Pointing at items on a graphics display is one of the most useful
methods of interacting with a system graphically. This paper ex-
amines existing graphical support and lists requirements for
high-level support of graphical interaction. The architecture of a
prototype system with high-level support for graphical interaction
is presented. This includes database support for manipulating
graphical data and device-independent graphical support based
on a proposed standard for graphical interaction. Algorithms
are presented for identifying items selected from a display by the
user. Inclusion of a database management system in graphical
software support is shown to be helpful in meeting the require-
ments of interactive graphical application programs.

Software architecture for graphical interaction

by D. L. Weller, E. D. Carison, G. M. Giddings, F. P. Palermo,
R. Williams, and S. N. Zilles

Interactive graphics is made possible by hardware and software
support for graphical input. The ACM Graphics Standard Planning
Committee (GSPC) has made its Core proposal for a graphics stan-
dard’ that identifies the following six types of logical input de-
vices:

o Keyboards for typing alphanumeric data.

e Buttons for program function activation.

e Stroke devices for direct visual graphics entry (e.g., electronic
tablet).

& Valuators for analog quantity entry (e.g., dials and meters).

& Locators for position entry (e.g., joysticks).

o Picks for item selection (e.g., light pens and joysticks).

Of these six device types, picks and locators may be the most
useful for interactive graphics because they allow one to interact
directly with a graphical output by pointing. Foley and Wallace”
have observed that graphical interaction by pointing is easy and
natural for most people. Our experience with picks and locators

Copyright 1980 by International Business Machines Corporation. Copying is per-
mitted without payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright notice are
included on the first page. The title and abstract may be used without further
permission in computer-based and other information-service systems. Permission
to republish other excerpts should be obtained from the Editor.

WELLER ET AL. IBM SYST J & VOL 19 ® NO 3 & 1980

in a variety of applications® ™’ indicates that their use improves the
human factors of graphics applications, especially applications
designed for nonprogrammers. In this paper we discuss picks, but
many of the concepts and algorithms apply equally to locators.

Picks are also important because they can simulate other devices.
They can be used to select text strings or symbols from a menu to
simulate the function of buttons and keyboards. Picks can be
used to position a tracking cross, thereby simulating the function
of a locator. They can also be used to move an indicator on a
graphically displayed dial, thus simulating the function of a valu-
ator. A powerful use of picks is for graphical query. For example,
a pick can be used to select a subset of a picture to be redisplayed
with more detail at a larger scale.

Returned with each pick is a tag, which is a unique identifier of a
graphical item. Tags are also known as pick identifiers, pick attri-
butes, or correlation values. Support for picks requires two
basic functions: identification and linking. Identification deter-
mines the tag of the picked graphical item. The linking function
causes an action based on the returned tag. A tag may link a vari-
able, data, or the name of a module in an application program to a
graphical item and thus provide meaning for the item picked.

In the next section we summarize the support for pick devices in
the GSPC Core proposal because that proposal is representative of
existing graphics systems. Following that we describe application
requirements for using picks and show that there is a need for
higher-level support than that provided by existing graphics sys-
tems. Presented next is the architecture of a prototype system,
the Picture Building System (pBS),* " for supporting graphical in-
teraction. The prototype is based on a database management sys-
tem. Following that section we describe pick identification al-
gorithms. In the final section we show the simplification of pick
support by the use of a database management system.

Pick support in existing graphics systems

The pick devices provided by existing graphics hardware are pri-
marily light pens and cursors controlled by joysticks, tablets, and
track-balls.”>" A pick device is typically used by pointing to an
item on a screen and pressing a button or switch. When this hap-
pens, a pick identification function determines the item picked,
and the tag of the picked item is returned to the application pro-
gram.

The returned tags differ from system to system, depending on the

type of terminal. For terminals with a refresh buffer, the buffer
address is often used as a tag. In this case, the identification func-

IBM SYST J e VOL 19 @ NO 3 e 1980 WELLER ET AL.

the pick
function

interface
for

pick
support

tion is performed by the hardware,' and the linking function by
the software. For other terminals, the tag is often the x-y coordi-
nates of the pick, in which case the software performs both the
identification and the linking functions.

Some graphics subroutine packages provide additional pick sup-
port. The x-y coordinates and programmer-assigned tags of de-
tectable items (items that can be picked) are stored in a pick
table. When a pick occurs, an identification algorithm uses the
pick table along with a pick window (which is an area based on the
specified x-y position) to determine the item picked and returns
the corresponding tags.

