This paper discusses the purpose and design of a program called
the System Productivity Facility (SPF). Perspective is provided by
means of a brief summary of the earlier Structured Programming
Facility (also termed SPF) and the requirements that led to a
transformation of the earlier program into a new cross-system
dialog manager. The new control facilities are explained to
illustrate how the dialog manager supports a wide variety of
interactive applications. Ways in which application development
is simplified in the areas of data handling and display processing
are explored. The purpose of the new table and file tailoring
services is explained, and the error recovery philosophy is
described.

System Productivity Facility

Structured
Programming
Facility

by P. H. Joslin

The System Productivity Facility (SPF) is an IBM program product
that is designed to simplify the development of interactive
applications. It replaces the earlier Structured Programming
Facility programs for TSO and cMS. All functional capabilities of
the earlier Structured Programming Facility (hereafter referred to

as “‘old SPF”’) are included in the new product, which is why the
acronym SPF is retained. The new product name, however,
signals a significant new dimension and empbhasis for SPF. To put
that new dimension into perspective and to explain its evolution
and significance, we start with a brief look at old SPF.

The Structured Programming Facility (old SPF) was introduced
into the Time-Sharing Option (TSO) environment in June 1975 and
into the Conversational Monitor System (CMS) environment in
September 1979. It was designed to assist in programming
development and to improve programmer productivity through
exploitation of display technology. It was one of the first pro-
grams, for example, to prompt the user through a sequence of
operations via menus. It provided full-screen edit and browse
capabilities, with four-way scrolling of data (up, down, left, and

Copyright 1981 by International Business Machines Corporation. Copying is
permitted without payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright notice are
included on the first page. The title and abstract may be used without further
permission in computer-based and other information-service systems. Permission
to republish other excerpts should be obtained from the Editor.

JOSLIN IBM SYST J @ VOL 20 @ NO 4 ® [98]

Figure 1 Foreground assembly display example

,r/——j'—f— ————— FOREGROUND ASSEMBLY
ENTER/VERIFY PARAMETERS BELOW:

PROJECT == SPFDEMO

LIBRARY =» MYLIB ~» TEST =» MASTER -
TYPE = ASM

MEMBER =+ TOP

LISTID ~» LISTASM PASSWORD =

ASSEMBLER OPTIONS:
=» LIST, TEST, TERM, RENT

- |

right), and allowed the screen to be split into separate partitions
for parallel operation of different functions. The old SPF also used
program function (PF) keys for frequently repeated operations,
and provided an on-line tutorial to assist the new or occasional
user.

One of the ways old SPF improved productivity was to reduce the
need for a user to learn and master complicated command
languages and job control statements. As an example, consider
the foreground assembly display shown in Figure 1. The user is
prompted for information about the source data to be assembled,
the sequence of libraries to be searched for macros and copied
members, and options that control the assembly processing.

From the user-entered information, the libraries are searched for
the member to be assembled, and TSO or CMS commands are then
constructed and executed. In the TSO environment, the following
command is generated from the user input shown in Figure 1:

ASM ‘SPFDEMO.TEST.ASM(TOP)’
LIB(*SYS1.MACLIB’,
‘SPFDEMO.MYLIB.ASM’,
‘SPFDEMO.TEST.ASM’,
‘SPFDEMO.MASTER.ASM")
LOAD(‘SPFDEMO.MYLIB.OBJ(TOP)’)
PRINT(LISTASM)
LIST,TEST,TERM,RENT

(This example assumes that the member was found in the TEST
library.)

IBM SYST J VOL 20 @ NO 4 o [98(JOSLIN 389

In the CMS environment, the generated commands would include
commands to link and access the appropriate minidisks and
commands to build temporary files (if required), as well as an
ASSEMBLE command.

Similar displays are provided for background processing, where
the user-entered information causes Job Control Language (JCL)
or CMS batch commands to be generated and submitted as a job.

These capabilities not only reduce the user’s dependence on
command and job control languages, they also reduce keystrokes
and minimize the chance of errors. Most information entered by
the user is remembered from session to session in a user profile
and is redisplayed the next time the same function is requested.
The user need enter only the information to be changed.

