There has long been a need for better definition of the audit and
control aspects of data processing applications. This paper at-
tempts to satisfy that need and thereby provide a framework for
improving communication between systems analysts and com-
puter scientists. It introduces the concept of spheres of control,
which are logical boundaries that exist in all data processing sys-
tems, whether manual or automated. The paper describes their
essential properties and portrays them as they relate to each
other in the batch, on-line, and in-line processing environments.
Included are spheres of control that define process bounding for
such purposes as recovery, auditing, process commitment, and
algorithm (procedure) replacement.

Data processing spheres of control
by C. T. Davies, Jr.

Not enough has been written about maintenance of integrity or
recovery from incorrect processing discovered either during the
processing or afterward. Similarly, not enough has been written
about control over processing and the auditing of processing, or
about the effects of processing in large, complex systems of multi-
node distributed data and multinode distributed processing. The
general and typical case for multinode multiprocessing systems
involves many humans and machines, each an active element in a
network of active elements and each the holder of a subset or
redundant copy of one or more data bases. Many transaction ori-
ented business systems are examples of this multinode case.

The problems addressed in this paper are those of keeping proc-
esses from interfering with each other, returning a process to
some previous and more acceptable state, preventing the use of
created or updated information until it is known that the process
will not have to be backed out, controlling processes in the same
or different nodes, preserving order in a multiprogramming and
multiprocessing environment, saving process results for sub-
sequent audit to reduce the probability and significance of errors,
and providing repeatability of process results as required by most
auditable applications.

Copyright 1978 by International Business Machines Corporation. Copying is per-
mitted without payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright notice are
included on the first page. The title and abstract may be used without further
permission in computer-based and other information-service systems. Permission
to republish other excerpts should be obtained from the Editor.

IBM SYST J @ VOL 17 ¢ NO 2 o 1978 DAVIES 179

process
atomicity

180

All applications have these problems, for which the user must
find solutions. This paper describes solutions that are not appli-
cation dependent and hence can be automated, resulting in a
more error-tolerant and auditable sytem which all applications
can use. In particular, these concepts, when implemented, allow
management to better understand and control what is going on in
a data processing system.

Any technique for controlling and auditing processing in a multi-
node multiprocessing system must first delineate the spheres of
control, or logical boundaries, for each active element of the sys-
tem. There are many different kinds of spheres of control, each
maintaining a set of relations within a boundary associated with a
particular kind of control. The boundaries of the spheres of con-
trol described in this paper are delineated by operators and de-
scriptors. The kinds of control considered, for which there are
potentially many instances, are process atomicity, process com-
mitment, controlled dependence, resource allocation, in-process
recovery, post-process recovery, system recovery, intraprocess
auditing, interprocess auditing, and consistency.

Spheres of control exist for other purposes, but they are not con-
sidered here because of space limitations. Examples are privacy
control, transaction control, and version control for both data and
procedures (instruction data).

Process control

Process control ensures that the scope of processing at each level
of operation in a hierarchy is defined by the set of operation codes
implemented at the next lower level. At each level, only the oper-
ation codes of the next lower level are defined (made accessible).
Each level is merely an implementation of the operation codes
that invoked it. That is, each operation code may require many
other primitive operation codes in its implementation. Each of the
primitive codes in turn may be implemented by one or more dif-
ferent operation codes. The languages used may differ consid-
erably from level to level.

A call to a subroutine is an example of a primitive at one level of
implementation invoking a set of primitives at a lower level. The
processing of an operation code at a given level at a given instant
is called an atomic process. Process atomicity is determined by
the amount of processing that one wishes to consider as having
identity. It recognizes that data processing involves discrete units
of process which we call digital. Therefore, regardless of the im-
plementation, an atomic process is performed either in its entirety
or not at all. It may be a payroll application to some people, the
square root subroutine to others, or perhaps a machine instruc-
tion like ADD, SUBTRACT, or MOVE, or a microcode instruction.

DAVIES IBM SYST J @ VOL 17 @ NO 2 & 1978

Process control also ensures that the information required by an
atomic process is not modified by others, and it limits the extent
to which another process can depend upon the updates made by
this process, as described below.

Atomic processes provide the greatest possible implementation
independence. If a function is rewritten, only the changed func-
tion and the lower layers in the hierarchy are affected. Fre-
quently, also, it is desirable to have one process terminate and
another start at the interface between two active elements, partic-
ularly if they are geographically separated. Process subdividing
allows for a defined interface that provides compatibility inde-
pendently of the specific implementation of either atomic proc-
€ess.

The atomic process, or action, as it is often called in commercial
data processing, bounds the unit of function to be executed and
the interpreter to be used. For example, one atomic process may
be described in COBOL and another in PL/I. A function may even
be written in one language and call a subroutine written in a dif-
ferent language.

In passing, it is interesting to note that in a system of many nodes,
each having a potentially different interpreter (instruction set) and
with each procedure perhaps written in a different language, it is
mandatory to know the interpreters needed, their availability,
and their location. Otherwise, it is likely that, for example, a PL/1
sequence of instructions may be sent for execution to a node that
understands only APL. It is not necessary that the interface be-
tween them know the implementation of the other nodes or lev-
els, other than in a semantic sense as viewed through a common,
defined interface.

In summary, process atomicity is the control over processing that
permits an operator to be atomic at one level of control, while the
implementation of that operator may consist of many parallel or
serial atomic operators at the next lower level of control. Thus
there is a fully nested structure which provides implementation
independence at each level relative to lower levels.! Every de-
fined atomic operator can be given a name. Only an atomic oper-
ator has the potential to have versions, and only defined atomic
operators can be moved to and executed in other nodes.

