
Discussed is a data base audit trail. It is defined here to be a
generalized recording of “who did what to whom, when, and in
what sequence.” This information is to be used to satisfy system
integrity, recovery, auditing, and security requirements of ad-
vanced integrated data baseldata communications systems.
This paper hypothesizes what information must be retained in
the audit trail to permit recovery and audit later in time and a
scheme of organizing the contents of the audit trail so as to
provide the required functions at minimum overhead.

Introduced are the concepts of types of audit required, DBlDC
audit assumptions, time domain addressing, time sequences re-
quired to support versions of data, what constitutes an audit
trail, and implementation considerations.

Generalized audit trail requirements and concepts for data
base applications

by L. A. Bjork, Jr.

Auditing of a data base/data communication (DB~DC) application
is defined as the act of monitoring the application for compli-
ance with accounting rules and practices. Auditing an applica-
tion is essentially certifying the integrity of the system by verify-
ing that rules and policies dictated by laws, business agreements,
etc., are being followed by the application.

There are three basic objects of interest for audit in a DB/DC
environment, namely:

The user- who entered what data from what terminal, etc.
The program-on a given execution of a program what ver-

sion was used, what branches were taken un-
der what conditions, etc.

The data-what was a particular field value before a specific
transaction updated it and what was its value after
update.

These objects and their interactions are usually identified as be-
ing within a common boundary for each invocation of the pro-
gram. This common boundary is identified by a transaction
name which usually serves multiple purposes within the system
such as scheduling, recovery (backout), and auditing.’

NO. 3 * 1975 AUDIT TRAIL REQUIREMENTS 229

Figure 1 Major types of audit In advanced DBlDC systems, more manual processes and appli-
IN PROCESS POST.PROCESS cations will be computerized. The audit support must be com-

I mensurate with the support to automate new processes. Other-
wise, the inability to audit will limit new applications from being

I I

TRANSPARENT I A 1 I A 2 I
I
I

I I

TRANSPARENT I A3 I A4 I
I NOT I I I committed to an unauditable computerized environment.

I I ! Also, in advanced systems, commitments will be made more at
terminals using on-line data, rather than after verification of the
results of a batch run. This means that the audit function, e.g.,
recording of audit trails, the verification-of-results function, etc.,
must be system-supported to the same level as the dependency
being placed on the on-line data by the terminal user.

Finally, in advanced systems, the sequence of processes inter-
acting with the data base is less repeatable in an on-line interac-
tive environment than in a batch environment. This sequence is
due to the random arrival of incoming transactions rather than
the preplanned processing sequence typical of batch processing.
Therefore, a generalized audit trail facility must be provided that
tracks data usage and captures the unrepeatable sequence of
processes during the execution of the process itself.

Aspects of auditing

types Four major types of audit are of interest for advanced DWDC
of systems as shown in Figure 1 . In-process signifies that the moni-

audit toring of the application and verification for adherence to speci-
fied rules are performed while the process being audited is in
execution. Post-process signifies that the recording of the audit
trail is performed concurrently with the process to be audited,
but the audit itself is performed after completion of the process.
Transparent or not signifies whether the process to be audited is
aware of the audit.

The four types of audit as seen in Figure 1 each have the follow-
ing characteristics.

A1 is where the audit is being performed in real time transpar-
ently to the on-going process being audited. Examples of A1
are: (1) the auditor introduces test transactions into the system
and verifies the process being audited by analyzing the outputs
based on specific inputs, (2) two asynchronous processes with
one monitoring the other at defined audit points, and (3) full in-
terpretation with the audit process being the interpreter of the
process being audited.

A characteristic of A1 is that the audit function, in addition to
being transparent to the on-going process, does not alter the
course of the process. That is, the audit is usually not in-line

230 BJORK IBM SYST J

with the day-to-day accounting practices of running the enter-
prise. If an in-process audit finds a violation of accounting prac-
tices, the usual procedure is not to stop the audited process but
rather to have the person or group responsible for the erring
process fix it and then issue adjustments to the incorrect out-
puts.

Additionally, A1 has the characteristic of not requiring an audit
trail (not for audit purposes but may require one for other
purposes) since the auditing function is performed in-process.

A2 is an “after-the-fact” audit in which a process or person
looks back in time at the effects, actions, algorithms, etc., of an
earlier process. This type requires a recording of a great deal
more information than an audit may actually require and use
since all the earlier processing is rarely audited. A sampling
technique usually chooses which subset to actually audit out of
all recorded data.

