
This paper provides an overview of a new approach to the
measurement of software. The measurements are based on the
count of operators and operands contained in a program. The
measurement methodologies are consistent across programming
language barriers. Practical signijicance is discussed, and areas
are identijied f o r additional research and validation.

A perspective on software science
by K. Christensen, G. P. Fitsos, and C. P. Smith

Measurement of programs is still a fairly subjective process. We
can measure size, based on line of code or number of statements,
but acceptance of these measures is not universal. Acceptance of
lines of code, as an example, seems to be based on the view that
although lines of code may be an imprecise measure, it is
something that can be enumerated, and until something better is
discovered we will continue to use it. There is a veiled invitation
here to find something better.

Measurement of program complexity has not gained the level of
acceptance of size measurement, probably because it is a more
elusive object to quantify. Most current activity is oriented to the
counting of decision nodes in a program. Although the use of
decision nodes to measure complexity may seem subjective,
there is evidence to suggest a connection between decision nodes
and complexity. Structured programming concepts, for example,
organize programs to minimize the effects of decision nodes. This
suggests a tendency to accept the notion of complexity and
reinforces the tendency to measure it with decision nodes.

Both size and complexity are measured after the fact. That is,
measurement is not possible until the code has been written.
Elements of measurements can be considered if logic is outlined
before code has been written. However, measurements are rarely
made until after writing the code. Even then, measurements tend
to be defense mechanisms against problems identified by other
means, such as late schedules and high defect levels.

Copyright 1981 by International Business Machines Corporation. Copying is
permitted without payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright notice are
included on the first page. The title and abstract may be used without further
permission in computer-based and other information-service systems. Permission
to republish other excerpts should be obtained from the Editor.

372 CHRISTENSEN, FITSOS, AND SMITH IBM SYST J 0 VOL 20 0 NO 4 0 1981

A more ideal situation would be to use measurements that can
lead to the optimization of program organization while the
program is being written or while it is being designed. In other
engineering disciplines, measurement is an inherent part of the
optimization process. Software engineering also needs a mea-
surement discipline that each programmer can understand and
can relate to choices made while designing and coding a program.

A new approach to code measurement was suggested by
Halstead' in which lines of code are broken down into atomic
particles of operators and operands. The relationships between
the particles then provide more than one dimension for measure-
ment. In contrast to the use of numbers of statements, the
following are three general advantages of the operator-operand
approach:

0 An explainable methodology for calibrating a measurement
instrument.

0 A more nearly universal measure, since the approach is
consistent across the boundaries of programming languages.

0 The ability to relate some of the effects of programming style
to measured quantities.

Some aspects of the approach may prove to be imprecise, but the
concepts are interesting. If shown to be practical, the power of
the approach could be a significant step toward an engineering-
like code measurement methodology.

Measurement definitions

The particles of a given source program are operators and
operands. Operands have values that are changed or are used as
reference for change (constants and variables). Operators are the
operation codes, delimiters, arithmetic symbols, punctuation,
etc., that operate on or with operands. There are also operators
such as branches, DO WHILE, IF THEN, etc., that control the
sequence of operation.

Examples of operand and operator types are the following:

0 Variable name-operand.
0 Literal-operand.
0 Arithmetic symbol-operator.
0 Punctuation-operator.
0 End of statement delimiter-operator.

There is a methodology for validating rules and calibrating a
measurement program.' Although the methodology is not dis-
cussed here, some of the not-so-obvious rules are the following:

IBM SYST J VOL 20 NO 4 1981 CHRISTENSEN, FITSOS, AND SMITH 373

0 Parentheses and brackets always come in pairs, and a compiler
diagnoses correct pairing. Each pair is counted as a single
“grouping” operator.

0 GO TO statements are concatenated with the address of the GO
TO to form a single operator.

0 IF and THEN are combined into a single operator since one is
unlikely without the other.

0 IF THEN and ELSE are also combined as a single operator.
(Thus, IF THEN ELSE and IF THEN are two separate and distinct
operators .)

0 Each of the possible combinations of DO UNTIL, DO WHILE,
etc. is combined as a single operator, but each combination is
separate from the others.