Figure 1 illustrates a hierarchy, or nest, of atomic processes. Al
is a function as viewed from outside Al. Bl and B2 are what Al
sees, and C1 and C2 are parallel processes visible to B2.

While a function is in process, changes of state of significance to
the function are being made only by that function or are expressly
known to and permitted by that function. In a payroll application,

IBM SYST J e VOL 17 @ NO 2 e 1978 DAVIES

Figure 1 Spheres of control—proc-

ess atomicity

Each sphere of control is an atomic process (single
operation) when viewed from the next higher level
of control.

process
commitment

181

182

for example, the first job accepts time cards and writes pay-
checks, a transaction history, and deductions, some of which
may provide input to an employee stock purchase program (a sec-
ond job). From a logical point of view, one could run only the
time-card input and paycheck output. To reduce the possibility of
error, however, it is desirable to hold the paychecks until after
the transaction history has been audited and the stock purchase
program run.

In case a rerun is needed, holding the paychecks establishes a
single checkpoint which is independent of the error detected and
the number of functions processed since that point. In particular,
holding the paychecks prevents other functions from depending
upon them for process commitment, so the writer of the pay-
checks can revoke them without having to be concerned about
unfavorable consequences.

Preventing process commitment by holding (controlling) the use
of its results permits the system to perform a unilateral backout
(process reversal or undoing) over much larger units of process-
ing. Unilateral here means without having to request permission
from each participant in a process. Thus mistakes not detected
until late in the processing can be corrected, although response
time will be degraded.

So far, the containment of process commitment has been dis-
cussed as though it were preplanned. That is not always the case,
however. When an error is detected and its source not yet fully
determined, or the action required to correct it is not fully known,
the effects of processing should be contained until a determina-
tion can be made as to whether releasing the effects will adversely
affect subsequent processing. Constraining a potentially er-
roneous process so that output and updates are not released until
the processing no longer need be able to rerun to a potentially
different conclusion is called dynamic control over commitment.
This boundary of control can extend to as much processing as is
economical to control.

The sphere of dynamic control is extended over process com-
mitment and permits processing to continue rather than having to
end abruptly. At best, when an error is better understood or is
discovered to be nonexistent, the boundary simply can be re-
moved so that the locked resources are unlocked. Thus a great
deal of time will have been saved. At worst, a lot of processing
will have been done needlessly. However, the time used will have
passed, regardless.

In summary, process commitment control is the containment of

the effects of a process, even beyond the end of the process. It
can be used, at the expense of response time, as a relatively in-

DAVIES IBM SYST J « VOL 17 & NO 2 & 1978

expensive method of recovery. As an example, an entire day’s
processing may be contained within a sphere of control over com-
mitment, so the entire day may be rerun to a different conclusion,
but at the expense of not being able to commit to any of the re-
sults until the end of the day.

Figure 2 illustrates control over process commitment. Any data
upon which any of the three contained functions (jobs 1, 2, 3)
depends, or that has been created or modified by any of the func-
tions, is assigned to the control sphere of all three until the sphere
terminates. The effect is the creation of larger domains of proc-
ess.

Figure 3A shows a typical multinode network of active elements,
with their associated data connected by communication lines.
The nodes can contain either human or machine elements. Figure
3B represents one possible calling sequence for doing some work.
The work is initiated in node 1, which calls upon node 3. When
control is returned from 3 to 1, node 1 calls upon node 2. Unknown
to node 1, node 2 calls upon nodes 4 and 5 to perform some work,
and when the work is completed node 2 returns control to node 1.
The key point is that completing work in any particular node does
not necessarily mean that the results can be depended upon by, or
committed to, some other process in the same node.

In particular, no output of any process can be depended upon by
other than the next higher level in the processing nest regardless
of its geographic location. In the event that the process encom-
passes more than one node, the other nodes have process agents,
humans or machine active elements, which have power of at-
torney from the next higher-level process in the nest. The role of a
process agent is to look after the interests of the client, just as real
estate agents do for their clients. If the rules for nested processes
are not adhered to, it is possible to arrive at a point where one can
neither continue nor return to a prior point of acceptability. Such
a state of affairs implies loss of control and therefore of integrity.

Sometimes when the output of one process provides input to a
subsequent process, the initial output is available prior to com-
pletion of the creating process. In such cases, it is logically re-
quired that the output of the creating process be contained (not
depended upon) until after the point of commitment. That point is
at least no earlier than the end of the highest-level atomic process
in the nest, although it may be much later for management rea-
sons.

The situation described above leads to poor performance for the
simple reason that there is minimal concurrent processing. In
fact, it requires strict sequencing of dependent processes. The
best performance is achievable only when a process begins as
soon as its resources are available without deadlock.

IBM SYST J o VOL 17 @ NO 2 e 1978 DAVIES

Figure 2 Sphere of control over
process commitment

Gt

ONE DAY OR ANY UNIT OF TIME

Boundary around the effects of a process, even af-
ter processing is complete, allows for independent
audit and back-out and for rerunning to a different
conclusion.

Preplanned for audit: static shape.

Suspected error: dynamic shape.

multinode
process atomicity
and commitment

Figure 3 Spheres of control over
process atomicity and
commitment (multinode
processing)

-® y
GO
o“e °
©
(A) ®

3A. Node structure 3B. Control structure
(communication) (processing)

A node is a processing resource, man or machine.