Trends in the late 1970s

When old sPF was developed, it was anticipated that users would
want to extend the program in the foreground/background areas
and in the tutorial. Provisions were made for an installation to
develop new display interfaces to language processors or to any
program capable of being executed via commands or JCL. Such
extensions required only the addition of display panels and
skeleton procedures to the appropriate libraries; no change was
required to the distributed code.

Many installations have, indeed, extended the foreground/back-
ground options and the tutorial. By the late 1970s, however,
installations were attempting to extend SPF far beyond what could
be done with display interfaces to commands and JCL. They were
beginning to develop totally new functions, even whole applica-
tions, requiring user-written programs to be invoked from SPF-
style menus. They had discovered that the product included a
wealth of internal service routines for generating displays, allo-
cating files and libraries, performing 1/0 operations, and verifying
user inputs. Users were attempting to invoke these facilities to
provide new interactive capabilities for their installations.

Unfortunately, use of the internal service routines required
access to a very complex set of internal control blocks. Any user-
written program that invokes the internal services is tightly bound
to the internal control block structure, and that structure has
changed with each new release of the product.

This situation gave rise to demands for IBM either to freeze the
internal program structure or to provide macros and data declara-
tion statements, in several languages, to isolate installations from

JOSLIN {BM SYST J @ VOL 20 ® NO 4 e 1981

these changes. There were also demands for formal education
and better documentation of the internal control block structure,
and for step-by-step instructions on the use of the service
routines.

Two of the major problems in meeting these requirements were
first that it was not possible to freeze the control block structure
while allowing flexibility for future enhancements, and second
that it would not be productive to educate users on the complex-
ities of the internal structure.

A new approach was needed—one that would simplify the
development of new interactive applications without requiring
knowledge of (or access to) the internal structure of the product.

During the late 1970s, about the same time users were attempting
to extend old SPF to new applications, groups in IBM development
laboratories were creating more and more display-oriented inter-
active programs, some for release as products and some for
internal use. These programs provided many of the same capabili-
ties, namely the ability to:

Display a hierarchy of menus based on user selections.
Invoke functions (commands and programs) from menus.
Communicate with the user via data entry displays and
messages.

Provide on-line help and tutorial information.

Retain user-entered or program-generated data from one ses-
sion to another.

Generate sequential output to be passed as input to another
process (e.g., JCL to be submitted to the background or SCRIPT
text to be formatted for printing).

At that time, a new term, dialog manager, came into the language
to describe these capabilities. Nearly all interactive programs
included a dialog manager of one sort or another. Far too many
different, incompatible dialog managers had been developed, or
were being developed, resulting in a significant replication of
effort and expense. As attention became focused on this situa-
tion, the question of having one common dialog manager became
an issue. It was recognized that a common dialog manager would
be difficult to develop because it would have to be flexible enough
to accommodate a variety of different applications. It was also
recognized that there would be conversion problems and that
many existing programs might never convert due to the costs
involved. Despite these problems, a common dialog manager was
clearly needed. Of special significance was the need for a cross-
system dialog manager, capable of running interactive applica-
tions in multiple environments such as MVS/TSO and VM/CMS.

IBM SYST J @ VOL 20 @ NO 4 & {981 JOSLIN

within
IBM

Figure 2 Relationships of major
System Productivity Fa-
cility components

OPERATING
SYSTEM

SPF DIALOG
MANAGER

!

}

SPF PROGRAM
DEVELOPMENT
FACILITY

APPLICATION
A

APPLICATION
B

design
objectives

Concepts of the System Productivity Facility

The System Productivity Facility—the new SPF—is designed to
address the demands of both system users and IBM program
developers. The new SPF was built using old SPF as the base. The
dialog control facilities [e.g., menu/tutorial processing, screen
management, and program function (PF) key recognition] and the
internal service routines are segregated into a new component,
the dialog manager. High-level external interfaces to existing
services and a variety of new services have been developed.

The user-visible part of old SPF (browse, edit, utilities, fore-
ground, background, and the contents of the tutorial) has become
the other major component of new System Productivity Facility.
This component is called the program development facility. New
dialog testing facilities have been added to this component.

