This paper is a discussion of the rationale behind the design of the
software user interface of the System/38. It presents the design
approaches used to produce a highly usable interactive system. The
three primary system user interfaces are also presented, showing
how the approaches were used in their design.

The design rationale of the System/38 user interface
by J. H. Botteriil

Although advancing technology is making systems that are more and
more complex available to the users of small systems, the interface
between the user and such systems cannot become correspondingly
more complex. Instead, the interface must become easier to use so
that more people and companies can take advantage of the richer
function provided by the new technology. In the small-business
environment, in particular, it is crucial that new systems be usable by
the current staff of the business and not require the addition of new

and sophisticated data processing expertise. Personnel costs already
comprise 45 to 50 percent of most data processing budgets,' and thus
it is important to minimize such costs.

In the past, much of the perceived ease of use of smaller systems was
due to their limited function and to the fact that their users were
primarily professional programmers, operators, and data entry
clerks. These users were able to learn to use the system interfaces
because they were trained as data processing personnel and the
interfaces involved only a relatively few functions. Today, with the
need for interactive systems and up-to-date data, both the personnel
and the interfaces have changed. First, functional requirements have
increased to include things like data base, communications, security,
and workstation support. Second, more and more end users want to

© Copyright 1982 by International Business Machines Corporation. Copying in printed
form for private use is permitted without payment of royalty provided that (1) each
reproduction is done without alteration and (2) the Journal reference and IBM
copyright notice are included on the first page. The title and abstract, but no other
portions, of this paper may be copied or distributed royalty free without further
permission by computer-based and other information-service systems. Permission to
republish any other portion of this paper must be obtained from the Editor.

BOTTERILL IBM SYST J @ VOL 21 ® NO 4 e 1982

directly access and manage their own data as opposed to going
through data processing personnel. Thus, the basis of the perceived
ease of use of past small systems can no longer be used as the basis for
new-system ease of use. New design approaches and standards are
necessary.

Even for large and complex systems, traditionally programmed and
managed by highly trained staffs, there has been a shift to a set of
users less oriented to data processing, resulting in the need for
breakthroughs in usability.” One reason is the high cost and limited
availability of such highly trained people. Another reason is that
owners of the data are no longer a part of the data processing
organization and interface directly to the system through worksta-
tions.

This paper discusses the design rationale of the software user
interface of the IBM System/38. It describes the ease-of-use require-
ments imposed by the interactive environment and how the System/
38 user interface was designed to meet these requirements for
increased usability. Here the term user interface is defined as the way
the software communicates or interacts with the user to help in
accomplishing his/her tasks. This interface then includes the means
by which the system accepts requests from the user and the way
information is returned to the user. Examples of types of input would
be workstation display formats to accept requests and languages or
formats in which requests can be expressed. Types of output include
display formats, messages, and printer listings. The level of ease of
use depends on what the user must learn and do to acquire the desired
end results relating to his business.

Over the last six or seven years, systems have evolved from a pure
batch environment to an interactive one. The System/38 was
designed from its inception to be an interactive data-base-oriented
system for the small-to-intermediate business environment. It is
primarily a workstation system for a set of users designated as
programmers, system operators, and end users.

Three broad user interface requirements had to be met for System/
38 customers to reap the benefits of an interactive, on-line data base
system:

1. Increase programmer productivity by providing tools and func-
tions to assist in writing interactive applications and in convert-
ing batch applications to be interactive applications. Reduce the
level of programming expertise required to program applications
and manage the system. Give programmers convenient interac-
tive access to system and utility functions so that the system
function would be easier for them to use.

Provide the system operator with interactive facilities for easily
managing the more dynamic environment of a workstation

IBM SYST J » VOL 21 « NO 4 o 1982 BOTTERILL

the user
requirements

system. Operators are faced with having to meet the input and
output requirements of jobs they did not submit, and with which
they may not be familiar. These requirements include special
forms, diskettes, tapes, and output distribution, as well as the
general backup and recovery of on-line data.

Increase ease of use for the end user who is not a data processing
professional by giving the programmers what they need to
conveniently produce easy-to-use applications for the end users.
In addition, provide the end user a simple way to request
applications, enter data, and request reports from the data base.

This paper addresses the user interface design approaches used in
developing a system to meet these requirements, concentrating on
general system-wide approaches and not specific approaches within a
particular function. The emphasis is on how the user interface was
intentionally designed so as to be easier to learn and use than systems
with a comparable level of function. Rather than having a different
interface for each type of function, with its own design approach and
rationale, the System/38 has a coherent interface design across the
entire set of system and utility function that is intended to be
conceptually simpie and consistent. Not described is another impor-
tant element of designing usability into a computing system—the
development process. The development process and controls used to
ensure that the approaches and standards were adhered to are
discussed in Reference 3.

Some of the design approaches followed were

Using an object orientation

Expressing functional requests in terms of a verb acting on an
object

Hiding the internals

Minimizing the number of different interfaces and making them
system-wide

Ensuring a high degree of consistency within and between all
interfaces

Optimizing for the simple and normal

These and other approaches are described in the rest of the paper,
followed by a brief discussion of the three primary user interfaces to
the System/38, showing how the usability design approaches were
used in their design.

