Discussed is a data base audit trail. 1t is defined here to be a
generalized recording of “who did what to whom, when, and in
what sequence.”’ This information is to be used to satisfy system
integrity, recovery, auditing, and security requirements of ad-
vanced integrated data baseldata communications systems.
This paper hypothesizes what information must be retained in
the audit trail to permit recovery and audit later in time and a
scheme of organizing the contents of the audit trail so as to
provide the required functions at minimum overhead.

Introduced are the concepts of types of audit required, DB|DC
audit assumptions, time domain addressing, time sequences re-
quired to support versions of data, what constitutes an audit
trail, and implementation considerations.

Generalized audit trail requirements and concepts for data
base applications

by L. A. Bjork, Jr.

Auditing of a data base/data communication (DB/DC) application
is defined as the act of monitoring the application for compli-
ance with accounting rules and practices. Auditing an applica-
tion is essentially certifying the integrity of the system by verify-
ing that rules and policies dictated by laws, business agreements,
etc., are being followed by the application.

There are three basic objects of interest for audit in a DB/DC
environment, namely:

e The user —who entered what data from what terminal, etc.

e The program—on a given execution of a program what ver-
sion was used, what branches were taken un-
der what conditions, etc.

e The data— what was a particular field value before a specific

transaction updated it and what was its value after
update.

These objects and their interactions are usually identified as be-
ing within a common boundary for each invocation of the pro-
gram, This common boundary is identified by a transaction
name which usually serves multiple purposes within the system
such as scheduling, recovery (backout), and auditing.’

NOo. 3 - 1975 AUDIT TRAIL REQUIREMENTS




Figure 1 Major types of audit In advanced DB/DC systems, more manual processes and appli-
IN-PROCESS POST-PROCESS cations will be computerized. The audit support must be com-

L mensurate with the support to automate new processes. Other-

TRANSPARENT wise, the inability to audit will limit new applications from being

Al A2

NOT
TRANSPARENT A3

]
1
l
1 committed to an unauditable computerized environment.
I
!

Also, in advanced systems, commitments will be made more at
terminals using on-line data, rather than after verification of the
results of a batch run. This means that the audit function, e.g.,
recording of audit trails, the verification-of-results function, etc.,
must be system-supported to the same level as the dependency
being placed on the on-line data by the terminal user.

Finally, in advanced systems, the sequence of processes inter-
acting with the data base is less repeatable in an on-line interac-
tive environment than in a batch environment. This sequence is
due to the random arrival of incoming transactions rather than
the preplanned processing sequence typical of batch processing.
Therefore, a generalized audit trail facility must be provided that
tracks data usage and captures the unrepeatable sequence of
processes during the execution of the process itself.

Aspects of auditing

Four major types of audit are of interest for advanced DB/DC
systems as shown in Figure 1. In-process signifies that the moni-
toring of the application and verification for adherence to speci-
fied rules are performed while the process being audited is in
execution. Post-process signifies that the recording of the audit
trail is performed concurrently with the process to be audited,
but the audit itself is performed after completion of the process.
Transparent or not signifies whether the process to be audited is
aware of the audit.

The four types of audit as seen in Figure 1 each have the follow-
ing characteristics.

Al is where the audit is being performed in real time transpar-
ently to the on-going process being audited. Examples of Al
are: (1) the auditor introduces test transactions into the system
and verifies the process being audited by analyzing the outputs
based on specific inputs, (2) two asynchronous processes with
one monitoring the other at defined audit points, and (3) full in-
terpretation with the audit process being the interpreter of the
process being audited.

A characteristic of A1 is that the audit function, in addition to
being transparent to the on-going process, does not alter the

course of the process. That is, the audit is usually not in-line

BJORK IBM SYST J




with the day-to-day accounting practices of running the enter-
prise. If an in-process audit finds a violation of accounting prac-
tices, the usual procedure is not to stop the audited process but
rather to have the person or group responsible for the erring
process fix it and then issue adjustments to the incorrect out-
puts.

