
This paper describes an architectural approach that provides in-
formation interchange ucross a broad spectrum of user appli-
cations and ofice automation oflerings. Some of the archi-
tectures described herein are currently implemented in existing
IBM products. These and other architectures will provide the
basis for document interchange capability between products such
as the IBM 5520 Administrative System, the IBM SystemJ370 Dis-
tributed Ofice Support System (DISOSS) , and the IBM Dis-
playwriter System. Specifically described is a document distribu-
tion architecture and its associated data streams. Transforms ,
can be utilized to interchange between these data streams and
others.

A general overview of the architectures as opposed to a detailed
technical description is provided. The architectures described are
protocols for interchange between application processes; they do
not address the specific user interface. The document distribution
architectures utilize S N A for data transmission and communica-
tions control facilities.

Electronic information interchange in an office environment
by M. R. DeSousa

The desire to interchange office information electronically has
been with us since Samuel Morse invented the telegraph in the
1840s. Today, “electronic document distribution” is a business
buzzword; professional journals and trade magazines abound
with references to the automated office, electronic document dis-
tribution, and communication networks. The office-information-
interchange system is fast becoming a reality.

The office-information-interchange system is envisioned to work
in a network such as the one shown in Figure 1. Such a network is
a complex interconnection of systems of various capabilities and
a large number of different terminals, or work stations, per-
forming an assortment of applications. A major problem that such
a network presents is the variety of interfaces and data forms that
must be accommodated to functionally interconnect such devices
into an operational information-interchange system.

Copyright 1981 by International Business Machines Corporation. Copying is per-
mitted without payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journd reference and IBM copyright notice are
included on the first page. The title and abstract may be used without further
permission in computer-based and other information-service systems. Permission

Figure 1 Office information interchange network

JONES

Not only must the devices be functionally interconnected, but the
office-information-interchange system must provide the basic ca-
pability to:

0 Enter and edit information
0 Distribute information
0 Print (or display) information

The “enter and edit” capability allows an originator to create in-
formation that must be portable between devices of differing
functional characteristics while maintaining the capability to per-
form additional editing and revision.

The “distribute” capability requires a set of processes that com-
municate directions and interchange control information and
carry the information from an originator, or sender, to a recipient.

The “print” capability, in this context, implies a senderhecipient
relationship where the sender wants to distribute information in
its final form to the recipient. It is analogous to a traditional mail
environment. It is assumed that the recipient has no need to mod-
ify or edit the information. To ensure that the information con-
veys its intended meaning, the sender optionally should have as-

system
requirements

Figure 2 Print fidelity (Product A
creates and prints a
document. Because the
document is in columnar
format, a substitution to
the font or space require-
ment could totally change
the meaning of the infor-
mation. Therefore, when
Product A Interchanges
the document, Products
B and C must print the
document exactly as
Product A did.)

Figure 3 Information Interchange system architectures

mL -_I REMOVABLE STORAGE

It is not necessary that each device within the network provide all
three basic capabilities. For example, a device that is capable of
distributing information need not be capable of creating nor print-
ing it.

Irrespective of the configuration, the system must be easy to use
if it is to be effective. The complexities of interfaces and data
forms must be transparent to the users. To expect a sender of
information to know the device and data-form requirements is
unrealistic. The sender should be able to request that the informa-
tion be distributed and should not have to be concerned about the
devices used by the recipients.

The approach

A set of architectures has been defined that specifies the control
of information (referred to as the data stream), the document dis-
tribution application, the communication transmissions, and any
removable storage media being used to manually interchange in-
formation (Figure 3). The data stream architectures specify the
form of the information by describing the syntax and meaning of
allowable elements in the data stream.

The document distribution, or interchange, architecture permits
information to be carried from an originator to a recipient without
requiring that both be interactively communicating during the dis-
tribution process. Further, it allows an originator to send infor-
mation (a document) to multiple recipients with a single distribu-
tion request. And, finally, the distribution architecture provides
for services such as security, safe storage during the distribution
process, and confirmation of delivery.

The architecture required for transmission control already exists,
and it is IBM’S Systems Network Architecture (SNA).1-5 For infor-
mation interchange via removable storage media, there is a re-
quirement for an interchange diskette architecture. Neither SNA
nor the diskette architecture requirement is described in this
paper.