General approaches

Object orientation

One of the approaches is the use of an object-oriented design. Objects
are the means by which information is stored and processed. They are
named collections of data and attributes that are visible at the user

BOTTERILL IBM SYST J e VOL 21 ® NO 4 e 1982

interface. The internal representation of the data and attributes is not
visible.* The functions of the system operate on the external objects.

Prior systems have not been consistent in defining the visible entities
within the system on which operations could be performed. They were
at different levels and had little similarity in attributes. There were
low-level entities like data control blocks and storage itself, medium-
level entities like catalogs, and the higher-level entities like data files
and programs. These entities were acted upon by low-level assembler
and macro interfaces, a medium-level job control language, and
higher-level utility and language interfaces.

On the System/38 all visible entities are high-level objects. They
have an understandable external purpose and a set of useful attri-
butes which can be set by their users. They can be operated on by a set
of control language commands or by standard functions within the
high-level programming languages.* The system manages the secu-
rity and integrity of the objects and their content.

Objects are like furniture. There are different types of furniture that
have different uses and characteristics, but all have fundamental
similarities. If you know that an item is a piece of furniture, you know
that it is movable and is used in a room, but you do not know its
specific purpose or attributes. Knowing that it is a chair or table tells
you those things. Similarly, knowing that something is an object
identifies it as being in the system, that it can be accessed by name,
and that it can be created, changed, moved, or deleted, among other
things. As for knowing its specific purpose or attributes, you must
know its type. The types of objects fall into one of the following four
groups. If an object contains or allows access to data records, it is
called a file. If it is invoked to perform processing, it is called a
program. If it is descriptive, it is called a description. If it is a waiting
line, it is called a queue. Table 1 lists these groups of objects along
with examples of objects within each group.

The functions provided include some that are object-type-specific and
others that are generic and operate on multiple object types. The
object-type-specific functions primarily deal with the attributes of a
particular object type. An example of an object-type-specific function
is a create file function which defines a file and the attributes that
pertain to a file. The generic functions operate on multiple types of
objects. An example is the save object function that saves many types
of objects.

Objects are brought into existence through a create command that
defines the name, attributes, and initial value or values for the object
being created. Each object is assigned a type that is determined by
the object’s specific purpose and corresponds to its create command,
for example, Create Output Queue or Create COBOL Program. After
an object is created, it remains on the system until it is explicitly

IBM SYST J @ VOL 2] @ NO 4 o 1982 BOTTERILL

Table 1 Object grouping

Group Object typefsubtype Contents

File File Data and data description
Physical data base file
Logical data base file
Display file
Printer file
Tape file
Communications file

Program Program Processing description
Control Language program
RPG program
COBOL program

Description
Device description Device attributes
Line description Line attributes
Subsystem description Subsystem attributes
Job description Job attributes
Edit description Editing attributes

Job queue Jobs
Output queue Output files
Message queue Messages

deleted by a delete command. During its existence, only operations
that are valid for that type of object are allowed to be performed on
the object. Only users who have authorization for the specific object
and for the specific operations can perform them.

The key advantage of the object orientation is that the users only see
and specify attributes that are meaningful externally. The internal
structure and actual storage occupied by the information are hidden.
Users do not have to know if a given object is implemented as multiple
data structures or as one. They do not have to know nor can they get
at the offsets or internal representation. For example, a data base file
is made up of four machine object structures: a space, a cursor, a data
space, and a data space index (see Figure 1). The system manages the
individual pieces of the file in a way that allows users to perceive the
file as a single object.

To minimize user learning, each type of object is designed similarly.
Users need not start all over again to learn about a new object’s
design or use. Instead they can expect the new object to have a design
similar to those with which they are already familiar.

This similarity relates to both the basic attributes of objects and the
common operations that can be performed on them. Each object has a

BOTTERILL IBM SYST J & VOL 21 & NO 4 & 1982

Figure 1 Data base file object and internal structures

DATA BASE FILE

ATTRIBUTES

HIDDEN INTERNAL STRUCTURES

SPACE CURSOR DATA SPACE DATA SPACE INDEX

NN

set of common attributes, including name, type, creation date, save
date, restore date, and text description. Although object types differ,
each is created with a similar Create command and deleted with a
similar Delete command. Most object types can be changed with a
similar Change command and displayed with a similar Display
command. Most types of objects can be renamed, moved, saved, or
restored using one set of commands which operate on multiple object
types. Users can feel in control because the consistency makes them
comfortable. They are certain that unknown things will function like
known ones.

This object-oriented approach allows users to define workstation and
printer devices to the system, create files, create application pro-
grams, and create job processing environments in a convenient,

straightforward fashion. It gives the flexibility and extendability
needed, in that one or more objects can be defined to meet the needs
of each installation. Others can be added at any time.

Standard versions of all objects necessary for an operational system
are shipped with the system. The initial or small system user does not
need to create objects, such as job queues or output queues, to get
started. The extendability and flexibility are available for when they
are needed.