Additionally, A1 has the characteristic of not requiring an audit
trail (not for audit purposes but may require one for other
purposes) since the auditing function is performed in-process.

A2 is an “‘after-the-fact” audit in which a process or person
looks back in time at the effects, actions, algorithms, etc., of an
earlier process. This type requires a recording of a great deal
more information than an audit may actually require and use
since all the earlier processing is rarely audited. A sampling
technique usually chooses which subset to actually audit out of
all recorded data.

A3 is an in-line audit of the application’s process. What audit
rules, when to apply them, and their results must be preplanned
as part of the application. A3 is different from A1 in that the audit
rules in A3 cannot be changed without reprogramming the pro-
cess. An example of A3 is the application displaying certain data
(to an auditor) when a specific transaction type or instance is
encountered.

A4 is the case of the process to be audited explicitly saving
what is required for an audit of the process later in time. A4 is
typically used in the debugging mode in which the debug tools
(e.g., trace, storage dumps, etc.) are invoked in-line for analysis
later in time. The data saved may also be used for recovery pur-
poses such as determining what the initial values were during
process execution.

In developing general audit trail concepts, certain assumptions
were made regarding the audit environment of advanced DB/DC
systems. These assumptions are summarized below.

1. Auditing application systems must be permitted by the fol-
lowing classes of objects: (a) application transaction levels
(where one level may be nested within a higher level), (b)
procedure, (c) data type —fields, records, files, (d) user, (e)
terminal, and (f) any Boolean combination of the above.

. The auditor requires the system to retain for addressability
later in time (after process completion) the following
(maximal case): (a) identity of transaction by occurrence,
{b) name and version of procedure, (¢) name and version of

No. 3 + 1975 AUDIT TRAIL REQUIREMENTS

DB/DC
audit
assumptions




interpreter (e.g., 05/360, version 21), {d) name and version
of transaction input by field (where a new field version is
created by each transaction changing the field value), (e)
name and version of transaction outputs by field, (f) time
stamp unique with respect to sequence, (g) sequence flow
between related transactions (predecessor and successor),
(h) user submitting originating transaction, (i) terminal
and/or node in network that originated transaction, and (j)
operations, and sequence of operations, within a transaction
on the inputs and outputs.

. The act of auditing must be capable of being transparent to
the process being audited as well as to what is audited.

. The act of establishing and activating audit hooks must be
capable of being dynamic (as well as static) and performed
against an on-going process without logically interrupting
the process.

. The system must support “transparent event descriptors”
whose content defines the conditions under which a record-
ing is to be made for later audit and recovery purposes.
Examples of what the descriptor must contain are: (a) pro-
cess to be audited, (b) when (time), (c) what data and val-
ues, (d) what operators, and combinations of data and oper-
ators, (e) what level and sequence of transactions are to be
audited, and (f) what information to record when the event
is either true or false.

. The audit function (detection and recording) must not be
disabled for that period of time for which auditability will
ever be required later in time.

. The audit support must provide for the tracing of a se-
quence of transactions across the man-machine interface.

. The audit support must fulfill the ‘“‘after-the-fact” recon-
struction and repeatability legal requirements on a data base
of the anticipated laws in the time frame of the later 1970s
and 1980s. That is, the interactions between processes and
data and the consequences thereof must be traceable.

. The system must support the acts of audit event detection
and recording of the captured data. In a data-independent
environment, the sharing of a physical resource must be
transparent to an application program.

. The system support for the audit function must be standard-
ized across application systems —not a special audit facility
for each application subsystem.

. The auditor must be able to use the same terminology and
names for an “after-the-fact” audit as were used during the
process itself. Examples are: (a) field names and (b) pro-
cedure names.

. The auditor (by command and procedure) requires the fol-
lowing type of update capability by version of field. (This
requirement assumes the system has retained prior versions
of fields.)

IBM SYST J




3

¢ The ability to logically supersede the ‘“now’ (most re-
cently recorded) version (a) prior to any dependent use
(i.e., use for the purpose of making a decision) by another
process and (b) after dependent use by another process.
The requirement is recursive in that multiple logical super-
sedures must be supported.
The ability to logically supersede an earlier version later in
time (a) prior to any dependent use of the earlier version
and (b) after dependent use of the earlier version. This re-
quirement is also recursive.