The relationship between the two major components of SPF is
shown in Figure 2. The dialog manager provides control facilities
and services to support execution of interactive applications.
Conceptually, it is an environment-independent extension to the
operating system. The program development facility, which
supports development and testing of applications, itself runs as an
application under the dialog manager. Installations may continue
to extend the program development facility but, more important-
ly, they may now develop totally new applications that use the
services of the dialog manager.

Some of our design objectives for SPF were relatively straightfor-
ward. Elimination of dependence on internal structure was
achieved by designing new external interfaces that do not use the
internal control blocks for communication with applications. A
cross-system capability was achieved by ensuring that the new
external interfaces were the same in all environments, even
though the dialog manager itself contains considerable environ-
ment-dependent code.

The difficult objectives were the ones that related to flexibility
and usability. The internal dialog management capabilities of old
SPF were originally designed to support one type of application
(now known as the program development facility), coded in one
language (PL/S} by one group of highly skilled systems program-
mers. The transformation of these capabilities into a new general-
purpose dialog manager imposed a new set of objectives that
required rethinking and redesigning many of the earlier SPF
facilities.

The new System Productivity Facility would have to support a

wide variety of applications, including applications for which the
end user is not skilled in data processing methods. It would

JOSLIN {BM SYST J @ VOL 20 @ NO 4 @ {981

further have to allow applications to be coded in a variety of
languages, including the command language of the host system
(CLIST for MVS/TSO, or EXEC2 for vM/CMS) and high-level pro-
gramming languages (such as PL/I or COBOL). The new SPF would
also have to accommodate a mixture of languages, with some
functions coded in a command language and other functions
coded in one or more programming languages.

Another objective was to simplify the specification of display
formats and to relieve the application logic from the concerns of
cursor placement, initialization of default values, verification of
user inputs, and display of error messages and supplementary
help information. The new dialog manager also had to provide a
convenient mechanism for retaining user-entered and/or pro-
gram-generated information across sessions, and to allow related
sets of information to be managed easily and coherently. It had to
facilitate the generation of sequential output in a way that relieves
the application logic from the details of output syntax and to
simplify error-handling, particularly in cases where the error is
probably not recoverable within the framework of the application
logic.

The remainder of this paper deals with the way in which these
objectives were addressed and satisfied.

Dialog organization and flow

An interactive application comprises the following elements:

e Selection menus, from which the user may select processing
options.
Dialog functions (commands and programs) that perform the
requested processing.
Data entry panels that prompt the user for additional informa-
tion.

The way in which these elements are organized determines the
flow of the dialog, as seen by the end user. SPF must support a
wide variety of organizations, so that the dialog flow can be
tailored to suit the particular needs of the application, and
information can be presented in a natural, user-friendly manner.

A traditional dialog organization is shown in Figure 3. This
example starts with the display of a high-level selection menu,
which is the primary option menu for the application. User
options selected from this menu may result in the invocation of a
dialog function or in the display of a lower-level selection menu.
Each lower-level menu may also cause functions to receive
control or cause still lower-level menus to be displayed. The
menu hierarchy may extend as many levels deep as desired.

IBM SYST J @ VOL 20 @ NO 4 @ 198 JOSLIN

Figure 3 Traditional dialog organization and flow

—

SELECTION
ME

e
=

4

SELECTION SELECTION
DIALOG MENU MENU

FUNCTION

T
)

DIALOG DATA ENTRY
FUNCTION PANELS

Eventually a dialog function receives control. The dialog function
may use any of the dialog services provided by SPF. In particular,
the function may continue the interaction with the end user by
displaying data entry panels to prompt the user for information.
When the function completes, the selection menu from which it
was invoked is redisplayed.

An alternative dialog organization is shown in Figure 4. Here a
dialog function receives control before the display of a menu. The
dialog function performs application-dependent initialization and
displays data entry panels to prompt the user for initial informa-
tion. It then starts the selection process by invoking the primary
option menu for the application.

This example also shows that one function can invoke another
without displaying a menu, and that a function may start a lower-
level selection process at any point in the hierarchy.

Support for these and other types of dialog organizations requires
that either of two ‘‘next actions’ be allowed at any point in a
dialog: Display a selection menu, or invoke a dialog function.

