This paper describes the architecture of an experimental document
composition system named JANUS, which is intended to support
authors of complex documents containing mixtures of text and
images. The JANUS system is highly interactive, providing authors
with immediate feedback and direct electronic control over page
layouts, using a special two-display workstation. Authors commu-
nicate with the system by marking up their documents with high-
level descriptive ‘‘tags.” A tag definition language is provided
whereby new tags may be defined and the format of each tagged
object may be controlled.

JANUS: An interactive document formatter based on
declarative tags

by D. D. Chamberlin, O. P. Bertrand, M. J. Goodfellow,
J. C. King, D. R. Slutz, S. J. P. Todd, and B. W. Wade

JANUS is the name of an experimental document composition system
intended to provide interactive support for authors of complex
documents containing mixtures of text, line art, and tone art. Typical
examples of such documents are technical manuals for assembly,
maintenance, and repair of equipment, which may have several
illustrations on each page. In today’s technology, production of these
documents typically involves a manual “pasteup” step in which
illustrations are merged with text and individual page layouts are
determined. Manual pasteup is labor-intensive and time-consuming,
and it results in a substantial delay from the time the written text is
complete to the time that the camera-ready copy is prepared. Manual
pasteup also greatly increases the difficulty and expense of making
revisions to a document, or of maintaining multiple versions of a
document (for various models of a device, for example). One of the
objectives of JANUS is to provide an interactive page layout capabili-
ty, thus permitting the author to control placement of illustrations
and text electronically and to view the finished pages immediately on
a graphic display. This objective has been made feasible by the
continuing decline in the cost of digital storage and processing, and
by the advent of inexpensive high-function displays and printers
which are capable of displaying and printing images as well as text in
various fonts. This paper describes the architecture of JANUS.

© Copyright 1982 by International Business Machines Corporation. Copying in printed
form for private use is permitted without payment of royalty provided that (1) each
reproduction is done without alteration and (2) the Journal reference and IBM
copyright notice are included on the first page. The title and abstract, but no other
portions, of this paper may be copied or distributed royalty free without further
permission by computer-based and other information-service systems. Permission to
republish any other portion of this paper must be obtained from the Editor.

CHAMBERLIN ET AL. IBM SYST J & VOL 21 & NO 3 #1982

In order to define a background for the architecture of the JANUS
system, we will introduce three ways of classifying document compo-
sition systems. These three classifications may be thought of as
orthogonal axes that define a three-dimensional space in which each
document system is represented by a point.

Batch versus interactive. The first classification distinguishes sys-
tems that view document formatting as a ““‘batch” job from those that
are interactive. Batch-oriented systems, such as IBM’s Document
Composition Facility (also known as SCRIPT/VS),' Donald Knuth’s
TEX,” and Brian Reid’s SCRIBE,’ begin at the first page of a document
and proceed to the last page, transforming an input file of text and
markup commands into a formatted output file. This process takes
place without the participation of the author, and the effect of a local
change in the document can be seen only by reformatting the entire
document. Interactive systems such as IBM’s Displaywriter' or the
Xerox STAR® permit the author to view and edit the formatted
document directly and to see the effects of his changes immediately in
their local context. Interactive systems combine the traditionally
separate functions of “editor” and “formatter” into a single system so
that authors can interact with both functions without changing
environments.

Text only versus images, graphics, and text. Our second classifica-
tion distinguishes systems that process only text (possibly including
multiple fonts) from systems that process images and graphics as
well. A full-function system of the latter kind will include on-line
digital storage for both line art (black and white images and
graphics) and tone art (gray-scale or half-tone images). It should be
possible to display all these types of information at the author’s
workstation, and to print them on the same medium as the text
(either an all-points-addressable printer of adequate resolution or a
photocomposer). The advantages of on-line storage of illustrations
are obvious. The author can be given direct electronic control over the
final appearance of the printed page, thus avoiding the expensive and
time-consuming manual pasteup step. Perhaps even more important,
when the entire document is in digital form, it can be communicated
electronically from one location to another; it can be archived on
magnetic storage media; multiple versions can be maintained under
computer control; and the document can be printed on demand in
“customized” versions for different users or purposes. Commercial
systems offering many of these advantages include the “AIDS” system
of Information International, Inc..,* and the “Response 300” system
of Scitex.” The SCRIBE system at Carnegie-Mellon University3 also
has a capability for imbedding digitized images in documents.

Procedural versus declarative. Our third classification is based on
the level of the commands that the author uses to mark up his
document and the degree to which these commands describe the
structure of the document. In a “procedural” system, the author

IBM SYST J & VOL 21 « NG 3 & 1982 CHAMBERLIN ET AL.