13. The installation must be able to control or choose between
cost/performance tradeoffs for functional support of the de-
tection and recording of audit events and information.

Definition of an audit trail

The preceding discussion has sought to present the environment
and requirements of a generalized audit trail for advanced DB/DC
systems. This section defines and characterizes such an audit
trail.

Our definition of an audit trail is: A history of activities by
transaction, posted because of operations on specific data; oper-
ations are those functions that are defined as events {via trans-
parent event descriptors) to be noted in the audit trail as a con-
sequence of a particular interaction with the data base. For
example, operations might be updates as is required for simple
backout or may include references to data as well to be used for

scoping the bounds of propagated errors (see Reference 2).

Figure 2 shows the traditional representation of a data set con-
sisting of one stored record type comprised of n fields containing
m stored record occurrences. On a two-dimensional graph, the
fields are denoted on the horizontal axis, the record occurrences
are represented on the vertical axis, and an (i, j) coordinate se-
lects the value of field i from record j. This two-dimensional set
of values represents the set of “now” or current values of all
fields in all stored records in the data set.

An audit trail concept adds the time dimension as a third coordi-
nate to Figure 2. Figure 3 shows the time dimension with the
“now” values being the closest to the origin and prior values
(versions) going chronologically back through time as one tra-
verses the time coordinate. To locate a unique value, an (i, j, k)
coordinate must be specified where i is the field name (assumed
unique through all versions of values), j is the unique stored
record identifier (also assumed unique through time), and & is
the point in time for the desired value. If, in addition, supple-

1975 AUDIT TRAIL REQUIREMENTS

Figure 2 Stored record
rences

occur-

(FIELDS IN STORED RECORD)

graphical
definition of
audit trail




Figure 3 Time domain addressing concept

SET OCCURRENCES —_—— —_———
am /1 /1 t6w /)
- —

- ———

/77
bt e o /
=l
iy

-

7/

/IME(k) FIELDS (i)

. f(ijk) IS FIELD i, VERSION k (WHERE k-1 PRIOR VALUES HAVE BEEN PREVIOUSLY RECORDED) WITHIN SET OCCURRENCES
IDENTIFIED BY id (j).

. ids ARE UNIQUE WITHIN SET THROUGH TIME.

. VALUES OF UNCHANGED FIELDS ARE LOGICALLY REPLICATED FROM VERSION TO VERSION.

mental information is kept about each version of the field (who
created it, when, etc.), we have the complete audit trail concept.

Methodology of an audit trail

A proposal for an audit trail organization is presented to demon-
strate the feasibility of meeting the requirements that were de-
scribed in the first section. This example explains in a general-
ized implementation sense a typical sequence of operations on
“now” and “‘prior” field values. The following assumptions are
made:

¢ The audit trail event descriptor specifies that the operations
of create, reference, and update for field x are to be recorded
in the audit trail.
The time stamp is unique with respect to audit trail entries
per field.
The field name x remains constant for all generations of val-
ues of x.
The stored-record identifier remains constant through all
generations of nonidentifier fields.
For simplicity, the additional audit trail contents have been
ignored.

Following are the steps in the sequence.

BJORK IBM SYST J




A. Create a value for field x at time t,—Create x= 10 at ¢,. Only
the audit trail for field x is considered. The audit trail consists
of two parts: the “now” value and the history of prior activities.
The “now” value is the latest version of field x and contains (in
this example) only the value. Each history (audit trail entry)
consists of a four-way relation (v, ¢, op, p) where v is the value
at time ¢, op is the operation that caused the audit trail entry and
p is a set of linkages to prior audit trail entries. Thus, the audit
trail contains:

10/ (10, 1,,C,~)

where | separates the two parts into the “‘now” value and the
history of former values. C denotes the create operation.

Also note that the ‘“now’ value 10 is associated with the most
recent (and only) audit trail entry.