Some systems provide tags for all items in the pick window,
whereas others provide only a single tag for the first item. In some
systems,'® tags are stored in the refresh buffer, in a separate buf-
fer, or in a structured display file. If a structured display file is
used, a vector of identifiers corresponding to the hierarchical
structure of the picked item may be used as a tag. If a separate pick
table is not kept, the data for the entire picture must be regener-
ated whenever a pick occurs. This is generally much slower than
searching a pick table, which has entries for the detectable items
only. In summary, tags can be buffer addresses, x-y coordinates,
programmer-assigned identifiers, or vectors of identifiers.

A summary of the support for picks provided by ten graphics soft-
ware packages is given in a survey performed by the GSpc.'? The
GSPC Core proposal' specifies commands for pick support. Al-
though the proposal has not yet been adopted as a standard, we

use it here as an example of software support for picks.

The PICK ID, a programmer-assigned integer, is statically bound
to a primitive, such as a text string, line, or point (marker), when
that primitive is added to a segment. Primitives can be grouped
into named segments, which can have attributes that apply to all
the primitives in the segment. Detectability and visibility are dy-
namic attributes that determine whether an item may be picked.
If a segment is detectable, the pick device can be used to select
primitives (that have a PICK ID) within that segment. If the seg-
ment is nondetectable, a pick cannot detect any primitives in the
segment (even if the primitives have a PICK ID). Segments can be
given a detectability priority that can be used to resolve pick am-
biguities (as discussed later in this paper). Visibility affects de-
tectability because primitives in a segment that is invisible cannot
be detected by a pick. Commands, such as those shown in Table
1, are provided to the programmer to manipulate PICK IDs and
pickability.

The proposed GSpc Core commands for controlling pick activa-
tion include initialization, termination, the enabling and disabling

WELLER ET AL. IBM SYST J @ VOL 19 & NO 3 & 1980

Table 1 Commands used to manipulate PICK ID and pickability

Command Function

SET PICK ID (id) set PICK ID to id

SET SEGMENT DETECTABILITY set detectability to id
(segment name, id)

SET SEGMENT VISIBILITY set visibility on or off
(segment name, on/off)

INQUIRE PICK ID (id) determine current PICK ID

INQUIRE SEGMENT DETECTABILITY determine detectability
(segment name, detectability)

INQUIRE SEGMENT VISIBILITY determine visibility
(segment name, visibility)

Table 2 Commands for a single pick device

Command Function

INITIALIZE DEVICE initialize a specific pick device
(pick, number)

TERMINATE DEVICE terminate a specific pick device
(pick, number)

ENABLE DEVICE enable a specific pick device
(pick, number)

DISABLE DEVICE disable a specific pick device
(pick, number)

SET PICK set a square pick window with
(number, aperture) sides equal to aperture

of devices, and the setting of the pick aperture. Before interrupts
from a pick device can be enabled, the pick must be initialized.
Commands for a single pick device are listed in Table 2.

When a pick device causes an interrupt, the device number, the
segment name of the picked primitive, and the PICK ID of the
primitive are placed in an event queue. The GSPC Core proposal
specifies that the picked primitive must intersect the pick aper-
ture, but it does not specify the identification algorithm to be used
to determine the intersection.

The program can wait for a pick with the command AWAIT EVENT
(time, device class, device number). The programmer specifies
the time parameter, and the system returns the device class and
number. The linking information (tags) in the queue are retrieved
by using the command GET PICK DATA (segment name, pick id).

IBM SYST J ¢ VOL 19 ® NO 3 e 1980 WELLER ET AL.

The resulting action returns the segment name and PICK ID for the
picked primitive. Note that only one segment name and PICK ID
are placed in the queue for each pick interrupt. There is no in-
dication of how many pick tags are in the queue. Thus the pro-
gram must issue the GET PICK DATA command in a loop to retrieve
all the tags from the queue.

The program can empty the event queue for a single pick device
with the command FLUSH DEVICE EVENTS (pick, number). This
command removes all interrupts for a specific pick.

The programmer may associate a pick with locators, valuators,
buttons, and keyboards. Association means that when a pick oc-
curs, the associated device is sampled, and the sampled values
and the device identifier are placed in the event queue for the
device. This data is accessed using commands similar to the pick
commands for the associated device (for example, GET LOCATOR
DATA). Thus association expands the information available to the
program when a pick occurs. The command for association is AS-
SOCIATE (pick, pick number, locator/valuator, locator/valuator
number). There are complementary commands for disassociating
devices.

All input devices, including picks, can have an echo. An echo is
feedback to the user, such as the highlighting of a picked item.
Commands are included for specifying, enabling, and disabling
echoes for devices.

To summarize, the GSPC Core proposal recommends the follow-
ing support for picks:

® A static PICK ID attribute (integer valued) for output primi-
tives.

e Dynamic detectability and visibility attributes for segments.

e [Initialization, termination, enabling, and disabling of one or
more pick devices.

e Timed waiting for a pick.

e Retrieving the segment name and PICK ID of picked primitives.

e Associating a pick device with a locator or valuator.

