
This paper discusses the purpose and design of a program called
the System Productivity Facility (SPF). Perspective is provided by
means of a brief summary of the earlier Structured Programming
Facility (also termed SPF) and the requirements that led to a
transformation of the earlier program into a new cross-system
dialog manager. The new control facilities are explained to
illustrate how the dialog manager supports a wide variety of
interactive applications. Ways in which application development
is simplijed in the areas of data handling and display processing
are explored. The purpose of the new table and file tailoring
services is explained, and the error recovery philosophy is
described.

System Productivity Facility
by P. H. Joslin

The System Productivity Facility (SPF) is an IBM program product
that is designed to simplify the development of interactive
applications. It replaces the earlier Structured Programming
Facility programs for TSO and CMS. All functional capabilities of
the earlier Structured Programming Facility (hereafter referred to
as “old SPF”) are included in the new product, which is why the
acronym SPF is retained. The new product name, however,
signals a significant new dimension and emphasis for SPF. To put
that new dimension into perspective and to explain its evolution
and significance, we start with a brief look at old SPF.

Structured The Structured Programming Facility (old SPF) was introduced
programming into the Time-sharing Option (TSO) environment in June 1975 and

Facility into the Conversational Monitor System (CMS) environment in
September 1979. It was designed to assist in programming
development and to improve programmer productivity through
exploitation of display technology. It was one of the first pro-
grams, for example, to prompt the user through a sequence of
operations via menus. It provided full-screen edit and browse
capabilities, with four-way scrolling of data (up, down, left, and

Copyright 1981 by International Business Machines Corporation. Copying is
permitted without payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright notice are
included on the first page. The title and abstract may be used without further
permission in computer-based and other information-service systems. Permission
to republish other excerpts should be obtained from the Editor.

388 JOSLIN IBM SYST J VOL 20 NO 4 e 1981

Figure 1 Foreground assembly display example

1 - - - - - - - - - FOREGROUND ASSEMBLY - - - - - - - - - - -
ENTERI’VERIFY PARAMETERS BELOW:

PROJECT -t SPFDEMO

TYPE +ASM
LIBRARY + MYLlB -c TEST -+ MASTER +
MEMBER -C TOP

LIST ID -+ LISTASM PASSWORD +
ASSEMBLER OPTIONS:

+ LIST, TEST, TERM, RENT

these changes. There were also demands for formal education
and better documentation of the internal control block structure,
and for step-by-step instructions on the use of the service
routines.

Two of the major problems in meeting these requirements were
first that it was not possible to freeze the control block structure
while allowing flexibility for future enhancements, and second
that it would not be productive to educate users on the complex-
ities of the internal structure.

A new approach was needed-one that would simplify the
development of new interactive applications without requiring
knowledge of (or access to) the internal structure of the product.

During the late 1970s, about the same time users were attempting within
to extend old SPF to new applications, groups in IBM development IBM
laboratories were creating more and more display-oriented inter-
active programs, some for release as products and some for
internal use. These programs provided many of the same capabili-
ties, namely the ability to:

0 Display a hierarchy of menus based on user selections.
0 Invoke functions (commands and programs) from menus.
0 Communicate with the user via data entry displays and

0 Provide on-line help and tutorial information.
0 Retain user-entered or program-generated data from one ses-

sion to another.
0 Generate sequential output to be passed as input to another

process (e.g., JCL to be submitted to the background or SCRIPT
text to be formatted for printing).

messages.

At that time, a new term, dialog manager, came into the language
to describe these capabilities. Nearly all interactive programs
included a dialog manager of one sort or another. Far too many
different, incompatible dialog managers had been developed, or
were being developed, resulting in a significant replication of
effort and expense. As attention became focused on this situa-
tion, the question of having one common dialog manager became
an issue. It was recognized that a common dialog manager would
be difficult to develop because it would have to be flexible enough
to accommodate a variety of different applications. It was also
recognized that there would be conversion problems and that
many existing programs might never convert due to the costs
involved. Despite these problems, a common dialog manager was
clearly needed. Of special significance was the need for a cross-
system dialog manager, capable of running interactive applica-
tions in multiple environments such as MVS/TSO and VMICMS.

IBM SYST J 0 VOL 20 NO 4 0 1981 JOSLIN 391

Figure 2 Relationships of major
System Productivity Fa-
cility components r OPERATING

SYSTEM

SPF DIALOG
MANAGER

design
objectives

392

Concepts of the System Productivity Facility

The System Productivity Facility-the new SPF-iS designed to
address the demands of both system users and IBM program
developers. The new SPF was built using old SPF as the base. The
dialog control facilities [e.g., menu/tutorial processing, screen
management, and program function (PF) key recognition] and the
internal service routines are segregated into a new component,
the dialog manager. High-level external interfaces to existing
services and a variety of new services have been developed.

