level
queue. Page frame migration enables the low reference level
frames to move to the lowest level queue and eventually enables
their replacement. 0S/vS1 uses a single stepwise downward
bubbling mechanism to the lowest level of the queue, and a direct-
jump upward mechanism to the highest level queue for all
referenced pages. Because this mechanism keeps the referenced
frame on the queue for a longer period of time, the critical effects
of input/output operations on paging performance are re-
duced.

When a referenced page is not contained in real storage, the DAT
hardware facility turns control over to page management. Page
management immedicately attempts {o free the necessary frames
from the available queue. A request to page management is
frequently for a number of frames. If an adequate number of free
frames is available, the request is immediately satisfied. If there
are not enough frames to satisfy the request and to maintain an
adequate threshold, the page replacement routine is entered. The
page-frame-release request formula is applied as follows:

R=A+H-C

where

R is the release request amount
A is the page allocation request

H is the high threshold on available page queue (The formula
uses the high threshold to reduce the number of entries into the
page replacement algorithm.)

and

C is the available page frame count

WHEELER IBM SYST J

This calculation provides the number of additional page frames to
be released to maintain the available queue at an acceptable
level. The page replacement routine interrogates the low usage
queues to determine the frames that may be freed. Page frames
with their reference bits turned off can be released to the avail-
able queue. If a change bit is turned on, the frame must first be
moved to the output queue, where it is placed on the external
page storage. Unchanged frames are moved directly to the avail-
able queue.

Refering again to Figure 2 and Reference 14, an entry in the page
measurement routine moves all frame addresses to the next lower
level queue, where n — 2 is the lowest possible level. All frames
that have been referenced are moved to or remain on reference
level n in the queue structure. (This includes frames A1, B4,
B8, C1, B7, D2, D4, A2, B6, C6). The reference bits are reset
to 0 on all frame indicators on the n queue, so as to maintain the
stepwise downward bubbling movement. The change bit is not
modified at this time, nor is the reference bit pattern on the log-
ical fix queue altered.

Since the lowest activity queue contains the Least Recently Used
(LRU) frames, the process of page release concentrates on the
low-activity queues by moving in a right-hand scan in the ex-
ample, from the lowest to the highest queue. Once again, Figure 2
shows that frames DO, C2, B1, D6, AS are currently available on
queue n — 3 and are thus available for release if required. If we
establish the low threshold as 3 and the high threshold as 6 for the
available queue, any request that causes the number of available
frames to fall within the threshold range causes the page release
routines to be entered. The frames on the output queue are
moved directly to the available queue when an output comple-
tion is returned, and the change bit is reset to 0.

A detailed study of the hit ratio function during the develop-
ment of 08/vS1 has enabled the developers to build a number of
mechanisms into the system to resolve potential performance
problems. Of these mechanisms, task deactivation is the most
dramatic, and, therefore, it should be discussed. The page release
routines normally scan only the low activity queues. If an in-
adequate number of frames can be obtained from the low ac-
tivity queues, then the task deactivation routine is entered. Parti-
tions are then deactivated one at a time to make their frames
available for additional page requests. Since partition pages are
scattered throughout real storage, task deactivation frees up
frames throughout real storage. Partitions are deactivated from
low to high order of priority,'® as defined by the installation Sys-
tem programmer.

Deactivation controls excessive paging rates known as thrashing,
a vexing problem in paging systems that is caused by hypercon-

NO. 3 - 1974 08/vS1 CONCEPTS AND PHILOSOPHIES

task
deactivation

task
reactivation

input/output
supervisor

220

tention for available real storage. The end result of thrashing is a
very high page 1/0 rate. Thrashing often occurs when a program
runs with reduced system capability. Deactivation reduces con-
tention by reducing the number of active tasks when a task
threshold level is detected. Severe contention is thus eliminated
and performance is maintained at an adequate level for a minimal-
Iy reduced number of tasks. As a guide to understanding paging
behavior, Denning discusses a three-way relationship among
program behavior, paging algorithms, and system hardware
configurations.”

The opposite performance problem is that of an insufficient
number of active partitions. In this case, fask reactivation rou-
tines must be entered in time to permit a properly balanced range
of cpu loading. Periodic checks are made to determine the avail-
ability of resources for task reactivation and to maintain a proper
CPU load balance.