classifying
document
composition
systems

Figure 1 Example of a marked-up document

Formatted document Original markup

controls formatting by means of low-level commands which direct
specific actions, such as “skip two lines,” “enter italic font,” or
“indent one inch.” In such a system, the author specifies the desired
output, but gives no hint as to the reason for the command. A switch
to italics may be executed to emphasize a phrase, or to display the
title of a book, or to set off a section heading—in each case, the
command is the same. Recently, a few systems that allow an author to
mark up his document using a higher level of notation have become
available; such systems simultaneously ease the markup task and
provide more assistance to the author in accomplishing his purpose.
Examples of such systems, which we will refer to as “declarative”
systems, are IBM’s GML® and Brian Reid’s SCRIBE.” In a declarative
system, an author marks up his document with “tags” that identify
the various parts of the document, such as chapter headings, num-
bered lists, and footnotes. Each tagged item is formatted according to
the instructions contained in a procedure specific to that tag. Decla-
rative systems provide authors with the benefits of a high-level
markup language in which complex formatting procedures can be
invoked by simple tags; they also provide uniformity of style across
documents, since the appearance of a footnote, for example, is
controlled by the tag procedure rather than by individual authors. In
addition, declarative systems make marked-up documents indepen-
dent of any specific output device; for example, a “book title” tag
might result in italics on one output device and in underlining on
another.

An example document that illustrates the advantages of a declarative
system is shown in Figure 1. We show both the formatted document
and the “markup” from which it was derived. The document contains
a numbered list and a footnote. In a procedural system, the author of
this document would need to number the list items himself and would
control the formatting (spacing, indentation, placement on the page,
etc.) of the list items and footnote by dozens of low-level commands.
In a declarative system the author simply identifies the parts of the

CHAMBERLIN ET AL. IBM SYST J VOL 21 ¢ NO 3 e 1982

document by means of tags such as the “:item” and “:footnote” tags
illustrated in Figure 1 (the leading colon is used to distinguish tags
from text). The simplicity and convenience of a declarative system is
further demonstrated when we consider the process of editing a
document. If the author needs to add a new item 1o the top of the list,
a procedural system would require him to manually renumber all the
list items. In a declarative system, this problem is solved automati-
cally when the author inserts a new list item identified by the *“:item”
tag.

An important problem facing the designer of a declarative document
composition system is that of providing an interface by which tags,
and the formatting actions required by these tags, are described to the
system. Such an interface must provide a means for defining new tags
and for modifying the definitions of existing tags. This tag-definition
interface may or may not be made available to individual authors,
according to the editorial policy of the organization. It is our opinion
that the usability of the tag-definition interface is critical in the
success of any declarative formatting system. Details of the JANUS
approach to defining tags will be given in a later section.

The three classifications, together with some of the document systems
mentioned above, are represented as a three-dimensional diagram in
Figure 2. It is the objective of the JANUS project to build a system
that is interactive, declarative, and capable of processing images as
well as text.

This paper will describe the hardware environment of the experimen-
tal JANUS prototype as well as the two languages implemented by this
prototype: (1) a markup language for imbedding descriptive tags in a
document, and (2) a language whereby new tags and document types
may be defined. The paper will then describe the JANUS software
architecture, focusing particularly on techniques that permit the
JANUS user to skip from one place to another in a document, seeing
the effects of his/her editing changes without reformatting the
document from the beginning.

The JANUS workstation

Choice of a workstation for the JANUS system was dictated by the
objectives discussed above. To give a good interactive representation
of the formatted page, the workstation must include an all-points-
addressable display of adequate size and resolution for displaying
full-size pages of images, graphics, and text. The declarative tags that
describe document structure should be visible also, since it is by entry
and modification of these tags that the author gives the system the
information it needs to format the document. One approach that was
considered was to somehow overlay the tags on the display of the
formatted page, using a different color or some other means to

IBM SYST J e VOL 21 @ NO 3 e 1982 CHAMBERLIN ET AL.

Figure 2 Classifications of document systems

DECLARATIVE

IMAGES
AND
TEXT

i

PROCEDURAL

BATCH -e— INTERACTIVE

distinguish tags from text. However, we feel that this would lead to a
confusing display and would place unacceptable constraints on the
space available for display of tags. Furthermore, the author’s markup
may encompass several versions of the document, whereas a given
formatted page can represent only one of these versions. For these
reasons, the JANUS project adopted a “two-display” approach, in
which the original “marked-up” document and the final formatted
document are displayed side by side, with the same portion of the
document visible simultaneously on the two displays. As the author
edits the text and tags visible on the “markup” display, he may invoke
a command to see the effects of his actions on the final document in
the “formatted page” display. As the author moves from one place to
another in the markup file, the formatted page display tracks his
position in the final document. The two-display workstation sug-
gested the name for our project, which is named after the two-faced
Roman god JANUS. Although the JANUS prototype uses two separate
display screens, it would also be possible to combine the two JANUS
displays on a single high-function screen either by space-multiplexing
(splitting the screen) or time-multiplexing (allowing the user to
toggle between the markup display and the formatted page display).

CHAMBERLIN ET AL. IBM SYST J o VOL 21 ¢ NO 3 e 1982

Figure 3 JANUS workstation

M —— A

The two-screen workstation selected for use in the JANUS project is
the IBM 3277 Graphics Attachment.” This workstation consists of an
IBM 3277 display terminal, which provides a 24-line CRT (cathode-
ray tube) on which the markup file may be displayed and edited, and
a Tektronix 618 nineteen-inch direct-view storage tube, which pro-
vides a full-page-size, all-points-addressable screen for display of the
formatted document. The workstation also provides a joystick which
can be used for “pointing” to specific positions on the storage-tube
display, a necessity for some of the interactive commands to be
described later. The JANUS workstation is illustrated in Figure 3.

