This paper provides an overview of a new approach to the
measurement of software. The measurements are based on the
count of operators and operands contained in a program. The
measurement methodologies are consistent across programming
language barriers. Practical significance is discussed, and areas
are identified for additional research and validation.

A perspective on software science
by K. Christensen, G. P. Fitsos, and C. P. Smith

Measurement of programs is still a fairly subjective process. We
can measure size, based on line of code or number of statements,
but acceptance of these measures is not universal. Acceptance of
lines of code, as an example, seems to be based on the view that
although lines of code may be an imprecise measure, it is
something that can be enumerated, and until something better is
discovered we will continue to use it. There is a veiled invitation
here to find something better.

Measurement of program complexity has not gained the level of
acceptance of size measurement, probably because it is a more
elusive object to quantify. Most current activity is oriented to the

counting of decision nodes in a program. Although the use of
decision nodes to measure complexity may seem subjective,
there is evidence to suggest a connection between decision nodes
and complexity. Structured programming concepts, for example,
organize programs to minimize the effects of decision nodes. This
suggests a tendency to accept the notion of complexity and
reinforces the tendency to measure it with decision nodes.

Both size and complexity are measured after the fact. That is,
measurement is not possible until the code has been written.
Elements of measurements can be considered if logic is outlined
before code has been written. However, measurements are rarely
made until after writing the code. Even then, measurements tend
to be defense mechanisms against problems identified by other
means, such as late schedules and high defect levels.

Copyright 1981 by International Business Machines Corporation. Copying is
permitted without payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright notice are
included on the first page. The title and abstract may be used without further
permission in computer-based and other information-service systems. Permission
to republish other excerpts should be obtained from the Editor.

CHRISTENSEN, FITSOS, AND SMITH IBM SYST J @ VOL 20 @ NO 4 e 198t

A more ideal situation would be to use measurements that can
lead to the optimization of program organization while the
program is being written or while it is being designed. In other
engineering disciplines, measurement is an inherent part of the
optimization process. Software engineering also needs a mea-
surement discipline that each programmer can understand and
can relate to choices made while designing and coding a program.

A new approach to code measurement was suggested by
Halstead' in which lines of code are broken down into atomic
particles of operators and operands. The relationships between
the particles then provide more than one dimension for measure-
ment. In contrast to the use of numbers of statements, the
following are three general advantages of the operator-operand
approach:

An explainable methodology for calibrating a measurement
instrument.

A more nearly universal measure, since the approach is
consistent across the boundaries of programming languages.
The ability to relate some of the effects of programming style
to measured quantities.

Some aspects of the approach may prove to be imprecise, but the
concepts are interesting. If shown to be practical, the power of
the approach could be a significant step toward an engineering-
like code measurement methodology.

Measurement definitions

The particles of a given source program are operators and
operands. Operands have values that are changed or are used as
reference for change (constants and variables). Operators are the
operation codes, delimiters, arithmetic symbols, punctuation,
etc., that operate on or with operands. There are also operators
such as branches, DO WHILE, IF THEN, etc., that control the
sequence of operation.

Examples of operand and operator types are the following:

Variable name—operand.
Literal—operand.

Arithmetic symbol—operator.
Punctuation—operator.

End of statement delimiter—operator.

There is a methodology for validating rules and calibrating a

measurement program.” Although the methodology is not dis-
cussed here, some of the not-so-obvious rules are the following:

IBM SYST J ® VOL 20 @ NO 4 ® 1981 CHRISTENSEN, FITSOS, AND SMITH 373

basic
measures

length and
vocabulary
relationships

Parentheses and brackets always come in pairs, and a compiler
diagnoses correct pairing. Each pair is counted as a single
“‘grouping’’ operator.

GO TO statements are concatenated with the address of the GO
TO to form a single operator.

IF and THEN are combined into a single operator since one is
unlikely without the other.

IF THEN and ELSE are also combined as a single operator.
(Thus, IF THEN ELSE and IF THEN are two separate and distinct
operators.)

Each of the possible combinations of DO UNTIL, DO WHILE,
etc. is combined as a single operator, but each combination is
separate from the others.