A sphere of control over process commitment en-

compasses all work, man or machine, on behalf of

the initiating man or machine.

controlled
dependency

183

Figure 4 Spheres of control over
noncommittable depen-
dencies

Allowing parallelism while preserving back-out
rights results in controlled dependencies. A depend-
ent is allowed whenever the depender guarantees
the ability to back-out and the creator of resources
guarantees probability of resource stabiiity equai to
or greater than that required.

resource
allocation

184

To begin a process earlier than is logically correct (from a com-
mitment point of view) requires that the controlling element ex-
tend its influence to dependencies that are not yet committable.
Consider the payroll application mentioned earlier, in which pay-
checks, transaction histories, and stock purchase deductions are
the output of a process. Some subsequent process (usually the
next) enters the stock purchase deductions and determines
whether there is enough money in the account to purchase a share
of stock. If so, a purchase transaction is created. While these
processes may be logically sequential—that is, not in parallel—it
is clear that considerable parallelism is possible and frequently
desirable to meet a deadline.

This form of logically sequential but physically parallel process-
ing is typical of many applications in commercial data processing.
An example is illustrated in Figure 4, where the dotted line repre-
sents the containment of dependencies on a result of process
A2.1. The concept can also be thought of as a boundary of control
over commitment that is grown dynamically to include dependent
processes started earlier in process time, resulting in maximal
parallelism. Atomic process Al creates (by the end of A2.1) the
data representing stock purchase deductions. The disjoint atomic
process Bl accepts as input a named version of these deductions
and creates stock purchase transactions as appropriate.

The latter process in Figure 4 can run with the following con-
straints: It cannot hold and use (lock) a resource (value) that is to
be updated by the process started earlier, and it cannot update a
value that the process started earlier depends upon. This property
has been called bi-phase processing.? Simply stated, no process
can be allowed to commit its results with any degree of certainty
greater than that of its input. Usually the results of multi-
processing or multiprogramming should be the same as the results
that would be achieved if each transaction were processed alone,
except as the results may be affected by the sequence of process-
ing.

In summary, controlled dependency is control over the use of
results of a process that cannot yet be committed. From a wholly
logical point of view, such a concept usually is not necessary.
Without the concept, however, all processes would have to be
strictly sequential if one depended upon the output of another,
and the resulting processing time might well be longer than would
be practical.

The sphere of control over resource (data) allocation is generally
the same as that over process commitment. In some environ-
ments, however, a resource allocation sphere of control would
produce excessive de-allocation and re-allocation, and processing
performance would be degraded. To alleviate such degradation, it

DAVIES IBM SYST J ¢ VOL 17 #NO 2 941978

is usual to establish a boundary of control not unlike that of com-
mitment, but encompassing many commitments.

Figure 5 illustrates the point. Each of three units of processing
labeled parts order is a boundary of control over an atomic proc-
ess, or action, as well as over a commitment and over in-process
recovery, all at the same time. Since all three require the same
file, the sequential but otherwise unrelated processes are allo-
cated the resource as though they were related. However, proc-
essing may terminate at the end of any boundary of commitment
after each parts order is processed. The boundary of com-
mitment, in this case, sometimes is referred to as a synchro-
nization point.

In summary, the resource allocation sphere of control is the as-
signment, or locking, of resources for a potentially greater period
than is strictly required for correct processing. In particular, it is
the grouping of unrelated processes for the purpose of saving the
process time that otherwise would be required for resource un-
binding and rebinding.

Recovery control

Aside from the requirement that the results of an operation be
contained to preserve integrity, there exists the possibility that a
user will decide that a previous course of action was in-
appropriate. The recovery operation is called in-process recovery
if the action was taken prior to a point of commitment, and post-
process recovery if the action already has been committed. Both
in-process and post-process recovery spheres of control are ap-
plication related.

If the results of processing are not yet committed, and allowance
has been made only for machine errors that can be corrected by a
rerun from a checkpoint, then the recovery operation is called
system recovery and is not application related.

To preserve integrity it is necessary that an atomic process either
not start at all, or start and finish in an acceptable manner. How-
ever, since atomic processes may be made up of other nested
atomic processes, there are potentially as many places to return
to for recovery as there are atomic processes in the nest.

This does not mean that if an atomic process cannot be completed
satisfactorily, one must return to the beginning of the process. In
fact, it is only minimally necessary to be able to back out to a
point at or before the atomic process involved. Should there be a
change of nodes involving long response time or high communica-
tion cost, however, it is usual to have a backup point for process-

IBM SYST J o VOL 17 @ NO 2 & 1978 DAVIES

Figure 5 Sphere of control over re-
source allocation
ALLOCATE PARTS FILE

PARTS PARTS PARTS
ORDER 1 ORDER 2 ORDER 3

Boundary is around many disjoint actions, which,
for purposes of performance, are considered a sin-
gle unit of work (e.g., a batch job).

in-process
recovery

185

Figure 6 Spheres of control over
in-process application re-
covery

i 1

[[]
Rl R2.1 R2.2 R2.2.1 R2.2.2
Application may be backed out to points having se-
mantic significance to the application. Subsequent
processing may take a different path,
Each sphere of control must save information
necessary to back out, since each is potentially
transparent to the next higher levei

186

ing every time a change of node occurs. Such a backup point is
particularly important if more than one person is involved and
one of them causes an error, making it necessary for another per-
son to redo work already correctly completed.

Procedures are treated above as though they were always pre-
defined, as in batch processing. But in the realm of interactive,
on-line, or in-line processing, procedures may very well be dy-
namic because functions can be invoked in real time. With dy-
namic procedures, the boundaries constituting atomic processes
and recoverable processes must be specified by the person who
invokes a function. The boundaries are operators, or commands,
which are in-line in the ongoing processing. Function keys on ter-
minals are most often used for this purpose.

