
Listed are abstracts from recent papers by IBM authors. Inquiries should he
directed to the publications cited.

Empirical data reference behavior in data base systems, J. Rodriguez-Rosell,
(RES San Jose, CA) , Compufer 9, No. 1 1, 9- 13 (November 1976). During the
past several years, a considerable amount of effort has gone into the measure-
ment, analysis, and modeling of program behavior. Most of the work either as-
sumes the existence of a reference string or attempts to produce a model for the
process by which these reference strings are generated. The author extends this
methodology to the study of data base systems. Data base reference strings are
found to exhibit strong seauentialitv in addition to weak localitv.

Experiments in text file compression, F. Rubin (SPD Poughkeepsie, NY) , C o m -
munications o f t h e A C M 19, No. 1 I , 617-623 (November 1976). A system for
the compression of data files, consisting of an encoder, an analysis program, and
a decoder, is presented. Data files are viewed as strings of characters, making
the method general, applying equally well to English, to PL/I, or to digital data.
The author finds a high degree of text compression can be obtained if fairly high
computation time and large storage are available.

Abstracts Incremental program testing in a very high-level language, B. M. Leavenworth
(RES Yorktown Heights, N Y) , A C M '76, Proceedings of the Annual Confer-
ence, 499-503. A testing and debugging methodology is presented which ex-
ploits the following properties of very high-level languages: functionality, single
assignment property, locality of reference, and aggregate operations. The ap-
proach is based on incremental construction of a program with testing and de-
bugging in parallel using a graphic display and light pen. It is shown how these
properties allow execution of arbitrarily small phrases of the program to obtain
aggregate values. The emphasis on data flow rather than control flow permits
causal errors to be traced by bottom-up or top-down scans of the program tree.
Examples of the methodology are given using the Business Definition Language. I

An introduction to proving the correctness of programs, S. L. Hantler and J . C.
King (RES Yorktown Hts., NY) , ACM Computing Surveys 8, No. 3, 33 1 - 353
(September 1976). Interest in verifying that computer programs behave as they
were intended to behave has existed since the advent of modern electronic com-
puters. This paper explains, in an introductory fashion, the method of specifying
the correct behavior of a program by the use of input/output assertions and de-
scribes one method for showing that the program is correct with respect to those
assertions. An initial assertion characterizes conditions expected to be true upon
entry to the program, and a final assertion characterizes conditions to be true
upon exit from the program. When a program contains no branches, a technique
known as symbolic execution can be used to show that the truth of the initial
assertion upon entry guarantees the truth of the final assertion upon exit. More
generally, for a program with branches, one can define a symbolic execution
tree.

198 ABSTRACTS I R M SVST 1 I

Modeling and performance evaluation of physical data base structures, S. B. Yao
(RES San Jose, CA), ACM '76, Proceedings of the Annual Conference,
303- 309. A generalized file organization model and performance evaluation
system is developed for estimating the performance of physical data base struc-
tures. Performance evaluation results based on the cost functions of the model

results of previous simulation models for indexed sequential, multi-list, and in-
verted file structures. The analytic approach makes the costs of evaluation very
low. Consequently, many evaluations may be performed interactively with the
file designer when searching for the most suitable structure for a given ap-
plication.

The notions of consistency and predicate locks in a database system, K. P. Eswaran,
J. N. Gray, R. A. Lorie, and I . L. Traiger (RES San Jose, CA), Communi-
cations ofthe ACM 19, No. 11, 624-633 (November 1976). In data base sys-
tems, users must access shared data under the assumption that the data satisfies
certain consistency constraints. This paper defines concepts and shows that con-
sistency requires that a transaction cannot request new locks after releasing a
lock. From this it is argued that a transaction needs to lock a logical rather than
a physical subset of the data base. An implementation of predicate locks which
satisfies the consistency condition is suggested.