Verb-object function requests

Prior systems have had little consistency in naming or labeling
functions such as commands, procedures, or macros. They have used
a mixture of verbs alone, verbs followed by object name, objects
followed by verb, nouns with verbs implied, and embedded adjectives
and other secondary phrases that hide the base meaning of the name
or label.

People want a computer system to do something for them. They are
action-oriented, and they need to feel that the computer is there to

IBM SYST J » VOL 21 @ NO 4 o 1982 BOTTERILL

help them and is under their direction. The user interaction needs to
be designed with an “action against object” orientation to meet this
need. Action requests, and text describing action requests, need to
begin with a simple verb and be followed by the identification of the
object of the action. Examples are Create Document, Clear Diskette,
and Copy File.

Thomas and Carroll have studied the importance of hierarchy in
producing a more usable command language.” Hierarchical com-
mand languages have multiple structural elements that are combined
in a fixed way. A verb-object scheme is a dual-level hierarchy.
Thomas and Carroll report that people rate hierarchically consistent
command languages better than those that are not hierarchical. They
found that people learn hierarchical command languages more
quickly and that the frequency of some types of errors was reduced by
using a hierarchical command language.

On System/38 the requests to perform operations on these objects
come through a control language, interactive display responses, and
command keys. The system-provided control language commands
have names based on a verb-object hierarchy. A command exists in
the Control Language for each function. Examples of commands of
an operational nature are

o Start Diskette Reader
e Cancel Job

* Hold Job

* Display Active Jobs

Examples of commands of a programming nature are
e Create COBOL Program

e Copy File
« Edit Source

Examples of commands of an end-user nature are

* Display Data
e Change Data
¢ Design Query
* Query Data

Where appropriate, options on the commands are also named using
the verb and object approach. For example, on the Copy File
command there is a parameter to specify whether or not to create the
target file, and it is prompted on the display screen as “Create file?”
The corresponding command keyword is CRTFILE(*YES or *NO). The
keyword is formed by concatenating the abbreviation for create
(CRT) and “FILE.” The values are YES and NO with an asterisk prefix.
The asterisk is used to distinguish the option values from user-defined
names.

BOTTERILL IBM SYST J e VOL 21 e NO 4 o 1982

Figure 2 Verb-object design

VERB-OBJECT REQUESTS

PROGRAMS DESCRIPTIONS QUEUES

ATTRIBUTES ATTRIBUTES ATTRIBUTES ATTRIBUTES

PROCESSING
DATA DESCRIPTION ENTRIES

The system-provided user menus are also verb-object oriented. For
example, some of the options on the Program Call Menu are the
following:

» Call program
« Display messages
« Send message

Some of the options on the programmer menu follow:

Create object

Submit job

Display submitted jobs
Edit source

Further details about these menus are provided later.

Command function (CF) keys supported on the display workstation
can also request function. They are labeled with the actual command
mnemonic which is a verb-object form or, if no command exists, by
verb or verb-object text. For example:

CF6—DSPMSG (Display Messages)

CF7—DSPSBS (Display Subsystem)
CF3—Fold/Truncate (The displayed data is the implied object)
CFs—Redisplay (The displayed data is the implied object)

In these ways requests for function are designed to appear as a
verb-object request against a set of high-level objects. Figure 2
itllustrates this design.

Hide internals

In contrast to most prior systems, assemblers and internal dumps are
not considered essential or desirable features for the System/38.
Internal system implementation is hidden so that the user does not

IBM SYST J & VOL 21 ® NO 4 @ 1982 BOTTERILL

have to learn it. Needed function and information are provided to the
user at the external interfaces in a way that meets the usability
objectives described in this paper. The functions can be requested
through a standard user interface such as the Control Language (CL),
the Data Description Specifications, or the Interactive Displays.
Therefore, the programmer does not need to know the internal data
format to request a function using a low-level interface like a
supervisor call. He/she does not have to request dumps or load maps
to program or debug programs. A high-level debug facility is
provided to allow the programmer to find problems by using a level of
support equal to that used for writing the programs.

For example, a program named INVENTORY can be debugged by
entering an Enter Debug command:

ENTDBG PGM(INVENTORY)

The programmer can request that the program, no matter whether it
is written in CL, RPG (Report Program Generator language), or
COBOL, stop at the statement labeled COMP by simply executing an
Add Breakpoint command specifying a standard statement label
within the program and the variables to be displayed, as shown:

ADDBKP STMT(COMPARE) PGMVAR(EMPNBR ACCT)
The contents of the variables in the program are displayed as

Variable: EMPNBR
333333

Variable: ACCT
‘614-3614°

The contents of the variable ACCT can then be changed by pressing
the CF3 key to get the command entry display and then keying in

CHGPGMVAR ACCT 316429

Execution of the program can then be restarted by keying in the
Resume Breakpoint command:

RSMBKP

Information that is in other objects, such as a device description, can
also be displayed or printed. It is returned in a form that can be used
directly by the user or reentered to recreate the same situation or
object.

In each case the internal structure and organization of the objects are
hidden from the user’s view. Information is made available in a form
that can be used by the user. The user requests are against objects,
not their internals or the system internals.