A general observation is that the rules seem to combine lines of
code (end of statement delimiter), decision nodes (IF THEN ELSE,
DO WHILE, DO UNTIL, etc.), as well as operation codes, variables,
and punctuation. We may question whether their use is properly
weighted, but we cannot help but notice that they are all included.

The following are the four basic program measures or metrics:

n, Number of unique operators used.
n, Number of unique operands used.
N, Number of times operators are used.
N, Number of times operands are used.

Vocabulary (n) of a given program is defined as the sum of unique
operators and operands used in that program, and is a measure of
the repertoire of elements that a programmer must deal with to
implement the program. Thus Vocabulary is defined as follows:

Vocabulary = n = 5, + n,.

Length (N) of a given program is defined as the sum of the
operator usage and the operand usage. Intuitively, length is a
measure of program size, and measures the number of times a
programmer deals with each of the programming elements.
Length is expressed as follows:

Length = N = N, + N,. @))]

Halstead suggests a relationship such that Length can be estimqt-
ed from Vocabulary. The formula for Estimated Length (N)
based on Vocabulary is the following:

Estimated Length = N = 7, log, 7, + n, log, 7,.)

Construction of an experiment to test Equation 2 is relatively
straightforward. One need only measure the basic metrics for a
set of programs, calculate Estimated Length (N) from Equation
2, and compare the result with observed Length (V) from
Equation 1. This experiment has been conducted a number of

CHRISTENSEN, FITSOS, AND SMITH IBM SYST J @ VOL 20 @ NO 4 o 1981

Table 1 Summary of experiments correlating Estimated Length (N) and Observed Length
(N)
'}

Language Number of Correlation Cited
programs coefficient reference

FORTRAN 429 0.95 1
PL/1 120 0.98 8
COBOL 264 0.90+ 6

4

System/370 994 0.90+
assembly
language

PL/S
COBOL
APL
RPG

times, and the results are summarized in Table 1. These results
are sufficient to have practical significance. It should be pointed
out that not every program complies with the rules. There can be
wide differences between Estimated Length and observed
Length, but for a large population of programs there is reasonable
correlation. Halstead® took the view that software science is
similar to actuarial statistics, in that, for example, one might find
that men at age 65 have a life expectancy of 14 years. This,
however, is no guarantee for any particular 65-year-old individ-
ual. In other words, the accuracy of the actuarial prediction is
completely adequate, but its precision might be too poor for any
individual—person or program.

To be accurate, Smith,4 Fitsos,5 and Shen and Dunsmore® have
observed that Estimated Length tends to be low for large
programs and high for small programs. The formula, Equation 2,
for Estimated Length seems to be most accurate in the range 2000
to 4000 units of length. Feuer and Fowlkes’ also report that the
length equation overestimates the actual length 80 percent of the
time for 197 PL/1 programs. (Most of these are small programs,
i.e., below 2000 units of length). This behavior also seems to be
language-independent, as has been observed for the three lan-
guages, COBOL, System/370 assembler language, and PL/S, and
may be true for PL/I.

Having shown that Length can be estimated from Vocabulary
with reasonable accuracy, we can formulate our first general rule

as follows:

Rule 1. Length (N) of a program is a function of Vocabulary ()
for that program.

IBM SYST J @ VOL 20 @ NO 4 » 198] CHRISTENSEN, FITSOS, AND SMITH

Figure 1 Program size expressed as observed Length, lines of code, and Volume ordered
by Length (N) for a total of 992 System/370 assembler language modules

PROGRAM SIZE

- OBSERVED LENGTH
s |INES OF CODE X 5
oo VOLUME / 10

o
2
S

MODULE INDEX

Program size

Although length of a program can be considered a measure of
program size, Halstead suggests a two-dimensional approach that
considers the number of times elements are used in a program
versus the repertoire of elements from which selections must be
made. This notion is expressed as Volume (V) of a program and is
a function of the number of selections required (N) from a
Vocabulary (1), which is given as follows:

Volume = V = N log, 7. (3)

To understand the value of Equation 3, experiments were con-
ducted at the 1BM Santa Teresa Programming Laboratory and
documented by Smith.* The usual measure of program size at the
Laboratory is lines of code, and a single tool is used to measure
programs written in both System/370 assembler language and
PL/S. Lines of code, Length, and Volume are plotted in Figures 1
and 2. Table 2 summarizes the correlation coefficients.