An example of the need for nested recoverable units of process-
ing is illustrated in Figure 6. The work bounded by R1, initiated
by a human operator, involves entry of a parts order which may
be in error and have to be re-entered. R2.1 allows the erroneous
portion of the parts order to be backed out. Subsequently, in the
processing bounded by R2.2, the parts file is searched, and a set
of choices evolves via the processing bounded by R2.2.1. Anitem
in the parts order is found to be in short supply, and management
approval is required before it can be shipped. The work done by
the approving manager is bounded by R2.2.2. Should the manager
discover in the middle of processing (decision making), that he
has made an error, he requests backout of the process to the be-
ginning of R2.2.2. (The callouts in Figure 6 indicate points where
a command is given to initiate each sphere of control.)

Nested backout as described above is essential for the following
reasons: Without it, the entire process would have to be backed
out and the parts order re-entered. If the solution were to have
many disjointed sequential processes, then a parts order discov-
ered to be in error during processing could not be corrected be-
cause the user already would have entered it and received con-
firmation of the entry. In that case a formal cancellation transac-
tion, complete with audit trail, followed by resubmission of a
corrected parts order, would become the only realistic, and possi-
bly legal, default.

In summary, in-process recovery is control of the recording and
subsequent use of whatever data is required to return to a pre-
vious point in the process—namely, the beginning of this recov-
ery sphere of control.? Recovery spheres of control can be, and
frequently are, nested. The spheres of control over process atom-
icity and in-process recovery often are boundaries for the same
processing. To allow for procedure replacement, the boundary of
recovery must coincide with the boundary of an atomic operator
at some nest level, often in addition to the one at the highest level.

DAVIES TBM SYST J & VOL 17 & NO 2 1978

The purpose of post-process recovery is to determine the source
of, and correct for, an error discovered during processing but
whose cause is no longer contained within an in-process recovery
sphere of control. Four basic activities are necessary to recover
from an error discovered after process completion. They are illus-
trated in Figure 7, where, first, a symptom of the error is detected
in process 5. A check on the relation between two or more data
items, for example, might reveal an invalid relation such as the
quantity of parts received minus the quantity shipped not equal-
ing the quantity on hand. Note that this is not the original error,
but only a symptom or consequence of the error.

Second, the data elements believed to be involved in the error are
brought into the sphere of control over processing established for
post-process recovery. The process that created or last modified
the data elements in question is determined from a journal. Input
and output data from the past processes involved (3 and 4 in Fig-
ure 7) is brought into the post-process recovery sphere of control,
which is nothing more than a dynamic atomic action sphere of
control.

Third, it is necessary to determine the extent of exposure result-
ing from the original error. This is accomplished by searching for-
ward along the paths of dependency to identify those that de-
pended directly upon the error—that is, those that depended
upon a value that was wrong and now is right or thought to be
right. There may be many such values and processes. For ex-
ample, the wrong element may have been updated, resulting in
two errors, each of which may have been depended upon by
many processes.

Fourth, for each process that had different input, it must be de-
cided whether the difference affected the outcome of that proc-
ess. If so, then it must be decided whether to back out the old
process and rerun to generate differences, or merely to com-
pensate by means of another transaction.

The results of the fourth step are examined to see which output
data would have been different, and the third and fourth steps are
repeated until no more processes are affected. Once each process
history is no longer needed, it is released from the post-process-
ing recovery sphere of control so that other recovery procedures
can use it, if necessary, provided that one is willing to commit to
the recovery actions taken so far. Recovery processing is a nor-
mal process that must obey the same rules as a nonrecovery proc-
ess.

The post-processing recovery sphere of control can be explained

by using an analogy from management. Figures 8A and 8B illus-
trate the management hierarchies that might exist at two com-

IBM SYST J e VOL 17 @ NO 2 & 1978 DAVIES

post-process
recovery

Figure 7 Sphere of control over
post-process application
recovery (action data de-
pendencies)

Numbers represent processes. Search backward to
determine error source. Search forward to bound
scope of dependencies.

Figure 8 Spheres of control over
post-process application
recovery (functional con-
trol dependencies)

FIRM A FIRM B

[CY] (B)

187

system
recovery

188

panies. To recover from an error for which a given manager is
responsible, that manager would first try to decommit the action.
If that were not possible, he would try to compensate for the
error. But if compensation were refused by the manager affected
by the error, the problem would be escalated. Escalation always
results in either decommitment or compensation, since at some
level in the chain of command there is a manager whose respon-
sibility includes both cause and effect.

To recover from an error for which no single manager is directly
responsible, an attempt would be made to decommit or com-
pensate for the error, as above, but if the managers involved
could not reach agreement, then negotiations would be initiated
to find a compromise. Should negotiation not be successful, the
matter would be submitted to adjudication by the establishment
of temporary common control. It should be noted that if only one
party has kept records, they will be considered to be the facts.
Therefore it is important for both parties to have complete rec-
ords, which have the dual properties of being useful for recovery
and necessary for audit.

In summary, post-processing recovery is control over processing
that searches backward to find the source of an error, and then
forward to bound the propagated effects of the error.* It is neces-
sary that recovery be a normal process and that it contain all the
relevant resources within its sphere of control over processing.
Otherwise the network of resources would have to be locked as a
unit, with the result that recovery could be the only active proc-
ess in the entire network.

System recovery is the restoring of a previously existing system
state by establishing checkpoints that represent the earlier state.
Checkpoints are often transparent to the process being check-
pointed. Checkpoints are useful in either of two cases: The first
case is when an application error occurs and no commitments or
dependencies have been established since the last checkpoint, so
that subsequent reprocessing can take a different path from that
of the original processing. This procedure is nothing more than a
transparent, in-process recovery sphere of control and is useful in
a batch environment where the operator controls commitment.