The user-visible part of old SPF (browse, edit, utilities, fore-
ground, background, and the contents of the tutorial) has become
the other major component of new System Productivity Facility.
This component is called the program development facility. New
dialog testing facilities have been added to this component.

The relationship between the two major components of SPF is
shown in Figure 2. The dialog manager provides control facilities
and services to support execution of interactive applications.
Conceptually, it is an environment-independent extension to the
operating system. The program development facility, which
supports development and testing of applications, itself runs as an
application under the dialog manager. Installations may continue
to extend the program development facility but, more important-
ly, they may now develop totally new applications that use the
services of the dialog manager.

Some of our design objectives for SPF were relatively straightfor-
ward. Elimination of dependence on internal structure was
achieved by designing new external interfaces that do not use the
internal control blocks for communication with applications. A
cross-system capability was achieved by ensuring that the new
external interfaces were the same in all environments, even
though the dialog manager itself contains considerable environ-
ment-dependent code.

The difficult objectives were the ones that related to flexibility
and usability. The internal dialog management capabilities of old
SPF were originally designed to support one type of application
(now known as the program development facility), coded in one
language (PLB) by one group of highly skilled systems program-
mers. The transformation of these capabilities into a new general-
purpose dialog manager imposed a new set of objectives that
required rethinking and redesigning many of the earlier SPF
facilities.

The new System Productivity Facility would have to support a
wide variety of applications, including applications for which the
end user is not skilled in data processing methods. It would

JOSLIN 1BM SYST J 0 VOL 20 0 NO 4 0 1981

further have to allow applications to be coded in a variety of
languages, including the command language of the host system
(CLIST for MVS/TSO, or EXEC2 for VMICMS) and high-level pro-
gramming languages (such as PL/I or COBOL). The new SPF would
also have to accommodate a mixture of languages, with some
functions coded in a command language and other functions
coded in one or more programming languages.

Another objective was to simplify the specification of display
formats and to relieve the application logic from the concerns of
cursor placement, initialization of default values, verification of
user inputs, and display of error messages and supplementary
help information. The new dialog manager also had to provide a
convenient mechanism for retaining user-entered and/or pro-
gram-generated information across sessions, and to allow related
sets of information to be managed easily and coherently. It had to
facilitate the generation of sequential output in a way that relieves
the application logic from the details of output syntax and to
simplify error-handling, particularly in cases where the error is
probably not recoverable within the framework of the application
logic.

The remainder of this paper deals with the way in which these
objectives were addressed and satisfied.

Dialog organization and flow

An interactive application comprises the following elements:

0 Selection menus, from which the user may select processing

e Dialog functions (commands and programs) that perform the

0 Data entry panels that prompt the user for additional informa-

options.

requested processing.

tion.

The way in which these elements are organized determines the
flow of the dialog, as seen by the end user. SPF must support a
wide variety of organizations, so that the dialog flow can be
tailored to suit the particular needs of the application, and
information can be presented in a natural, user-friendly manner.

A traditional dialog organization is shown in Figure 3 . This
example starts with the display of a high-level selection menu,
which is the primary option menu for the application. User
options selected from this menu may result in the invocation of a
dialog function or in the display of a lower-level selection menu.
Each lower-level menu may also cause functions to receive
control or cause still lower-level menus to be displayed. The
menu hierarchy may extend as many levels deep as desired.

IBM SYST J 0 VOL 20 0 NO 4 0 1981 JOSLIN 393

Figure 3 Traditional dialog organization and flow [Y] SELECTION

DIALOG
FUNCTION

Eventually a dialog function receives control. The dialog function
may use any of the dialog services provided by SPF. In particular,
the function may continue the interaction with the end user by
displaying data entry panels to prompt the user for information.
When the function completes, the selection menu from which i t
was invoked is redisplayed.

An alternative dialog organization is shown in Figure 4. Here a
dialog function receives control before the display of a menu. The
dialog function performs application-dependent initialization and
displays data entry panels to prompt the user for initial informa-
tion. It then starts the selection process by invoking the primary
option menu for the application.

This example also shows that one function can invoke another
without displaying a menu, and that a function may start a lower-
level selection process at any point in the hierarchy.

Support for these and other types of dialog organizations requires
that either of two “next actions” be allowed at any point in a
dialog: Display a selection menu, or invoke a dialog function.