On user criteria for data model evaluation, W. C. McGee (GPD Palo Alto, CAI,
ACM Transactions on Database Systems 1, No. 4, 370- 387 (December 1976).
A data model is the class of logical data structures that a computer system or
language makes available to the user for the purpose of formulating data pro-
cessing applications. The diversity of computer systems and languages has
resulted in a corresponding diversity of data models and has created a problem
for the user in selecting a data model which is appropriate to a given application.
An evaluation procedure is needed which will allow the user to evaluate alterna-
tive models in the context of a specific set of applications. This paper takes a
first step toward such a procedure by identifying the attributes of a data model
which can be used as criteria for evaluating the model. The use of the criteria is
illustrated by applying them to three specific models: an n-ary relational model,
a hierarchic model. and a network model.

Optimal reorganization of distributed space disk files, K. Maruyama and S. E.
Smith (RES Yorktown Hts., NY), Communications of the ACM 19, NO. 11,
634-642 (November 1976). In most data base organizations, the cost of access
will increase due to structural changes caused by insertions and updates. These
access costs can be reduced by reorganizing the data base. Therefore, the user
must establish the proper trade-off between performance, storage costs, and
reorganization costs. This paper considers the optimum points at which to reor-
ganize a data base. A disk file organization which allows for distributed free
space is described. A cost function describing the excess costs due to physical
disorganization is defined, and this function is minimized to obtain the optimum
reorganization points. Numerical examples are given, based on the characteris-
tics of existing disk storage devices.

Replacement algorithms for storage management in relational data bases, R. G .
Casey (RES San Jose, CA) and 1. M. O'sman (Durham University, Durham,
UK) , The Computer Journal 19, No. 4,306-313 (November 1976). This paper
treats a generalized storage management problem in which the pages have vary-
ing sizes and the cost of a page fault is a function of the particular page refer-
ence. In such an environment, the conventional page replacement algorithms are
found to perform inadequately, so new ones are proposed. One practical envi-
ronment in which the general problem may arise is a relational data base having
an implied relations facility, in which some relations are maintained in definition
form until queried. The implied reaction is analogous to a page, and the process-
ing time for restructuring a relation from its definition varies from one relation to
another. A suitable replacement algorithm is needed to manage and process as
the implied relations alternate between the state of definitions and the state of
explicit representation in a fixed buffer storage area.

Roster of programming languages for 1974-75, J. E. Sammet (IBM Cambridge,
MA), Communications of the ACM 19, No. 12, 655-669 (December 1976).
This roster contains a list of 167 currently existing higher-level languages which
have been developed or reported in the United States; have been implemented on
at least one general-purpose computer; and are believed to be in use in the
United States by someone other than the developer.

Scheduling as a graph transformation, E. B. Fernindez (IBM Scientific Center,
Los Angeles, CA) and T. Lang (UCLA, Los Angeles, CAI, IBM Journal of
Research and Development 20, No. 6, 551 -559 (November 1976). The sched-
uling of a set of tasks, with precedence constraints and known execution times,
into a set of identical processors is considered. Optimal scheduling of these tasks
implies utilizing a minimum number of processors to satisfy a deadline, or finish-
ing in minimal time using a fixed number of processors. This process can be seen
as a transformation of the original graph into another graph, whose precedences
do not violate the optimality constraints and has a unique basic schedule. Analy-
sis of this transformation provides insight into the scheduling process and also
into the determination of lower bounds on the number of processors and on time
for optimal schedules.

Scheduling of unit-length independent tasks with execution constraints, T. Lang
(UCLA, Los Angeles, CA) and E. B. Fernhdez (IBM Scientific Center, Los
Angeles, CA) , Information Processing Letters 4, No. 4, 95-98 (January 1976).
Consider a set of unit-length independent tasks with individual execution inter-
vals which are to be scheduled into a set of identical processors. A scheduling
algorithm is presented that requires a minimum number of processors for a given
set of execution intervals.

SEQUEL 2: a unified approach to data definition, manipulation, and control, D. D.
Chamberlin, M. M. Astrahan, K. P. Eswaran, P. P. Griffiths, R. A. Lorie, J. W.
Mehl, P. Reisner, and B. W. Wade (RES San Jose, CA) , IBM Journal of Re-
search and Developmen? 20, No. 6, 560-575 (November 1976). SEQUEL 2
is a relational data base language that provides a consistent, English keyword-

ABSTRACTS IBM SYST J

ABSTRACTS 20 1