The second case is when, for example, a system fails because of a
machine check, and the checkpoint represents a prior point from
which processing will be repeated. This procedure is useful when
recovery is not required to produce different results.

Unfortunately, the checkpoint philosophy does not allow for the
replacement of an erring procedure, since the checkpoint can be
taken anywhere relative to the boundaries of a procedure. If the
checkpoint is taken at the boundary between two procedures,

DAVIES IBM SYST J @ VOL 17 @« NO 2 ¢ 1978

atomic processes, or actions, it is really an in-process recovery
sphere of control.

Figure 9 illustrates two system checkpoints, SC1 and SC2, at ar-
bitrary points within an atomic process.

In summary, system recovery is control over the recording and
subsequent use, for recovery or system restarting, of at least the
data that has been modified or newly created. Frequently, un-
modified data also is recorded to save time on restarting. Since
the system does not understand what the application did or meant
to do, it can roll back processing only when no commitments
have been made. This leads to the interesting dilemma of how the
system knows when commitments have been made, since they
are not recorded. And since no dependencies are maintained, any
application that commits its results commits all applications, un-
less in-process recovery spheres of control are being used.

Audit control

The auditing of a process, or action, is the mechanism by which
the validity of the process is determined. In any auditable system
there must be a mechanism for remembering every action taken.
Such a mechanism should be transparent to the process being
audited. To audit a process, or action, means that one has defined
the unit of process that constitutes the action. The kinds of audit-
ing required are in-process immediately prior to process termi-
nation, and post-process as soon after process termination as pos-
sible. This bounding of auditable actions is described in terms of
intraprocess and interprocess auditing spheres of control.

Intraprocess auditing validates the processing of single actions,
such as translating a parts order into a shipping order. Single ac-
tions are those for which no point of commitment occurs except
at the end of the highest-level atomic process.

There are two mechanisms for single-action auditing. One is the
in-process audit, a procedure specified by the auditor and de-
signed to catch undesirable process consequences. For example,
a parts order for two items results in a shipping order for 20 items
and the unit of issue is the same. However, if the parts order
resulted in one item being shipped and the other back-ordered,
any error is not one in which an external auditor would necessar-
ily be interested. An internal auditor may be interested in it if it
represents a deviation from policy. For example, it may be com-
pany policy to back-order all parts orders for quantities less than
ten.

The other mechanism is the post-process audit, which requires
complete reconstruction of the information necessary to deter-

IBM SYST J @ VOL 17 « NO 2 e 1978 DAVIES

Figure 9 Spheres of control over
system recovery

sC1 sC2
!
1

Controls unitateral back-out and (potential) rerun of
uncommitted processing. Checkpoints (SC1, SC2)
are applied to process, not machine.

Valid only for regenerating lost bits that have not
been used to take a wrong path (wrong direction).
Undoing of uncommitted processing does not re-
quire semantic knowledge.

intraprocess
auditing

189

Figure 10 Sphere of control over
auditing {single action)
GLOBAL VARIABLE

LOCAL VARIABLE

Who entered what data? When? What was the result
of the action? Why (how)? That is, which version of
what data and procedure was the basis for and
consequence of what action?

Implicit is that auditable actions have identity.

interprocess
auditing

Figure 11 Spheres of control over
auditing (across ac-
tions)

AUDIT SPHERE OF CONTROL

. o UNITS >
ESes o)
ST OFTIME —
FIRST DATA CONSISTENT LAST
ACTION BETWEEN ACTIONS ACTION

-

Trace of the disjoint actions performed on behalf of
an original transaction.

190

mine what input was used, who initiated the action, when it was
initiated, and what the result was. The post-process audit applies
to both data and procedures, since both change over time. In this
respect instruction data also has versions, and each version must
be reconstructible for auditing or reprocessing. This is mentioned
here for emphasis but is no different than the requirement levied
against all data and its various versions.

Figure 10 illustrates two auditable subactions within an action.
Note that it is necessary only to save or reconstruct global vari-
ables relative to the auditable action, since local variables would
be recalculated.

However, if there are any separately and more detailed auditable
subactions, the global variables relative to the subactions must be
saved even though they are local to the larger action. Otherwise
they must be reconstructible by an auditor-approved mechanism.
Auditor approval is required for all reconstruction mechanisms;
otherwise one could simply assert that a certain thing was true.

To the extent that an in-process recovery sphere of control has
the same boundary as an intraprocess auditing sphere of control,
the data that need be saved is the same. It will then be used by the
post-process recovery function and the auditor.

In summary, intraprocess auditing is control over the recording of
the input to, and output from, a process, together with the sub-
sequent reconstruction of the information for the specific purpose
of verifying and validating the original processing.® Intraprocess
auditing validates the outcome of each transaction independently
of the source or recipient of the transaction. Depending upon the
nature of the system or application, the nested atomic processes
may have to be independently auditable, in which case their input
and output must be reconstructible.

Interprocess auditing validates the processing of an action that is
disjointed as a function of time. It is the checking, tracing, and
reconstruction of the various causes and effects of actions which
are on behalf of an original action.

Figure 11 illustrates three disjointed but related actions. They
must be auditable as though no time had passed between them,
even though the actions may have occurred months or even years
apart. Interprocess auditing, like intraprocess auditing, has both
in-process and post-process components. The in-process com-
ponents are procedures, specified by the auditor, that are de-
signed to catch undesirable process results relative to the original
action, which may not be an error as a stand-alone action.

DAVIES IBM SYST J o VOL 17 « NO 2 & [978

The post-process components are procedures, such as random
samplings, that are used later to look back at a collection of ac-
tions and verify the original processing. This audit also requires
the same knowledge as intraprocess auditing, along with the abil-
ity to tie related actions together, even though they may be dis-
Jointed as a function of time and of process, and even though
nonrelated actions may occur between them.