An experimental prototype of the JANUS system is currently being
implemented to run on a System/370 under control of the Virtual
Machine/Conversational Monitor System (VM/CMS) operating sys-
tem. Our source of images is an ECRM Autokon 8400 scanner,
controlled by an IBM Series/1 computer, which buffers scanned
images and forwards them to the System/370 via a teleprocessing
link. The JANUS system will also accept graphic input from various
graphic editors such as PANEL2.'® The formatted documents may be
directed to a variety of output devices, including an Autologic APS-5
photocomposer.

The JANUS markup language
The notation made available to JANUS users for marking up their
documents is a variation of the “Generalized Markup Language”

{(GML) implemented by IBM’s Document Composition Facility.8

IBM SYST J & VOL 21 & NO 3 & 1982 CHAMBERLIN ET AL.

In a JANUS document, as in GML, each structural part of the
document is identified by a “tag” which begins with a special
delimiter (by default, a colon “:”). Associated with each tag is a
“scope” which consists of that part of the document that is described
by the tag. Inside the scope of a tag may be text and other tags (e.g., a
list may contain items, which may in turn contain paragraphs). Any
tag may be used in either a “short form” or a “long form,” each of
which is described below.

In the short form, a tag is immediately followed by a delimiter, and its
scope is terminated by a matching delimiter. For example, suppose
that the “:Q” tag identifies a quotation. Its short form is as follows:

:Q/To be or not to be; that is the question./

Any nonalphameric delimiter (other than a period) may be used to
enclose the scope of a tag in short form. The following example
illustrates a short-form “:QQ”” (quotation) tag that contains within its
scope another short-form “:HP” (highlighted phrase) tag:

:Q/To be or not to be; :HP!that! is the question./

A long-form tag is delimited by a period (.); its scope extends from
the period until it is ended by one of the following rules:

Rule 1: The scope of any tag may be terminated by a matching

“ending” tag whose name has a leading “e.” The following example
illustrates the long form of the “:Q” (quotation) tag:

Q.

To be or not to be: that is the question:
Whether 'tis nobler in the mind to suffer

The slings and arrows of outrageous fortune,
Or to take arms against a sea of troubles,
And by opposing end them.

EQ.

Rule 2: The scope of a tag is automatically terminated when a tag
that includes it is terminated.

Rule 3: The scope of any tag is automatically terminated when
another tag is encountered that cannot be directly contained in it. The
definer of each tag must provide a list of other tags that it may
directly contain. The functioning of this rule is illustrated by an
example. Suppose the following tags and nesting rules have been
defined:

:P(Paragraph) may directly contain :LIST
:LIST may directly contain :ITEM

CHAMBERLIN ET AL. IBM SYST J e VOL 21 ¢ NO 3 o 1982

:I'TEM may directly contain :P or :LIST

The following example represents valid usage of these tags. The text
accompanying the tags indicates how the scope of each tag is
recognized by the JANUS parser.

:P.This tag begins a big paragraph. As you will see, this paragraph
contains two levels of nested lists.

:LIST.

JITEM.This is item 1 of the outer list.

(ITEM.This is item 2. It automatically terminates item 1 because an
item cannot contain another item. However, an item can contain a
list, and this one does.

:LIST.

(ITEM.This is item 2a of the inner list which is inside item 2.
(ITEM.This is item 2b of the inner list.

:ELIST.

:P.The “ELIST” tag terminated the inner list, but we are still inside
item 2. This is a new small paragraph inside item 2.

:ELIST.

Text occurring here is outside the lists but it is still part of the
original big paragraph.

:P.This tag begins another big paragraph and terminates the
original one, because a paragraph cannot directly contain another
paragraph.

A tag may be defined so as to accept certain parameters in addition to
its scope. For example, a level-one heading tag may accept an “ID”
parameter which is used to refer to the heading from other places in
the document. This option is expressed in JANUS markup in the same
way as in GML: by a list of parameter names and values, immediately
preceding the scope of the tag. The following example illustrates an
“ID” parameter for a level-one heading:

:H1 ID= ‘bike’/How to Ride a Bicycle/

The principal differences between the JANUS markup language and
1BM’s General Markup Language (GML) are as follows:

Both GML and JANUS have a “short form” and a *“‘long form” for
tags. However, in GML, each tag can take only one of these forms.
In JANUS markup, any tag can be used in either the short form or
the long form.

In the current GML implementation, short-form tags are delim-
ited by end-of-line and do not permit other tags to occur within
their scope. In JANUS markup, short-form tags are explicitly
delimited and may contain other tags within their scope. This
permits useful cases such as a highlighted phrase or a Greek
letter within a chapter heading.

IBM SYST J @ VOL 21 e NO 3 e [982 CHAMBERLIN ET AL.

Defining new types of documents

As described in the previous section, JANUS permits the user to mark
up his document with high-level descriptive tags that identify various
parts of the document. For this approach to be effective, a means
must be provided whereby new tags can be defined and the system
can be given knowledge about the relationships among the tags and
the effect of each tag on formatting. All the information that enables
the system to recognize and process the tags for a particular type of
document is called a “document profile.”