6 DESOUSA 1BM SYST J VOL 20 NO I I981

A way of putting these architectures into the proper perspective
is to liken SNA to a postman, the distribution architecture to an
envelope, and the data stream to a message or letter within the
envelope.

Because of the unique functional requirements needed to perform
both entededit and print in a single data stream, it was clear that
both capabilities could not be satisfied through a single archi-
tecture. The information-creation process requires functional
richness which would not easily be transformed into a presenta-
tion data stream at a printer or display. The print process requires
simplicity if it is to be compatible with a wide range of output
devices.

An enter and edit data stream should also be portable between
differing devices of unlike functional levels. For example, if infor-
mation is entered on device A and sent to device B for additional
entry and editing, device B should perform identically those func-
tions that both devices support and must recognize those func-
tions it does not support and provide a responsible, appropriate
response. With a single data stream, any reasonable approach
that would permit interchange on devices of unlike functional lev-
els would preclude guaranteed print fidelity.

A print data stream can be much simpler than an edit and enter
data stream because complex editing and formatting functions are
not required. This is explained in more detail later. But, with the
potential combination of text and other forms of data, the print
data stream becomes more complex.

In order to separate the complexities deriving from differing data
stream requirements, it was concluded that architectures for both
revisable-form and final-form data streams were required. These
architectures are generically referred to as Document Content
Architectures or DCAS. The specific DCAS described are the Re-
visable-Form DCA, the Final-Form Text DCA, and the Final-Form
Mixed Data DcA.

The revisable-form data stream is text and has not yet been trans-
formed into its final form. The text, although sufficiently format-
ted for presentation, can still “flow” as the result of additions
and deletions. The revisable-form data stream is used when edit-
ing text or when distributing text for revision.

This paper describes only one revisable-form data stream. This is
not to imply that this DCA is the only DCA that can be used in an
interchange system. Several revisable-form data streams already
exist. Some of those generally used are the IBM Document Com-
position Facility Program Product, the IBM Generalized Markup
Language (GML) Program Product, the IBM Script/370, and the

IBM SYST J VOL 20 0 NO I 0 1981 DESOUSA

IBM 3730 Distributed Office Communications System text data
stream. These data streams are found in IBM’S data processing
systems. Because these data streams may coexist in an informa-
tion interchange system with the DCAS described herein, trans-
forms within the system may be required to ensure information
interchange of revisable information for distributed document de-
velopment. IBM’S other text-processing (or word-processing)
products such as the Displaywriter use the Revisable-Form DCA
described herein.

The final-form text data stream is text that has already been for-
matted and is ready for presentation, This data stream is used
where the recipient merely reads the information and files or dis-
cards it. It allows the interpretation of graphic characters and of
conventional text-processing controls such as carrier return and
tab. Such IBM products as the 5520 Administrative System and
the Displaywriter use the Final-Form Text DCA described later.

The final-form mixed data type data stream is also formatted and
is ready for presentation. Like final-form text, this data stream is
intended primarily for the read-only application but differs in that
it supports combinations of data types within the same data
stream, e.g., text and image.

The final-form DCAS are suitable for use as a device interface for-
mat and are independent of any specific device characteristics.
All devices that participate in an information-interchange system
must support a final-form DCA that guarantees print fidelity when
requested.

Figure 4 shows the relationship of the revisable and final-form
DCAS. In the revisable form, page-width and page-depth informa-
tion are carried as general formatting controls at the start of the
document and at specific locations within the data stream. Line-
ending and page-ending decisions are made to permit viewing
during the editing process, but the decisions are subject to change
during subsequent processing. The revisable form may also in-
clude items such as margin text and pointers to external text for
inclusion. The information is not sufficiently formed for final pre-
sentation, but it is well-suited for editing because a single change
to the margin text, for example, can apply to the complete docu-
ment. Once the document is transformed into its final form, page
and line endings are permanently fixed, and the information is in
page image format. Complex formatting controls such as head-
ings and footings, page numbering, and footnotes, which were
permitted in the revisable-form data stream, have been resolved
and do not appear in the final-form data stream. Again using mar-
gin text as the example, when it is placed in its appropriate loca-
tion on each page as text, a change to the margin text will require
a change on every page. It is this transformation of complex for-

8 DESOUSA IBM SYST I VOL 20 NO I 1981

Figure 4 Relationship of revisable-form and final-form data streams

OPERATOR
ENTCRED

REVlSARl E FOAM
DATA S T A t A M

-

T F X T -
TEXT -

FlNAl FORM
DATA STREAM

n

matting controls into simple printable text that makes the final-
form data streams acceptable to a broad spectrum of output de-
vices. It is this same transformation, however, that makes the
final-form data streams unsuitable for editing because the origina-
tor’s format “intent” is lost.