To audit properly, within standards set up for the purpose,® 7 re-
quires that all actions be audited or that a random selection of
actions be audited, the selection being unknown ahead of time.
Otherwise the audit could be invalidated by performing properly
only those processes that it is known will be audited.

As a consequence, all information necessary for post-process au-
diting of any action must be saved at the time of the original proc-
essing. If the actions to be audited are not known at the time of
processing, then all actions that might be audited must have their
audit trail information established at the time of processing. An
interactive procedure must be reconstructible. A procedure may
be recorded each time it is executed, or it may be recorded only
once and referred to by name upon each subsequent use. If the
latter method is chosen, the process name must include the ver-
sion, implicitly or explicitly.

In summary, interprocess auditing is the control over the record-
ing and subsequent retrieval of the data necessary to verify the
set of disjointed processes on behalf of an original transaction.
Interprocess auditing validates the sequence and outcome of a set
of related processes that are disjointed on the basis of time.

Relational integrity control

Relational integrity is the maintenance of related information in
such a manner that a procedure receives the correct version of
the related information it requires. This does not necessarily
mean that the relations are correct at all times. It does mean that
when a process needs them to be correct, the actions required for
updating will have occurred. In addition, any process that at-
tempts to create an invalid relation is prevented from doing so.
The sphere of control over consistency is one of many mecha-
nisms required to effect relational integrity.

The sphere of control over consistency includes the set of rules
and assertions about a collection of related information. As
pointed out by Eswaran et al.,® the assertions describe the rela-
tionships, consistency, and limits that must be maintained. The
rules describe the conditions under which a procedure may ac-
quire or create information or a subset.

IBM SYST J e VOL 17 e NO 2 o 1978 DAVIES

consistency

191

192

Figure 12 Spheres of control over consistency

QUANTITY
RECEIVED

QUANTITY QUANTITY
SHIPPED ON HAND

An update to an element of a sphere of consistency implies that no other update
is possible by a disjoint action.

Spheres of consistency have versions.

Binding causes the enlargement of a sphere of consistency, or creation of another.

INVENTORY
CosT

INVENTORY
NET POSITION

INVENTORY
WORTH

The example illustrated in Figure 12 shows three spheres of con-
sistency. Sphere 1 asserts that the quantity received minus the
quantity shipped equals the quantity on hand. Sphere 2 asserts
that the on-hand quantity times the unit cost equals the total cost.
Sphere 3 makes similar assertions, causing the field of informa-
tion called 7otal cost 10 lie in two spheres simultaneously.

The rules associated with a sphere of consistency describe, as a
result of the assertions, the fields of information involved and the
relationships that must be maintained for each procedure and by
each procedure. Exclusive read or write allocations, via locking
in all its forms, are various implementations of some of these rela-
tionship-preserving rules. The important point is that it is neces-
sary for information to be consistent only when it is needed.

In summary, the sphere of control over consistency is control
over the permissible uses of subsets of a collection of related re-
sources. For example, the unit of issue, the quantity on hand, and
the unit cost are related in such a way that if the unit of issue is to
change, so must the unit cost. But if the unit cost is to change,
the unit of issue does not have to change; in fact it should not.

Processing environments

The implementation of spheres of control depends on processing
environments. For example, if a process is running in the batch
mode, the spheres of control can share much the same informa-
tion and control structures. However, with on-line or in-line ap-
plications, the various spheres of control usually must be imple-
mented separately. In any event, they should be described sepa-
rately to allow a choice.

Following is a description of the differences among the three pri-
mary processing environments: batch, on-line, and in-line.

DAVIES IBM SYST J @ VOL 17 @ NO 2 ® 1978

The more important characteristics of batch processing are: batch
processing

e A set of transactions is sorted to the same sequence as the
files against which they are to be processed. The process (job)
is broken up into smaller processes {job steps), each con-
sisting of predefined procedures which are fixed for the dura-
tion of the job. Jobs by definition are unrelated to one another,
even though they are executed in carefully defined sequences
to prevent loss of integrity.

® No real-time variables can differ during a subsequent rerun.
The entire process is repeatable without a journal of activity,
provided that the files and file names have been saved. The
files are saved by the simple and convenient expedient of not
updating old files.

e The resources held under exclusive control (locked) are
large—for example, files rather than records or fields. The re-
sponse time is machine controlled since no human response
time is part of the process, assuming that a fully automated
storage subsystem is used.

Figure 13 illustrates a typical collection of spheres of control used Figure 13 Batch processing—no

in batch processing. For purposes of discussion we assume the human involvement
use of an operating system such as 0S/vVS on System/370. The

outermost sphere of control (C1) is for commitment control. Usu- Jsx

ally it is delineated by a (work) card and is enforced by exclu- ”2) ® O ‘>
sively allocating (locking) the resources used or created. Locking

is performed by either the machine or an operator. « Predefined procedure
< Repeatabte withost ot

The next nested spheres of control define the boundaries around = Response tme s macame comraten "0
two separate jobs (J1 and J2). Sequencing Is specified and com- 7 = wat s
mitment controlled until the end of job 2. The spheres of control

within each job are job steps, labeled JS1 and JS2 within J1, and

JS1 within J2. They define the amount of processing performed as

a result of an EXECUTE card. The spheres of control labeled T1,

T2 - - - TB define subsets of processing on behalf of given trans-

actions. They are units of processing for auditing purposes.

recovery
commitment

The more important characteristics of on-line processing are: on-line
processing
e Each transaction is processed alone. That is, there is not nec-
essarily any attempt to batch more than one transaction in the
same process. It is as though each transaction were a job step,
and also a job if the data is unallocated between transactions.
However, there is no human choice involved in the midst of
processing as with in-line processing, discussed below. The
procedures are fixed ahead of time; the only variables are the
contents of each transaction, which are either acceptable and
processed, or unacceptable, in which case the transaction is
rejected.