Most dialog managers, including SPF, include a control mecha-

nism to display selection menus, interpret user responses, and
take appropriate action (display a lower-level menu or invoke a

JOSLIN IBM SYST J @ VOL 20 @ NO 4 o 1981

Figure 4 An alternative dialog organization

[

DIALOG DATA ENTRY
FUNCTION PANELS

_

~

SELECTION
MENU

_

1

=

SELECTION SELECTION
DIALOG
FUNCTION MENU MENU

T T

DIALOG DIALOG
FUNCTION FUNCTION

SELECTION
MENU

_

function). To achieve the desired flexibility, we decided to make
this control mechanism available as a service that can be invoked
from dialog functions as well as from within the dialog manager.
It is known as the SELECT service. Selection keywords are passed
as input parameters to the SELECT service. They specify the next
action as follows:

PANEL (menu-name)
CMD (command)
PGM (program-name) [PARM (parameters)]

The PANEL keyword specifies the name of the next selection
menu to be displayed. The CMD and PGM keywords specify a
dialog function (coded as a command or program, respectively) to
receive control. Input parameters may be passed to the dialog
function as part of the command specification or via the optional
PARM keyword.

IBM SYST J @ VOL 20 @ NO 4 @ 1981 JOSLIN

Figure 5 Flow of control for the SELECT service

ISPF
COMMAND

L

BEGIN SPF

SELECT DISPLAY MENU
SERVICE

SELECT LOWER

LEVEL MENU INVOKE

FUNCTION DisPLAY

SERVICE

SELECT LOWER DIALOG DISPLAY

LEVEL MENU FUNCTION DATA ENTRY
OR FUNCTION PANEL

The flow of control for this process is shown in Figure 5. The
process starts via the 1SPF command, which is issued outside SPF
to invoke the dialog manager. The ISPF command requires the
same keyword parameters as the SELECT service. Here, they are
used to specify the first selection menu to be displayed or dialog
function to receive control.

After the SPF environment has been initialized, the dialog manag-
er invokes the SELECT service, passing as input the initial
keywords specified on the ISPF command. If the CMD or PGM
keyword is passed to the SELECT service, SELECT simply invokes
the dialog function. If the PANEL keyword is passed, SELECT calls
the DISPLAY service to display the specified selection menu.

Selection menus contain sufficient information to determine the
next action to be taken for any option entered by the user.
Specifically, the panel definition specifies a selection keyword
(PANEL, CMD, or PGM) corresponding to each user-entered option.
The keyword is returned from the DISPLAY service to the SELECT
service. If a PANEL keyword is returned, SELECT recursively
invokes itself, passing the keyword as input. As a result, SELECT
continues to display successively lower levels of menus in the

JOSLIN IBM SYST J @ VOL 20 ® NO 4 @ 1981

hierarchy until a dialog function is specified as the next action.
Whenever a CMD or PGM keyword is returned as the next action,
SELECT invokes the dialog function.

When a dialog function receives control, it may call the DISPLAY
service to display data entry panels or other user information. It
may also call the SELECT service to start the display of a lower-
level menu hierarchy or invoke a lower-level dialog function
(without displaying a menu).

When a dialog function completes execution, control is returned
to the SELECT service. If the dialog function had been invoked
from a menu, that menu is then redisplayed. Alternatively, if the
dialog function had been invoked from a higher-level function,
the higher-level function resumes execution.

Languages and data communication

The objective of supporting dialog functions coded in a variety of
languages involves the issues of program linkages and data
communication. Conceptually, resolution of the first issue—
program linkages—is straightforward. The dialog manager must
be able to invoke command-coded functions (CLIST and EXEC2
languages) and program-coded modules. The mechanisms to do
this are provided by the host operating systems. Dialog functions,
in turn, must be able to invoke SPF services. Two linkage
mechanisms have been developed for this purpose:

e ISPEXEC command is used to invoke services from command-
coded functions.
ISPLINK subroutine is used to invoke services from program-
coded modules. Standard register conventions, which are
supported by most high-level languages, are used.

Function-to-function linkage is provided by the SELECT service,
as previously discussed. SELECT provides a convenient mecha-
nism for invoking a command-coded function from a program-
coded function or vice versa.