The discussion of transforms, thus far, has been restricted to the
transformation of the revisable-form data stream into the final-
form data stream. Because there is more than one data stream in
both the revisable-form and final-form applications areas, trans-
forms within each application may also be required. In final form,
transformations to and from final-form text and final-form mixed
data types will be required. For example, a text-only document
distributed as a final-form text data stream will require a transfor-
mation when the output is produced on a device whose data
stream is final-form mixed data types. In some instances the end
user may be involved in the transformation process, but final form
transforms should be transparent.

Revisable-Form DCA

The Revisable-Form DCA provides for the interchange of editable
documents. Interchange is defined as the proper interpretation of
the data stream, but not necessarily complete execution of the

Figure 5 Text unlts In the Revl-
sable-Form DCA

FORMATTING
INFORMATION

B T t X T

I O

fied or is signaled when not performed, the interpretation is
proper. Subsequent editing may then be used to produce a docu-
ment that may be processed on either the originating or the re-
ceiving system.

The means to accomplishing interchange is defined by an archi-
tecture that enforces a standard definition of syntax and seman-
tics for reformattable, editable text. The architecture specifies a
data stream organization that:

Guarantees interchange among implementing systems.
0 Provides sufficient structure and redundancy in the data

stream to support nonsequential access while allowing for
identical interpretation whether processed sequentially or
nonsequentially.

0 Allows format declarations while remaining unformatted,
thereby preserving for a user the capability to revise both for-
mat declarations and textual content.

0 Provides sufficient information so that the document can be
printed or displayed in its revisable form (as entered), or,
through appropriate processing, in its final-formatted form, or
in any form between these two extremes that a system
chooses to implement.

The Revisable-Form DCA is specifically designed to support two
text-processing environments; document development and dis-
tributed document development. The document development en-
vironment is the initial phase of producing a document: the enter-
ing of text and format controls into a text-processing system and
the editing of individual sections of a document. The distributed
document development environment is the distribution of docu-
ments to different work stations or text-processing systems be-
cause of load balancing or product capability limitations, or to
allow revision at a remote location.

The Revisable-Form DCA supports these applications by defining
a common text-processing syntax and semantics and by providing
structures for random access of documents on a piecemeal basis,
with formatting parameters carried as an integral part of each of
these units.

The Revisable-Form DCA data stream is composed of revisable
text, embedded text-processing controls, and formatting declara-
tions in the form of structured fields. Each structured field has an
introducer that contains the length of the declaration, its class,
type, and format. This introducer makes all parts of the DCA self-
describing.

The content of the revisable document is stored in pieces that are
called text units. The concept of text units is illustrated in Figure

DESOUSA IBM SYST J VOL 20 NO 1 1981

Figure 6 Revisable-form data stream organization

FORMAT UNIT PREFIX

OCUMENT PARAMETERS

RIMARY MASTER FORMAT INDICATOR

AGE IMAGE PARAMETERS

INE PARAMETERS

LPEAT I’AZE I I N t t i (I ’ A K A M E T E I I I

A I I I IYOVEK I ’AKAMElk I+

TEXT I INIT PREFI ORMAT PROPAGATION

(A I IKYOVEK tO i IMAT

5. Each text unit starts with the formatting parameters required to
format that piece of the document. Thus, an originator can select
a text unit at random and can display or print that unit as it would
appear if the entire document had been processed sequentially.

The revisable-form data stream organization is shown in Figure 6
with a text unit highlighted. The information that precedes the
text unit can be thought of as document initialization information.
Note that margin text is specified outside of the text unit. A cany-
over format and empty-body text vector are appended to the end
of the data stream for ease of document extension.

The structure of the data stream provides the capability for dy-
namic formatting while editing at a display; i.e., tab settings can
be changed and the effect of the change made visible immedi-
ately. The structure also provides the capability to retain the orig-
inator’s “intent” during entry or editing. Again, by way of ex-
ample, if the originator adds to or deletes words from a centered
statement, the modification is made and centering occurs without
additional instruction from the originator.