& Specifying, enabling, and disabling a pick echo.

This level of support is typical of that provided by many graphical
software packages. A common additional function is provision
for a vector that indicates the hierarchical structure of the picked
item. Some packages also provide a function for retrieving tags of
all primitives inside a pick window. If the GSpC Core proposal
were extended to include the nesting of segments, these functions
could be included by allowing the GET PICK DATA command to
return a vector of segment names and PICK IDs for each item in-
side the pick window.

WELLER ET AL. IBM SYST J 8 VOL 19 9gNO 3 ¢4 1980

Requirements for high-level pick support

Software support for picks, as described in the GSPC Core pro-
posal, would have to be augmented to support such applications
as circuit design, map digitization, business applications, and spa-
tial layout. Based on experience with applications of these
types,®”” we have identified six requirements for high-level pick
support, which could be built on top of software, such as that
specified by the GSPC Core proposal.

In most graphics systems, the programmer has no control over
the size or shape of the pick window. Because graphical appli-
cations create pictures of different densities, and because users
have different levels of skill in using pick devices, it is useful to
control the specification of the pick window. For example, a
street map with 2000 lines requires a finer pick than one with 50
lines. This requirement can be met by allowing dynamic control
of the size and shape of the pick window. Pick aperture control,
as described in the GSPC Core proposal, is an example of basic
control of pick window size. However, rectangular windows and
windows that vary with the primitive or segment are also useful.

Most graphics systems require the pick window to intersect the
item being picked. Yet in many applications the user may want to
pick by pointing inside the item. For example, in revising an of-
fice layout it is natural to point inside the graphical symbol to
select the piece of furniture to be moved. This capability cannot
be supported by such pick devices as light pens, which require
the user to point at the item. However, control over pick size or a
pick-inside-of function can provide the required function for
other pick devices.

Some graphics applications, such as those for constructing time-
series graphs of financial data, may require that during inter-
action, specific lines or points be made detectable or not detect-
able. Dynamic control over detectability can be supported by
segmenting the picture and using the segment attribute DETECT-
ABILITY, as proposed by the GSPC. The picture, however, must be
segmented according to the detectability of items, which may re-
quire a large number of otherwise meaningless segments.

A better way of achieving dynamic detectability is to add a
WHERE (condition) clause to the SET DETECTABILITY command of
the GspC Core proposal. Using this command, dynamic detect-
ability can be achieved without artificially segmenting pictures.
Alternatively, one can modify the GET PICK DATA command to
include a WHERE (condition) clause to allow the programmer to
accept picks only for items of interest without changing detect-
ability. Note that these WHERE (condition) clauses can be handled
as queries by a database management system, as discussed

IBM SYST J e VOL 19 ® NO 3 e 1980 WELLER ET AL.

specifying
the pick
window

dynamic
control

over
detectability

resolving
pick
ambiguities

meaningful
tags

later in this paper. As an example of a WHERE clause, consider
GET PICK DATA WHERE (COLOR = RED). The attributes of the
picked items are checked so that only the red items are returned.

Pick ambiguity refers to the case when more than one item lies
within a pick window, and often arises when one picks near inter-
secting lines or among items that are close together. Most graph-
ics systems return only one tag when a pick occurs and do not
even indicate that more than one item is in the pick window. This
limitation forces the programmer to understand the pick identifi-
cation algorithm. Thus the programmer may have to draw all the
points in a picture before drawing any lines, to make it possible
for a user to pick a point in preference to a line. Even if the tags of
all items in the pick window were returned, there would still be
the problem of determining the user’s intention.

The programmer may segment the picture to avoid ambiguities.
For example, all the points may go in one segment and all the
lines in another. Alternatively, in a GSPC Core system, if each
primitive were put in a separate segment, segments with points
could be given a higher detectability priority than segments with
lines. This, however, would require an artificial segmentation that
might conflict with the segmentation used to specify detectability.
Alternatively, the programmer could resolve ambiguities by writ-
ing code or finding clever ways of encoding pick tags. Even
worse, the programmer could throw the responsibility back to the
users, forcing them to pick (with feedback) until the desired item
was chosen.

Dynamic control of pick window size can help resolve pick ambi-
guities. Also, if the tags of all the picked items are returned, a GET
PICK DATA WHERE function and a GET NEXT PICK DATA function
are useful in resolving pick ambiguities because they permit re-
trieval of specific pick tags.

When one picks an item, the application program may perform
the linking function, that is, link the picked item with data or pro-
grams. For example, if a user picks a menu item, the application
program links the picked command with the name of the program
to be executed. Similarly, if a user picks a street to retrieve its
width, the application program links the street picked with a key
to retrieve the data.