Data communication has not been as straightforward. Each
language has its own conventions for the internal storage of data.
A simple mechanism was needed to communicate data between a
dialog function and a service, and between two or more dialog
functions. Of course, data can be communicated explicitly via
calling sequence parameters, but this is cumbersome when many
parameters are required. Consider, for example, the need for a
dialog function to display a panel containing twenty input fields.
A calling sequence (to the DISPLAY service) with twenty or more
parameters would be awkward to code and debug.

IBM SYST } @ VOL 20 @ NO 4 @ {98{ JOSLIN

program
linkages

data
communication

example

The CLIST and EXEC2 languages provided the clue to solving this
problem. In these languages, variables are defined implicitly; no
data declaration statements are required. The variables are
treated as character strings that may vary in length, eliminating
the need for format transformations as well as concerns for
storage allocation and boundary alignment.

This approach was adopted for SPF dialog variables, which serve
as the primary communication mechanism between functions and
services and between two or more functions. A dialog variable is
a character string that may vary in length from zero to 32K bytes.
It is referenced symbolically, by name.

For functions coded in a command language, the CLIST or EXEC2
variables are automatically treated as dialog variables; no special
action is required to define them to SPF. For functions coded in a
programming language, internal program variables may be identi-
fied to SPF as dialog variables, so that they can be accessed and
updated directly by SPF services. An automatic format transfor-
mation from character string to fixed binary or bit string may also
be specified. Alternatively, a program may copy and replace
dialog variables from or to a dynamically generated pool.

Dialog variables are normally associated with the function that is
currently in control. Different functions may have variables of the
same name with no conflict. Functions may share variables by
copying them to or from a shared variable pool or the user profile.
Variables in the user profile are automatically retained across
sessions.

Dialog variable names appear in panel, message, and skeleton
definitions to allow communication with the functions. A variable
name in a panel definition, for example, corresponds exactly to
the name of a dialog variable that is accessible to a function. The
variable may be used to initialize information on the panel (prior
to display), and to store input entered by the user.

The following example, coded in CLIST language, illustrates the
ease with which data is communicated between a dialog function
and the DISPLAY service.

SET &AAA =1
ISPEXEC DISPLAY PANEL (XYZ)
SET &CCC = &AAA + &BBB

Variable AAA is created by the CLIST simply by setting it to a
value. The DISPLAY service is then called (using the ISPEXEC
command) to display panel XYz. The panel name is passed as an
explicit calling sequence parameter. Other data, however, is
passed by matching the names of dialog variables (in this case
CLIST variables) with variable names that appear in the panel
definition.

JOSLIN IBM SYST J @ VOL 20 ® NO 4 ® 198]

Assume that the panel definition for XYZ contains two symbolic
parameters, named AAA and BBB, and that they are defined as
input (unprotected) fields. In the panel definition, they might
appear as follows:

INITIAL VALUE = _ AAA
INCREMENT = _BBB

where each underscore indicates the start of an input field,
followed by the name of the variable.

When the panel is displayed, the first input field is automatically
initialized to 1, since it was set by the dialog function before
calling the DISPLAY service. The second field is displayed as
blank, since it was not set.

Now assume that the user changes the value of the first field to
100 and types 20 in the second field. When the user presses the
ENTER key, the values are automatically stored, updating the
value of AAA and creating a variable BBB (which was not
previously defined by the CLIST). The DISPLAY service then
returns control, and the next statement in the CLIST is executed.
This statement creates a variable named CCC and sets it to the
sum of AAA and BBB, namely 120.

Display formatting

The old spF display facility was the starting point for designing the
new SPF DISPLAY service in which several of the earlier concepts

have been retained. Display formats in both facilities are speci-
fied via panel definitions that include a “‘picture’” of what the end
user will see. The picture concept facilitates panel creation and
modification. A message is treated as supplementary information
that may be displayed with a panel or superimposed on the panel
that is currently being displayed.

In both facilities, panel and message definitions are maintained in
libraries, external to the application code. This allows an installa-
tion to easily custom tailor display formats and facilitates transla-
tion to other languages. The definitions are created by editing
directly into the panel and message libraries; no compile or
preprocessing step is required. Panel and message definitions
contain a mixture of literal text to be displayed as is, variables for
which the current value is substituted dynamically at the time of
display, and control information to be interpreted by the DISPLAY
service.