IBM SYST | ® VOL 17 » NO 2 » 1978 DAVIES 193

Figure 14 On-line processing—hu-
man involvement but
not control

« Predefined procedure

» Dynamically defined values for variables

o Not repeatable without journal

* Resources allocated (locked) are medium size (re-
cords}

® Response time is machine controlied

« Unneeded resources sometimes de-allocated

in-line
processing

194

e Since there is no attempt to establish a sequence for transac-
tions, a journal is required for auditing and recovery in case
reprocessing is needed. Each transaction consists of variables
not known until the time of processing, so it is necessary to
Jjournal the entire transaction, not just the values of the vari-
ables it used or created.

® The resources locked are much smaller than in batch process-
ing—records, for example, instead of files.

® Response time is under human control for as long as it takes to
construct the transaction, and under machine control once the
transaction has begun processing.

e Resources no longer needed may be released in the midst of
processing, so long as it is still possible to recover from an
error by backing out the entire transaction.

Figure 14 illustrates a typical collection of spheres of control used
in on-line processing. The outermost sphere (C1) defines the
boundary of processing to be completed prior to making a com-
mitment of the results. In this case, two transactions are to be
considered as one transaction relative to commitment.

The spheres of control labeled Al and A2 bound the unit of proc-
essing that is considered an action or process from the auditor’s
point of view. Within Al is T1, a sphere of control bounding the
unit of process from the user’s point of view. Generally, this
processing unit is called a transaction. Note that there is not hu-
man interaction within a transaction.

Within the processing of one transaction, the application may al-
low for rerunning part of a transaction to speed recovery from,
for example, a machine check. Spheres of control R1A and R1B
are examples of intratransaction recovery bounding.

The more important characteristics of in-line processing are:

e Each transaction is constructed interactively, and its process-
ing is directed by another active element, often a human oper-
ator, who may totally define the procedures in real time. Inter-
active problem solving and arbitrary queries and updates are
examples.

e Almost all activity must be journaled for recovery and audit-
ing because there is no other way of remembering a set of
arbitrary variables and actions.

® An example of in-line processing is the query capability
needed in an inventory control application when the query is
not a predefined, and therefore programmed, set of code. It is
typified by following a path through an associative network of
relations, which may be represented as flat files with im-
bedded keys used for the associative linking. A journaling
capability must exist to satisfy recovery and auditing require-

DAVIES IBM SYST J ¢ VOL 17 @ NO 2 e 1978

ments; otherwise one is limited to asking only those questions
and causing only those results that have been anticipated and
preprogrammed.

e The unit of resource that is locked is generally small, like a
first, second, or third normal relation represented as a set of
fields which are likely to be the concatenation of the subset of
many records. Resources no longer required are generally de-
allocated, again with the constraint that a backout of process-
ing is still possible, or until it has been indicated that the high-
est level of commitment control has been terminated.

e In-line processing is typical for systems involving hypothesis
trial and error techniques, which often result in backing up to
one of n defined points and taking a different path. The backup
points are dynamically defined by the terminal operator, often
by the use of program function keys.

Figure 15 illustrates a typical collecton of spheres of control used
with in-line processing. The outermost sphere, C1, again controls
commitment. The first nested sphere, Al, is for auditing. The
next nested sphere, T1, is the bounding of a transaction that a
user interacts with and controls. That is, the user is an integral
part of the process and may redirect it at any time. In contrast, in
the batch and on-line environments the user is involved only at
the beginning and end of a transaction.

The next nested sphere of control, R1, bounds that which the user
may wish to back out and redo or just back out and forget, as
when he discovers that the transaction was not necessary after
all.

The next and last nested spheres of control, R2A and R2B, etc.,
are portions of the processing that the user may wish to back out
and redo to a different conclusion. They are vital in any process
subject to human error when the user wishes to redo only that
portion of the process into which the error was introduced and
those subsequently processed portions that depended on the
backed-out, now erroneous, processing.

- Summary

This paper describes most of the spheres of control required to
maintain integrity in digital data processing applications. Among
these spheres of control are:

® Process atomicity, which allows each function to be treated as
a transformation without concern for the total inconsistency
that otherwise would exist should a partial transformation oc-
cur. This is generally the unit of replaceable procedure. Proc-
ess atomicity spheres of control are frequently nested.

IBM SYST J @ VOL 17 @« NO 2 & 1978 DAVIES

Figure 15 In-line processing—hu-
man involvement and
control

« Dynamically defined procedure (arbitrary)

« Dynamically defined values for variables

« Not repeatable without journal

& Resources allocated (Jocked) are small (fields)
& Process response time human controlled

o Unneeded resources usually de-allocated

« Hypothesis trial and error with frequent backup

195

196

® Process commitment, which bounds the dependencies and
consequences of a function until such time as the work need
not be undone or backed out and redone (to a potentially dif-
ferent conclusion). Process commitment spheres of control
are frequently nested.

e Controlled dependency, which allows the controlled use of de-
pendencies and updates to permit otherwise sequential proc-
esses to be partially parallel. Multiple active-element proc-
esses typically relate through controlled dependency when
working toward a common goal.

® Resource allocation, which allows for better performance of
some applications, to the potential detriment of others, by as-
signing some resources to a set of otherwise unrelated sequen-
tial processes.