Minimize the number of user interfaces

In order to provide additional function, many previous systems
proliferated the number of specialized user interfaces. Each proce-

BOTTERILL IBM SYST J VOL 21 @ NO 4 e 1982

dure, facility, subsystem, or product had its own user interface. Such
independence increased the complexity of the system at the user
interface and significantly reduced the ease with which the user
learned to use the function of the system.’

In the design of System/38 an explicit philosophy of minimizing the
number of user interfaces was adopted in order to minimize user
learning. The number of unique interfaces is minimized by having
system-wide interfaces. A single control language, a single data
description language, and a single interactive display interface are
provided across the full set of system and utility functions. They are
described in detail later in this paper. On small systems, the need for
the consistency provided by a system-wide interface is very great
because of role sharing. The operator and programmer or the
programmer and data processing manager are often the same person.
Even without this overlap, one user must often perform another user’s
functions (for example, a programmer performing operator func-
tions). By presenting a consistent interface, artificial categories and
boundaries are avoided, and learning is made easier. The primary
interfaces used by each user type are shown in Figure 3. The
programmer also uses high-level languages which are normally
independent of the system.

Grouping

Within each interface, related pieces of information or functions are
named alike and grouped so as to help the user associate them and
learn them as a group rather than having to learn them individually.
Grouping (what psychologists call “chunking”)’ is the process of
subsetting a larger whole. The user then has fewer items to remem-
ber. He/she remembers the groups that are fewer in number than the
number of individual items. If like or related things are not named or
presented as being alike, the person using them cannot benefit from
the similarity or relationship and must learn each independently.

Examples of the use of grouping on System/38 are

The command set of over 300 commands only uses about 65
command verbs. The verbs form groups of like commands. Ten of
these verbs or groups account for two-thirds of the commands. For
example, knowledge that a command is a display command
identifies its purpose and how it operates. This verb groups some
50 commands that would otherwise need to be considered individ-
ually.

RPG programs, COBOL programs, and CL programs are grouped
under the object type *PGM. All can be called in the same way and
debugged in the same way and are therefore perceived as part of a
single set of like objects.

Device files have three groups of attributes: spooling attributes,
nonspooling attributes, and common attributes. The spooling

IBM SYST J » VOL 21 ® NO 4 ¢ 1982 BOTTERILL

Figure 3 Minimum number of system interfaces

INTERFACES USED BY PROGRAMMER
PROGRAMMER

1

INTERACTIVE CONTROL DATA
DISPLAYS LANGUAGE DESCRIPTION
COMMANDS SPECIFICATIONS

PROGRAMMER
PROGRAMMER DATA BASE AND
AND OPERATOR
FUNCTIONS FUNCTIONS DEVICE DATA

INTERFACES USED BY OPERATOR
OPERATOR

1

INTERACTIVE CONTROL
LANGUAGE
DISPLAYS COMMANDS

OPERATOR OPERATOR
FUNCTIONS FUNCTIONS

INTERFACES USED BY END USER
END USER

INTERACTIVE
DISPLAYS

APPLICATIONS,
QUERY, DATA
ENTRY

attributes are valid at certain times and for certain types of files. If
the type or time of a desired operation is known, one or more sets
of attributes do not even have to be considered.

Information on listings is grouped under subsection headings
rather than having a single continuous listing. This grouping helps
to locate specific information.

Like parameters are grouped on commands, such as target identi-
fication parameters, attribute parameters, and special option
parameters.

Functions are grouped via user menus, for example, the System
Operator Menu and the Programmer Menu. This grouping not
only helps to locate the desired option on the menus but also
structures the function on the system so that any user can see an
overview of what functions are provided.

BOTTERILL IBM SYST J @ VOL 21 @ NO 4 o 1982

High degree of consistency

Along with the diversity of interfaces, prior system user interfaces
have been characterized by inconsistency. Inconsistency is the natu-
ral outcome without a strong, explicit, well-managed effort. A strong
attempt has been made to make System/38 interfaces consistent.
Each interface is designed to be consistent within itself in every way
possible, including use, operation, naming, syntax, formatting,
ordering, grouping, and editing.

This consistency is carried across system interfaces where appropri-
ate. It includes the level of function (create, change, rename),
terminology, ordering, and defaulting. If the interfaces are of a
similar type, the consistency goes much further. For example, if two
interfaces use a keyword syntax, the values and keywords for like
options are alike. Similarly, like information presented on multiple
output interfaces is consistent. For example, the parameter order in
command input, in prompting, in publications, in display presenta-
tion, and in listing presentation is consistent.

IBM’s customers have greatly appreciated the consistency and in fact
rely on it. They therefore are quick to point out inconsistencies or
missing functions (e.g., a missing change command) that they have
recognized because of the prevailing consistency. Some of the cases of
missing functions are the result of normal development resource
constraints that are present in the development of any new system.
Each new release fills some of these perceived deficiencies and
corrects inconsistencies that are changeable without impacting oper-
ational compatibility for existing users.

The emphasis on consistency has definitely proven to be worthwhile.

The way users rely on it and the concern for exceptions point out the
need for continued attention to this design principle.