B. Reference x—Reference x at time 7,. Note that the version of
x is assumed to be the “now’ value since no “as of”’ time is
specified. The audit trail, after the reference, appears as:

10[(10, 1,, R, | }(10. 1,, C, =)

] 0’

where the underscore arrow is the real-time sequence of opera-
tions on field x.

C. Update x—Update x to 12 at time ¢,.
12|1(12, 1,, U, )(10, ¢, R, ) (10,1, C,—)

D. Refer to prior generation—Refer to x(¢,) at time ¢, This
reference is to a prior version of the value, namely ¢, being asked
at time ¢,. The value of x returned is 10.

}
12/(10, t,, R,l)(12,t2,U, ) (10, 1,, R, )(10. ¢, C,—)

l L% [

The overscore arrow indicates which generation of x was ref-
erenced as contrasted with Step B, above, where the assumption
was the “now” value. This linkage gives the capability to record
references to prior values in the same audit trail as references to
the “now” value.

In effect, this is a two-level audit trail: the first level is the audit
trail of activities of the “now” value; the second is the audit trail

- 1975 AUDIT TRAIL REQUIREMENTS




of the first-level audit trail (the activities “now” against the
“then”” now values).

The underscore linkage from the “now” value, 12, to the 1, au-
dit trail entry is required to provide addressability to the supple-
mental information recorded when x was updated to 12. In other
words, the head of the push-down stack shows activity on a
prior generation of x, not the “now” value.

The motivation of having the “now” value be a separate part of
the audit trail is to provide compatibility with today’s data set
formats. Also, the content is selected by the data base adminis-
trator. The audit trail may reside on different devices and be
accessed by different access methods compared with the “now™
values.

E. Update a prior generation of x— Update x(z,) to 25 at time
t,. This is the case of updating an earlier generation of x when an
error has been detected “‘after the fact.”

|
|
12|(2i5, 1, U, (10, 1, R, )(llz, t,, U, )(10,¢, R

L]
| ]

The ¢, audit trail entry now indicates that the update to x at ¢,
has been superseded by the ¢, entry.

)(10, ¢, C, —)

I

At least two cases of error propagation are apparent. The first
involves a blind fix wherein the value of the record or field is
changed as specified independently of subsequent usage. The
second case is an application-dependent repair to later-genera-
tion values —such as adding the increment 13 to all generations
of x after ,.

It is the responsibility of the user of the audit trail interface to
take the necessary corrective action to repair later values and
determine who depended on the incorrect values. The “who” is
omitted in this example.

The security controls required to prevent unauthorized usage of
the audit trail are assumed to exist but not addressed in this

paper.

The problem that now arises is: who gets to see either the uncor-
rected version of x at time ¢, or the logically updated version of x
at time #, as it should have been at time ¢,? The auditor or per-
son using the audit trail for debugging purposes may want to see
the real history of activities. Otherwise, an application program
may want the logically correct value at time 7, (x =25). One

BJORK IBM SYST J




way of solving this potential ambiguity (which has always
existed) is to have a “user intent” code in the interface denoting
intended audit trail usage of this particular user.

F. Concept of a cutoff period— A cutoff period is a distinct real-
time interval in the time-ordered sequence of audit trail entries
that has been useful to record in a catalog. The time intervals
may be (1, 7,) and (z,, ,) in the above example (e.g., t, = April
1, t,= January 1). The cutoff periods will generally be chosen to
coincide with some legal or accounting date requirements such
as end-of-month or end-of-year. A cutoff period permits the
user/system to have multiple entry points to the time-ordered
sequence of audit trail entries. Without a cutoff period concept,
a sequential scan is implied from the latest activity of the field
serially back through time through all preceding activities until
the desired field generation is found. A cutoff period concept
implies better performance by permitting the user/system to
choose the cutoff period entry point to the audit trail that is later
than and nearest to the desired earlier value.

A cutoff period is also useful in the area of data purging and
reduction. A simple purging algorithm might be to purge all audit
trail entries that are more than y years old, or created prior to
cutoff period 3. Or the data might be summarized such as aver-
age quantity-on-hand for the cutoff period 3. Purging is the pro-
cess of deleting audit trail entries and making their contents no
longer addressable under system control. (This is probably a
data reduction operation with the original data being retained for
X years).