It is unfortunate that consistent rules for measuring lines of code
have not been developed for other languages. This prevents
extensive validation of the observations that follow. It is possible,
however, to speculate that Length and/or Volume may be more
universal size measures than lines of code, since the definition of
operator and operand is consistent across language barriers.
Table 2 indicates that the following rules are true for at least
assembler language and pPL/S. Feuer and Fowlkes’ also observed a

CHRISTENSEN, FITSOS, AND SMITH IBM SYST J @ VOL 20 ® NO 4 e (98]

Figure 2 Program size expressed as observed Length, lines of code, and Volume ordered
by Length (N) for a total of 643 PL/S modules

PROGRAM SiZE

~ OBSERVED LENGTH
- LINES OF CODE X 5
= VOLUME / 10

650

MODULE INDEX

Table 2 Correlation coefficients for lines of code, Length, and Volume as measures of
program size

Assembler language correlation coefficient
between lines of code and length

Assembler language correlation coefficient
between lines of code and volume

PL/S correlation coefficient
between lines of code and length

PL/S correlation coefficient
between lines of code and volume

0.95 percent correlation coefficient between PL/ clauses and
Length, indicating that the rules may also be true for PL/I.

Rule 2. Lines of code, Length, and Volume are equally valid as
relative measures of program size.

Combining Rule 1 and Rule 2 we can also state Rule 3.

Rule 3. Program size, measured in any of the three terms, is a
function of Vocabulary (7).

It is not too speculative to acknowledge that Length and Volume
are equally valid measures of size for any language, since it has

IBM SYST J @ VOL 20 ® NO 4 »]98] CHRISTENSEN, FITSOS, AND SMITH

Figure 3 Program Vocabulary in terms of unique operators and operands ordered by Length
(N) for a total of 992 System/370 assembler language modules

—
IN)
=]
=]

<, (UNIQUE OPERATORS)
==+« 7, (UNIQUE OPERANDS)

PROGRAM VOCABULARY

MODULE INDEX

already been shown that Length is a function of Vocabulary and
that Volume is a function of Length and Vocabulary. What
remains, then, is to gain confidence in these metrics as measures
of size. Acceptance probably depends on the availability of easy-
to-use analyzers and sufficient experience to gain confidence.

Program vocabulary

Since Vocabulary is so important to the previous measures, it is
helpful to decompose it. Fitsos’ has plotted the elements of
Vocabulary by program size, as shown in Figures 3 and 4 for 992
assembler language programs and 490 PL/S programs. These
programs are ordered by Length with the largest on the right. By
observation we see that for assembly language programs 7, and
7, both tend to increase with program Length. For PL/S programs,
n, tends to be flat whereas 7, increases with program Length.
This flat n, characteristic is significant, and it is important to
understand the cause. There are spikes on the 7, line that may
represent deviations from an implied norm. Figure 5 shows the
distribution of number of programs having each value of 7,. By
analyzing programs with n, greater than the means plus one
standard deviation, we can search for abnormalities. What Fitsos
found was that, for programs with high 7, the predominant
reason was a high usage of GO TO.

CHRISTENSEN, FITSOS, AND SMITH IBM SYST J VOL 20 @ NO 4 e 98]

Program Vocabulary in terms of unique operators and operands ordered by Length
(N) for a total of 490 PL/S program modules

,_.
~
o
=]

—_
o
@
=]

7, (UNIQUE OPERATORS)
«vex5, (UNIQUE OPERANDS)

PROGRAM VOCABULARY
b
&
o

—_
-
0
=3

441 490

MODULE INDEX

Recalling the rules for counting GO TO (i.e., GO TO concatenated
with address to form a unique operator), the explanation for a flat
m, is clarified. If one accepts the absence of GO TO as an indicator
of compliance with structured programming rules, then, for PL/S,
7, tends to be a constant for structured programs. It is difficult to
imagine assembly language programs that do not use branch
instructions. In fact, structured programs cannot be written in
assembly language without adding macros to avoid the use of
branches. One could argue that the addition of macros changes
the language into something else, i.e., a higher level of language.