Linking is simpler if pick tags are meaningful values instead of
arbitrary numbers. A meaningful value may be a data base key, a
program name, or the name for some data. With meaningful val-
ues, the application programmer can use the pick tag directly to
execute a program or to retrieve data rather than having to de-
code the tag to determine what to execute or retrieve.

WELLER ET AL. IBM SYST J & VOL 19 & NO 3 @ 1980

Closely related to the need for meaningful tags is the need for tags
to reflect the hierarchical structure of the picked item. For ex-
ample, in a circuit design application when the user picks a line in
a resistor, the application program may need to know the vector
of tags for the line that is part of a resistor that is in turn part of a
component. The programmer may also want to specify the depth
of the structure associated with a tag when it is created and the
depth of the structure returned when a pick occurs.

Most graphics systems do not provide the structure information
as part of the tag. Those that do usually do not give the appli-
cation programmer control over the depth of the structured tag
when it is created or the depth of the tag returned as a result of a
pick.

A graphics application containing 20 pictures, each with 1000 de-
tectable items, would require 20 000 pick tags. Perhaps only 1000
of these would be active at any one time, but they would all have
to be created and stored. If each tag were to take two bytes,
40 000 bytes of storage would be required for pick tags. If mean-
ingful tags and structured tags were supported, the storage re-
quirements could easily exceed 100 000 bytes. In addition, if the
x-y coordinates of every detectable item were stored in a pick
table, the storage requirements could double or even triple.

Since all this data cannot normally fit in high-speed storage, there
is a need to move the data between high- and low-speed memory.
Also, as mentioned previously, the application programmer may
require selective access to the pick data using commands such as
GET PICK DATA WHERE or SET DETECTABILITY WHERE. The re-
sponsibility for managing tag data and providing selective access
to pick data should be the responsibility of the graphics system
and not the application programmer. Thus the graphics system
requires the normal functions of a data base management system
to manage both tags and structured display files."

Interactive applications require high-level support for the identifi-
cation and the linking functions for picks. Most existing graphics
systems provide low-level identification functions. The required
support for picks can be achieved by combining the identification
functions with user-supplied linking functions and a database
management system using a general-purpose programming lan-
guage. Thus we have identified the high-level support for picks
that should be included in graphics systems. Six features that
would reduce the programming effort required for using picks and
would help improve the user interface in interactive applications
are the following:

e Program control over the pick window.
e Dynamic control over detectability.

IBM SYST J e VOL 19 @ NO 3 o 1980 WELLER ET AL.

structure
tags

tag data
management

summary of
requirements
for pick
support

321

Figure 1 Overview of graphics

software architecture

DATABASE
MANAGEMENT
SYSTEM

DISPLAY
HANDLER

GRAPHICS
INTERPRETER
N

AND
CORRELATION

HANDLER

APPLICATION
PROGRAM

database
management
system

Figure 2 Graphics data structuring
using a hierarchy of rela-
tions

I
i
/|
1
L

! X
|

TRIANGLE
X XYZOPERATION

MOVE
LINE
LINE
LINE

SHAPE

RELATION SHIFTX SHIFTY ROTATION

TRIANGLE 0
TRIANGLE 2 2 180

Help in resolving pick ambiguities.
Meaningful pick tags.

Structured tags.

Storage management and query for pick tags.

All these features can be provided by using a database manage-
ment system as discussed in the following sections.

An architecture for high-level pick support

This section describes an architecture for a graphics software sys-
tem with high-level pick support, such as is shown in Figure 1.
The system architecture consists of three major components: a
database management system, a graphics interpreter, and a dis-
play handler. A prototype based on this architecture is the Picture
Building System (pBS).*'*"!

A database system that provides graphical data types is an exten-
sion of the concept of a structured display file that is used to store
graphical data.'® Data in the database can have graphical or non-
graphical meaning (i.e., semantics). Graphical semantics can be
stored as attributes of the data, thereby defining graphical data
types. For example, the graphical data type called ‘‘coordinate’
can be defined as an integer, which is a parameter for draw or
move operations, as indicated in Figure 2. If the database con-
tains only graphical data, the database support is similar to a
structured display file with data manipulation functions.

User response requirements impose performance constraints on a
database management system when the system is used in place of
a structured display file. For example, to display a 2000-line
drawing in two seconds would require average access times of
less than 1 millisecond real time per line. In addition, the database
management system should be able to alter data structures in real
time in response to user actions. For example, the interactive ed-
iting of the picture in Figure 2 might require the addition of col-
umns to add new attributes, the addition of rows to add new items
to the picture, and the update of rows to modify the picture.

