
This  paper  provides  an  overview  of  a  new  approach  to  the 
measurement of software.  The  measurements  are  based  on  the 
count of operators  and  operands  contained  in  a  program.  The 
measurement  methodologies  are  consistent  across  programming 
language  barriers.  Practical  signijicance  is  discussed,  and  areas 
are identijied f o r  additional  research  and  validation. 

A perspective on software  science 
by K. Christensen, G. P. Fitsos, and C. P. Smith 

Measurement of programs is still a fairly subjective  process. We 
can measure  size, based on line  of  code or number of statements, 
but acceptance of these  measures is not universal. Acceptance of 
lines of code,  as  an  example,  seems  to  be based on  the view that 
although lines of code may be an imprecise measure, it is 
something that  can be enumerated, and until something better is 
discovered we  will continue to use  it.  There is a veiled invitation 
here to find something better. 

Measurement of program  complexity has not gained the level of 
acceptance of size  measurement, probably because it  is a more 
elusive object to quantify. Most current  activity is oriented  to  the 
counting of decision nodes in a program. Although the use of 
decision nodes to measure complexity may seem  subjective, 
there is evidence  to suggest a  connection  between  decision nodes 
and complexity. Structured programming concepts,  for  example, 
organize programs to minimize the effects of decision nodes.  This 
suggests a  tendency to accept  the notion of complexity and 
reinforces the  tendency to measure it with decision nodes. 

Both size and complexity are measured  after  the  fact.  That  is, 
measurement is not possible until the  code has been written. 
Elements of measurements  can  be  considered if logic is outlined 
before code  has  been  written.  However,  measurements are rarely 
made until after writing the  code.  Even  then,  measurements tend 
to be defense mechanisms against problems identified by other 
means,  such as  late  schedules  and high defect  levels. 
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A more ideal situation would be to use measurements  that  can 
lead to  the optimization of program organization while the 
program is being written or while it  is being designed.  In  other 
engineering disciplines, measurement is an  inherent  part of the 
optimization process.  Software engineering also  needs  a mea- 
surement discipline that  each programmer can  understand  and 
can relate  to  choices made while designing and coding a program. 

A new approach to  code measurement was suggested by 
Halstead' in which lines of code  are  broken  down  into  atomic 
particles of operators and operands. The relationships between 
the  particles  then  provide more than  one dimension for  measure- 
ment. In contrast to the use of numbers of statements,  the 
following are  three general advantages of the  operator-operand 
approach: 

0 An explainable methodology for calibrating a  measurement 
instrument. 

0 A more nearly universal measure,  since  the  approach is 
consistent  across  the  boundaries of programming languages. 

0 The ability to relate  some of the effects of programming style 
to measured quantities. 

Some aspects of the approach may prove to  be imprecise,  but  the 
concepts are  interesting. If shown  to be practical,  the  power of 
the approach could be a significant step  toward  an engineering- 
like code  measurement methodology. 

Measurement  definitions 

The particles of a given source program are  operators and 
operands. Operands have  values  that  are changed or  are used as 
reference for change (constants  and  variables). Operators are  the 
operation codes,  delimiters,  arithmetic  symbols,  punctuation, 
etc., that  operate  on  or with operands.  There  are also operators 
such as  branches, DO WHILE, IF THEN, etc., that  control  the 
sequence of operation. 

Examples of operand  and  operator  types are the following: 

0 Variable name-operand. 
0 Literal-operand. 
0 Arithmetic symbol-operator. 
0 Punctuation-operator. 
0 End of statement delimiter-operator. 

There is a methodology for validating rules  and calibrating a 
measurement program.' Although the methodology is not dis- 
cussed here, some of the not-so-obvious rules are  the following: 
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0 Parentheses  and  brackets  always  come in pairs,  and  a compiler 
diagnoses correct pairing. Each pair is counted as a single 
“grouping” operator. 

0 GO TO statements  are  concatenated with the  address of the GO 
TO to form a single operator. 

0 IF and THEN are combined into  a single operator  since  one is 
unlikely without the  other. 

0 IF THEN and ELSE are  also combined as  a single operator. 
(Thus, IF THEN ELSE and IF THEN are two  separate  and  distinct 
operators .) 

0 Each of the  possible  combinations of DO UNTIL, DO WHILE, 
etc. is combined as  a single operator, but each combination is 
separate from the  others. 

A general observation is that  the rules seem to  combine lines of 
code (end of statement  delimiter),  decision nodes (IF THEN ELSE, 
DO WHILE, DO UNTIL, etc.),  as well as  operation  codes,  variables, 
and punctuation. We may question  whether  their use is properly 
weighted, but we cannot help but notice that  they  are all included. 

basic The following are  the  four  basic program measures  or metrics: 
measures 

0 7, Number of unique operators  used. 
0 v2 Number of unique operands  used. 
0 N ,  Number of times operators  are  used. 
0 N2 Number of times operands  are  used. 