There may be instances when a device does not fully understand
the revisable-form data stream it receives because of functional
differences. Because of this possibility, all participating devices
must detect differences and handle them as exception conditions.
This requirement means that all devices must detect and report
the nature and location of the exception condition and recover
from the exception condition.

IBM SYST J VOL 20 NO 1 1981 DESOUSA 11

~~ ~ ~~

Figure 7 Master format declaration

I 1 W ' r H 1 D:","i: INTRODUCER IMAGE IMAGE

-1 PARA NUMBER MEDIUM MESSAGE

I I 1

Page Image Parameters

Introducer speclfles the type at parameter and (ts length

Page Image Wldth speclfles how wlde the page tmage is

Page Image Depth speclfles how deep the page lmage 15 The combmat~on of th ls and the prevlous parameter
ipectiy the logical page sne

First Text L ~ n w Flrst Page h d g e speche5 where the first line of text IS to appear on the fvs t page

F~~~ tTex lL~ne /Subse~uen tPage lmagesspec i f~eswhere the f~ rs t l~neo t tex t i s toappearona l l pagesa f te r the
f l l S t page

Last Text L ~ n e s p m f t e s where the last hne of text 1s to appear on each page Image

1

The data stream consists of standard EBCDIC one-byte controls, a
set of multiple-byte controls, and a set of self-describing struc-
tured fields. It is through use of the structures that the state of the
format is maintained and known anywhere within the document
and that random access and processing of the revisable text is
possible.

One structure-the master format declaration-is described in
detail to provide some insight into the architecture. The master
format is a statement of the general appearance of page images
that will ultimately be put on a display or a piece of paper. Two
master formats can be specified in a document: the Primary Mas-
ter Format and the Alternate Master Format. Figure 7 shows the
general content of a master format declaration. The introducer of
the declaration specifies whether it is a primary or alternate mas-
ter format. Within the figure, only the Page Image Parameters
field is shown in detail.

Final-Form Text DCA

The Final-Form Text DCA specifies the representation of format-
ted text information for interchange using communications facili-
ties. This architecture guarantees print fidelity when requested. It
is suitable for use as a device interface format and is independent
of any specific device characteristics. It provides a simple data
stream structure capable of being processed sequentially by syn-
chronous devices.

DESOUSA IBM SYST J b VOL 20 NO I 1981

Figure 8 Final-form text data stream organization

SEI L O D t O GRAPHIC CHARACTER SFT IDENIlflCATlON

SET Lt lAHACTER FONT lDENTl i lLATlON

1 1 :El HORIZONTAL MARGIN

SEI L l N F i P A L l N G

LINE FEED (ONE BYTE CONTROL)

7 N D L I N E O f T E X T

t I ,

LET VERTICAL MARGIN

(O N T K O I I
tX1ENI)t I - I LCNI, IH O F

CON1 KO1 I O BASELINE OF FIRST AND LAST LINES
MEASUREMENT FROM TOP OF PAGE

EXTENDEI) CONTROL ESLAPE CHARACTtR

The architecture provides the definition of text and format control
function to format and print a document. Text, as defined here,
means an ordered string of characters (graphic symbols) that are
obviously suitable for the specified purpose of representing co-
herent information. Text is further ordered into units of composi-
tion and presentation referred to as lines. The lines of text, when
assembled into an ordered finite collection, will comprise a pre-
sentation unit called apage. A single page or a group of pages will
comprise a document that is the object or unit of transfer €or in-
terchange. The term print used here will include displaying a
documznt on a volatile medium such as a video display, reproduc-
ing a permanent image on paper or photo-sensitive media, as with
impact, ink jet, or photo printers, or recording the document im-
age on magnetic media such as diskettes.

Control functions are designated by specific control codes within
the character set used for the text string. The graphic symbols
assigned to a text character set are explicitly noncoincident with
any of the codes assigned to control functions to prevent obvious
ambiguity. The control codes are imbedded within the text at spe-
cific positions where a control function is to be activated to pro-
duce a desired result with the document in its presented form.
Control functions may also activate a state condition for a process
algorithm or device action and may be used to instruct an oper-
ator about how to operate a device. All the controls that are sup-
ported in the Final-Form Text DCA are either EBCDIC formatting
controls or extended multibyte controls.