A problem with the cutoff period concept is that operations such
as update in one cutoff period may be logically superseded later
in another cutoff period. Case E, above, is such an example.
One discovers later what the then ‘“now” value should have
been. One cannot simply go to that desired cutoff period and
start searching backward for the desired update (for example)
since a later cutoff period contains the logically corrected value
which, in turn, may have been still later superseded, etc. Each
cutoff period must be able, therefore, to have an indication of
whether its audit trail entries have been corrected logically in a
later cutoff period —and possibly which entry in which later cut-
off period.

Content and format tradeoffs of an audit trail

This section examines the detailed parts of an audit trail entry
and some of the format considerations and attendant tradeoffs.
Following is a list of candidates that have been identified as being

useful or required to be recorded in the audit trail.

No. 3 - 1975 AUDIT TRAIL REQUIREMENTS




The name of the data being operated upon. Whether or not the
name of the data is recorded explicitly in the audit trail is a func-
tion of the naming convention and scope of the audit trail en-
tries. The naming convention assumed in this paper is that the
data name remains constant for all versions of its values. If the
audit trail has a scope of many data sets and the same field can
appear in more than one data set, then obviously at least a two-
level naming scheme is required (e.g., data set name, field
name) . Both data set and field name can be factored out of each
audit trail entry and placed into a dictionary. The dictionary
would contain descriptive information, constant across a cutoff
period, such as data name, representation, version, etc., needed
to fully interpret the audit trail entries. In reality, an audit trail is
also needed on the dictionary to track name changes and syn-
onyms of a field.

Not addressed in this paper are the problems of a data name
being changed (or deleted) between generations, synonyms, and
how to know which name to use in the first place (as well as
what it means).

The new value after the operation. The new value is recorded
after the operation (as defined in the audit trail event
descriptor). The value prior to the operation is available as the
prior operation’s result. One possibility is that the prior value
and the new operation are recorded in the same audit trail entry,
thereby making the prior value immediately addressable. This
gives high-performance capability to the data restore of the orig-
inal value at the expense of redundancy of the value in the audit
trail.

Operation causing audit trail entry. This operation is the record-
ing of what interaction with the data caused the entry to be
made in the audit trail. Those that are ready candidates are as
follows: (a) Create or insert new data, (b) Delete data, (c)
Update, (d) Reference data for the purpose of commitment
(using this data as the basis of future actions), and (e) Refer-
ences for any reason (such as debugging purposes).

Time stamp. The actual time that the given operation occurs is
recorded. The granularity of the time stamp must be fine enough
so that no two operations have the same time stamp. Otherwise,
the real sequence of operations is not guaranteed reproducible.

The representation. The format of the field at the time of the
operation upon the value is possibly recorded. This provides the
capability of being able to change the field representation from
one version to the next. The audit trail interface could permit
viewing prior values through the “now” value’s descriptor (cur-
rent representation of the field). Therefore, a possible format

BJORK IBM SYST J




conversion is required when operating upon prior values. This
conversion would be transparent to the user of the interface. If
the representation is constant through all generations, as the
name of the data is assumed to be, the representation also may
be factored out of each audit trail entry and placed into a dic-
tionary.

Status flags for each generation. A status flag will optionally be
included (as specified by a descriptor defining what is to be
recorded) with each audit trail entry. Some of the usages of the
status flags might be:

a. Deleted value—On the delete verb, the status code is set to
the delete state. On retrieve, a no-data-found condition would
be raised.

. “Bad” data indicator— A program detecting a wrong or sus-
pected wrong value could set a parameter in the audit trail
interface that, in turn, would set the status flag to the “bad”
data indication.

. Audit trail entry superseded—This flag would indicate that
there exists another audit trail entry later in time that logical-
ly supersedes this entry (i.e., an adjustment exists to this
version). The cutoff period that contains the superseding entry
could be in a dictionary.