We believe that providing an effective means for defining document
profiles is the central problem in implementation of a declarative
document system. Various systems have approached this problem in
different ways. IBM’s GML product’ defines each tag by an “applica-
tion processing function” written as a macro based on low-level
formatting commands. The SCRIBE formatter’ defines each tag by its
effect on an “environment” vector that controls fonts and justifica-
tion and contains counters for lists, etc.

The JANUS approach to defining document profiles was influenced by
the following observations:

* Page formatting is a two-dimensional problem, similar in some
ways to the well-known “bin-packing” problem of packing objects
of various sizes into a fixed space. Therefore, a two-dimensional
graphic interface would be helpful for describing page layouts.
Definition of a new type of document takes place much less
frequently than creation of one specific document. Therefore, it is
reasonable to expect a certain degree of sophistication from the
designer of a document type. However, the language provided for
this purpose should be consistent, well-structured, and readable.
Wherever possible, the definition of a tag should be independent of
other tags that may occur in the same document. For example, a
paragraph may occur inside a numbered list, a footnote, an
abstract, etc.; hence, the tag definition for a paragraph should
ideally be independent of the environment in which it is used.

In JANUS, the process of defining a document profile consists of three
parts:

1. The user lists the tags to be used in the new document type. For
each tag, the user specifies its parameters, defaults, and nesting
rules (i.e., which other tags may be directly nested inside this
tag). This list of tags and rules completely specifies the structure
of the document type.

For each tag, the user writes a tag routine that specifies how the
tag formats its scope into a “galley”—a long column of text
similar to the galleys used in publishing.

The user specifies a set of “page templates” that control how the
galleys are electronically cut and packed onto pages.

CHAMBERLIN ET AL. IBM SYST J @ VOL 2] @ NO 3 ® 1982

The concept of a “galley” cleanly separates the text justification
(column-forming) process from the page makeup process and allows
each of these processes to be controlled by a specialized language.
The languages for controlling galley formation and page makeup are
now described.

Tag routines

The JANUS language for writing tag routines borrows a concept from
the TEX system of Donald Knuth:” the idea that pages are made up of
boxes of various sizes, shapes, and properties. Each tag routine
creates the boxes it needs for the desired formatting and fills them
with the text found within its scope. If, during the process of filling a
box, another tag is encountered, its tag routine is called as a
subroutine, and it may create additional boxes inside the “parent”
box. Since a document is a collection of nested tags, the tag routines
will produce a collection of nested boxes called a “proto-galley,” as
shown in Figure 4. Figure 4 illustrates the structure of the proto-
galley that might result from a list containing two items. The first
item consists of two paragraphs. The second item consists of one
paragraph and a sublist which in turn contains two items. The boxes
that contain the inner list were created by recursive invocations of the
tag routines for the “list”” and “item” tags.

The language provided in the JANUS prototype for writing tag
routines is Pascal, a high-level structured language originally pro-
posed by Niklaus Wirth as an introductory student programming
language.'' JANUS tag routines, as well as the JANUS prototype itself,
are written in 1BM’s Pascal/vs,"” which includes several extensions to
the original Pascal language, including varying-length character

strings. The JANUS system makes available certain specialized proce-
dures that may be called by the Pascal tag routines. The most
important of these are described as follows:

« A BOX command is used by the tag routine to create a new box.
The size and position of a box are always specified in relation to
the “parent” box. In this way, the tag is isolated from its
surroundings; e.g., a paragraph tag need not know whether it
occurs inside several levels of nested lists. In addition to its size
and shape, a box has the following properties:

1. HINGES: Each box has a “top hinge” and a “bottom hinge”
which specify how closely this box may approach other boxes
in the vertical direction. If a box containing a chapter heading
has a “top hinge” of one inch, this means that when pages are
made up, no other box will be placed within one inch of the top
of the heading box.

SHIELDS: In general, the galley can be broken between any
two lines of text for the purposes of page makeup. However, a
box may “shield” part or all of its contents to prevent it from
being separated by page or column breaks. For example, a

IBM SYST J o VOL 21 & NO 3 e 1982 CHAMBERLIN ET AL.

Figure 4 A proto-galley

LIST ITEM

LIST ITEM BODY

PARAGRAPH

OUTER LIST ITEM

OUTER LIST ITEM BODY

PARAGRAPH

INNER LIST ITEM

INNER LIST ITEM BODY

(SPACE BETWEEN
BOXES EXAGGERATED
FOR CLARITY)

“paragraph” box might shield its first two and last two lines to
prevent “widows.” A box containing a table might shield its
entire contents, ensuring that the table is not broken across
two pages.

PLACEMENT: When pages are made up from the galley, most
boxes are placed on the page in sequential order. However, a
tag routine can create two kinds of special boxes: “floating”
boxes and “fixtures.” A “floating” box is allowed to float out

260 CHAMBERLIN ET AL. IBM SYST J e VOL 2] @ NO 3 e 1982

of its original order in the galley to enable more attractive
page makeup (e.g., a figure). A “fixture” is a box that is
repetitively placed in the same position on each page (e.g., a
running title).