These checks are based on analyses of available pages versus
minimum required page partition activation. Deactivated parti-
tions are reactivated in order of decreasing priority (with highest
priority first) when a task switch occurs. 0S/vS1 has expanded
the facility by which a user installation monitors and controls
some of the deactivation parameters that enable an operator to
force the activation of particular partitions. PAGETUNE is the
command that allows a system programmer to control certain
values used in the paging algorithm, including the following
categories:

e Alteration or suspension of the deactivation function.

e Alteration or suspension of page measurement functions.

¢ Alteration of the timing and paging criteria used by task de-
activation.

e Display alterable values.

Excluded from deactivation are the following categories:

e System functions necessary for continuous execution, since
their deactivation stops the system.
Jobs executing in the virtual-equals-real mode, since the
required real storage is defined as not available to paging.
The last active user job, since this is the object of system
execution.

e Pages currently in a locked condition.

In summary, the page management routines play a vital role in
the achievement of an installation’s goals. The adequate allot-
ment of storage to these routines is therefore extremely im-
portant.17

Automatic address translation is not performed on channel com-
mand word addresses of the System /370 channels. Since the ad-

WHEELER IBM SYST J

dresses are virtual addresses, they must be converted to real
addresses before program execution can take place. In 0S/vSi,
the input/output supervisor performs the additional address
translation. Moreover, certain information must be fixed in real
storage to avoid page contention during an operation.

Thus, in the normal execution of an I/0 request, the 1/0 super-
visor first fixes the frames that contain fields for tables, buffers,
and work areas. Since short term fixing is part of the 1/0 execu-
tion, the 1/0 data fields need not be totally contained within main
storage, but are brought into main storage by the interaction be-
tween page management and the 1/0 supervisor. When this in-
formation is fixed in storage, the real addresses are placed in the
appropriate locations in the channel control word. The START 1/0
instruction is issued to a single channel command word or to a
chain that contains real addresses that are located in protected
system storage. Upon the completion of the 1/0 operation, the
fixed frames are unfixed and returned to the normal processing
queues. Since the address of the real channel control word chain
is different from the virtual address (that has been built by Data
Management), self-modifying channel command words do not
execute in a virtual partition.

To provide a capability to run real-time or self-modifying channel
programs, OS/vsl provides a mode of operation known as
virtual = real (V= R). In this mode, the address space that is as-
signed to a job step is placed in contiguous real locations below
the user-designated V = R line." For a given program, the size of
the V = R area is specified on the REGION parameter of the Job
Control Language, and it represents the actual size of the pro-
gram to be executed. Since the V = R area must be totally con-
tiguous, the job step execution waits for an unused contiguous
space to be freed. As soon as, the job execution is initiated, the
address space is not available for paging, and the real job is not
deactivated.

Although the DAT feature is in use during the execution of the
V = R job, the address translation is the identity translation for
the CPU program. Channel programs are not translated.

The virtual = real address space permits the execution of highly
time-dependent programs and self-modifying programs. In ad-
dition, certain high 1/0 activity job steps may be run in V = R
mode to avoid channel command word translation. It is apparent,
however, that the effect of V= R on real storage may be to ad-
versely affect other areas of the system.

The storage management algorithms of OS/MFT have been modi-
fied to use virtual address space, by having a page supervisor

MO, 3 - 1974 05/vS] CONCEPTS AND PHILOSOPHIES

virtual =
real

storage
management

protection

assume the role of real storage management. It was recognized
early in the design of 0s/vS1 that the relatively large addressing
capability of virtual storage could be used to make many of the
options of OS/MFT resident in virtual storage. Figure 3 shows a
number supervisor options that have been made resident through
the paging capability. Conversely, many formerly main-storage
resident routines can now be loaded into pageable system
modules, thereby reducing contention on critical real storage and
still permitting ready access to the routines. As a result, portions
of the control program as well as many critical control blocks
have been placed in protected portions of virtual storage, thereby
making 0S/VS1 more secure than its predecessors.