. Purge control parameters —Certain conditions may be indi-
cated in status flags such that when a purge routine scans
audit trail entries, it may automatically remove audit trail en-
tries from system control. The simplest case of automatic
purging may be the or-ing and/or and-ing of certain status
flags followed by purging when the result is true. For exam-

ple, when the value has been deleted or is older than three
years and entered by user x it could automatically be purged.

Program identification and version. The program identification
interacting with the data is recorded. If the program has multiple
versions, another table is hypothesized, in addition to the audit
trail, that contains the unique program identification in the audit
trail and which version of the program the identification corre-
sponds to.

Transaction identification. In a DB/DC environment, the unique
transaction identification must be recorded so that the scope and
unit of work is bounded and identifiable for reasons such as re-
source allocation, backout, etc. The sequence of transactions
(e.g., one transaction generates three transactions each of which
generate two, etc.) is also hypothesized to be recorded in a sep-
arate table for transaction history and later sequence reconstruc-
tion.

User identification. The identification of the user is required to
be recorded for recovery and audit reasons. A recovery use of

NO. 3 - 1975 AUDIT TRAIL REQUIREMENTS




audit trail
format

the user identification might be as follows. A user has depended
upon incorrect data and the data is corrected. The user must be
notified and a compensation recovery process undertaken. Veri-
fication of the recovery procedure would, however, still be an
audit function. It is especially important to record the user
identification when the commitments are between humans and
the computer discipline environment. (If a human used the erro-
neous data then to recover, the job cannot simply be rerun and
the person not told.)

Terminal identification. The terminal the user was at when he
entered the transaction is optionally recorded. in the audit trail.
The mapping from logical to physical terminals (if one exists) is
a separate table that also must be maintained through time.

Time sequence linkages. As indicated in the example in the third
section, at least two time sequences are recorded in the audit
trail. The first one is the real-time sequence of operations against
the data. By traversing this sequence from the latest time to the
entry of data creation, every operation on every version of the
data can be examined (assuming the event descriptors specify
all operations on the data to be recorded). The second sequence
is the correct logical value for each version of the data. This is
not the real “time of happening” sequence since an earlier ver-
sion value can be corrected later in time. We assume here that
the “now” values will be used more frequently than prior values.
Therefore, the time sequences will run backward through time
between audit trail entries starting with the “now’ value and
running backward to the first creation operation. The user of
prior values will incur more overhead than users of the “now”
values.

We now examine some of the considerations and tradeoffs in
designing an audit trail format.

Compatibility with current data set formats. As previously ex-
plained, the audit trail is considered another dimension to to-
day’s data sets with the ‘“‘now” value the top (and only) entry in
the conceptual stack. An audit trail format must be designed so
that existing data set formats continue to be satisfactory for the
“now” values, whereas future activity against the “now” value
is recorded in a new format. If this can be done, no migration to
a new format is required. Activity against the data set is re-
corded in a new format suitable for the audit trail requirements
(i.e., multiple time sequences), whereas the new “now” value is
preserved in existing data formats. Also, if no audit trail is main-
tained for a data set, then no changes (e.g., copy) are required
for existing data sets.

BJORK IBM SYST J




Factoring by component of audit trail entry. Depending upon
the mode of processing (e.g., batch versus on-line), various
components of an audit trail entry may be factored out of each
entry, thereby saving much storage space. As already assumed,
the name of the data is factored out of each entry and placed
into a dictionary; likewise, the representation, if it is constant
through all versions, can be factored.

In a batch environment, user identification, transaction identifi-
cation, and terminal identification can be factored to the job lev-
el, whereas program identification and representation can be fac-
tored only to the job-step level. In an on-line environment, no
general factoring rules are readily apparent, assuming random
arrival of different transaction types.

Hardware implications. The possibility of designing hardware to
support audit trails optimally are enormous. Some of the major
tradeoffs are listed below.

a. Sequential write-once only —As explained previously, the
audit trail has no concept of update-in-place, but rather a
sequential write-once-only characteristic.