If a database management system is included in a graphics sys-
tem, a richer level of pick support can be provided. All graphical
data can be stored in the database and the pick tags can be the
associated database keys. The linking function for picks thus be-
comes retrieval by key from the database. In a relational (or tabu-
lar) database,'®*® the basic item that can be picked is a tuple (row),
which may represent, among other things, a line, a text string, or
a call to another relation. A displayed relation may be repre-
sented by a tree, as in Figure 3. Here, the internal nodes repre-
sent relations, the branches represent tuples, and the leaves rep-
resent display items.

WELLER ET AL. IBM SYST] ® VOL 19 ® NO 3 & 1980

Consider the relation SHAPE in Figure 2. Suppose one wishes to
pick the first line in relation TRIANGLE, as called from the first
tuple of SHAPE. Returning a single key for this tuple in TRIANGLE
is not sufficient, since TRIANGLE is called twice from SHAPE. In
general, a vector of keys for an entire path down the tree is neces-
sary to determine the access path for an item.

To indicate that an item is detectable, a pick column can be added
to a relation. This column can be a single bit that indicates the
detectability of the item and of any associated substructure. In
Figure 2, the pick column indicates that one triangle is detectable
(PICK = 1) and the other is not. In the detectable triangle, all its
lines are detectable because the pick attribute is inherited. By
setting the pick column “‘on’’ or ‘‘off”’ and displaying the picture
again, any subset of the picture can be made detectable. The com-
mands needed for resetting the pick column are queries against
the database. For example, in a relation with columns for color
and price, it would be possible to make detectable only red items
that cost more than 26 dollars.

The graphical interpreter is used to produce graphical output
from the database and to handle graphical input. To produce
graphical output, the interpreter reads data from the database,
thereby producing commands to the display handler based on the
syntax and semantics of the data. To handle graphical input, the
interpreter produces commands to the display handler to perform
the identification function. The interpretation of the RELATION
column of the SHAPE relation of Figure 2 causes the interpretation
of the TRIANGLE relation. This interpretation produces a series of
MOVE and LINE commands to the display handler with appropri-
ate shift, rotation, and pick tags. After the interpretation of the
output is complete, the interpreter enables the pick device. When
a pick occurs, the interpreter performs the identification and link-
ing functions.

The display handler may be a graphics subroutine package such
as those surveyed by the GSPC' or the GSPC Core proposal inter-
face itself.' It may also be a data communications package such
as IBM Message Format Service' or simply a hardware inter-
preter of device order codes. The display handler is driven by
commands from the graphical interpreter, or possibly directly
from the application program to produce graphical output. To
support picks, the display handler must produce and manage a
pick table and perform the identification function.

Since pick table management is normally not available in graphics
systems, we discuss here the functions needed to manipulate pick
tables. Figure 3 shows a pick table and the tree structure of the
SHAPE relation in Figure 2. The pick table consists of a row for
each detectable item. Each row consists of an item type (line,

IBM SYST J @ VOL 19 & NO 3 o 1980 WELLER ET AL.

Figure 3 Correlation table

graphical
interpreter

display
handier

application
program
interface

Tabie 3 Functions to manipulate a pick table

ADD-—-adds a row to the pick table for an item.

DELETE—deletes a row from the pick table (which is useful when an item is
deleted from the screen or made undetectable).

FIND FIRST—returns the tag of the first item near the pick.
FIND NEXT—returns the tag of the next item near the pick.

SEARCH DIRECTION —sets pick table search direction to forward (in the same
order as drawn) or backward.

SET PICK WINDOW SIZE—sets the tolerance (aperture) for the identification
algorithm described in the following section.

text, etc.), its extent, and a vector of tags. The display handler
provides the functions in Table 3 to manipulate the pick table.
Table 3 shows that the display handler requires a number of data-
base management functions.

An application consists of application programs and application
data. Application data can be stored in relations that can be
created interactively. An application program uses commands to
the interpreter to handle graphical output and commands to the
database system to handle nongraphic data.

To display a graphical object, the application program invokes
the interpreter with the command DISPLAY(NAME), in which
NAME is the name of a relation in the database. In drawing the
picture, the interpreter creates the pick tags for any detectable
items. The application program does not have to create or man-
age the tags. In creating the graphical data, however, the appli-
cation programmer has to decide which items are detectable.

To use picks, the application program uses a command such as
PICK (device name, wait time, tag vector, x, y, button). The de-
vice name is needed only if more than one input device is used.
When a pick occurs, the application program receives the vector
of pick tags, the x-y coordinates of the pick, and the button
pressed, if any. Because the interpreter uses database keys as
tags, the application program can manipulate the picked item in
the database without knowing the tags. Commands such as
READP, WRITEP, DELETEP, and DISPLAYP implicitly use the pick
tags to read, write, delete, and display data related to the picked
item.