® [In-process recovery, which permits the return of a process to
a previously acceptable point. This sphere of control also
causes the recording of information required for post-process
recovery, as described below. In-process recovery spheres of
control are of necessity nested, unless, when an error occurs,
one wants to redo all processing regardless of how recent or
trivial the error.

® Post-process recovery, which consists in searching backward
for sources of error, then searching forward to rerun or com-
pensate for past processing or data-entry errors. This sphere
of control is a process atomicity sphere of control that uses
information recorded by and about previous spheres of con-
trol over process atomicity.

o System recovery, the establishing of and subsequent return to
checkpoints. It has the disadvantage of resetting the system
state including processes not in error. Further, it cannot be
used if any commitments have been made since the last check-
point, unless loss of integrity is not of concern. Hence its use
generally is limited to single-thread batch processing. It is
never used in interactive or multithread batch processing in
which commitments have been made.

e Intraprocess auditing, which is the real-time validating of
processing and the identification and recording of the particu-
lar processing for later random validation.

e [Interprocess auditing, which is the validation, on behalf of an
original action, of a sequence of related processes that may be
disjointed in time. Usually they are selected at random after
processing is complete.

e Consistency, which is the specification and maintenance of
the relations expected by a set of application procedures.

Conclusions
The designers of the semantics of applications are concerned

mainly with spheres of control. Concern for performance is a
strong second. It is not unusual to eliminate automation of an

DAVIES IBM SYST J & VOL 17 4 NO 2 %1978

application if adequate performance can be achieved only by ig-
noring the spheres of control presented. The application is then
done manually or not at all.

Computer scientists are striving for performance, sometimes at
the expense of function. The lack of function frequently takes the
form of not providing as much support for the various spheres of
control as applications require. This apparent dichotomy leads to
small, disjointed portions of applications being implemented with
the required spheres of control accomplished manually outside
the computer system.

Data processing is migrating toward on-line and in-line environ-
ments in which the data exists in the machine or not at all. Con-
sequently, the persons who used to perform the functions re-
quired of the various spheres of control are no longer able to per-
form those functions. Therefore the spheres of control and their
enforcement also must be automated.

Many of the procedures written for an application are intended to
provide the auditing and control capabilities described in this pa-
per. A standardized set of protocols permitted by these concepts
could relieve application designers from having to program
unique solutions for each and every program and application.

The most important conclusion is that automated digital data
processing will not be successful in integrated or geographically
distributed data-base applications unless the concepts and rules
of the described spheres of control are adhered to. This con-
clusion is particularly relevant when one considers the increasing
emphasis that auditors are placing on traceability and account-
ability in modern data processing systems, notably the real-time,
on-line and in-line terminal-oriented systems being used more and
more in the business community.

The ability to describe the boundaries of the various spheres of
control should be added to the languages used to describe appli-
 cations and direct the operation of computers.

ACKNOWLEDGMENTS

Thanks are due to L. A. Bjork since some of the recovery and
auditing ideas presented here resulted from a recovery/integrity/
auditing project in which we both participated, and which was
managed by H. Herron.

I also owe thanks for their interest and encouragement to many
friends, especially J. N. Gray, M. E. Senko, and I. L. Traiger of
the IBM Research Division, J. Martin of the IBM Systems Re-
search Institute, and Professor Brian Randell and his staff at the
University of Newcastle-upon-Tyne, England.

IBM SYST] @ VOL 17 ® NO 2 e 1978 DAVIES

197

198

CITED REFERENCES

1. C. T. Davies, Jr., A Recovery/Integrity Architecture for a Data System, Tech-
nical Report TR 02.528, IBM General Products Division, 5600 Cottle Road,
San Jose, California 95193 (1972).

2. Personal communication with J. N. Gray, 1. L. Traiger, and others of the IBM
Research Division, San Jose, California.

3. B. Randell, P. A. Lee, and P. C. Treleaven, Reliable Computing Systems,
Technical Report Series 102 (May 1977); also P. M. Merlin and B. Randell,
Consistent State Restoration in Distributed Systems, Technical Report Series
113 (October 1977), Computing Laboratory, University of Newcastle-upon-
Tyne, Newcastle-upon-Tyne NE1 7RU, England.

4. L. A. Bjork, Ir., and C. T. Davies, Jr., The Semantics of the Preservation and
Recovery of Integrity in a Data System, Technical Report TR 02.540, IBM
General Products Division, 5600 Cottle Road, San Jose, California 95193
(1972).

5. L. A. Bjork, Jr., ““Generalized audit trail requirements and concepts for data
base applications,”” IBM Systems Journal 14, No. 3, 229-245 (1975).

6. ‘““Advanced Electronic Data Processing Systems and the Auditor’s Concerns,”’
Journal of Accountancy 139, No. 1, 66-72 (January 1975). This article is a
preliminary report of the Auditing Advanced EDP Systems Task Force, Com-
puter Services Division, American Institute of Certified Public Accountants.

7. Systems Auditability and Control Study, Executive Report (order number
G320-5791), Data Processing Control Practices Report (order number G320-
5792), and Data Processing Audit Practices Report (order number G320-5790),
prepared for The Institute of Internal Auditors, Inc., Altamonte Springs, Flor-
ida, by Stanford Research Institute under a grant from IBM Corporation
(1977).

8. K. P. Eswaran, J. N. Gray, R. A. Lorie, and I. L. Traiger, On the Notions of
Consistency and Predicate Locks in a Data Base System, Research Report RJ
1487, IBM Thomas J. Watson Research Center, P.O. Box 218, Yorktown
Heights, New York 10598 (1974).

Reprint Order No. G321-5070.

DAVIES IBM SYST J e VOL 17 @ NO 2 & 1978