Figure 8 shows the organization of the final-form text data
stream. The Set Vertical Margin extended control is shown in
detail.

IBM SYST J VOL 20 NO 1 1981 DESOUSA 13

Generally, the EBCDIC one-byte controls provide the basic func-
tions, such as line end, backspace, and indent, and have a one-
time, immediate effect. The extended controls are more global
and provide for functions such as line spacing, horizontal and ver-
tical margins, and tab setting. A few of the extended controls re-
main in effect until the line-end control, but most remain in effect
throughout the document or until they are reset.

In Figure 2 , the concept of print fidelity was introduced. The abil-
ity to guarantee exact reproduction is provided through an ex-
ception action control. A user can specify what level of deviation
he will permit. If no deviation is permitted because of the nature
of the information that is to be presented, the user can specify
that the information must be presented as specified or the presen-
tation must be terminated. This requirement can be placed on the
entire document or at critical points within the document.

Final-Form Mixed Data Type DCA

The Final-Form Mixed Data Type DCA consists of a contiguous
sequence of structured fields; its structured field organization is
similar to that of the revisable-form data stream. Certain of these
fields can be grouped into objects that collectively form a docu-
ment. The objects are bounded by appropriate begin and end
structured fields. For example, a document starts with a Begin
Document structured field and terminates with an End Document
structured field.

The most fundamental object is an elementary data object. This
object contains the information to be printed or displayed.

An elementary data object is bounded by a begin-block and an
end-block structured field. Within an elementary data object, two
additional varieties of structured fields can exist. One contains
the actual data, for example, image raster data or text data; the
other, which is a collection of structured fields, contains environ-
ment control information that describes the autonomous charac-
teristics of the data. The conditions established by the environ-
ment control information only apply to the data within the object.
The environment is "scoped" by the begin and end structured
fields of the object.

An elementary data object is thus a bounded, self-contained unit
that is composed of the elementary data to be presented and a
complete description of the characteristics of the data. The ele-
mentary data object in this form is independent; it is never gov-
erned or influenced by data characteristics specified outside of
the elementary data object. Only when the data characteristics
are not explicitly specified within the elementary data object is

IBM SYST J VOL 20 NO I 1981

Figure 9 Final-form mixed data type data stream organization

BEGIN DOCUMENl

EGlN MASTEH ENVIRONMENT GROUP

ENVIRONMENT CONTROLS)

EGIN IMAGE BLOCK

IMAGE OUTPUT CONTROL

MAGE !NPUT DESCRIPTOR

ELEMENTARY DATA E N D TEXI wor
OBJECT

t X T I)tS(:RlPTOR

I i X T OUlPLJT CONlROL

HEGIN r c n RLOCK

the data subject to the influence of data characteristics specified
outside the elementary data object.

These elementary data objects become the components that form
a page. A sample data stream is shown in Figure 9. Two elemen-
tary data objects are represented. Objects have a spatial relation-
ship to the page in which they are contained but no relationship to
each other.

The Final-Form Mixed Data Type DCA has three hierarchical lev-
els: document, page, and elementary data object. Within this hi-
erarchical scheme, control functions are applicable at particular
levels. For example, the control function for media exists at a
higher level than a page because multiple pages may appear on a
single element of media.

As stated before, if the environment control information is explic-
itly specified within an object, the environment is restricted, or its
“scope” is, to that object. If the environment control information
is not specified, the environment for that object is taken from the
next higher level in the hierarchy. This is referred to as “factor-
ing.”

To understand factoring, consider a mixed-data-type document in
its simplest form, for example, a multiple-page document that is
created by an inexpensive image scanner. All pages are identical
in size, all pages contain one image with no other elementary data

IBM SYST I VOL 20 NO I 1981 DESOUSA 15

Figure 10 DIA architectural layers

DOCUMENT
CONTENT

ARCHITECTURE

DOCUMENT

ARCHITECTURE
CONTENT

DOCUMENT
INTERCHANGE

DOCUMENT
INTERCHANGE

ARCHITECTURE ARCHITECTURE

1 I
COMMUNICATIONS COMMUNICATIONS

SUBSYSTEM
ARCHITECTURE

SUBSYSTEM
ARCHITECTURE

PHYSICAL COMMUNICATION FACILITIES

objects, and all images have identical data characteristics. Be-
cause the elementary data object environment control informa-
tion for each image is identical, it can be specified once at the
document level as opposed to once per image. In this example,
the environment control information for all elementary data ob-
jects can be placed in a structured field called the Muster Environ-
ment Group.