. Stageable from archives — As the data in the audit trail be-
comes older, there is a “decay” function on the usefulness of
the audit trail contents. The audit trail may be automatically
written onto an archive-type device according to some time
function specified by the installation.

. Audit trail content reconstruction—The audit trail must be
physically reconstructable if damage occurs and is detected.
Detection of damage to the audit trail is critical. Use of a
damaged audit trail entry under the assumption that it is cor-
rect constitutes automatic error propagation. Worse yet is the
fact that system recovery is invalid or impossible to perform
since the vehicle (the audit trail) that would have permitted
recovery is invalidated. This circumstance assumes that the
information required for audit is a subset of that required for
recovery, and both are recorded in the audit trail. Damage
repair of the audit trail may be effected by duplication of the
audit trail, Hamming codes, use of a checkpoint and journal,
and other ways of recreating the original data.

. Higher reliability in writing the audit trail—The audit trail
must be written with a high degree of reliability so that its
contents are safe in the event of system failure prior to com-
pletion of the write operation. The Advanced Administration
System, for example, wrote unblocked records onto its jour-
nal so that if a power failure occurred and main memory was
destroyed, the record was safe and preserved in the journal.”
One way of meeting this requirement is to provide a highly
reliable buffer not destroyed by power failure.

No. 3 - 1975 AUDIT TRAIL REQUIREMENTS




. Need parallelism in writing the audit trail — An area that ob-

viously needs investigation is what percentage of a system’s
“horsepower” would be directed to the audit trail under vari-
ous activity mixes. Activity levels could rapidly be attained
such that useful throughput was nil because of the volume of
data queued to be written onto an audit trail.
One format (both machine and human processable) — An al-
ternative to two different audit trail formats (i.e., an internal
machine-readable format and a human-readable format, such
as a report) is a common format. This would permit a human,
such as the auditor, to browse through the audit trail contents
using some off-line device such as a microfilm reader while
simultaneously allowing the system to provide addressability
to audit trail contents. The possible disadvantage to a single
format is that the sheer bulk of data potentially in the audit
trail may overwhelm a human trying to browse through the
audit trail. Possibly application-level data interactions could
be kept in a common form, and system-level audit trail en-
tries kept in another form.

Integrated versus distributed audit trail. In an implementation of
an audit trail, several criteria have been identified that would be
options in determining whether one integrated audit trail or sev-
eral physical audit trails should be provided. The criteria for
determining the scope of entries in an audit trail are examined
below.

. An audit trail per data set—An audit trail per data set (as
assumed in this paper) is motivated primarily by the concept
of the “now” value being a special case of all versions of a
unit of data. Another assumption is that the total history of
activities across all users, programs, time intervals, etc. is
important to be directly associated with the data. Finally, just
as in an integrated data base environment (i.e., minimally
redundant data), one data set is shared by many programs
and users. Here, the audit trail per data set is the central re-
pository for all historical activities (with no redundancy)
against the data set.

. User or class of users—An audit trail could be partitioned
into disjoint exhaustive users or classes of users. For exam-
ple, an audit trail of union members’ activities might be desir-
able in the proper environment.

. Program or application program system—Separate audit
trails might be desirable for each program or family of pro-
grams such as all application programs using IMS, CICS, etc.
Audit trail implementations and options could be tailored to
each application program using this criterion.

. Transaction type — A separate audit trail could be defined for
one or more transaction types.

BJORK IBM SYST J




. Time intervals —The cutoff period concept is the facility for

separating the audit trail into discrete time intervals. If, in
addition, the Data Base Administrator can change the audit
trail options at each new cutoff period, the system would
provide a general audit trail partitioning scheme as a function
of time.
Logical data base — It may be desirable to keep one audit trail
per logical data base. One audit trail may exist for all the in-
formation in the data base on a common subject. In this case,
one audit trail would have a scope of one or more data sets.

. Operations upon data— Separate audit trails may be kept per
type of operation upon the data. For example, update opera-
tions may be recorded in one audit trail on a faster device for
quicker data restore capability, whereas data references are
in a separate audit trail for the auditor, security officer, etc.