0S/vsl has a protection system that is based on keys that provide
security of one partition from another. The keys are transparent
to the user and are maintained by the storage management por-
tion of the supervisor. The addition of the Authorized Program
Facility (APF) further enhances the system security capabilities
by controlling access to the system and to user functions. A num-
ber of services thus fall under the protection of installation
management on a job step level. Similarly, the System Queue
Space (5QS), which had become a critical resource in OS/MFT, has
been broken into the following four portions that depend on the
area of required information:

Fixed System Queue Area (SQA) is a permanently fixed table
space (adjacent to fixed resident supervisor space) and is
used for the execution of system functions. The size of sQA
is initially established during system generation, but it can be
extended or contracted, depending upon its level of usage.
Examples of SQA usage include translation areas for real
channel command words and tables oriented to task execu-
tion, such as, enqueue and dequeue (ENQ/DEQ) control blocks.
Pageable system queue area is an area used by system tasks
for their pageable storage requirements.

Fixed Partition Queue Area (FPQA) is a permanently fixed
area, generally of 2K bytes or less, that is used primarily for
partition page tables and for other tables that are used for par-
tition management. Such tables cannot be paged for reasons
of reliability and integrity.

Pageable Partition Queue Area (PPQA) is a protected portion
of each partition that contains tables that are used for parti-
tion management, and its paging has little impact on system
performance.

There is a main storage resident nucleus of the 0S/vS1 supervisor
that is brought permanently into real storage during execution of
the Initial Program Load (IPL) to perform the normal control
program functions. Strict control should be exercised over the
generation of such a nucleus in small systems so that an adequate

WHEELER IBM SYST J

Figure 3 OS/VS1 storage map

Low HIGH
ADDRESS ADDRESS

PARTITIONS PAGEABLE SUPERVISOR

b}

9

JOB ENTRY SUBSYSTEM 1
PAGEABLE SYSTEM QUEUE AREA

UNPAGED SYSTEM | VIRTUAL=REAL RESIDENT ERROR RECOVERY
SUPERVISOR | QUEUE STORAGE DUMP AREA

NUCLEUS AREA RESIDENT REENTERABLE ROUTINES
1/0 SUPERVISOR TRANSIENT AREA
DUMP AREA

PAGEABLE STORAGE AREA

amount of real storage remains for the paging process. Caution
should be used to avoid the generation of unnecessary resident
options.

A maximum of fifteen user partitions may be defined in 0S/vS1
with each partition in 64K byte increments of virtual storage. In
addition, up to thirty-seven system task partitions may be de-
fined. Priority is determined by the partition in which each task
resides, wherein partition priority is entered into the system by
the CLASS parameter on the JOB card. Normally, system support
modules, such as datda management, are located in the user’s
partition. A user may define a resident re-entrant load module in
a pageable resident re-entrant routine area for space and per-
formance considerations, and he may similarly use the partition
definition as a means of controlling performance.

We have discussed the major areas of change made necessary by
the dynamic job relocation function. Dynamic task dispatching
has also changed the system task dispatching techniques, so as to
prevent a CPU dominant task from overriding 1/0 task dispatch-
ing. The calculation of dynamic dispatching priorities has aided
performance in some cases by using a time slice algorithm to
classify and order tasks.

The 0S/vS1 scheduler, as the earliest implementation in the
0S/vs1 relocation environment, has been especially packaged in
certain portions to optimize the programming of virtual storage.
The value of reducing the number of branches and of clustering
the subroutines in the job scheduler has a demonstrable effect
on optimization.

Job scheduler

We now investigate the major areas of change in the job schedul-
er. Based on the need to support expanded supervisor functions
and the ability to take advantage of dynamic relocation, a

NO. 3 - 1974 08/VS1 CONCEPTS AND PHILOSOPHIES

central
queue
manager

number of design decisions have changed much of the OS/MFT
job scheduler. These decisions include those to repackage
modules and to make major algorithmic changes within the job
scheduler framework. Many of the changes improve user ac-
cessiblity to the system and remove performance bottlenecks.
Other decisions, such as that of rewriting the job initiator, are
intended to provide performance improvements. Individual
module repackaging attacks local performance problems; 1/O
load balancing provides performance improvement to specified
areas. The end result is a faster and more usable job scheduler,
a strong base for the total system.