Every elementary data object that is within the scope of this Mas-
ter Environment Group, but does not specify its own environ-
ment control information, uses the Master Environment Group as
though the information had appeared in the elementary data ob-
ject. Any elementary data object environment control informa-
tion that appears within an elementary data object overrides the
corresponding information in the Master Environment Group for
the duration of that elementary data object. This maintains the
integrity of the elementary data object as an independent entity.

The net effect is that the general case is allowed to appear at a
higher level in the hierarchy. Any time it is necessary to override
the general case, it can be accomplished by inserting the environ-
ment control information at the appropriate lower level in the hi-
erarchy. Such environment control information remains in effect
until the scope for that level of the hierarchy is reached.

Document Interchange Architecture

The Document Interchange Architecture (DIA) specifies how de-
vices are to interchange intentions and data. It provides the capa-
bility to invoke the distribution services and the library services
that are required of an interchange system. DIA specifies the rules
and a data structure that establish the discipline for predictable
information interchange between devices. DIA provides the

Figure 1 1 DIA application process layer interfaces

APPLICATION

PROCESS 0 - D -
1 - 1

DOCUMENTDISTRIBUTIONSERVICES
INCLUDES -

DOCUMENT LIBRARY SERVICES A - A

COMMUNICATIONS PROTOCOL BOUNDARY

variety of purposes, independent of the data types DIA contains.
Interchange, as defined here, means that a document can be
transported from one device to another device without change to
its form or coherence. However, through the use of controls that
can accompany the document, the document can be processed to
produce the results defined by the sender.

DIA prescribes the exchange of information at the DCA layer and is
distinct from the adjacent architectural layers: DCA and SNA (Fig-
ure 10).

Expanding the DIA layer shows the relationship of DIA to the ap-
plication process functioning at that layer. In Figure t 1 , the appli-
cation process has an interface to the user, an interface to SNA,
and an interface to another application process. The Communica-
tion Protocol Boundary provides the interface to SNA. DIA speci-
fies the commands and the results expected on the interprocess
interface; it does not address itself to either the user interface or
the SNA interface. Data in DIA structures may physically pass
through the Communication Protocol Boundary interface to
reach the other process, but DIA defines the structure, com-
mands, and results expected between the two application pro-
cesses regardless of the physical path.

DIA is conceptually divided into an information-interchange base
and various application services, as shown in Figure 12. The in-
formation-interchange base includes the structures and proce-
dures that are common throughout the architecture (e.g., DIA ses-
sion control, exception recovery, and encryption). DIA session
control is the set of procedures and the commands necessary to
exchange identification, authentication, functional capability, and
status information that are pertinent to the application processes.

Document distribution services, illustrated in Figure 13, support
document distribution through work station to document distribu-
tion node (DDN), DDN to DDN, and DDN to work station functions.

Figure 12 DIA structure

1 I

INFOKMATION lNlkKCWAN(,t R A b t

17 IBM SYST J VOL 20 NO I 0 1981 DESOUSA

Figure 13 Document distribution services

A
DOCIJMENT rDISTIIIBLlTION NODE TO DOCUMENT
DISTKIBUIION NODE

\ n Y
DOCUMENT DISTRIBUTION
NODE TO WORK STATION

DOCUMENT

WORK STATION

TO WORK STATION

SkNDER

DOCUMENT DISTRIBUTION
NODE TO WORK STATION

DOCUMENT
DlSrRlBLlTlON
NODE

WORK STATION Jx M / DlSTRlBUl lON NODE
WORR STATION TO UOCLJMCNT

'WORK STATION
TO WORK STATION

Document distribution services also support work station to work
station document interchange.

Document library services support the maintenance of docu-
ments on storage media. This facility provides the commands for
requesting another process to perform operations, such as file,
retrieve, and delete, on entire documents. This architecture does
not address the manipulation of the internal content of a docu-
ment.

The capability of the base and the parts may be subsetted to ac-
commodate limited-function, entry-level devices that have com-
munications facilities. This capability provides for orderly migra-
tion to more advanced devices.

The structure of DIA is extendable to other services of office auto-
mation systems.