A3 is an in-line audit of the application’s process. What audit
rules, when to apply them, and their results must be preplanned
as part of the application. A3 is different from A 1 in that the audit
rules in A3 cannot be changed without reprogramming the pro-
cess. An example of A3 is the application displaying certain data
(to an auditor) when a specific transaction type or instance is
encountered.

A4 is the case of the process to be audited explicitly saving
what is required for an audit of the process later in time. A4 is
typically used in the debugging mode in which the debug tools
(e.g., trace, storage dumps, etc.) are invoked in-line for analysis
later in time. The data saved may also be used for recovery pur-
poses such as determining what the initial values were during
process execution.

In developing general audit trail concepts, certain assumptions DB/DC
were made regarding the audit environment of advanced DB/DC audit
systems. These assumptions are summarized below. assumptions

1. Auditing application systems must be permitted by the fol-
lowing classes of objects: (a) application transaction levels
(where one level may be nested within a higher level), (b)
procedure, (c) data type-fields, records, files, (d) user, (e)
terminal, and (f) any Boolean combination of the above.

2. The auditor requires the system to retain for addressability
later in time (after process completion) the following
(maximal case): (a) identity of transaction by occurrence,
(b) name and version of procedure, (c) name and version of

NO. 3 1975 AUDIT TRAIL REQUIREMENTS 23 I

(i.e., use for the purpose of making a decision) by another (1)

process and (b) after dependent use by another process. Rm , I vml
The requirement is recursive in that multiple logical super- : I

vmo

sedures must be supported. * I

The ability to logically supersede an earlier version later in * I
: I

time (a) prior to any dependent use of the earlier version R1 I v,l, vlz,. : I

and (b) after dependent use of the earlier version. This re- - (0

quirement is also recursive.

A

I
V h

f l , fZ’ f
(FIELDS IN STORED RECORD)

13. The installation must be able to control or choose between
cost/performance tradeoffs for functional support of the de-
tection and recording of audit events and information.

Definition of an audit trail I
The preceding discussion has sought to present the environment
and requirements of a generalized audit trail for advanced DBlDC
systems. This section defines and characterizes such an audit
trail.

Our definition of an audit trail is: A history of activities by
transaction, posted because of operations on specific data: oper-
ations are those functions that are defined as events (via trans-
parent event descriptors) to be noted in the audit trail as a con-
sequence of a particular interaction with the data base. For
example, operations might be updates as is required for simple
backout or may include references to data as well to be used for
scoping the bounds of propagated errors (see Reference 2).

Figure 2 shows the traditional representation of a data set con- graphical
sisting of one stored record type comprised of II fields containing definition of
m stored record occurrences. On a two-dimensional graph, the audittrail
fields are denoted on the horizontal axis, the record occurrences
are represented on the vertical axis, and an (i, j) coordinate se-
lects the value of field i from record j . This two-dimensional set
of values represents the set of “now” or current values of all
fields in all stored records in the data set.

An audit trail concept adds the time dimension as a third coordi-
nate to Figure 2. Figure 3 shows the time dimension with the
“now” values being the closest to the origin and prior values
(versions) going chronologically back through time as one tra-
verses the time coordinate. To locate a unique value, an (i, j , k)
coordinate must be specified where i is the field name (assumed
unique through all versions of values), j is the unique stored
record identifier (also assumed unique through time), and k is
the point in time for the desired value. If, in addition, supple-

I

of the first-level audit trail (the activities “now” against the
“then” now values).

The underscore linkage from the “now” value, 12, to the t, au-
dit trail entry is required to provide addressability to the supple-
mental information recorded when x was updated to 12. In other
words, the head of the push-down stack shows activity on a
prior generation of x , not the “now” value.

The motivation of having the “now” value be a separate part of
the audit trail is to provide compatibility with today’s data set
formats. Also, the content is selected by the data base adminis-
trator. The audit trail may reside on different devices and be
accessed by different access methods compared with the “now”
values.

E. Update a prior generation of x - Update x(t,) to 25 at time
t4. This is the case of updating an earlier generation of x when an
error has been detected “after the fact.”

The t, audit trail entry now indicates that the update to x at t,
has been superseded by the t, entry.

At least two cases of error propagation are apparent. The first
involves a blind fix wherein the value of the record or field is
changed as specified independently of subsequent usage. The
second case is an application-dependent repair to later-genera-
tion values-such as adding the increment 13 to all generations
of x after t,.

It is the responsibility of the user of the audit trail interface to
take the necessary corrective action to repair later values and
determine who depended on the incorrect values. The “who” is
omitted in this example.

The security controls required to prevent unauthorized usage of
the audit trail are assumed to exist but not addressed in this
paper.