The pick device can be considered as a graphical item and thus

can be included in a relation just as a line or point. When the
interpreter encounters a pick item in the relation, the PICK com-

WELLER ET AL. IBM SYST J e VOL 19 @ NO 3 e 1980

mand is issued. Note that locators, valuators, buttons, and
keyboard can also be treated as graphical items.

The application programmer need only learn about the detect-
ability attribute (data type) and possibly about a pick item. The
database system and interpreter can handle picks in the same
manner as any other graphical item. Commands such as READP
mentioned previously might be included to provide specialized
functions. The pick identification and linking functions are pro-
vided by the database system, the interpreter, and the display
handler, and are transparent to the application programmer.
These functions could be built on the GSPC proposed Core inter-
face to provide the level of pick support discussed here and pre-
viously in this paper.

Identification algorithms

Identification algorithms are the procedures needed to determine
whether the x and y coordinates of a pick are close to an item on
the screen. The identification algorithm must check for inter-
section of the pick window and each detectable item. The coordi-
nates of the detectable items may be stored in a pick table or
recalculated from the graphical data for the picture. We consider
in detail the calculations that determine whether a pick window
intersects a given item on the screen. (The algorithms extend to
three dimensions in a natural way, but such extensions are not
discussed here.)

There are two main ways of looking at the intersection of a pick
and an item on the screen. One may consider the pick to be a
point and each item on the screen to have some window about it
(that is, the items are ‘‘fuzzy’’). Then one detects an item if the
pick intersects the item window. On the other hand, one may
consider the pick to have a window about it (that is, the pick is
“‘fuzzy’’), and each item on the screen is the area of the item.
Then one detects an item if the pick window intersects the item.

The two points of view are equivalent in function; that is, for any
identification algorithm using item windows, there is an equiva-
lent algorithm using pick windows. For example, in Figure 4, an
item window of a fixed distance D from any point on the item is
equivalent to a circular pick window with radius D. Item and pick
windows can both vary with the item, as discussed later in this
paper. Since the pick window is simpler to visualize we shall use
it in presenting the algorithms; that is, we consider the pick to be
“fuzzy.”

Consider the necessary types of intersections and the corre-
sponding computations. The most general item we discuss is a

IBM SYST J e VOL 19 @ NO 3 e 1980 WELLER ET AL.

Figure 4 Equivalent pick and item

windows

ITEM
Z
DN
{ I PICK
, WINDOW
~
TN

Ve
v VITEM
e / WINDOW
S
{ s

e

—

pick-item
intersection

325

Figure 5 Point and pick rectangle
for the intersection al-
gorithm

e XU, YU

PICK
POINT RECTANGLE
® xP YP

XL, YL

point
intersects
pick
rectangle

line
intersects
pick
rectangle

Figure 6 Line and pick rectangle
for the intersection al-
gorithm

X2, yez
[

o XU YU
LINE PICK
RECTANGLE

. .
XL, yL1 XL YL

closed polygon. This restriction causes no loss of generality, be-
cause any item on the screen can be approximated by a polygon.
Some possibilities for a pick window are a point, a line, a square,
a rectangle, or a polygon. Since the intersection algorithms be-
come increasingly complex as the pick window becomes more
complicated, it is advantageous to use the simplest pick window
possible. On the other hand, we have found the need for the pick
window to be at least a rectangle. Therefore, we choose a rec-
tangular pick window with sides parallel to the coordinate axes.

We describe algorithms for the intersection of a rectangular pick
window with points, lines (covers raster data), rectangles (covers
text strings), and polygons. In these algorithms we try to mini-
mize the number of multiplications and divisions. The pick rec-
tangle in Figure S is considered to have lower-left-corner coordi-
nates XL, YL and upper-right-corner coordinates XU, YU.

To decide whether a point XP, YP lies inside the pick rectangle,
one need perform only the following test:

If

XL < XP < XU

and

YL<YP<YU

then the point is inside the rectangle.

There are many ways of deciding whether a line intersects a rec-
tangle. (See Figure 6.) The goal is to develop a method that is

both simple and efficient. We first make the following preliminary
check:

If
XLl < XL and XL2 < XL
or
XU < XLI and XU < XL2
or
YL! < YLand YL2 <YL
or
YU < YLI and YU < YL2

then the line does not intersect the pick rectangle.

After passing this preliminary test, the line intersects the pick
rectangle if two diagonal points of the pick rectangle are on oppo-
site sides of the line, or if the line lies along the boundary of a pick
rectangle. We begin with the equation of a line, y = M*x + B,

WELLER ET AL. IBM SYST J e VOL 19 e NO 3 e 1980

where the slope M and the intercept B are calculated as follows:
M=(YL2 -~ YLI)/(XL2 — XLl)and B = YL] — M*L]. Letz=1y
— Mxx — B. Then the point x, y is on the line if z = 0; below the
line if the sign of z is negative; and above the line if the sign of z is
positive. Let

XLL = YL — M*XL — B
ZUR = YU — M*XU — B
ZUL = YU — M*XL — B
ZILR = YL — M*XU — B

Thus the following test determines whether two diagonal points
of the pick rectangle are on opposite sides of the line:

If

sign(ZLL) # sign(ZUR)
or

sign(ZUL) # sign(ZLR)
or

ZLL =0or ZUR =0

or
ZUL =0orZLR =0

then the line intersects the pick rectangle.