Early validity checking

Any time a user enters a request at a workstation that will be
processed at a later time, validity checking of the request becomes
very important. It should be unnecessary for the user to wait until the
time of processing to be told about an error in his/her request. If the
error is identified when a request is entered at a System/38 work-
station, messages are returned to the display where the invalid values
were entered. The user can then immediately correct erroneous
values while the prompt text, the list of valid values, and help text are
available. Errors are not ignored and values are not changed without
informing the user. All users can get what they want and know what
they get.

In addition to saving time, early and stringent validity checking
results in

IBM SYST J & VOL 21 @ NO 4 & 1982 BOTTERILL

Improved learning. Users are informed immediately when they
make errors. Misconceptions are straightened out immediately,
not reinforced. Users learn by trying because they receive immedi-
ate feedback.

Reduced worry and uncertainty. Users always know whether a
function will be performed and have a high degree of confidence
that it will be performed correctly.

Straightforward understanding of what is used. A specified value
is not ignored or another value is not used without the definer
being aware of what is happening.

Easier problem determination. Errors are diagnosed immediately
where they are made. The users are made aware of errors while
they still understand the context, their own intent, and their
alternatives. Errors do not go unnoticed until the consequences are
great and both problem determination and error recovery are
more difficult.

A more reliable system. If an object is created, that object is
correct. This principle reduces the danger of unexpected failure
later if new, data-dependent paths are taken.

An attempt has been made on the System/38 to check the validity of
all input. For example, when a query is being defined, the specifica-
tions are validity-checked. When programming language input is
being entered, it is validity-checked to ensure later compilation.
When commands are being entered to define a batch job, they can be
optionally validity-checked to ensure that the job will not be rejected
at execution time. This aspect will be discussed in more detail later as
it pertains to the Control Language.

Optimize for simple and normal

An attempt was made to design the commands, displays, and listings
so that commonly used options or attributes are shown first and so
that specialized or less frequently used options or information are
only seen when needed. All options or attributes beyond the simple
base set are defined as optional choices.

This design minimizes the effort required to perform common
functions or find commonly needed information. Several specific
ways in which this principle has been applied on the System/38 are
described below:

Summary listings are provided by default, with options on the
command to get more detail. For instance, the Display Object
Description command defaults to one line of information per
object. The user can request a full listing of object attributes.

Summary displays are provided by default with one-line entries
for each item. An option can be entered in front of any entry to
request more detail. For instance, when the operator displays the
list of the spooled output files for a particular job (as shown later

BOTTERILL IBM SYST J ¢ VOL 21 @ NO 4 o 1982

in Figure 13), he/she can display the contents of one or more of
the files by keying in a one next to them or can request a display of
detailed attributes for one or more of the files by keying in a two
next to them. Other normally used operations, like hold, release,
and cancel, are supported by entering other option numbers.
Basic parameters or values are shown first on command prompt
displays, presentation displays, and listings. For instance, on a
display command with an option to request the basic or full set of
information, the “full” option results in an output format where
the “basic” information appears first followed by the additional
information.

Simple commands are provided for the simple base function. For
example, a command is provided to create source files even though
they can be created by a more general Create Physical File
command. When using the Create Source Physical File command,
the user only needs to enter the following to create a file of name
SOURCEI:

CRTSRCPF FILE(SOURCEI)

Using the Create Physical File command, the user would need to
enter the following:

CRTPF FILE(SOURCEI1)
RCDLEN(92)
FILETYPE(*SRC)
SIZE(20 20 499)
ALLOCATE(*NO)

Changeable attributes

Object and environment attributes need to be easily changeable. The
user does not appreciate having to recreate an object to change one
attribute. On System/38, a change command is provided for most
types of objects to allow the attributes to be easily changed. Within
the interactive interface, a command function key is supported on
important attribute displays, such as Display Spooled File Attributes
and Display Device Status, to request the prompt display for chang-
ing the attributes. Having ways to conveniently change attributes
allows the programmer and operator to capitalize on the defaulting
approach and to learn by doing.

Match user level

It is important that the amount of information and assistance given
by the system match the amount needed. If the assistance provided is
more than needed, use of the function will be laborious. If too little
assistance is provided, the user may quickly become frustrated and
lost. It is therefore important that system interfaces be designed for
their users. If a user needs help beyond that initially shown, he/she
should be able to request more detailed information.

IBM SYST J ® VOL 21 ® NO 4 o 982 BOTTERILL

398

On System/38, formatted input prompt displays are used to describe
the values or options that can be entered and to let the user enter
values without having to use a rigid syntax. These prompt displays
are only shown when the user requests prompting assistance. This
results in the tailoring of the interface to his/her needs. Prompting is
described in more detail under the Control Language.

Another way the interface is matched to the user is via the user
profile that is part of the security support. One of the entries in that
profile can be the name of an initial program to invoke when the user
signs on to a workstation. By using this capability, whenever a user
signs on, he/she automatically sees the first display for the applica-
tion or function each normally uses. This capability is useful for
almost all users and allows the tailoring of the interface for each
user.

Yet another way of matching the user’s needs is to make available
short cuts, such as answer-ahead on menus. This allows the user to
bypass the next menu when he/she knows ahead of time what he/she
wants to do and how to request it. For example, the Programmer
Menu allows the user to bypass subsequent menus for Query and
Data File Utility data entry.