Most dialog managers, including SPF, include a control mecha-
nism to display selection menus, interpret user responses, and

hierarchy until a dialog function is specified as the next action.
Whenever a CMD or PGM keyword is returned as the next action,
SELECT invokes the dialog function.

When a dialog function receives control, it may call the DISPLAY
service to display data entry panels or other user information. It
may also call the SELECT service to start the display of a lower-
level menu hierarchy or invoke a lower-level dialog function
(without displaying a menu).

When a dialog function completes execution, control is returned
to the SELECT service. If the dialog function had been invoked
from a menu, that menu is then redisplayed. Alternatively, if the
dialog function had been invoked from a higher-level function,
the higher-level function resumes execution.

Languages and data communication

The objective of supporting dialog functions coded in a variety of program
languages involves the issues of program linkages and data linkages
communication. Conceptually, resolution of the first issue-
program linkages-is straightforward. The dialog manager must
be able to invoke command-coded functions (CLIST and EXEC2
languages) and program-coded modules. The mechanisms to do
this are provided by the host operating systems. Dialog functions,
in turn, must be able to invoke SPF services. Two linkage
mechanisms have been developed for this purpose:

0 ISPEXEC command is used to invoke services from command-
coded functions.

0 ISPLINK subroutine is used to invoke services from program-
coded modules. Standard register conventions, which are
supported by most high-level languages, are used.

Function-to-function linkage is provided by the SELECT service,
as previously discussed. SELECT provides a convenient mecha-
nism for invoking a command-coded function from a program-
coded function or vice versa.

Data communication has not been as straightforward. Each data
language has its own conventions for the internal storage of data. communication

~

A simple mechanism was needed to communicate data between a
~ dialog function and a service, and between two or more dialog
~ functions. Of course, data can be communicated explicitly via

calling sequence parameters, but this is cumbersome when many
parameters are required. Consider, for example, the need for a
dialog function to display a panel containing twenty input fields.
A calling sequence (to the DISPLAY service) with twenty or more
parameters would be awkward to code and debug.

IBM SYST I VOL 20 0 NO 4 0 1981 JOSLIN 397

Assume that the panel definition for XYZ contains two symbolic
parameters, named AAA and BBB, and that they are defined as
input (unprotected) fields. In the panel definition, they might
appear as follows:

INITIAL VALUE 9 -AAA
INCREMENT -BBB

where each underscore indicates the start of an input field,
followed by the name of the variable.

When the panel is displayed, the first input field is automatically
initialized to 1, since it was set by the dialog function before
calling the DISPLAY service. The second field is displayed as
blank, since it was not set.

Now assume that the user changes the value of the first field to
100 and types 20 in the second field. When the user presses the
ENTER key, the values are automatically stored, updating the
value of AAA and creating a variable BBB (which was not
previously defined by the CLIST). The DISPLAY service then
returns control, and the next statement in the CLIST is executed.
This statement creates a variable named C c c and sets it to the
sum of AAA and BBB, namely 120.

Display formatting

The old SPF display facility was the starting point for designing the
new SPF DISPLAY service in which several of the earlier concepts
have been retained. Display formats in both facilities are speci-
fied via panel dejinitions that include a “picture” of what the end
user will see. The picture concept facilitates panel creation and
modification. A message is treated as supplementary information
that may be displayed with a panel or superimposed on the panel
that is currently being displayed.

In both facilities, panel and message definitions are maintained in
libraries, external to the application code. This allows an installa-
tion to easily custom tailor display formats and facilitates transla-
tion to other languages. The definitions are created by editing
directly into the panel and message libraries; no compile or
preprocessing step is required. Panel and message definitions
contain a mixture of literal text to be displayed as is, variables for
which the current value is substituted dynamically at the time of
display, and control information to be interpreted by the DISPLAY
service.

Certain redesign of these basic concepts has been required in the
new SPF. The panel and message definition syntax has been
changed to support the substitution of dialog variables that are

IBM SYST J VOL 20 NO 4 0 1981 IOSLIN

Figure 6 Sample display panel definition

yo - - - - - - - - - - - EMPLOYEE RECORDS - - - - - - - - - -
%EMPLOYEE SERIAL: &EMPSER

+ TYPE OF CHANGE%"TYPECHG + (NEW, UPDATE, OR DELETE)

+ EMPLOYEE NAME
+ LAST %+-LNAME +
+ FIRST % +-FNAME + + INITIAL %+-I+

+ HOME ADDRESS: + LINE 1 %+_J\DDRl + LINE 2 %+ 4 D D R 2

+ LINE 4 %+ 4 D D R 4

+ HOME PHONE:
+ AREA CODE %+ -PHA+ + LOCAL NUMBER %+ -PHNUM +

+ LINE 3 %+ 4 D D R 3

+ + + +

)INIT
.HELP = PERS032
.CURSOR = TYPECHG
IF (&TYPECHG = NEW)