* A STATE command is used by the tag routine to control the process

of justifying text and placing it in boxes. The STATE command can
specify fonts and cause text to be justified, centered, ragged-right,
etc. Each STATE command applies only to the box that is currently
being filled and to its descendants. The system maintains a stack
of STATE settings for all active boxes, and reverts to an earlier
STATE whenever a tag terminates and closes its box. This is
another measure that simplifies tag writing by isolating tags from
one another.
A JANPARSE command is provided, which instructs the system to
fill the current box with text from the source document, calling
other tag routines as tags are encountered, until the end of the
scope of the current tag.

The Appendix contains two sample tag routines which implement
simple tags called LIST and ITEM. Both of these tag routines are
recursive, and in case of a list inside another list they might produce
the proto-galley shown in Figure 4."

The “proto-galley” produced by the running tag routines is automati-
cally converted by the JANUS system into a “galley.” In the galley,
the nested boxes are no longer visible. The galley consists of a series of
discrete, indivisible slugs (the term “slug” is derived from the
printer’s term for a piece of metal type). Each line of text in the
proto-galley becomes a separate slug unless it is joined to another line
by a shield. Each galley has two widths associated with it: a column
width and a page width (if the galley is to be used for single-column
formatting, the two widths are the same). Each slug takes on one of
these two widths, and inherits hinges and placement attributes
(SEQUENTIAL, FLOATING, or FIXTURE) from the box(es) from which
it was derived. The appearance of a galley after it has been organized
into slugs is shown in Figure 5.

New tag routines are added to the JANUS system by compiling them
and link-editing them to the JANUS formatter. In this way, the power
and ease of use of a high-level language are combined with the
efficiency of compiled code. We believe that the JANUS approach
simplifies the task of writing tag routines for the following reasons:

1. The tag routine need not specify how the tag is terminated (or
whether it terminates other tags); this process is controlled
automatically by the JANUS parser, based on rules declared
outside the tag routines.

The tag routine is not concerned with pagination; this is con-
trolied by “page templates” which are specified outside the tag
routines.

iBM SYST J e VOL 21 @ NO 3 » 1982 CHAMBERLIN ET AL.

Figure 5 A galley

261

The tag routine is made independent of other tags by the concept
of “boxes”—each routine works inside the box inherited from its
parent.

The tag writer has available the great power and simplicity of a
modern, well-structured programming language, Pascal.

Page templates

As described above, the result of the tag routines operating on an
input document is one or more “galleys” of formatted text. In
general, a document may have several galleys. For example, one
galley may contain the main body of text, another may contain
footnotes, and a third may contain a list of bibliographic references.
The tag routines may direct their output to specific galleys by issuing
commands as they process the document.

The next step in formatting the document is to actually place the
slugs from the galleys onto pages. This process is performed by a
“packer” program under the control of “page templates” provided as
part of the document profile. An example of a page template is shown
in Figure 6. In a page template, the rectangular area of the page is
divided up into a set of named “galley-beds” and “fixture-beds.” In
addition to their positions on the page, these “beds” have properties
that control how their boundaries can move as the page is packed with
slugs. For example, Figure 6 shows a FOOTNOTE galley-bed which is
initially of zero height but can grow upward as it fills with slugs from
the FOOTNOTE galley; as it grows upward, the TEXT galley-bed
shrinks to make room. Slugs are packed on the page in the order they
are emitted by the tag routines. If, for example, a page-wide TEXT
slug is encountered, it is laid across both columns of the TEXT

galley-bed (such a slug would probably be accompanied by a
command to balance the columns above the wide slug). In order to
accommodate the packing of slugs, all the columns of a galley-bed
must have the same width (but different galley-beds may have
different column widths).

When the next slug to be packed will not fit on the current page, a
new copy of the page template is invoked. First, the fixture-beds on
the new page are packed with the latest “fixture” slugs emitted by the
tag routines; next, any “floating” slugs that may have floated forward
from earlier pages are packed; then, packing of slugs from the galleys
continues in normal order.

A given document may have several page templates—e.g., one for a
title page, one for the body of the document, and one for appendices. -
Switching from one template to another is controlled by commands in
the tag routines.

In the JANUS system, page templates are created by an interactive
graphic interface. The document designer describes the desired

CHAMBERLIN ET AL. IBM SYST J » VOL 21 o NO 3 » 1982

Figure 6 A page template

——— HEADING (FIXTURE)

—— TEXT GALLEY-BED
OL. 1)

—— TEXT GALLEY-BED
(COL. 2)

—— FOOTNOTE GALLEY-BED
(INITIAL HEIGHT = 0)

template by filling in a menu on his IBM 3277 display; simultaneous-
ly, the system draws a picture of the template on the attached graphic
display for verification.

The JANUS architecture

During a JANUS session, the user edits his document source file using
a conventional editor on an IBM 3277 display terminal, while format-
ted pages of the document are displayed on an attached storage-tube
display (the IBM 3277 Graphics Attachment). JANUS does not
reformat the document after every editing command, because this
would cause unnecessary delays and because the document may pass
through various inconsistent states as the user makes a series of
related changes. Instead, JANUS implements a “SHOW” command
whereby the user may request to be shown either (a) the page
containing the current line of the input file or (b) any specific
numbered page. Thus, rather than proceeding through the document
in a linear fashion from front to back, the JANUS user may choose to
skip around in the document, applying changes in any desired order
and observing their effects.