The support scope of the dynamic relocation function could
have limited the scheduler changes to control card modifications
and some internal changes in the Program Status Word and Set
System Mask areas. It was recognized, however, that additional
benefits could derive from tailoring the 0s/vst job scheduler to
make use of dynamic relocation. The OS/MFT job scheduler uses
the two basic options of small partition scheduling and normal
job scheduling to provide program scheduling. Investigation
demonstrated that performance and maintainability improve-
ments would result from changing the scheduler to execute in
a 64K byte virtual partition. Dynamic relocation thus alleviated
the need for small partition scheduling, and, as a result, jobs can
be scheduled into available partitions of their requested class.

Portions of the OS/MFT job scheduler, such as termination rou-
tines, were in part repackaged and in part reprogrammed to bet-
ter support dynamic relocation. This was done by moving high-
usage subroutines in line so as to avoid excessive paging activity.
In addition, a regrouping of tables that is based on reference
rate and location of reference has further reduced paging ac-
tivity.

The initiation portion of the 0S$/vS1 job scheduler has also been
rewritten to provide faster and consolidated job initiation. More-
over, the initiator has been tied to the interpreter instead of the
reader as a part of the Job Entry Subsystem 1 work."

These changes do not affect the basic execution order of the job
scheduler. However, other enhancements have modified the
functional structure of the 0s/vsi job scheduler, although the
outward interface has been maintained.

We now consider some of these major enhancements to the 0s/
VS1 job scheduler in detail. An early analysis of job queue usage
indicated the need for a redefinition of the contents and structure
of the central queue manager. The OS/MFT Job Queue Data Set
(SYS1.SYSJOBQE) contains various forms of job control informa-
tion in addition to the actual job queue. Access to this queue is

WHEELER IBM SYST J

spread through a number of in-line routines to 176-byte chained
records. As a better reflection of virtual storage 0S/vS1 has re-
tained the 176-byte queue records, but has broken the job queue
into a number of specialized data sets that include the following.

Job Queue Data Set (SYS1.SYSJOBQE) retains the name of the
OS/MFT data set, but it is much smallerin size. The SYS1.SYSJOBQE
format is specified when the system is generated and is altered
during system start if desired. Relevant information created by
the reader, interpreter, and initiator is stored in this data set.
Disk entry records and accounting records are placed on the
data set according to class and priority. When jobs terminate, an
entry is made for SYSOUT information, according to class. The
jobe queue information is deleted, following the processing of
last SYSOUT record. The Job Queue Data set is dynamically ex-
tendable in 0S/vS1 Release 3.

Scheduler Work Area Data Set (SWADS) is created when an
initiator is started on a partition basis. A SWADS contains the
scheduler work tables that are created and maintained throughout
the scheduling routines. Since the SWADS are allocated on a parti-
tion basis, the file can be accessed in parallel by each partition.
In 0s/vS1 Release 3, SWA can reside in virtual storage.

Spooling Data Set (SYS1.SYSPOOL) contains the Job Control In-
formation, commands, and input data from the JES1 input reader.
On the output side, the Spool Data Set contains output and mes-
sages related to each job execution.

We now discuss the relationship of the spooling data set to the
Job Entry Subsystem. It is apparent that the division of queue
information into a number of parts has reduced contention
problems. The incorporation of an embedded spooling capability
into 0S/vs1 is one of the broadest functional changes to the 0S/
vSt job scheduler. The Job Entry Sybsystem [(JES1) incor-
porates a high-speed spooling mechanism into a pageable
centralized routine for scheduler usage. JES1 is so structured that
apart from a page that is fixed in real storage for a long time after
the Nucleus Initialization Program, JESI is pageable, all or in
part, depending on its frequency of use.

The normal introduction of a job stream to 0S/vSt is through the
JESI input reader. The Job Entry Peripheral Services (reader and
writer) handles all the system input (SYSIN) and output (SYSOUT).
The JES1 reader is designed to read job control statements and
data, which are passed immediately to the appropriate data sets
owned by the Spool Manager. This action changes the sequence
of interpretation so that the Job Control Language JCL) interpret-
er in OS/VSt runs as a subroutine of the initiator. Delayed in-
terpretation can be prevented by entering a new parameter

1974 0s/vs] CONCEPTS AND PHILOSOPHIES

pageable
job entry
subsystem
(JES1)

remote entry
services

TYPRUN = SCAN on the job card. In this case, a diagnostic error
scan is performed as the job passes through the reader. When the
errors have been corrected, the job must be resubmitted.