LNAME = ' '
FNAME = ' '
I
ADDRl = ' '
ADDR2 = ' '
ADDR3 = ' '
ADDR4 = ' '
PHA = 301
PHNUM = ' '

- 2 -

)PROC
VER (&TYPECHG, LIST, NEW, UPDATE, DELETE, MSG =EMPX210)
VER (&LNAME, ALPHA)
VER (&FNAME, ALPHA)
VER (&I, ALPHA)
VER (&PHA, NUM)
VER (&PHNUM, PICT, 'NNN-NNNN')

)END

The panel body is terminated with an ")INIT" header statement,
which starts the initialization section. The initialization section in
this example establishes PERS032 as the name of the related help
panel (in the event that the user requests help while viewing the
panel) and sets the initial cursor position to the TYPECHG field. It
then tests the current value of the TYPECHG variable. If the
current value is NEW, all remaining input variables are initialized
to blank except for variable PHA, which is initialized to 301.

Figure 7 shows how the panel looks when displayed, assuming
that the dialog function has first set variables EMPSER to 123456 and

IBM SYST J VOL 20 NO 4 1981 JOSLIN 401

Figure 7 Sample panel when displayed

""_""" EMPLOYEE RECORDS - - - - - - - - - -
EMPLOYEE SERIAL. 123456

TYPE OF CHANGE + NEW (NEW, UPDATE, OR DELETE)

EMPLOYEE NAME.
LAST -L
FIRST +
INITIAL +

HOME ADDRESS.
LINE 1 +
LINE 2 +
LINE3 +
LINE4 -C

HOME PHONE.
AREACOOE -+ 301
LOCAL NUMBER +

TYPECHG to NEW before calling the DISPLAY service. After the
user enters information, the data in each panel input field is
automatically stored into the corresponding dialog variable. Then
the processing section of the panel definition, beginning with a
")PROC" header statement, is executed. In this example, the
processing section contains VER statements to verify that infor-
mation entered by the user meets the following criteria:

0 Type O f change is NEW, UPDATE, or DELETE.
0 Last name, first name, and initial contain all alphabetic

0 Area code contains all numeric characters.
0 Phone number consists of three numeric characters, followed

characters.

by a hyphen, followed by four numeric characters.

If any verification check fails, a message is automatically dis-
played, and the user is given an opportunity to correct the error.
The first VER statement explicitly designates the message
(EMPXZOI) to be displayed. For the other VER statements, an
appropriate default message is displayed. When the user corrects
the error, the variables are again stored, and the processing
section is re-executed.

Table services

The objective of supporting a wide variety of applications in-

A table may be defined as temporary or permanent. A temporary
table is created in virtual storage and deleted upon completion of
processing. A permanent table resides on direct access storage
(DASD), and it may be opened for update or for read-only access,
at which time the entire table is read into virtual storage. All
changes to the contents of a table are made in virtual storage.
When processing is complete, the entire table may be written
back to direct access storage, provided it was originally obtained
for update.

Services are provided to create new tables, open existing tables,
save tables on direct access storage, and delete tables without
saving. Other services retrieve and update rows in the virtual
storage copy of a table. In addition, a service is provided to
display rows of a table in scrollable format and allow the user to
select rows for processing and/or modify selected information in
the rows.

File tailoring services

Many interactive applications need to generate sequential output
that can be used to drive some other process. Old SPF had such a
facility, but it was too closely tied to the generation of Job
Control Language statements (JCL) for batch compilation. Al-
though JCL generation is still a requirement, a more flexible
mechanism is needed to allow the generation of other types of
sequential output, such as control statements to drive a utility or
SCRIPT/VS statements to produce a printable report. The objective
is not only to provide flexibility, but also to allow the formatting
details for the generated output to be specified outboard from the
dialog functions.

Again, the solution was found in the Interactive Productivity
Facility. Another set of services, calledJile tailoring, was taken
from that product and reimplemented for the SPF environment.
File tailoring services read skeleton files from a library and write
tailored output that may be used to drive other functions. Each
record in the skeleton file may contain text that is to be copied
verbatim to the output file, intermixed with variable names
(preceded by an ampersand). When a variable name is found, the
current value of the corresponding dialog variablt substituted
in the output file.

Skeleton file records may also contain control statements that
provide the following capabilities:

a Set dialog variables.
0 Imbed other skeleton files.
0 Conditionally include records.

404 JOSLIN IBM SYST J VOL 20 * N O 4 1981

406 JOSLIN