Document The Document Interchange Architecture defines a Document In-
Interchange terchange Unit (DIU), which is the major interchange facility be-

Unit tween processes (Figure 14). An application process that uses DIA
performs the construction of the DIU for sending to another pro-
cess. The receiving application process interprets the structures
of the DIU and performs the requested operations. The processing
procedures are not defined by DIA; it is the responsibility of the
application process to meet the requirements of the DIA inter-
process interface and produce the specified results.

The DIU consists of six logical entities:

0 The DIU Prefix introduces and identifies the DIU.

Figure 14 Document Interchange Unit

DOCUMENT INTERCHANGE UNIT (DIU) ~

PREFIX
DIU COMMAND

SEQUENCE

ENCRYPTION
CONTROL

(OPTIONAL) (OPTIONAL1

DATA
UNITS

0 The Encryption Control contains the information to encipher
the data units and document units for security purposes.

0 The Data Unit contains information that may be referenced by
one or more commands in the Command Sequence.

0 The Document Unit contains the document profile, which de-
scribes the characteristics of the document and, optionally,
the content of the document.

0 The DIU Suffix specifies the end of the DIU and indicates
whether or not any abnormal conditions affected the DIU
transmission.

The DIU, in this information interchange context, is assumed to
carry documents that conform to the DCAs discussed earlier.
However, the DIU, in general, can transport any type or format of
the data object. The DIU carries information that explicitly identi-
fies the object type and the characteristics necessary to process it
as the sender intended. If an information interchange object does
not conform to the DCAs described, a transformation may be re-
quired.

Each DIU component and subcomponent has an introducer that
specifies the length and describes the semantics and syntax of
that piece of data. Figure 15 shows an overall perspective of the
DIU structure.

Again for further insight, the Request Distribution Command,
which is used by a work station to request the distribution of a
document, is shown in Figure 16. The command is schematically
depicted within a DIU.

Concluding remarks

The following scenario is intended to put the various architectural
components into perspective and to show how an office-informa-
tion-interchange system might work. An actual working system
could be considerably different from what is outlined here be-

'IU
PREflX SEQUENCE

COMMAND ENCRYPTION DATA DOCUMENT DIU

(COMMANDS)
CONTROL UNITS UNITS SUFFIX

I I I I I
INTRO 9;

Y
1

INTRO DATA

igure 16 The Request Distribution Command

1

p ~ ~ ~ l x DISTRIBUTION ' ~ ~ ~ & ~ " :fi+ UNIT SUFFIX

REQUEST

COMMAND
I

I * OUCER IDENTIFIER IDENTIFIER

~

DESTINATION
IDENTIFIER

RECIFIENT
IDENTIFIER

PARAMETERS

Figure 17 depicts the initial phase of information interchange-
document creation. The numbered steps show the order of the
operations. A document is started using the revisable-form data
stream at Work Station A (Step 1). The document is moved to
Work Station B before it is finished (Step 2). It can be moved via
communications facilities or diskette. How it is moved will prob-
ably be influenced by the physical location of the work stations.

DESOUSA IBM SYST J VOL 20 0 NO 1 1981

Figure 17 Initial phase of Information interchange

n

Figure 18 Document distribution information interchange

$E DOCUMENT
OBTAINS AND PRINTS

REQUESTS THAT THE
DOCUMENT BE SENT

TO C D AND E

The two work stations need not be identical devices. After being
moved, the document is completed and the data stream is trans-
formed into its final form (Step 3).

Figure 18 depicts the document distribution application. Work
Station B requests DDNI (Document Distribution Node 1) to dis-
tribute the document to Work Stations c, D, and E (Step 4). DDNl
determines its distribution responsibility by examining the ad-
dresses contained in the request distribution DIU and accessing its
destination directory (Step 5) . DDNl established an SNA session
with DDN2. The two nodes exchange DIA session control informa-
tion, and the document is sent to DDN2 (Step 6). DDNZ, which has
stored the document, determines its distribution responsibility.
Because Work Station C is a subscriber at DDN2, DDN2 builds a
delivery DIU and queues the DIU until a session is established with
Work Station C (Step 7). The destination directory shows that
Work Station D must be routed through DDN3 and Work Station E
through DDN4. DDNZ builds two new distribute DIUS and forwards
them or stores them for later transmission (Step 8). Finally, Work
Stations D and E obtain the document from their controlling

IBM SYST I VOL 20 0 NO I 1981 DESOUSA 21