A minimum of input scanning is done by the JES1 reader before
the input is submitted to the Job Entry Central Service routines.
An internal job identifier is assigned at this time, which is a com-
bination of the user job name plus a unique system number. The
central service routines separate the input from the JCL and write
both to the SYS1.SYSPOOL data set. Similarly, in-line proce-
dures and entries from the procedure library (SYS1.PROCLIB)
are placed in a special procedure SPOOL area.

Division into separate areas enables the JES1 routines to mini-
mize disk-access contention and improves system performance.
JES1 maintains an information directory to allow rapid retrieval
from all areas of the spool file. ’

The JES! reader for card devices does not terminate at the end of
file as in OS/MFT. This facility has become known as a hot reader
facility because it reduces operator intervention and reads data
into the computer more quickly. Another advantage of the JESi
readers and writers is the single re-entrant copy that is maintained
in the pageable system area to assure user access to all partitions.

The JES1 output writers reside in the JESI portion of the pageable
supervisor. They write the output data sets created by problem
programs as well as the messages created during the initiation /
termination tasks. The user may specify the number of writers,

each of which may hold up to eight classes of data. In addition to
the output of JES1 writers, the user may decide to send his output
directly to output devices by means of the direct system output
writer. Unlike the JES1 writers, the direct system output writers
reside in a problem-program partition.

To provide greater flexibility of use, the JES1 options and default
values (parameters) are stored in the JESPARM member of the
parameter library (SYSI1-PARMLIB). JES1 options and default
values may be modified during the Initial Program Load (PL)
process. This capability is used for modifying the number and
size of the JES1 buffers, and it greatly reduces the need for new
system generation.

An important extension to the job entry environment is that of
Remote Entry Services (RES), which provide a logical terminal
extension of job entry by using the Remote Terminal Access
Method (RTAM) to drive batch terminal devices. RES permits
jobs to be routed from remote work stations, and permits the
output to be returned to the same or different work stations.

WHEELER IBM SYST J

Since RES is a true extension to JES1, RES commands are identical
to those used by the local JESI support. Additional optional data
sets have been added that permit the proper authorization and
storage of broadcast information. RTAM is the only portion of
RES that is not present unless specifically generated.

Since the RES design is totally integrated into the JES1 structure,
RES is treated as a logical extension of the JES1 reader and writer,
and communicates to the system in the same manner as the
reader and writer.

Concluding remarks

One of the major concerns of users of virtual storage systems has
also been a major objective of system designers, that is, ease of
moving programs from OS/MFT systems to QS/vVS1 systems. Dis-
cussed in this article have been supervisor and job scheduling
operations that make such a move possible, whereby programs
remain wholly or largely intact. The major innovation of virtual
storage systems is that of dynamic relocation. Effects of dy-
namic job relocation on the supervisor and the job scheduler
have been discussed.

Some functional aspects of the 0S/vVS1 system generation
(SYSGEN) process have also been related to the supervisor and
job scheduling functions. SYSGEN in 0S/VS1 is a simplified derivi-
tive of that in OS/MFT.

As in the case of SYSGEN, the operator interface to QS/vVS| is sub-
stantially the same as that to OS/MFT.

Aspects of the 0S/vsi control program have been discussed.
Many of the OS/MFT optional control program functions have
been incorporated into the 0S/vs1 control program portion of the
pageable supervisor space, and have thus been removed from the
option process.

Because of the extended directly addressable storage (virtual
storage), the movement of programs to OS/VS1 systems is simpli-
fied. Virtual storage largely removes problems of storage manage-
ment and the overlaying of application program substructures in
moving from OS/MFT to 0s/vs1. When designing and coding new
applications, dynamic relocation provides system enhancements
for improving performance in those cases.

CITED REFERENCES AND FOOTNOTES

1. S.J. Shields, “How one company went to VS,” Computer World, January 23,
1974 and January 30, 1974.

1974 08/vs] CONCEPTS AND PHILOSOPHIES

. J. Fotheringham, “Dynamic storage allocation in the Atlas computer. in-
cluding an automatic use of a backing store.” Communications of the ACM
4, 10, 435-436 (November, 1961).

. M. Joseph, ‘““An analysis of paging and program behavior,
Journal 13, 48 - 54 (February 1970).