Forgiving of user

When errors are detected, the user needs a consistent, easy way to
correct the errors, to back up, or to exit. The user should not be put in
a position where he/she cannot recover or determine how to recover
from an error. Errors should be considered normal, and the system

should treat them as such.’ Sufficient instructions, in the user’s
terms, need to be available.

On System/38, the normal approach to error correction on the
workstation is to reverse-image the values in error, position the cursor
at the first erroneous value, and display an error message for each
error. The reverse image provides for rapid identification of which
values are wrong. The cursor sets up the workstation for easy
correction. The message gives a description of the error. By pressing
the HELP key with the cursor on the message for which help is desired,
additional information about the error can be received. The user can
change any of the input values and then press ENTER to have them
validity-checked again. Command key one is always available to
request an exit.

Another area of forgiveness is in accepting input in more than one
way. The system should not require the user to conform to one
arbitrary way. Examples of this area on System/38 are tolerance of
uppercase and lowercase for names where uppercase and lowercase
distinction has no meaning, tolerance of the presence or absence of
leading zeros for a numeric value, and allowing either the presence or

BOTTERILL IBM SYST J @ VOL 21 e NO 4 o 1982

absence of apostrophes around a character string with no embedded
blanks. Distinctions in these cases would be viewed by users as
unnecessary and frustrating.

Optical device features

The system is designed to make use of advanced device features even
when they are optional. If the optional features are installed, the
system uses them. This design aspect contrasts with the common
philosophy of having the system only make use of standard device
features so that the system looks the same to all users.

Some examples of how the use of advanced features improves the user
interface follow. On the majority of devices that support lowercase,
the output text and messages appear in lowercase. On uppercase-only
devices they appear uppercase. On display devices that support
reverse image, input fields that are in error are made to stand out for
quick correction by showing them in reverse image. On devices
without the reverse-image capability, the user must roll through the
messages and identify the fields in error by the text of the messages.

Another display feature that varies between display devices is the
number of display lines. Display output is adjusted to make use of the
size of the display workstation being used. More entries on a list are
shown on a larger display.

Interfaces

In order to show what these general approaches mean and how they

were applied to the design of the System/38 in practice, we will
discuss the three primary user interfaces to the system. In addition,
other approaches that are unique to individual interfaces are
described. All function requests, except for those that go through the
high-level programming languages common to most systems, are
entered through one of three interfaces:

1. Control Language
2. Data Description Specifications
3. Interactive Displays

Control Language

The Control Language (CL) is the single command-level interface to
the system. It includes commands for configuration, job control,
operation, programming, query, and object management, to name
just a few. It is primarily for the programmer and operator. CL
supports the interactive and batch request of functions. Almost all
commands can be used either in batch or interactively without
changing the way they are coded. It supports full screen input and
output to the display workstation, arithmetic functions, and applica-

IBM SYST J VOL 21 & NO 4 ¢ 1982 BOTTERILL

syntax

command
naming

tion requests. CL is, in many ways, a high-level language for perform-
ing system functions and application control. It can be compiled for
more efficient performance and supports variables of three data
types: character, decimal, and logical.

As described in the article The Rule-Driven Control Language in
System/38,” the basic syntax of CL is simple and free-form. CL uses
the blank as the separator because it is a natural separator that is
common to all countries, unlike the comma, which is used as the
decimal point in many countries. The command name and associated
parameters can begin anywhere on the record, thus allowing indenta-
tion and parameter alignment. Each parameter has an associated
keyword that can be used to identify the parameter value. The
keywords may be omitted for the first set of parameters, and only
values need be entered if the user enters the values in a fixed
positional order. For example, the Copy File command is defined to
have the following form:

CPYF FROMFILE (file-name) TOFILE(file-name) . ..

A request to copy File A to File B can be coded with keywords in
either of the following two ways:

CPYF FROMFILE(A) TOFILE(B)
CPYF TOFILE(B) FROMFILE(A)

The keywords can be coded in either order because the keywords
identify the values A and B. The same request can be coded
positionally without keywords. Then the values must be coded in the
order of the command definition shown above. For example:

CPYF A B

The command names for system functions consist of verb-object pairs
made up from a small set of primarily three-character abbreviations.
In the above example, “CPY” is the fixed abbreviation for the verb
“Copy,” and “F” is the fixed abbreviation for the object “File.” The
rule scheme used to generate names throughout the system, including
the mnemonic name of command, keyword, and object names, is to
concatenate the abbreviations of each word in the descriptive name.
For example:

Create User Profile—CRT + USR + PRF = CRTUSRPRF
Delete User Profile—DLT + USR + PRF = DLTUSRPRF

Abbreviations other than the last one follow a rule scheme of taking
three representative letters from the word. These include the first
letter followed by two consonants. The consonants chosen are those
that are the most prominent in the pronunciation and those that are
most apt to distinguish the word from others. Other than an initial
vowel, vowels are not normally included. This is done to avoid
abbreviations that form a word in another language, possibly even a
word with an unacceptable meaning. Below are examples of abbre-
viations made up of three characters:

BOTTERILL IBM SYST J VOL 21 @ NO 4 ¢ 1982

Start STR
Diskette DKT
Reader RDR

By having abbreviations of a fixed length, it is possible for the control
language user to easily parse a name formed from multiple abbrevia-
tions and determine its meaning. For example, STRDKTRDR can be
recognized as STR + DKT + RDR, which is the command to Start
Diskette Reader. Without having such a rule, the command could be
interpreted as being formed from ST + RDK + TRDR or S + TRDK
+ TR + DR.