. Combinations of the above — Combinations of the above cri-
teria will undoubtedly prove most useful for any given imple-
mentation. For example, specific operations upon a logical
data base may have different cutoff periods in separate audit
trails.

Method of synchronization between distributed audit trails. 1f
related recorded data has been distributed between more than
one physical audit trail or even within the same audit trail, a
mechanism must exist that permits the distributed data to be
recollected according to some criteria. This method of synchro-
nizing entries in different audit trails is performed according to
criteria such as common program identifications, the same time
interval, or in general, equal values of components of audit trail
entries. The unit of data to be synchronized is subject to the
general requirement that its value must be unique with respect
to the set of values over all audit trails that can contain that unit
of data. In other words, if user identification is to be the unit of
data for synchronization, each user must have a unique identifi-
cation. Conversely, all entries in all audit trails within some
scope that have the same user identification indeed refer to the
same user. Each component of an audit trail entry is a potential
synchronization unit of data.

Conclusions

Audit trail requirements were discussed as they apply to data
bases. In summary, the major conclusions reached in this paper
follow.

The concept of an audit trail —as a time-ordered history of activ-
ities against a unit of data—is anticipated to be a major integrity
tool for shared data usage for the late 1970s and beyond.

1975 AUDIT TRAIL REQUIREMENTS




Time domain addressing is introduced as the model upon which
an audit trail is developed. Time domain addressing adds the
dimension of time to current values of stored records and fields
within stored records.

A single time invariant interface that addresses both current as
well as former values of a field is required to provide data inde-
pendence to historical versions. Without this single interface,
approximately 90 percent of an enterprise’s data (the former
versions) does not have data independence since two interfaces
would be required by an application program to address the cur-
rent version and former versions.

The DB/DC system must understand the concept of version of a
field so that the system can: (a) provide the common, but com-
plex version management functions (not force the user to pro-
vide his own support), (b) synchronize recovery and backout of
data base updates by version of records/fields, (c) permit
changes for field attributes to be monitored transparently to the
application program, and (d) prevent the user from supplying a
false version number by having the system know how to con-
struct a new version number.

The audit trail contents is defined that identifies what additional
data must be recorded when a transaction operates upon data in
the data base. Operations other than update are provided for in
the contents. The act of recording the audit trail contents must
be capable of being transparent to the transaction.

A cutoff period concept is introduced which is an installation-
defined boundary for versions of data. A cutoff period permits
data reduction and purging criteria to be introduced so that ver-
sions no longer of interest can be eliminated from system con-
trol.

Finally, feasibility of audit trail technology is investigated by
showing an example of the types of time sequences required to
support time domain addressing.

ACKNOWLEDGMENTS

Mr. R. C. Kendall has earlier developed the idea of a uniform,
time-domain addressable interface.* Mr. G. H. Smith® and Mr.
C. T. Davies, Jr.° have explored the idea of tracing read-only
references as well as modifications to data to support post-
process recovery. Special acknowledgment is given to Mr.
K. R. Wright for many helpful comments and suggestions on the

paper.

BJORK IBM SYST J




CITED REFERENCES

1. C. T. Davies, Jr., “Recovery semantics for a DB/DC system,” Proceedings,
ACM 73 28, 136-141 (1973).

. L. A. Bjork, Jr., “Recovery scenario for a DB/DC system,” Proceedings,
ACM 73 28, 142 - 147 (1973).

. J. H. Wimbrow, ““A large-scale interactive administrative system,” IBM Sys-
tems Journal 10, No. 4, 260-282 (1971).

. R. C. Kendall, personal communication, IBM Corporation, 1000 Westchester
Ave., White Plains, New York (1972).

. G. H. Smith, personal communication, IBM Corporation, Poughkeepsie,
New York (1971).

. C. T. Davies, Jr., A Recovery|/lntegrity Architecture for a Data System,
Technical Report No. 02.528, IBM Corporation, San Jose, California (May
19, 1972).

Reprint Form No. G321-5012

No.3 - AUDIT TRAIL REQUIREMENTS 245