From these considerations combined with Rule 3 we can formu-
late the following additional rule:

Rule 4. For structured programs, program size is a function of
the Vocabulary of Operands (7,).

In more general terms, it seems that program size is determined
by the data that must be processed by the program. Whether Rule
4 is true for all languages remains to be demonstrated with further
experimentation. In Figure 6, we have plotted vocabulary detail
for 34 PL/1 programs measured by Elshoff.® Here, 7, tends to be
flat, but the sample is not very large, and the observations
concerning GO TO cannot be tested using published information.
The authors believe the rule has promise for PL/I since PL/S is a
subset of PL/I. More concrete proof would be comforting.

IBM SYST J @ VOL 20 @ NO 4 & 1981 CHRISTENSEN, FITSOS, AND SMITH

Figure 5

Number of programs ver-
sus value of 7, for 490
PL/S program modules
(mean = 46, mode = 38,
and median = 42)

n N
(=1 o

NUMBER OF PROGRAMS
o

o

33

66

99

132 165
VALUE OF 7,

Figure 6 Program Vocabulary in terms of unique operators and operands ordered by Length
(N) for a total of 34 PL/I programs

n; (UNIQUE OPERATORS)
wxxen, (UNIQUE OPERANDS)

PROGRAM VOCABULARY

35

MODULE INDEX

Given that Rule 4 is shown to be correct for all programming
languages, and also given that Length and/or Volume become
accepted as measures of size, the implications are encouraging.
Most program design activity creates a detailed layout of data
elements that must be processed. Given further a desire to
contain program size below some optimum level, detailed data
layouts can be used to estimate program size. The effect of data
organization on program size can be predicted, and the reorgani-
zation of planned program packages can be addressed before
coding activity begins. This methodology is certainly more ex-
plainable than current techniques.

Program difficulty

Halstead defined Difficulty (D) as a metric that expresses the
difficulty of writing code. It includes considerations for decision
nodes, the repertoire of operators that a programmer must deal

CHRISTENSEN, FITSOS, AND SMITH IBM SYST J © VOL 20 @ NO 4 e 198]

with, and the conciseness with which he deals with variables. It
appears to be a measure of ‘‘ease of reading’’ as well as a measure
of “‘ease of writing.”” The expression for the Difficulty of writing
code is the following:

N
Difficulty = D = 0 “)
2 0,

Although an explanation for the basis of Equation 4 is tedious, an
intuitive frame of reference is helpful. The ratio 7,/2 includes
consideration of the difficulty of dealing with a large vocabulary
of operators. Since no program can be written with less than two
operators (function call and end of statement) the ratio measures
the distance from absolute zero, so to speak. Aside from previous
discussions on the use of GO TO, consider a reference card for the
list of operation codes available in an assembler language in
comparison to the list of key word operators in such languages as
FORTRAN, COBOL, and PL/I. The higher-level languages remove
concerns for register usage, word boundaries, and data represen-
tation. A smaller repertoire of operators is required to implement
the same algorithm in a high-level language.

The ratio N,/n, represents the average number of times operands
are used. In a program where each operand is used only once this
ratio is 1. The more frequently a variable is changed in a program,
the more difficult it is to retain its current value in one’s mind.

Difficulty (D), therefore, affects the effort required to code an
algorithm, to inspect and review it, and to understand it later
when alteration is required. Difficulty does not measure whether
a program needs to be the way it is. High Difficulty can come
about because of the skill level of the programmer, the poor
structure of the program, or the absence of experience with a
particular language. It can also possibly be a function of the
complexity of the algorithm.

In order to test the validity of the Difficulty measure, it is
reasonable to assume that productivity rates and defect levels
bear some relationship to difficulty. A combination of program
size and difficulty intuitively should correlate with either defects
or productivity. Formulation of experiments is another matter,
however. Productivity measurement has been done in a number
of areas using lines of code as a unit of measure. What these
studies have shown, more than anything else, is that productivity
varies considerably among persons. Where defect tracking sys-
tems have been installed, some individuals have been observed to
be more ‘‘error-prone’’ than others. In large organizations where
such tracking systems are installed, there is also the practical
matter of accepting a certain error rate in data collection systems
to avoid the stigma of regimentation.