Certain redesign of these basic concepts has been required in the

new SPF. The panel and message definition syntax has been
changed to support the substitution of dialog variables that are

IBM SYST J @ VOL 20 @ NO 4 » |98] JOSLIN

display panel
processing
logic

399

specified by name. (In old SPF, variables were specified by their
position in a calling sequence.) The major thrust of the new
design has been to simplify the panel definition syntax and to
allow more of the format-related processing to be moved out-
board from the dialog functions (including verification of user
input). The goal has been to free dialog functions from the details
of end user communication, that is, to decouple panel processing
logic from application function logic.

Although old sPF allowed some of the display processing logic to
be specified in the panel definitions (outboard from the func-
tions), the specification was static in nature—analogous to data
declarations in a program. Initial attempts to extend that ap-
proach resulted in syntax that was exceedingly clumsy, without
producing the desired degree of flexibility. We then decided to try
a procedural approach, in which the panel processing logic would
be specified via assignment, IF, and VER (verify) statements.
Separate procedural sections were required to specify processing
to occur before and after the display of the panel.

The new panel definitions are organized into four sections, of
which only the body is required:

Attribute section (optional) defines special characters that are
to be used in the body of the panel definition to represent
attribute (start of field) bytes. Default attribute characters are
provided, which may be overridden.

Body (required) defines the format of the panel as seen by the
user (the picture section of the panel) and defines the name of
each variable field on the panel.

Initialization section (optional) specifies the initial processing
that is to occur prior to displaying the panel. Typically, this
section is used to define how variables are to be initialized.
Processing section (optional) specifies processing that is to
occur after the panel has been displayed and is typically used
to define how variables are to be verified and/or translated.

A sample panel definition is shown in Figure 6. It has no attribute
section but simply uses the following default attribute characters:

% (percent sign) — text (protected) field, high intensity
+ (plus sign) — text (protected) field, low intensity
_ (underscore) — input (unprotected) field, high intensity

Each text attribute character is followed by the information to be
displayed. Substitutable variables, consisting of a dialog variable
name preceded by an ampersand (&), may be included in the text.
Each input attribute character is followed immediately by a dialog
variable name, with no intervening ampersand.

JOSLIN IBM SYST J ® VOL 20 # NO 4 ® 1981

Figure 6 Sample display panel definition

% EMPLOYEE SERIAL: &EMPSER
+ TYPE OF CHANGE %= _TYPECHG + (NEW, UPDATE, OR DELETE)

EMPLOYEE NAME
LAST %= _LNAME
FIRST % -~ __FNAME
INITIAL % = _I+

HOME ADDRESS:
LINE1 %=> _ADDRI1
LINE 2 % = _ADDR2
LINE 3 %=+ _ADDR3
LINE 4 % = _ADDR4

HOME PHONE:
AREA CODE % = __PHA+
LOCAL NUMBER % = _PHNUM +

JINIT
.HELP = PERS032
.CURSOR = TYPECHG
IF (&TYPECHG = NEW)

LNAME Y
FNAME
!
ADDR1
ADDR2
ADDR3
ADDR4
PHA
PHNUM

L e S 1 T | I TS I 1

)PROC
VER (&TYPECHG, LIST, NEW, UPDATE, DELETE, MSG =EMPX210)
VER (&LNAME, ALPHA)
VER (&FNAME, ALPHA)
VER (&I, ALPHA)
VER (&PHA, NUM)
VER (&PHNUM, PICT, 'NNN-NNNN")

JEND

The panel body is terminated with an *)INIT" header statement,
which starts the initialization section. The initialization section in
this example establishes PERS032 as the name of the related help
panel (in the event that the user requests help while viewing the
panel) and sets the initial cursor position to the TYPECHG field. It
then tests the current value of the TYPECHG variable. If the
current value is NEW, all remaining input variables are initialized
to blank except for variable PHA, which is initialized to 301.