A general observation is that the rules seem to combine lines of
code (end of statement delimiter), decision nodes (IF THEN ELSE,
DO WHILE, DO UNTIL, etc.), as well as operation codes, variables,
and punctuation. We may question whether their use is properly
weighted, but we cannot help but notice that they are all included.

basic The following are the four basic program measures or metrics:
measures

0 7, Number of unique operators used.
0 v2 Number of unique operands used.
0 N , Number of times operators are used.
0 N2 Number of times operands are used.

Vocabulary (7) of a given program is defined as the sum of unique
operators and operands used in that program, and is a measure of
the repertoire of elements that a programmer must deal with to
implement the program. Thus Vocabulary is defined as follows:

Vocabulary = 7 = 7, + q2.

Length (N) of a given program is defined as the sum of the
operator usage and the operand usage. Intuitively, length is a
measure of program size, and measures the number of times a
programmer deals with each of the programming elements.
Length is expressed as follows:

Length = N = N , + N,. (1)

length and Halstead suggests a relationship such that Length can be estimat-
vocabulary ed from Vocabulary. The formula for Estimated Length (A)

relationships based on Vocabulary is the following:

Estimated Length = = 7, log, 7, + q2 log, q2. (2)

Construction of an experiment to test Equation 2 is relatively
straightforward. One need only measure the basic metrics for a
set of programs, calculate Estimated Length (A) from Equation
2, and compare the result with observed Length (N) from
Equation 1. This experiment has been conducted a number of

374 CHRISTENSEN, FITSOS, AND SMITH IBM SYST I VOL 20 NO 4 1981

Table 1 Summary of experiments correlating Estimated Length (N) and Observed Length

L
(N)

Language Number of Correlation Cited
programs coejicient reference

FORTRAN

PLll

COBOL

System/370
assembly
language

PLiS

COBOL

APL

RPG

429

120

264

994

643

24

29

37 1

0.95

0.98

0.90+

0.90+

0.90+

0.92

0.96

0.94

times, and the results are summarized in Table 1. These results
are sufficient to have practical significance. It should be pointed
out that not every program complies with the rules. There can be
wide differences between Estimated Length and observed
Length, but for a large population of programs there is reasonable
correlation. Halstead3 took the view that software science is
similar to actuarial statistics, in that, for example, one might find
that men at age 65 have a life expectancy of 14 years. This,
however, is no guarantee for any particular 65-year-old individ-
ual. In other words, the accuracy of the actuarial prediction is
completely adequate, but its precision might be too poor for any
individual-person or program.

To be accurate, Smith,4 Fitsos,’ and Shen and Dunsmore6 have
observed that Estimated Length tends to be low for large
programs and high for small programs. The formula, Equation 2 ,
for Estimated Length seems to be most accurate in the range 2000
to 4000 units of length. Feuer and Fowlkes7 also report that the
length equation overestimates the actual length 80 percent of the
time for 197 PL/I programs. (Most of these are small programs,
i.e., below 2000 units of length). This behavior also seems to be
language-independent, as has been observed for the three lan-
guages, COBOL, System/370 assembler language, and PLIS, and
may be true for PL/I.

Having shown that Length can be estimated from Vocabulary
with reasonable accuracy, we can formulate our first general rule
as follows:

Rule I. Length (N) of a program is a function of Vocabulary (7)
for that program.

by Length (N) for a total of 643 PUS modules

Figure 4 Program Vocabulary in terms of unique operators and operands ordered by Length
(N) for a total of 490 PLiS program modules

& 1700

1020

8 5 0 1

680

5 1 0 1
340 -

170 -
..... 6 ,.: :.:..:: :,: i. ..:.: :: .j...:_........... j.. /. ..:.:..:........:.:/::...... ::.(.:.::::t..: i,..:.. :;,: j.,

. , , .,
.

. .
0 49 98 147 196 245 294 343 392 441 490

, .

.
340 -

170 -
..... ,.: :.:..:: :,: i. ..:.: :: .j...:_........... j.. /. ..:.:..:........:.:/::...... ::.(.:.::::t..: i,..:.. :;,: j., , , .,

. . . .
0 49 98 147 196 245 294 343 392 441 490

, .

MODULE INDEX

Recalling the rules for counting GO TO (i.e., GO TO concatenated
with address to form a unique operator), the explanation for a flat
q1 is clarified. If one accepts the absence of GO TO as an indicator
of compliance with structured programming rules, then, for PL/S,
q1 tends to be a constant for structured programs. It is difficult to
imagine assembly language programs that do not use branch
instructions. In fact, structured programs cannot be written in
assembly language without adding macros to avoid the use of
branches. One could argue that the addition of macros changes
the language into something else, i.e., a higher level of language.