IBM SYST j @ VOL 20 @ NO 4 e 1981 CHRISTENSEN, FITSOS, AND SMITH

code
impurities

382

Table 3 Examples of code impurities and their effect on Difficulty

Impurity Example cases Difficulty
N,m,

Complementary . A=BXB+B-B 512
operation
. A=BXB 32

Ambiguous . A=B+C;A=AXA
operands
. D=B+C;A=DxD

. Synonymous . A=B+C;D=B+C;E=AXD

operands
. A=B+C;E=AXA

. Common . A=(B+C)x(B+QC)

subexpressions
. X=B+C;A=XXxX

Unwarranted . X:B#—C;A=X2
assignment ,
. A=(B+C)

. Unfactored . A=B +2xBxC+C’

expressions ,
. A=(B+C)

Until better proof can be obtained we can only test intuition
against a decomposition of the various elements making up the
Difficulty measure. As was discussed earlier, 7, increases as the
use of GO TO increases. It has already been shown that for PL/S
and possibly for PL/ high #, values are caused by the absence of

structured programming practices.

With respect to N,/n,, six code “‘impurities’’ have been identi-
fied.! Table 3 lists these six impurities with examples. In all
examples, both Case 1 and Case 2 yield the same computational
result, although Case 2 yields a lower N/, ratio.

L.

CHRISTENSEN, FITSOS, AND SMITH

Complementary operations are the same as unreduced ex-
pressions. Simplifying the expression (by reducing it) results
in a lower N,/n, ratio.

Ambiguous Operands involves the use of the same variable
to mean different things. In Case I, the variable A acquires
two different values. If other instructions intervene between
the two statements, one might lose sight of the current
meaning of A. If A is referenced by other program statements
in the interim, the reader must refresh his memory as to the
current value of A to be certain of correct usage. A case in
point is the common practice of using the same variable
name to index all loops. On the surface this may save storage
space, but it may also penalize readability.

1IBM SYST J ® VOL 20 ® NO 4 e 1981

III. Synonymous operands involves the assignment of the same
value to more than one variable name.

IV. Common subexpressions are subexpressions that are used
more than once in a program. If a variable is set to the value
of the subexpression at the first occurrence, the variable can
be used in all other occurrences.

Unwarranted assignments involves the assignment of a
variable to a subexpression that is used only once in a
program. The extreme example is assignment of a value to a
variable where the variable is never referenced. Unwarrant-
ed assignments is not a classification that contradicts com-
mon subexpressions (IV).

. Unfactored expressions are easy to understand but some-
times hard to perceive in the midst of a coding effort.
(Factoring is the same concept as used in mathematics.)

One may create his own examples of each of the impurities to test
the readability of the result. In each case, the simplified expres-
sions have the lowest N,/», ratio. We conclude from our studies
and experience that programs that are coded as simply and
concisely as possible have the lowest Difficulty (D). It is interest-
ing to note that these impurities are also related to optimization in
compiler development.

In summary, program difficulty can be measured with the Diffi-
culty metric, and the reason for high difficulty can be quickly
diagnosed. A high value for n, is most probably caused by
unstructured programs. A high value for the ratio of N,/n, also
raises difficulty and is probably caused by an extreme use of one
or more of the six impurities. The value of this metric is in its
capability for measuring programs for potential error-proneness
much earlier in the development cycle than at present. Self-
measurement can be performed by the individual programmer at
the occurrence of the first clean compile. This provides consider-
ably more calendar time for corrective action than dependency on
test results.

Practical application of metrics

Practical application of metrics depends on the availability of
tools to measure programs. The tools should be easy to use, they
should be fast, and they should provide more than the basic
measurements. For example, a dictionary of operators and oper-
ands with frequency of use of each has been shown to be a
powerful aid to diagnosing the reasons for high measured values.
Given high Difficulty for a program, a high usage of GO TO is
easily diagnosed. If variables have a high frequency of use, a
dictionary quickly identifies those most frequently used.