Figure 7 shows how the panel looks when displayed, assuming
that the dialog function has first set variables EMPSER to 123456 and

IBM SYST J @ VOL 20 @ NO 4 @ [981 JOSLIN

Figure 7 Sample panel when displayed

EMPLOYEE SERIAL: 123456

TYPE OF CHANGE —» NEW (NEW, UPDATE, OR DELETE)

EMPLOYEE NAME:
LAST -
FIRST -
INITIAL =~

HOME ADDRESS:
LINE 1 -
LINE 2 -
LINE 3 -
LINE 4 —

HOME PHONE:

AREA CODE — 301
LOCAL NUMBER =~

TYPECHG to NEW before calling the DISPLAY service. After the
user enters information, the data in each panel input field is
automatically stored into the corresponding dialog variable. Then
the processing section of the panel definition, beginning with a
“PROC” header statement, is executed. In this example, the
processing section contains VER statements to verify that infor-
mation entered by the user meets the following criteria:

Type of change is NEW, UPDATE, or DELETE.

Last name, first name, and initial contain all alphabetic
characters.

Area code contains all numeric characters.

Phone number consists of three numeric characters, followed
by a hyphen, followed by four numeric characters.

If any verification check fails, a message is automatically dis-
played, and the user is given an opportunity to correct the error.
The first VER statement explicitly designates the message
(EMPX201) to be displayed. For the other VER statements, an
appropriate default message is displayed. When the user corrects
the error, the variables are again stored, and the processing
section is re-executed.

Table services

The objective of supporting a wide variety of applications in-
cludes one requirement that had not been addressed by old SPF,

JOSLIN IBM SYST] @ VOL 20 ® NO 4 1981

Figure 8 Example table

EMPSER LNAME FNAME PHA PHNUM

598304 ROBERTSON RICHARD 301 840-1224
172397 SMITH SUSAN 301 547-8465
813058 RUSSELL CHARLES 202 338-9557
395733 ADAMS JOHN 202 477-1776
502774 CARUSO VINCENT 914 294-1168

EMPSER Employee serial number | Middle initial
LNAME Last name PHA Home telephone area code
FNAME First name PHNUM Home telephone local number

namely, to provide a convenient mechanism for generating a data
base of user-entered and/or program-generated informatiop, and
to support inquiry and update of that data.

To satisfy this requirement, we decided to incorporate a set of
services from another dialog manager, the Interactive Productivi-
ty Facility (available under vM/370 and VSE). In the process, the
services have been enhanced and reimplemented to fit the SPF
environment. They are called table services. A table is a two-
dimensional array of information in which each column corre-
sponds to a dialog variable, and each row contains a set of values
for those variables. An example is shown in Figure 8.

The variable names that define the columns of a table are
specified when the table is created. At the same time, one or more
columns (variable names) may be specified as keys for accessing
the table. For the table shown in the figure, EMPSER might be
defined as the key variable. Or EMPSER and LNAME might both be
defined as keys, in which case a row would be found only if
EMPSER and LNAME both match the current values of those
variables,

A table may also be accessed by one or more argument variables,
which need not be key variables. A complex argument may be
constructed to provide powerful search capabilities.

In addition, a table may be accessed by Current Row Pointer
(CRP). When a table is opened, the CRP is automatically positioned
to TOP, i.e., ahead of the first row. The table may be scanned by
moving the CRP forward or back. A row is retrieved each time the
CRP is moved.

When a row is retrieved from a table, the contents of the row are
stored into the corresponding dialog variables. When a row is
stored (updated or added), the current contents of the dialog
variables are saved in that row.

IBM SYST J @ VOL 20 NO 4 @ 198] JOSLIN

A table may be defined as temporary or permanent. A temporary
table is created in virtual storage and deleted upon completion of
processing. A permanent table resides on direct access storage
(DASD), and it may be opened for update or for read-only access,
at which time the entire table is read into virtual storage. All
changes to the contents of a table are made in virtual storage.
When processing is complete, the entire table may be written
back to direct access storage, provided it was originally obtained
for update.

Services are provided to create new tables, open existing tables,
save tables on direct access storage, and delete tables without
saving. Other services retrieve and update rows in the virtual
storage copy of a table. In addition, a service is provided to
display rows of a table in scrollable format and allow the user to
select rows for processing and/or modify selected information in
the rows.