IBM SYST J e VOL 21 @ NO 3 1982 CHAMBERLIN ET AL.

Figure 7 JANUS architecture

SCANNER

TAG
ROUTINES IMAGE PAGE
LIBRARY TEMPLATES

PARSER-
MARKED-UP FORMATTER PACKER
DOCUMENT

]

I GALLEYS FORMATTED

PAGES
EDITOR

USER
INTERACTION

USER
DATA BASE INTERACTION
MANAGER

DATA BASE

In order to permit the user to skip from one place to another in a
document, JANUS must be able to restart the formatting process in
the middle of an input file. This procedure is made possible by
periodically saving the system’s internal state in a file called a “stub,”
which can later be reloaded if the user’s attention returns to this part
of the document. This process is made more complex by the two-
phase nature of the JANUS system, as illustrated in Figure 7. The
definer of a new document type provides JANUS with a set of tag
routines and a set of page templates. The JANUS parser/formatter
accepts an input document, recognizes tags, and processes them using
the given tag routines, producing one or more “galleys.” The galleys
are then electronically cut into pieces and packed onto page templates
by the JANUS “packer” program.

The parser/formatter (hereafter called simply the “formatter”)
periodically saves its state in an “F-stub,” and the packer periodically
saves its state in a “P-stub.” However, since the formatter and the
packer are asynchronous coroutines, the F-stubs and the P-stubs are
not perfectly correlated. The relationship between the two kinds of
stubs is recorded in the following way:

1. Whenever the formatter makes an F-stub, it “marks” the input
file (placing an invisible label on the current line of text) and
attaches the name of the F-stub to the current slug in the galley.
The packer is aware of the locations of F-stubs by reading the
galley. The packer makes a P-stub at the beginning of every page.

CHAMBERLIN ET AL. IBM SYST J @ VOL 21 ® NO 3 e 1982

For each P-stub, the packer records the name of the nearest
preceding F-stub and the number of slugs in the galley between
the F-stub and the P-stub.

The JANUS system can then be restarted on an arbitrary page by the
following process:

1. Load the P-stub for the desired page into the internal state of the
packer.
Find the name of the nearest preceding F-stub and reload it into
the internal state of the formatter.
Reposition the editor to the “mark™ associated with the chosen
F-stub. (This is more complex than it sounds because the marked
line may have been moved or deleted. In this case, it may be
necessary to use an earlier P-stub and F-stub.) It is necessary to
position the editor to the point where the F-stub was taken
because the editor is used to materialize input lines for format-
ting.
Restart the formatter and packer, instructing the packer to
disregard the number of slugs between the F-stub and the P-stub
before beginning to pack the desired page.

Degrees of safety in interactive formatting

In our study of interactive formatting, we quickly observed that a
very small change to a source document can cause a great deal of
formatting work to be done. This effect is mainly due to the complex
interdependencies within a document caused by forward and back-
ward references. For example, insertion of a single character may
cause material to spiil onto the next page, which in turn ripples
forward, changing many page boundaries and affecting the table of
contents and references throughout the document. Two or more
passes through the entire document may be required before all page
references are resolved to stable values. Clearly, it is not feasible to do
this much work for every SHOW command in an interactive system.
Therefore, JANUS allows the user to select one of three “degrees of
safety” on each SHOW command, with the following definitions:

FAST: Data on the source and format screens will locally corre-
spond. However, there may be errors in pagination or in backward
references due to changes occurring earlier in the source that have
not been reformatted.

SAFE: BEverything is correct except for forward references (and
possible side effects caused by incorrect forward references). SAFE
may be thought of as “best single-pass formatting.”

PERFECT: Everything is formatted correctly, and all references are
resolved correctly. In general, PERFECT formatting requires multi-
ple passes.

Implementation of the “FAST” degree of safety is relatively straight-
forward. The JANUS system is simply restarted at the ncarest (P-stub,

IBM SYST J e VOL 21 « NO 3 e 1982 CHAMBERLIN ET AL.

265

F-stub) pair available before the desired page and allowed to proceed
forward until the desired page has been formatted, packed, and
displayed.

Efficient implementation of the “SAFE” degree of safety is somewhat
more complex. Clearly, the command can be implemented by simply
starting over again from the beginning of the document. However,
there may be several (F-stub, P-stub) pairs available that allow us to
start formatting at various internal points in the document. It is not
sufficient to find a stub pair close to but prior to the desired page; we
must find one that is both prior to the desired page and that lies in
that portion of the document which is currently “SAFE”—i.e., that
portion of the document lying before the earliest change made since
the last “SHOW SAFE” command. The state of formatting described by
the stub pair at that point is then guaranteed to be the same as what
would be derived by starting formatting again at the beginning of the
document.