IBM SYST J @ VOL 20 @ NO 4 & 1981 CHRISTENSEN, FITSOS, AND SMITH

Table 4 Summary of Language Level experiments

Language Language Standard Number of Cited
Level N deviation programs references

COBOL (for 2.07 0.90 16 6
experienced
programmers)

PL/S
BASIC

COBOL (for
students)

PL/I
COBOL
ALGOL
FORTRAN
PILOT

System/360,
System/370
assembler
language

CDC 6500
assembler
language

APL

For a large system of separately compiled program modules, a
ranked list of modules by size or by difficulty can help narrow the
search for modules deserving of concentrated attention. This type
of ranking has been performed on two projects at the Santa
Teresa Programming Laboratory. In each case, it was found that
a small set of programs had a significantly higher Difficulty value
than the population as a whole. The intuition of project members
was found to confirm the high Difficulty values of the programs.
As a result, the programs with high values of Difficulty were
subjected to a more intensive review for possible problems.
Although this experience is not proof of applicability, it does
provide an example of practical use of programming metrics.

Other measures
Other measures which are extensions of the size and difficulty
metrics have not been treated in this article for reasons of brevity.

They are mentioned here, however, with a minimum of explana-
tion so as to round out the concepts.

CHRISTENSEN, FITSOS, AND SMITH IBM SYST J @ VOL 20 ® NO 4 e 1981

Table 5 Information Content for programs for Euclid's algorithm for finding the greatest
common divisor

Language Information Cited
Content 1 reference

PL/1 12.9 9,1
FORTRAN 10.5 9,1
CDC assembler 12.2 9,1
ALGOL 68 11.9 1
Table lookup 12.0 i
Potential HLL 11.6 1
BASIC 10.5 11
APL 10.0 12

A metric for Effort (E) to code a program should intuitively be a
function of size (i.e., Volume V and Difficulty D), and may be
expressed as follows:

Effort = E =D x V.

There have been experiments to correlate Effort to defect levels
and productivity, the results of which are encouraging enough to
continue experimentation and refinement of the experimental
method.

A measure of Language Level (\) should be a constant number
for a given language regardless of the algorithm being implement-
ed. Language Level relates to Volume and Difficulty as follows:

Language Level = A = V/D*

Results of experiments with Language Level are not completely
understood. Many experiments have been conducted, and the
results have been found to be variable. The means (i.e., averages)
for large groups of programs seem to correlate with our intuitive
belief, but within one language there is extreme variability. There
is a suggestion that Language Level does not measure the
language so much as it measures how the language is used in a
program.

Table 4 is a summary of Language Level values, begun by
Halstead' and updated with more recent research by Smith,*
Zweben,” and Shen and Dunsmore.®

Information Content (I) of a program should be constant for a
single algorithm, regardless of language chosen to implement it.
The Information Content is also related to Volume and Difficulty,
and is expressed as follows:

IBM SYST J @ VOL 20 @ NO 4 o 1981 CHRISTENSEN, FITSOS, AND SMITH

Information Content = I= %

Experiments involving Information Content (/) are not extensive.
If it proved to be a practical metric, Information Content would
be, in a sense, a measure of the amount of function of a program.
One small experiment is the implementation of Euclid’s algorithm
for finding the greatest common divisor using eight different
programming languages. The results of the experiment shown in
Table S indicate a narrow range of values for 1.

Concluding remarks

Numeric measurement of programs, where measurements can be
logically related to optimum approaches, has appeal from an
engineering standpoint. Although software engineering has come
a long way in the sense of establishing disciplines and orderly
processes, the use of numbers to aid in understanding the reasons
for those disciplines has not made the same progress.

Other engineering disciplines have constraints on design that can
often be expressed numerically. The designer of circuit chips, for
example, deals with technology limits such as the number of
access pins, the number of circuits that can be housed in a chip,
and so forth. These limits are in turn derived from other limits—
heat dissipation, voltage limits, etc.—that can also be dealt with
quantitatively. The limits are understood, and progress occurs
when technology finds new ways to expand the limits. As we
have discussed in this article, software science and its related
metrics are beginning to quantify areas of programming that
heretofore have been based on abstract feelings and experience.

There are still many areas of software science where validation
and refinement are required. A large portion of today’s program-
ming effort deals with the modification of existing programs,
whereas the metrics of software science deal with an entire
program as an entity. As yet, no theoretical approach has been
offered to measure modification work.