File tailoring services

Many interactive applications need to generate sequential output
that can be used to drive some other process. Old SPF had such a
facility, but it was too closely tied to the generation of Job
Control Language statements (JCL) for batch compilation. Al-
though JCL generation is still a requirement, a more flexible
mechanism is needed to allow the generation of other types of
sequential output, such as control statements to drive a utility or
SCRIPT/VS statements to produce a printable report. The objective
is not only to provide flexibility, but also to allow the formatting
details for the generated output to be specified outboard from the
dialog functions.

Again, the solution was found in the Interactive Productivity
Facility. Another set of services, called file tailoring, was taken
from that product and reimplemented for the SPF environment.
File tailoring services read skeleton files from a library and write
tailored output that may be used to drive other functions. Each
record in the skeleton file may contain text that is to be copied
verbatim to the output file, intermixed with variable names
(preceded by an ampersand). When a variable name is found, the
current value of the corresponding dialog variable .5 substituted
in the output file.

Skeleton file records may also contain control statements that
provide the following capabilities:

e Set dialog variables.

o Imbed other skeleton files.
o Conditionally include records.

JOSLIN IBM SYST J @ VOL 20 @ NO 4 @ 1981

e Iteratively process records in which variables from each row
of a table are substituted.

For the iterative processing of records, file tailoring services
retrieve all rows from the table and generate one or more output
records (as specified in the skeleton) for each row. This provides
a convenient way to generate a report or other type of output
containing tabular information.

Error handling and recovery

Error handling and recovery is often a major problem in applica-
tion development. A significant amount of application code is
usually required, and this code is of a type that is particularly
difficult to debug. One of the major SPF objectives has been to
reduce the amount of error handling logic required in an applica-
tion.

Most SPF services are capable of detecting a variety of errors for
which the likely cause is a bug in the dialog function. (For
example, a function does not open a table before attempting to
process it.) In these cases, the application developer simply
wants to find the bug, correct it, and try again without having to
code error logic in the dialog function. To permit this, SPF must
provide sufficient information to the application developer (at the
terminal) rather than returning to the dialog function with an error
code.

First, we grouped the return codes from the SPF services into
three general categories:

Normal completion code (0).

Exception condition codes (4 and 8) indicate conditions that
are not necessarily errors (e.g., no entry found in a table).
Error condition codes (12, 16, and 20) indicate that a service
did not complete or only partially completed due to errors.

Then the following two modes of operation were defined to
control the action taken in the case of SPF-detected errors (code
12 or higher):

CANCEL mode. Display and log a message; then terminate the
dialog and redisplay the primary option menu.

RETURN mode. Format an error message (but do not display or
log it); then return to the function that invoked the service,
passing back the designated return code.

The normal (default) mode is CANCEL. In CANCEL mode, control
is not returned to the function that invoked the service. Hence,

IBM SYST J ® VOL 20 @ NO 4 @ 1981 JOSLIN

406

the function never sees a return code of 12 or higher, and need not
include logic to process this kind of error.

For dialog functions that are intended to process errors, the mode
may be set RETURN via a service. Those functions must then have
logic to handle return codes of 12 or higher.

Concluding remarks

The basic design objectives for SPF can be summed up in one
general objective, namely, to improve application development
productivity by simplifying the development process. This is the
reason for the new name for SPF, the System Productivity
Facility. Realistically, a single program cannot address the re-
quirements for all applications, but SPF has taken a major step in
providing a single cross-system capability that supports the
development, testing, and execution of interactive applications.

Initial reactions from users have been positive. They have
confirmed that the new dialog manager provides many of the
services they require and has simplified the development process.
At the same time, they have suggested new features and enhance-
ments that are currently under evaluation as future objectives.

GENERAL REFERENCES

SPF Dialog Management Services, SC34-2036 (1981); available through IBM
branch offices; provides information about the SPF dialog manager in all operating
environments.

SPF-MVS Program Reference, SC34-2038 (1981); available through IBM branch
offices; provides information on the use of the SPF program development facility
in the MVS/TSO environment.

SPF-VM Program Reference, SC34-2047 (1981); available through IBM branch
offices; provides information on the use of the SPF program development facility
in the VM/CMS environment.

The author is with the IBM Information Systems Group, 18100
Frederick Pike, Gaithersburg, MD 20760.

Reprint Order No. G321-5155.

JOSLIN IBM SYST J @ VOL 20 ® NO 4 @ 1981