A JANUS service routine examines the “change flags™ that are
maintained by the editor, and finds the “First Change Point”—the
first line number where an editing change has occurred since the last
“SHOW SAFE” command. The system also maintains a “Safe Mark,”
which is defined to be the highest-numbered page that is currently
formatted SAFE. The “SHOW SAFE” command is implemented as
follows:

If the First Change Point is earlier than the Safe Mark, the Safe
Mark is moved back to the page before the First Change Point.
If the desired page is earlier than the Safe Mark, it can be
displayed immediately without reformatting. Otherwise, JANUS
is restarted from a (P-stub, F-stub) pair at the Safe Mark and
allowed to run forward until the desired page is reached and
displayed.

If the displayed page is beyond the Safe Mark, the Safe Mark is
advanced to the displayed page.

Implementation of the “PERFECT” degree of safety, as noted above,
may in general require multiple passes through the document to
ensure that all page references have converged to a stable state. To
detect this state of convergence, JANUS uses a data base manager
with certain special features. The location of each figure, chapter
heading, or other object that can be the target of a reference is stored
in the data base as soon as the object is encountered by the packer.
Tags that need to refer to the object can then find its page number by
looking in the data base. Each entry in the data base has three special
flags, maintained by the data base manager, called the “read,”
“write,” and “change” flags, which are set respectively when the
entry is read, written, and updated to a different value. (Note that it
is possible to rewrite an existing entry without changing it.) When a
data item is read and subsequently changed, the data base manager

CHAMBERLIN ET AL. IBM SYST J @ VOL 21 @ NO 3 o 1982

Figure 8 Layout mode display

turns on a “warning” flag, which denotes the fact that a data value
used in formatting has become invalid. To achieve the “PERFECT”
degree of safety, JANUS proceeds to the end of the document using the
rules for SAFE formatting. It then inspects the “warning” flag. If the
warning flag is off, the formatting is “PERFECT.” Otherwise, JANUS
resets all data base flags, makes another complete pass through the
document, and examines the warning flag again. Although it is
possible to construct pathological cases that never converge, it is
expected that “PERFECT” formatting will be achieved after no more
than two passes in most cases.

Interactive page layout

Ordinarily, we expect that the information contained in the tag-
definitions and the page-templates will enable the formatter to do an

IBM SYST J & VOL 21 @ NO 3 & 1982 CHAMBERLIN ET AL.

acceptable job of page layout. However, for very complex documents,
the user may occasionally wish to overrule the system’s decisions and
take direct control of the format of a page—e.g., specifying a
particular placement for a figure. JANUS will permit users this degree
of direct control by means of a feature called “layout mode.” In
layout mode, the output display shows a graphic representation of the
galley-beds on the current page, together with the current position of
all “floating” objects (e.g., figures). An example of a layout mode
display is shown in Figure 8. The user may revise the layout of the
page by pointing to various objects, using a joystick-controlled cursor,
and issuing commands. For example, a floating figure may be moved
from one position to another or deleted from the page, areas of white
space may be specified, or two figures may be bound to designated
positions on the same page. The page layout created by the user in
layout mode serves as input to the JANUS packer, which repacks the
slugs on the page according to the new specifications, causing text to
flow around the objects placed by the user. The user-specified page
layout is saved in the form of a “special template,” similar to the
regular page-templates in the document profile, keyed by the names
of the floating objects on the page. When the packer encounters one
of these floating objects later in the session or in a subsequent session,
it automatically reinvokes the corresponding special template. A
command is also provided to cancel a special template and revert to
default layout for the indicated page.

The user may toggle back and forth between layout mode and
interactive editing mode as many times as necessary until the page is
satisfactory. Of course, changes made to the format of a given page
may affect the format of subsequent pages, so the user is advised to
proceed through the document from front to back when making final
adjustments to page layouts.

Summary

We have discussed the architecture of a document composition
system that offers the following principal features:

It is highly interactive, providing authors with immediate feed-
back by means of an all-points-addressable display.

It is capable of formatting complex documents containing mix-
tures of text, images, and graphics.

It allows users to mark up their documents with high-level
descriptive tags.

It provides a powerful and easy-to-use interface for defining the
meanings of tags and specifying how various objects are to be
placed on pages.

It provides a two-screen workstation in which the user can see both
his original markup and the resulting formatted pages simulta-
neously.

CHAMBERLIN ET AL. IBM SYST J ® VOL 21 ® NO 3 ® 1982

o It provides a set of graphic commands by means of which the user
can take direct control over page layout when necessary.

An experimental prototype based on the JANUS architecture is
currently under construction at the IBM Research Laboratory in San
Jose. In addition to demonstrating the function discussed in this
paper, the prototype will be used as a base from which to explore
related issues such as formatting tables and equations and interaction
with a data base system that will permit the imbedding of material
such as bibliographic references and computer-generated data.

ACKNOWLEDGMENTS

The authors wish to acknowledge the contributions of John Bakopou-
los and Richard Furuta to the design and implementation of the
JANUS prototype.

Portions of this paper appeared in Proceedings of the ACM SIGPLAN/
851GoA Symposium on Text Manipulation (Portland, Oregon, June
1981; ACM Order No. 548810) and are reprinted with permission of
ACM.