Vocabulary (7) of a given program is defined as the  sum of unique 
operators and operands used in that  program, and is a  measure of 
the  repertoire of elements  that  a programmer must deal with to 
implement the  program.  Thus Vocabulary is defined as follows: 

Vocabulary = 7 = 7, + q2. 

Length ( N )  of a given program is defined as  the sum of the 
operator usage and  the  operand  usage.  Intuitively, length is a 
measure of program size,  and  measures  the number of times a 
programmer deals with each of the programming elements. 
Length is expressed as follows: 

Length = N = N ,  + N,.  (1) 

length and Halstead suggests a  relationship  such  that Length can be estimat- 
vocabulary ed from Vocabulary.  The  formula  for Estimated Length (A) 

relationships based on Vocabulary is the following: 

Estimated Length = = 7, log, 7, + q2 log, q2. ( 2 )  

Construction of an  experiment to test  Equation 2 is relatively 
straightforward. One need only measure  the basic metrics  for  a 
set of programs,  calculate  Estimated  Length (A) from Equation 
2, and compare  the  result with observed  Length ( N )  from 
Equation 1. This experiment  has been conducted  a number of 
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Table 1 Summary of experiments  correlating  Estimated  Length (N)  and  Observed  Length 

L 
(N)  

Language  Number of Correlation  Cited 
programs  coejicient  reference 

FORTRAN 

PLll 

COBOL 

System/370 
assembly 
language 

PLiS 

COBOL 

APL 

RPG 

429 

120 

264 

994 

643 

24 

29 

37 1 

0.95 

0.98 

0.90+ 

0.90+ 

0.90+ 

0.92 

0.96 

0.94 

times, and the results  are summarized in Table 1. These  results 
are sufficient to  have practical significance. It should be pointed 
out that not every program complies with the  rules.  There can be 
wide differences between Estimated Length and observed 
Length, but for  a large population of programs there is reasonable 
correlation. Halstead3 took the view that  software  science is 
similar to actuarial statistics, in that, for  example,  one might  find 
that men at age 65 have  a life expectancy of 14 years.  This, 
however, is no guarantee  for  any  particular 65-year-old individ- 
ual. In other  words,  the  accuracy of the actuarial prediction is 
completely adequate,  but its precision might be too  poor  for any 
individual-person or program. 

To be accurate,  Smith,4  Fitsos,’ and Shen and Dunsmore6  have 
observed that  Estimated  Length  tends  to be  low for large 
programs and high for small programs.  The  formula,  Equation 2 ,  
for Estimated Length seems  to be most accurate in the range 2000 
to 4000 units of length.  Feuer  and  Fowlkes7  also  report  that  the 
length equation  overestimates  the actual length 80 percent of the 
time for 197 PL/I programs. (Most of these  are small programs, 
i.e., below 2000 units of length).  This behavior also  seems to  be 
language-independent, as has been observed  for  the  three lan- 
guages, COBOL, System/370 assembler language, and PLIS, and 
may  be true  for PL/I. 

Having shown that Length can be estimated from Vocabulary 
with reasonable accuracy, we can formulate  our first general rule 
as follows: 

Rule I. Length ( N )  of a program is a  function of Vocabulary (7) 
for  that  program. 





by Length (N) for a total of 643 PUS modules 





Figure 4 Program  Vocabulary in terms of unique operators and operands ordered by Length 
( N )  for a total of  490 PLiS program modules 
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MODULE INDEX 

Recalling the  rules  for  counting GO TO (i.e., GO TO concatenated 
with address  to  form a unique  operator),  the  explanation  for a flat 
q1 is clarified. If one  accepts  the  absence of GO TO as  an  indicator 
of compliance  with  structured  programming  rules,  then,  for PL/S, 
q1 tends  to  be a constant  for  structured  programs.  It is difficult to 
imagine assembly language  programs that  do  not  use  branch 
instructions. In fact,  structured  programs  cannot  be  written in 
assembly  language  without  adding macros  to  avoid  the  use of 
branches.  One  could  argue  that  the  addition of macros  changes 
the  language into  something  else,  i.e., a  higher  level of language. 

From  these  considerations co,mbined with Rule 3 we can  formu- 
late the following  additional  rule: 

Rule 4 .  For  structured  programs,  program  size is a  function  of 
the  Vocabulary of Operands (qJ. 