The last abbreviation in a name is sometimes reduced to less than
three characters to minimize keying. But it is only done if it can be
done consistently and does not produce any ambiguity in parsing the
abbreviations. For example, description is abbreviated D because the
object types are called descriptions and the word is always last, as
seen below:

DSPDEVD DSP + DEV + D Display Device Description
CRTJOBD CRT + JOB + D Create Job Description
CHGSBSD CHG + SBS + D Change Subsystem Description

Three-character abbreviations are used because two characters are
insufficient for uniqueness without using characters that do not relate
to the word being abbreviated. The set of abbreviations for words
across the system beginning with IN shown below illustrate how three
characters provide for sufficient uniqueness.

Initial INL
Initialize INZ
Integer INT
Invocation INV
Interval ITV

Using more than three characters results in names that are too long.

In a few cases, exceptions to the vowel rule were made because of the
strong precedence of common-use abbreviations that themselves were
already three characters. Examples are LIB for library, REF for
reference, REL for relation, and DUP for duplicate.

The examples in Table 2 describe this naming strategy more fully as
it applies to command names. The approach has proven to be very
extendable and rememberable. Users have found that they can
readily learn the names because the consistency is strict and the
command coding seems very natural.

Keyword names and value names frequently identify an object or
option and not an action. A single unabbreviated word is used for this
type of name wherever possible. For example, FILE, TYPE, OUTPUT,

IBM SYST J e VOL 21 @ NO 4 e 1982 BOTTERILL

keyword and
value naming

Table 2 System/38 naming strategy

Examples of abbreviations used in command names

Verbs Objects

Create— CRT Command— CMD Description— D
Change— CHG Device— DEV File— F
Delete— DLT Diskette— DKT Queue— Q
Display— DSP Display— DSP

Message— MSG

Program— PGM

Examples of command names

Create Device Description CRT + DEV + D = CRTDEVD
Create Display File CRT + DSP + F = CRTDSPF
Change Message Queue CHG + MSG + Q = CHGMSGQ
Delete Message Queue DLT + MSG + Q = DLTMSGQ
Display Message File DSP + MSG + F = DSPMSGF
Delete Program DLT + PGM = DLTPGM

and TEXT are common keywords and *YES, *NO, *ALL, and *NONE
are common values. If the keyword or value name represents a
multiple-word phrase, like source file, the rule scheme for concat-
enating three-character abbreviations is used. In either case the
values are defined so as to be self-documenting and nonambiguous.
Values may be numeric, character strings, names, or special values.

Special values are the identification of defined command options.
They are always preceded by an asterisk so that they are not confused
with names of objects or so that they do not preclude the use of that
same identification as the name of an object. For example, in a source
member keyword (SRCMBR), a special value, *PGM, is supported to
mean the use of the source member whose name is the same as the
program being created. The name of the program being created is
specified in the PGM keyword, so the special value is named *PGM.
The keyword then has the following definition:

SRCMBR(*PGM or source-member-name)

The asterisk avoids having to preclude the specification of a source
member name of PGM. Another example is a file keyword with a
special value of *ALL representing the option of using all files, not just
one. This keyword has the following definition:

FILE(*ALL or file-name)

The file name specified could be any file name, including ALL.

By consistently prefixing all special values, the user does not have to
decide whether a parameter requires the asterisk or not. Parameters

BOTTERILL IBM SYST J ¢ VOL 21 ® NO 4 e 1982

that today only support special values, such as *ALL or *NONE, can
later be extended to support a user-specified object name.

This approach to naming results in consistent self-documenting
keywords and values without reserved name restrictions that would
be error-prone.

Each individual command is described to the system by the use of a
Create Command function. The detailed description of each com-
mand and its parameters is stored in a command description object.9
The object serves as a rule so that the command can have its validity
checked by a single command analyzer and interactively prompted
for by a single command prompter. The information includes:

~ Name of the command

~ Description of each parameter including keyword name, valid
values, prompt text, and a default value to be used if a value is not
specified for the parameter
Name of the program to perform the function
Identification of when the command is valid: interactive and/or
compiled environment

A Display Command function is provided to display the primary
attributes of a command description object. The prompter presents
the parameters and the acceptable values for them.

The Create Command is provided to allow a user to create commands
to invoke his own programs. These programs can be CL programs of
one or more other commands or high-level language application
programs. It allows the user to have the full benefit of the parameter
validity-checking, prompting, and defaulting facilities. In this way,
the customer can extend the command set to include personal
commands to invoke system-related functions or application pro-
grams. A study at Bell Laboratories indicates that allowing the users
to define their own commands is probably the only way to have
command names that are natural for more than 40 percent of the
users of a system.'’