When a polygon intersects the pick rectangle, the algorithm con-
sists of two steps. The first is to determine whether any of the
lines of the polygon intersect the pick rectangle by repeated appli-
cation of the algorithm for line intersections with the pick rec-
tangle. If there are any intersections, the polygon does intersect
the pick rectangle. If there are no intersections, the pick rectangle
lies either completely inside or completely outside the polygon
and step two must be performed to determine which condition
exists,

The second step is to determine whether the center of the pick
rectangle is inside the polygon. The algorithm used is known as
the point-in-polygon algorithm,” and consists of counting the
number of times an infinite ray in some direction from the pick
window center crosses the polygon. If the number of crossings is
odd, the point is inside the polygon, and the polygon does inter-
sect the pick rectangle. If the number of crossings is even, the
polygon does not intersect the rectangle. The calculations for
these intersections are similar to those that apply when a line in-
tersects the pick rectangle, as just described. Selecting the ray so
that it does not intersect any of the vertices of the polygon avoids
ambiguity in counting intersections.

IBM SYST J e VOL 19 @ NO 3 e 1980 WELLER ET AL.

polygon
intersects
pick
rectangle

dynamic
control
of pick
window

dynamic
control
of pick
attribute

resolving
pick
ambiguities

meaningful
pick tags

The same two-step algorithm is used when the pick rectangle is
intersected by a rectangle, which is considered a special case of a
polygon.

This section has presented simple, relatively efficient identifica-
tion algorithms that are part of the display handler. The al-
gorithms are activated by the PICK command, and the pick win-
dow is set by the SET PICK WINDOW SIZE command.

Correlation data management

In this section we show how a database management system
helps solve the problems and meet the requirements of high-level
pick support. The database management system is used to manip-
ulate two types of data: graphical information and pick tables.

If the graphical information for each item on the screen is stored
in a database, the pick tolerance can be included for each item to
control its pick window. For example, consider the SHAPE table in
Figure 2. Columns that specify X and Y pick tolerance can be
added to the SHAPE relation (table). This addition allows a dif-
ferent window for each item.

If a number of pick tables and the graphical information for each
item are stored in the database, the value of the pick column (as in
the above example) specifies a pick table number or name. One
may then issue pick commands based on different pick tables to
activate and deactivate the detectability of items. Note that the

control of detectability is independent of the structure or segmen-
tation of the picture.

If the graphical information for each item is stored in a data base,
the data base can be queried for information about any picked
item to help resolve pick ambiguities. As an example, again con-
sider the SHAPE table in Figure 2, with both triangles detectable.
Suppose one wants to pick the triangle with no rotation. Then
after a pick one can issue a READP command to read the ROTA-
TION of the picked item and accept the picked item only if its
ROTATION is zero.

If the graphical information for each item is stored in a database,
the graphical interpreter can use database keys for tags so that
the application programmer need never be concerned with defin-
ing or managing tags. The pick table in Figure 3 illustrates this
method of handling tags. Using meaningful tags also allows the
graphics system to perform the linking function. An application
programmer may directly control tags by adding a column speci-
fying a tag to the graphical information.

WELLER ET AL. IBM SYST J o VOL 19 @ NO 3 o 1980

If the graphical information for each item is stored in a database,
the problem of identifying the structure of a picked item is solved
by using structured tags (with database keys as values) having a
structure identical to that of the item in the database. As an ex-
ample consider the pick table in Figure 3, where the vector of tags
reflects exactly the tree structure of SHAPE.

The problem created by a large number of detectable items is
solved by having the pick table or tables stored in the database.
Since database systems can handle tables with a variable number
of rows, pick table management is of no concern to the appli-
cation programmer. Problems of paging and compacting frag-
mented storage are handled by the database system. Note that
this solution places performance requirements on the database
management system.

Summary

Software support for graphical interaction has been discussed in
this paper. Existing support, including the GSpC Core proposal for
graphical interaction, has been examined and a list of require-
ments for high-level support given. The architecture of a proto-
type system for supporting graphical interaction has been de-
scribed. This support could be built on top of a device-indepen-
dent interface, such as the GSPC Core proposal. Algorithms have
been presented for identifying the item that a user has selected
from the screen. Finally we have shown how the inclusion of a
database management system as part of graphical software sup-

port can help meet the requirements of interactive graphics appli-
cation programs.