In  more  general  terms, it seems  that  program  size is determined 
by the  data  that  must  be  processed by the  program.  Whether Rule 
4 is true  for all  languages  remains  to  be  demonstrated with further 
experimentation. In Figure 6, we  have  plotted  vocabulary  detail 
for 34 PL/I programs  measured  by Elshoff.' Here, q, tends  to  be 
flat, but  the  sample is not very  large,  and  the  observations 
concerning GO TO cannot  be  tested using  published  information. 
The  authors believe the  rule  has  promise  for PL/I since PL/S is a 
subset of PL/I. More  concrete  proof would  be  comforting. 

Figure 5 Number  of programs ver- 
sus value of 7, for  490 
PUS program modules 
(mean = 46, mode = 38, 
and median = 42) 
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Language Standard 
Level h deviation 

2.07 0.90 

2.05 1.14 

2.04 1.57 

I .82 0.73 

1.53 0.92 

I .40 0.69 

1.21 0.74 

1.14 0.81 

0.92 0.43 

0.91 0.79 

0.88 0.42 

0.81 0.60 



Table 5 Information Content for programs for Euclid's algorithm for finding the greatest 
common divisor 

Language Information 
Content I 

Cited 
reference 

PLlI 

FORTRAN 

CDC assembler 

ALGOL 68 

Table lookup 

Potential HLL 

BASIC 

APL 

12.9 

10.5 

12.2 

11.9 

12.0 

11.6 

10.5 

10.0 

A metric for Efort ( E )  to  code  a program should intuitively be  a 
function of size (i.e., Volume V and Difficulty D ) ,  and may  be 
expressed  as follows: 

Effort = E = D x V. 

There have been experiments  to  correlate Effort to  defect levels 
and productivity,  the  results of which are encouraging enough to 
continue experimentation  and refinement of the  experimental 
method. 

A measure of Language Level (A) should be a  constant  number 
for a given language regardless of the algorithm being implement- 
ed. Language Level  relates  to Volume and Difficulty as follows: 

Language Level = A = VID2. 

Results of experiments with Language Level are not completely 
understood. Many experiments  have been conducted, and the 
results have been found to be  variable.  The  means (i.e., averages) 
for large groups of programs  seem  to  correlate with our intuitive 
belief, but within one language there is extreme variability. There 
is a suggestion that Language Level  does  not  measure  the 
language so much as it measures how the language is used in a 
program. 

Table 4 is a summary of Language  Level  values, begun by 
Halstead' and updated with more  recent  research by Smith,4 
Zweben,' and  Shen  and  Dunsmore.6 

Information  Content ( I )  of a program should be  constant  for  a 
single algorithm,  regardless of language chosen  to implement it. 
The Information Content is also  related  to Volume and Difficulty, 
and is expressed as follows: 
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V 
D Information Content = I =  -. 

Experiments involving Information  Content ( I )  are not extensive. 
If it proved to be a practical metric,  Information  Content would 
be, in a  sense,  a  measure of the amount of function of a program. 
One small experiment is the implementation of Euclid’s algorithm 
for finding the  greatest  common  divisor using eight different 
programming languages. The  results of the  experiment shown in 
Table 5 indicate a  narrow range of values for I .  

Concluding remarks 

Numeric measurement of programs, where measurements  can be 
logically related to optimum approaches, has appeal from an 
engineering standpoint. Although software engineering has come 
a long way in the  sense of establishing disciplines and  orderly 
processes,  the use of numbers  to aid  in understanding  the  reasons 
for those disciplines has  not made the  same  progress. 

Other engineering disciplines have  constraints  on design that can 
often be expressed numerically. The  designer of circuit chips,  for 
example,  deals with technology limits such as the  number  of 
access pins, the number of circuits  that  can be housed in a  chip, 
and so forth.  These limits are in turn  derived  from  other limits- 
heat dissipation, voltage limits, etc.-that can  also be dealt with 
quantitatively. The limits are  understood,  and  progress  occurs 
when technology finds new ways to  expand  the limits. As we 
have discussed in this article,  software  science  and its related 
metrics are beginning to quantify areas of programming that 
heretofore have been based on abstract feelings and experience. 

There  are still many areas of software  science  where validation 
and refinement are  required.  A large portion of today’s program- 
ming effort deals with the modification of existing programs, 
whereas the  metrics of software  science deal with an  entire 
program as an  entity. As yet,  no  theoretical  approach  has  been 
offered to measure modification work. 

The authors  conclude with a  word of caution  and  encouragement 
related to rules for  counting  operators  and  operands.  It is easy to 
become caught up in the  desire to measure libraries of programs 
in a rush to see  results. One should recognize that  results may  be 
spurious because of error in the  measurement  instrument.  Those 
who are involved with programming measurement should learn 
from other  disciplines,  where  strict  and rigorous calibration of 
measurement instruments is a normal part of experimentation. 
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Software  science offers  a  methodology  not  only  for  making 
measurements,  but  also  for  calibrating  the  measuring  instru- 
ments. 
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