The problem that now arises is: who gets to see either the uncor-
rected version of x at time t , or the logically updated version of x
at time t, as it should have been at time t,? The auditor or per-
son using the audit trail for debugging purposes may want to see
the real history of activities. Otherwise, an application program
may want the logically correct value at time t , (x = 2 5) . One 1

way of solving this potential ambiguity (which has always
existed) is to have a “user intent” code in the interface denoting
intended audit trail usage of this particular user.

F. Concept ofa curofperiod- A cutoff period is a distinct real-
time interval in the time-ordered sequence of audit trail entries
that has been useful to record in a catalog. The time intervals
may be (rz , to) and (r4, r 3) in the above example (e .g . , tz = April
1, to = January 1) . The cutoff periods will generally be chosen to
coincide with some legal or accounting date requirements such
as end-of-month or end-of-year. A cutoff period permits the
user/system to have multiple entry points to the time-ordered
sequence of audit trail entries. Without a cutoff period concept,
a sequential scan is implied from the latest activity of the field
serially back through time through all preceding activities until
the desired field generation is found. A cutoff period concept
implies better performance by permitting the user/system to
choose the cutoff period entry point to the audit trail that is later
than and nearest to the desired earlier value.

A cutoff period is also useful in the area of data purging and
reduction. A simple purging algorithm might be to purge all audit
trail entries that are more than y years old, or created prior to
cutoff period 3. Or the data might be summarized such as aver-
age quantity-on-hand for the cutoff period 3. Purging is the pro-
cess of deleting audit trail entries and making their contents no
longer addressable under system control. (This is probably a
data reduction operation with the original data being retained for
x years).

A problem with the cutoff period concept is that operations such
as update in one cutoff period may be logically superseded later
in another cutoff period. Case E, above, is such an example.
One discovers later what the then “now” value should have
been. One cannot simply go to that desired cutoff period and
start searching backward for the desired update (for example)
since a later cutoff period contains the logically corrected value
which, in turn, may have been still later superseded, etc. Each
cutoff period must be able, therefore, to have an indication of
whether its audit trail entries have been corrected logically in a
later cutoff period-and possibly which entry in which later cut-
off period.

Content and format tradeoffs of an audit trail

This section examines the detailed parts of an audit trail entry audit

and some of the format considerations and attendant tradeoffs. trail

Following is a list of candidates that have been identified as being entry

useful or required to be recorded in the audit trail.

I

The name of the data being operated upon. Whether or not the
name of the data is recorded explicitly in the audit trail is a func-
tion of the naming convention and scope of the audit trail en-
tries. The naming convention assumed in this paper is that the
data name remains constant for all versions of its values. If the
audit trail has a scope of many data sets and the same field can
appear in more than one data set, then obviously at least a two-
level naming scheme is required (e.g., data set name, field
name). Both data set and field name can be factored out of each
audit trail entry and placed into a dictionary. The dictionary
would contain descriptive information, constant across a cutoff
period, such as data name, representation, version, etc., needed
to fully interpret the audit trail entries. In reality, an audit trail is
also needed on the dictionary to track name changes and syn-
onyms of a field.

Not addressed in this paper are the problems of a data name
being changed (or deleted) between generations, synonyms, and
how to know which name to use in the first place (as well as
what it means).

The new value after the operation. The new value is recorded
after the operation (as defined in the audit trail event
descriptor). The value prior to the operation is available as the
prior operation’s result. One possibility is that the prior value
and the new operation are recorded in the same audit trail entry,
thereby making the prior value immediately addressable. This
gives high-performance capability to the data restore of the orig-
inal value at the expense of redundancy of the value in the audit
trail.

Operation causing audit trail entry. This operation is the record-
ing of what interaction with the data caused the entry to be
made in the audit trail. Those that are ready candidates are as
follows: (a) Create or insert new data, (b) Delete data, (c)
Update, (d) Reference data for the purpose of commitment
(using this data as the basis of future actions), and (e) Refer-
ences for any reason (such as debugging purposes).

Time stamp. The actual time that the given operation occurs is
recorded. The granularity of the time stamp must be fine enough
so that no two operations have the same time stamp. Otherwise,
the real sequence of operations is not guaranteed reproducible.

The representation. The format of the field at the time of the
operation upon the value is possibly recorded. This provides the
capability of being able to change the field representation from
one version to the next. The audit trail interface could permit
viewing prior values through the “now” value’s descriptor (cur-
rent representation of the field). Therefore, a possible format

238 BJORK IBM SYST J I

AUDIT TRAIL REQUIREMENTS 245