. R.J. Adair, B. V. Bayles, L. W. Comeau and R. J. Greasy, 4 Virtual Machine
System for the §/360/40, TR 320-2007, IBM Scientific Center Report,
May 1966. May be obtained from the [BM Scientific Center, 545 Technology
Square, Cambridge, Massachusetts 02139.

. G. E. Hoernes and I.. Hellerman, “An experimental S/360 /40 for time
sharing.” Datamation 14, 39 -42 (April 1968).

. S. E. Gluck, “Impact of scratchpads in design: Multifunctional scratchpad
memories in Burroughs B8500,” A FIPS Conference Proceedings. Fall Joint
Computer Conference 27,661 ~666 (1965).

. F. B. MacKenzie, “Automated secondary storage management.,” Datama-
tion 11, 24 -28 (November 1965).

. In the early design of OS/VS1, it was decided to treat the scheduler as the
first user of dynamic relocation and to optimize critical routines accordingly.
Some useful references to optimization are the following:

”

Computer

¢ G. S. Shedler and S. C. Yang, “Simulation of a model of paging system
performance,” IBM System Journal 10,2, 113128, (1971).
L. W. Comeau, “A study of user program optimization in a paging sys-
tem,” ACM Symposium on Operating System Principles, Gatlingburg,
Tennessee (October 1967).
J. E. Morrison, “User performance in virtual storage system,” /IBM Sys-
tems Journal 12,3,216-237 (1973).
D. R. Slutzand 1. L. Traiger, A Note on the Calculation of Average Work-
ing Set Size, IBM Technical Report, R} 1209, April 27, 1973, may be
obtained from the IBM T. J. Watson Research Center, Y orktown Heights,
New York 10598. (To be published in Communications of the ACM.)

. Discussed in the article by J. G. Baily, J. A. Howard, and T. J. Szczygielski
in this issue.

. Discussed in the article by D. G. Keehn and J. O. Lacy in this issue.

. OS/VSIland DOS/VS use a 2.048-byte page and page frame size. TSS/360,
0S/VS2, and VM /370 and a 4,096-byte page and page frame size.

. L. A. Belady groups replacement algorithms into the following three classes
in his article “A study of replacement algorithms for a virtual storage com-
puter,” IBM Systems Journal 5,2, 78 - 101 (1966):

Class 1 for storage blocks that are equally referenced but with no algoithmic
basis in storage usage: essentially a type of first-in-first out algorithm.

Class 2 for storage blocks that are classed by their most recent history: status
bits serve as prime movers.

Class 3 for storage blocks that are classed by an intensive history of pages.

. The hit ratio function applies to the optimal behavior of a page referencing
pattern. A high hit ratio indicates a high availability of the referenced frames.

. T. F. Wheeler, “IBM OS/VS1—An Evolutionary Growth System” Pro-
ceedings of the National Computer Conference, 395-400 (1973).

. P.J. Denning, “Thrashing: its causes and prevention,” AI'1PS Conference
Proceedings, Fall Joint Computer Conference 33, Part 1,915-922, (1968).

. PGFIX fixes virtual storage contents in page frames.

PGFREE frees page frames.

PGLOAD loads virtual storage into page frames.

PGRL.SE releases page frame contents.

For a more complete description see /BM Systems /370, OS/VSI Planning
and Use. Guide VSI Release 3, Form (GC24-5090-2, IBM Corporation,
Data Processing Division, White Plains, New York 10604.

. In an attempt to identify performance characteristics, Morrison (in Refer-
ence 8) identifies a number of interrelationships between working set and
parachor curves. Morrison defines a parachor curve as a graph of the total

WHEELER IBM SYST J

number of page exceptions that a program causes to access when paging
against itself in a fixed amount of real storage, versus the amount of storage
available to it for execution.

. The virtual = real line defines the upper limit of address space available for
contiguous allocation in blocks. The system default for V = R is the smaller
of either 512K bytes or the real main storage size of the computer mode. The
actual amount of storage available for the virtual = real mode varies with the
options chosen for the system.

. Job Entry Subsystem is based to a large degree on technology that has
evolved from the Houston Automatic Spooling Package system (HASP),
which was developed for OS/MFT and OS/MVT.JESI incorporated many
of the mechanisms of HASP directly.

0s/vsl CONCEPTS AND PHILOSOPHIES

229