From these considerations co,mbined with Rule 3 we can formu-
late the following additional rule:

Rule 4 . For structured programs, program size is a function of
the Vocabulary of Operands (qJ.

In more general terms, it seems that program size is determined
by the data that must be processed by the program. Whether Rule
4 is true for all languages remains to be demonstrated with further
experimentation. In Figure 6, we have plotted vocabulary detail
for 34 PL/I programs measured by Elshoff.' Here, q, tends to be
flat, but the sample is not very large, and the observations
concerning GO TO cannot be tested using published information.
The authors believe the rule has promise for PL/I since PL/S is a
subset of PL/I. More concrete proof would be comforting.

Figure 5 Number of programs ver-
sus value of 7, for 490
PUS program modules
(mean = 46, mode = 38,
and median = 42)

2 25
2
8 20
a
Y
0

15
I
3 z

10

5

0
i 3 66 99 li2 165

VALUE OF q I

IBM SYST J 0 VOL 20 0 NO 4 0 19x1 CHRISTENSEN. FITSOS, AND SMITH 379

Language Standard
Level h deviation

2.07 0.90

2.05 1.14

2.04 1.57

I .82 0.73

1.53 0.92

I .40 0.69

1.21 0.74

1.14 0.81

0.92 0.43

0.91 0.79

0.88 0.42

0.81 0.60

Table 5 Information Content for programs for Euclid's algorithm for finding the greatest
common divisor

Language Information
Content I

Cited
reference

PLlI

FORTRAN

CDC assembler

ALGOL 68

Table lookup

Potential HLL

BASIC

APL

12.9

10.5

12.2

11.9

12.0

11.6

10.5

10.0

A metric for Efort (E) to code a program should intuitively be a
function of size (i.e., Volume V and Difficulty D) , and may be
expressed as follows:

Effort = E = D x V.

There have been experiments to correlate Effort to defect levels
and productivity, the results of which are encouraging enough to
continue experimentation and refinement of the experimental
method.

A measure of Language Level (A) should be a constant number
for a given language regardless of the algorithm being implement-
ed. Language Level relates to Volume and Difficulty as follows:

Language Level = A = VID2.

Results of experiments with Language Level are not completely
understood. Many experiments have been conducted, and the
results have been found to be variable. The means (i.e., averages)
for large groups of programs seem to correlate with our intuitive
belief, but within one language there is extreme variability. There
is a suggestion that Language Level does not measure the
language so much as it measures how the language is used in a
program.

Table 4 is a summary of Language Level values, begun by
Halstead' and updated with more recent research by Smith,4
Zweben,' and Shen and Dunsmore.6

Information Content (I) of a program should be constant for a
single algorithm, regardless of language chosen to implement it.
The Information Content is also related to Volume and Difficulty,
and is expressed as follows:

IBM SYST J 0 VOL 20 0 NO 4 0 1981 CHRISTENSEN, FITSOS, AND SMITH 385

V
D Information Content = I = -.

Experiments involving Information Content (I) are not extensive.
If it proved to be a practical metric, Information Content would
be, in a sense, a measure of the amount of function of a program.
One small experiment is the implementation of Euclid’s algorithm
for finding the greatest common divisor using eight different
programming languages. The results of the experiment shown in
Table 5 indicate a narrow range of values for I .

Concluding remarks

Numeric measurement of programs, where measurements can be
logically related to optimum approaches, has appeal from an
engineering standpoint. Although software engineering has come
a long way in the sense of establishing disciplines and orderly
processes, the use of numbers to aid in understanding the reasons
for those disciplines has not made the same progress.

Other engineering disciplines have constraints on design that can
often be expressed numerically. The designer of circuit chips, for
example, deals with technology limits such as the number of
access pins, the number of circuits that can be housed in a chip,
and so forth. These limits are in turn derived from other limits-
heat dissipation, voltage limits, etc.-that can also be dealt with
quantitatively. The limits are understood, and progress occurs
when technology finds new ways to expand the limits. As we
have discussed in this article, software science and its related
metrics are beginning to quantify areas of programming that
heretofore have been based on abstract feelings and experience.