Appendix: Sample tags

The sample tag routines shown here implement two simple tags, LIST
and ITEM, for formatting numbered lists. In the case of a list inside
another list, these tag routines might produce the proto-galley shown
in Figure 4.

procedure list; (* tag routine for numbered 1ist *)
begin

listlevel := listlevel + 1;

(* Listlevel is a global variable which counts nesting level
of lists. It is initialized to zero by the outermost
document tag. *

if listlevel > maxlevel then
begin

tagerr ('Maximum 1ist level exceeded.'};
(* Imbeds an error message in the document
and skips over the scope of the tag. *)

end
else
begin

listcountilistlevel] := 0;
(* listcount is a global array holding the current
item count at each list level. *)

janparse;

(* Directs JANUS to continue parsing the document, calling
other tag routines as tags are encountered, until
the end of the scope of the current (LIST) tag. *)

IBM SYST J o VOL 2) @ NO 3 e 1982 CHAMBERLIN ET AL.

end;
listlevel := listlevel-1;

end; (* LIST tag routine *)

procedure item; {* tag routine for item in numbered list *)

begin
if listlevel > 0 then
begin

box ('NAME=ITEM TOPHINGE=1L BOTTOMHINGE=1L'
|| ' TOPSHIELD=2L BOTTOMSHIELD=2L'});
(* Creates a box to hold the list item. Specifies one-line
hinges to separate the item from adjoining text, and
two-line shields to prevent "widow" lines. *)

box (*NAME=MARKER LEFT=LEFT(ITEM) WIDTH=5M');
(* Creates a box to hold the number of the list item,
left-aligned and of width 5 "ems" in the current font. *)

listcount[listlevel] := listcount[listlevel] + 1;

case listlevel of
1: format(numeric(listcount[listlevell));
2: format(alphabetic(1istcount[tistlevell));
otherwise format(roman(listcount{listlevell));

end;

(* NUMERIC, ALPHABETIC, and ROMAN are JANUS-provided
functions which return 1ist counters in various styles.
The FORMAT procedure places the counter in the
current box--i.e., the MARKER box. *)

endbox; (* Closes the MARKER box. *)

box ('NAME = ITEMBODY LEFT=RIGHT(MARKER) TOP=TOP(ITEM)');
(* Creates an indented box called ITEMBODY to hold the
actual text of the item as well as any nested tags. *)

janparse;
(* Pours the scope of the ITEM tag into the current box,
calling other tag routines as tags are encountered. *)

endbox; (* Closes the ITEMBODY box. *)
endbox; (* Closes the ITEM box. *)

end
else (* listlevel <= Q0 *)
begin

tagerr ('List item is not inside a list.');
(* Imbeds an error message in the document and
skips over the scope of the tag. *)

end;
end; (* ITEM tag routine *)

CITED REFERENCES AND NOTE

1. Document Composition Facility User’s Guide, SH20-9161, IBM Corporation
(April 1980); available through IBM branch offices.

2. D. E. Knuth, TEX: A System for Technical Text, American Mathematical
Society, Providence, RI (1979).

3. B. K. Reid, “A high-level approach to computer document formatting,” Confer-
ence Record of the Seventh Annual ACM Symposium on Principles of Program-
ming Languages, Las Vegas, NV (January 1980), pp. 24-31.

CHAMBERLIN ET AL. IBM SYST J e VOL 21 e NO 3 e 1982

. IBM Displaywriter System Operator Reference Guide, S544-0859, IBM Corpo-
ration (March 1981); available through IBM branch offices.

. “Xerox’s Star,” The Seybold Report 10, No. 16, 1 (April 1981).

. “New breakthroughs in halftone generation,” The Seybold Report 9, No. 24, 3
(August 1980).

. “Electronic manipulation of color imagery,” The Seybold Report 10, No. 17, 3
(May 1981).

. Document Composition Facility, Generalized Markup Language, SH20-9188,
IBM Corporation (April 1980); available through IBM branch offices.

. IBM 3277 Display Station, Graphics Attachment RPQ 7H0284, Custom Feature
Description, GA33-3039, IBM Corporation (July 1979); available through IBM
branch offices.

. PANEL? Users’ Guide, SH20-2521, IBM Corporation (March 1981); available
through IBM branch offices.

. K. Jensen and N. Wirth, Pascal: User Manual and Report, Springer-Verlag, New
York (1974).

. Pascal/VS Language Reference Manual, SH20-6168, IBM Corporation (April
1981); available through IBM branch offices.

. Readers familiar with GML will notice that the tag routines in the Appendix do
not have the same names or behavior as the GML “starter set” tags for ordered
lists. The sample tag routines have been simplified and heavily commented for
clarity of reading. The JANUS system could be used to define tags that closely
imitate the GML starter set, as well as to define other tags for various purposes.

D. D. Chamberlin, O. P. Bertrand, M. J. Goodfellow, J. C. King, and
B. W. Wade are located at the IBM Research laboratory, 5600
Cottle Road, San Jose, CA 95193, D. R. Slutz is at ESVEL, Inc.,
7504 Camden Avenue, Campbell, CA 95008, S. J. P. Todd is at the
IBM United Kingdom Scientific Centre, Athelstan House, St. Cle-
ment Street, Winchester, Hants SO23 9DR, England.

Reprint Order No. G321-5169.

IBM SYST J » VOL 21 ¢ NO 3 » 1982 CHAMBERLIN ET AL. 271