CITED REFERENCES

1. ‘‘Status Report of the Graphics Standards Committee of ACM/SIGGRAPH,”
Computer Graphics 13, No. 3, I1-V10 (Fall 1979).

2. J. D. Foley and V. L. Wallace, ‘‘The art of natural man-machine conversa-~
tion,”” Proceedings of the IEEE 62, No. 4, 462-471 (April 1974).

3. J. L. Bennett, ‘‘User oriented graphics systems for decision support in un-
structured tasks,”’ User Oriented Design of Interactive Graphics Systems (S.
Treu, ed.), Association for Computing Machinery, 1133 Avenue of the Ameri-
cas, New York (1977), pp. 3-11.

. E.D. Carlson, ‘‘Graphics terminal requirements for the 1970’s,”” Computer 9,
No. 8, 37-45 (August 1976).

. Trend Analysis/370 General Information Manual, IBM Systems Library, or-
der number GH20-1861, available through IBM branch offices.

. P. Reisner, Using a Formal Grammar in Human Factors Design of an Inter-
active Graphics System, Research Report RJ 2505, IBM Thomas J. Watson
Research Center, Yorktown Heights, NY 10598 (April 1979).

. J. P. Jacob, Potential of Graphics to Enhance Decision Analysis, Research
Report RJ 2437, IBM Thomas J. Watson Research Center, Yorktown
Heights, NY 10598 (January 1979).

. D. Weller and R. Williams, ‘‘Graphic and relational data base support for
problem solving,”” Computer Graphics 10, No. 2, 183-189 (Summer 1976).

IBM SYST J e VOL 19 @ NO 3 e 1980 WELLER ET AL.

structure of
picked item

handling
alarge
number
of items

329

330

. D. Weller and F. P. Palermo, ‘‘Database requirements for graphics,”” IEEE
Computer Society International Conference, 18th, COMPCON °79, Spring,
San Francisco, CA, Feb. 26-Mar. 1, 1979, IEEE Computer Society, Long
Beach, CA (1979), pp. 231-234.

. H. G. Meder and F. P. Palermo, ‘‘Data base support and interactive graph-
ics,”” Proceedings, Third International Conference on Very Large Data
Bases, Tokyo, Japan, Oct. 6-8, (1977), IEEE, New York (1977), pp. 396-402.

. F. P. Palermo and D. Weller, ‘‘Picture building system,”” IEEE Computer
Society International Conference, 18th, COMPCON °’79, Spring, San Fran-
cisco, CA, Feb. 26-Mar. 1, 1979, IEEE Computer Society, Long Beach, CA
(1979), pp. 235-237.

. **Status Report of the Graphics Standards Committee of ACM/SIGGRAPH,”’
Computer Graphics 11, No. 3, 11-119, I11-11117 (Fall 1977).

. W. M. Newman and R. F. Sproull, Principles of Interactive Computer Graph-
ics, McGraw-Hill Book Company, Inc., New York (1973).

. D. Bantz, “‘Proposal for a display processor,”” IEEE Transactions on Com-
puters C-17, 54-55 (1968).

. 1. E. Sutherland, ‘‘Sketchpad: a man-machine graphical communication sys-
tem,”’ Proceedings of the Spring Joint Computer Conference, Spartan Books,
Baltimore, MD (1963), pp. 329-346.

. E. F. Codd, ‘A relational model for data for large shared data banks,”” Com-
munications of the ACM 13, No. 6, 377-387 (June 1970).

. D. D. Chamberlin, ‘‘Relational data base management systems,”” Computing
Surveys 8, No. 1, 43-66 (March 1976).

. R. D. Bergeron, P. R. Bono, and J. D. Foley, ‘*Graphics programming using
the Core System,”” Computing Surveys 10, No. 4, 389-443 (December 1978).

. IMS/VS Message Format Service User's Guide , 1IBM Systems Library, order
number SH20-9053, available through IBM branch offices.

. J. D. Jacobsen, ‘*‘Geometric relationships for retrieval of geographic informa-
tion,”” IBM Systems Journal 7, Nos. 3 and 4, 331-341 (1968).

D. L. Weller, E. D. Carlson, R. Williams, and S. N. Zilles are located at
the IBM Research Laboratory, 5600 Cottle Road, San Jose, CA 95193.
G. M. Giddings is located at DiscoVision Associates, 3300 Hyland

Avenue, Costa Mesa, CA 92626. F. P. Palermo is located at the IBM
Santa Teresa Laboratory, 555 Bailey Avenue, P.O. Box 50020, San
Jose, CA 95150.

Reprint Order No. G321-5127.

WELLER ET AL. IBM SYST J e VOL 19 @ NO 3 e 1980