The authors conclude with a word of caution and encouragement
related to rules for counting operators and operands. It is easy to
become caught up in the desire to measure libraries of programs
in a rush to see results. One should recognize that results may be
spurious because of error in the measurement instrument. Those
who are involved with programming measurement should learn
from other disciplines, where strict and rigorous calibration of
measurement instruments is a normal part of experimentation.

CHRISTENSEN, FITSOS, AND SMITH IBM SYST j ® VOL 20 ® NO 4 & 198}

Software science offers a methodology not only for making
measurements, but also for calibrating the measuring instru-
ments.

CITED REFERENCES AND NOTES

1. M. H. Halstead, Elements of Software Science, Elsevier North Holland, Inc.,
New York (1977).

2. G. P. Fitsos, Software Science Counting Rules and Tuning Methodology,
Technical Report TR 03.075, IBM Santa Teresa Laboratory, 555 Bailey
Avenue, P.O. Box 50020, San Jose, CA 95150 (September 1979).

. M. H. Halstead, ‘‘Software Science—A progress report,”” Second Software
Life Cycle Management Workshop, Atlanta, GA, August 21-22, 1978, spon-
sored by the IEEE and the U.S. Army Computer Systems Command, 174
179, the Institute of Electrical and Electronics Engineers, Inc., 345 East 47th
Street, New York, NY 10017.

. C. P. Smith, A Software Science Analysis of IBM Programming Products,
Technical Report TR 03.081, IBM Santa Teresa Laboratory, 555 Bailey
Avenue, P.O. Box 50020, San Jose, CA 95150 (January 1980).

. G. P. Fitsos, Vocabulary Effects in Software Science, Technical Report TR
03.082, IBM Santa Teresa Laboratory, 555 Bailey Avenue, P.O. Box 50020,
San Jose, CA 95150 (January 1980).

. V. Y. Shen and H. E. Dunsmore, A Software Science Analysis of COBOL
Programs, Technical Report CSD-TR-348, Purdue University, Department of
Computer Science, West Lafayette, IN 47907 (August 6, 1980). Also submit-
ted to the IEEE Transactions on Software Engineering.

. A. R. Feuer and E. B. Fowlkes, ‘‘Some results from an empirical study of
computer software,”” Fourth International Conference on Software Engineer-
ing, Proceedings, Munich, Germany, September 17-19, 1980, pp. 351-355.

. 1. L. Elshoff, ‘‘Measuring commercial PL/I programs using Halstead’s crite-
ria,”” ACM SIGPLAN Notices 11, No. 5, 38-46 (May 1976).

. S. H. Zweben and Fung Kin-Chee, ‘‘Exploring software science relations in
COBOL and APL,” Comsac 79, IEEE Proceedings, Chicago, November
1979, pp. 702-709.

. Unpublished work by S. D. Hartman, IBM General Systems Division, Menlo
Park, CA 94025.

. Unpublished measurements made by the authors of this paper.

. Measurements made by the authors of this paper using the program on page
218, problem 2 in L. Gilman and A. J. Rose, APL, An Interactive Approach,
Second Edition Revised Reprinting, John Wiley & Sons, Inc., New York
(1976).

GENERAL REFERENCES

C. P. Smith, ‘“*A software science analysis of programming size,”” ACM 80,
Proceedings of the Annual Conference, Nashville, TN, October 27-29, 1980, pp.
179-185.

G. P. Fitsos, ‘‘Vocabulary effects in software science,”” Comsac 80, IEEE
Proceedings, Chicago, IL, October 31, 1980, pp. 751-756.

C. P. Smith, The Application of Halstead's Software Science DIFFICULTY
Measure to a Set of Programming Projects, Technical Report TR 03.124, 1BM
Santa Teresa Laboratory, 555 Bailey Avenue, P.O. Box 50020, San Jose, CA
95150 (January 1981).

The authors are located at the IBM Santa Teresa Laboratory, 555
Bailey Avenue, P.O. Box 50020, San Jose, CA 95150.

Reprint Order No. G321-5154.

IBM SYST I ® VOL 20 ® NO 4 @ 1981 CHRISTENSEN, FITSOS, AND SMITH