There are still many areas of software science where validation
and refinement are required. A large portion of today’s program-
ming effort deals with the modification of existing programs,
whereas the metrics of software science deal with an entire
program as an entity. As yet, no theoretical approach has been
offered to measure modification work.

The authors conclude with a word of caution and encouragement
related to rules for counting operators and operands. It is easy to
become caught up in the desire to measure libraries of programs
in a rush to see results. One should recognize that results may be
spurious because of error in the measurement instrument. Those
who are involved with programming measurement should learn
from other disciplines, where strict and rigorous calibration of
measurement instruments is a normal part of experimentation.

386 CHRISTENSEN, FITSOS, AND SMITH IBM SYST J VOL 20 0 NO 4 0 1981

Software science offers a methodology not only for making
measurements, but also for calibrating the measuring instru-
ments.

CITED REFERENCES AND NOTES

1. M. H. Halstead, Elements of Software Science, Elsevier North Holland, Inc.,
New York (1977).

2. G. P. Fitsos, Software Science Counting Rules und Tuning Methodology,
Technical Report TR 03.075, IBM Santa Teresa Laboratory, 555 Bailey
Avenue, P.O. Box 50020, San Jose, CA 95150 (September 1979).

3. M. H. Halstead, “Software Science-A progress report,” Second Software
Lijie Cycle Management Workshop, Atlanta, GA, August 21-22, 1978, spon-
sored by the IEEE and the U.S. Army Computer Systems Command, 174-
179, the Institute of Electrical and Electronics Engineers, Inc., 345 East 47th
Street, New York, NY 10017.

4. C. P. Smith, A Software Science Analysis of IBM Programming Products,
Technical Report TR 03.081, IBM Santa Teresa Laboratory, 555 Bailey
Avenue, P.O. Box 50020, San Jose, CA 95150 (January 1980).

5. G. P. Fitsos, Vocabula~ Ef fec ts in Software Science, Technical Report TR
03.082, IBM Santa Teresa Laboratory, 555 Bailey Avenue, P.O. Box 50020,
San Jose, CA 95150 (January 1980).

6. V. Y. Shen and H. E. Dunsmore, A Software Science Analysis of COBOL
Programs, Technical Report CSD-TR-348, Purdue University, Department of
Computer Science, West Lafayette, IN 47907 (August 6, 1980). Also submit-
ted to the IEEE Transactions on Software Engineering.

7. A. R. Feuer and E. B. Fowlkes, “Some results from an empirical study of
computer software,” Fourth International Conference on Softwwe Engineer-
ing, Proceedings, Munich, Germany, September 17-19, 1980, pp. 351-355.

8. J. L. Elshoff, “Measuring commercial PL/I programs using Halstead’s crite-
ria,” ACM SIGPLAN Notices 11, No. 5, 38-46 (May 1976).

9. S. H. Zweben and Fung Kin-Chee, “Exploring software science relations in
COBOL and APL,” Cornsac 79, IEEE Proceedings, Chicago, November
1979, pp. 702-709.

10. Unpublished work by S. D. Hartman, IBM General Systems Division, Menlo
Park, CA 94025.

1 I . Unpublished measurements made by the authors of this paper.
12. Measurements made by the authors of this paper using the program on page

218, problem 2 in L. Gilman and A. J. Rose, A P L , A n Interactive Approach,
Second Edition Revised Reprinting, John Wiley & Sons, Inc., New York
(1976).

GENERALREFERENCES
C. P. Smith, “A software science analysis of programming size,” ACM 80,
Proceedings sf the Annual Conference, Nashville, TN, October 27-29, 1980. pp.
179-185.
G. P. Fitsos, “Vocabulary effects in software science,” Cornsac 80, IEEE
Proceedings, Chicago, IL, October 31, 1980, pp. 751-756.

C. P. Smith, The Application of Halstead’s Sofrware Science DIFFICULTY
Measure to a Set of Programming Projects, Technical Report TR 03.124, IBM
Santa Teresa Laboratory, 555 Bailey Avenue, P.O. Box 50020, San Jose, CA
95150 (January 1981).

The authors are located at the IBM Santa Teresa Laboratory, 555
Bailey Avenue, P.O. Box 50020, Sun Jose , CA 95150.

Reprint Order No. G321-5154.

IBM SYST I VOL 20 0 NO 4 0 1981 CHRISTENSEN, FITSOS, AND SMITH 387