As was discussed previously, early validity checking is a system-wide
strategy. On prior systems, control language validity checking of
syntax and values has usually been done at execution time prior to
actual data processing. In some cases, an early check of some type of
source has been done at source entry time. It has usually been a
separate checker, covering only noncommand, unique syntactical
errors like missing commas and unmatched parentheses.

On System/38 the command analyzer has the benefit of a command
description object which contains the full description of the command
necessary to do a thorough validity check.” It can report errors in
keyword names, values, value type and value length, and interpa-

IBM SYST J o VOL 21 ¢ NO 4 & 1982 BOTTERILL

command
description

validity
checking

parameter
defaulting

rameter value conflicts. The validity checking is performed at
command execution time when a command is entered at a worksta-
tion, is executed within a batch job, or is executed within a CL
program.

It is performed during interactive command prompting as individual
groups of parameters are entered in response to system prompting
displays in either the source entry or execution environments.

It is performed at source entry time as commands are entered
through the source entry function to be put in a data base file for later
compilation into a CL program. Similar checking is done during the
compilation.

A job option exists to have the CL commands validity-checked as the
job is placed on the job queue for later batch execution.

Because the validity checking is always performed by the same
command analyzer, based on the same command descriptions, the
user receives the same messages in each case.

The System/38 control language utilizes a new, highly visible
defaulting approach.” Most parameters are defined as optional. Each
optional parameter is defined with a carefully selected default. This
default is the value that is used if a value is not specified for the
parameter. Defaults are selected based on the most commonly used
value.

Using an approach with many defaults rather than requiring the user
to specify a value for every parameter helps the user by requiring less
keying and less knowledge. It requires less keying because only
special attributes need to be specified.

Less knowledge is required because users do not need to understand
all values available in order to choose one to perform the desired task.
They can let the parameter default and get the function up and
running. As learning progresses, they can change the values to tailor
them to meet special needs. For example, an output queue can be
created, and the number of job separators be allowed to default to
one. Later, if it is found that three would be better, the number can be
changed.

Many systems have used some form of defaulting approach. Several
problems have been common in these implementations that have
detracted from the strategy meeting the objectives stated above.

The first problem has been that the default taken is not what was
expected. On System/38, much of the mystery (what gets defaulted,
and when) is avoided by making all defaulting visible and well-
defined. The default value is one of the standard user-specifiable

BOTTERILL IBM SYST J & VOL 21 & NO 4 o 1982

Figure 4 Example of command prompt

values and therefore is fully described in the supporting documenta-
tion. Wherever appropriate, values are named with a specifiable word
value that is descriptive of its meaning, for example, *NORMAL for an
authorization default, or *NOLIMIT for a file-size default. Such
self-descriptive values are defined in the command description object,
documented in the control language reference publication, and shown
on the prompt display for the command, as shown in Figure 4.

Use has shown that displaying the defaults is crucial because it allows
the user to see the default values and become accustomed to their
being consistent. Some users have difficulty ignoring parameters they
do not understand. Displaying the defaults allows a decision to be
made prior to execution based on the defaults, not after execution.

On systems where the default is not required to be a specifiable value,
the default action tends to develop its own idiosyncrasies even though
it was intended to be like one of the standard values. The result is
more mystery, more options, and the inability to specify the default
action when it is what is wanted. On System/38, the default value
may be optionally specified. If the default is specified, the same
action is performed as if a value were not specified. Specifying the
value provides documentation to any person reviewing the program or
command log. A strong effort was made to have uniform defaulting.
Similar functions with similar options default to the same value.
Thus, the defaults are easier to remember, and the need to refer to
documentation is reduced. A formal benefit of having specifiable
defaults is that a value may be specified without concern for whether

IBM SYST J o VOL 2t e NO 4 ¢ 1982 BOTTERILL

parameter
prompting

or not it is the default. This benefit is important when the user knows
what he wants; the simplest thing for him to do is to just specify it.

Another problem that often accompanies defaulting is receiving error
messages as a result of the defaults. To minimize this situation, the
defaults in a set for a given function are carefully chosen so as to be
compatible with one another, resulting in a consistent, meaningful
action instead of error messages. In those few cases where there are
strong relationships between values for two parameters, a conditional
default is defined so that the parameter will default properly based on
the values specified on the related parameter.

On many systems no interactive command prompting is provided.
Some of these systems have on-line help text that can be requested at
any time. Although the help text reduces the need for use of
publications, it still requires the user to determine how to enter the
command using commas, parentheses, or other syntactical delimiters.
If the help text displays do not allow keying in of the command on the
help screens, the user must remember the instructions in the transi-
tion back to the input display. On other systems, the prompting
results in only one parameter value at a time and provides no way to
determine the valid values that can be entered. On still others, the
prompting is only available after the user makes an error.

As part of the System/38 interactive display interface, which is
discussed in detail later, a system command prompter is available to
assist the CL user in entering commands. The prompting can be
requested by pressing a command function key while entering the
command. The same prompting is provided when entering a com-
mand interactively for immediate execution or entering a command

as part of a CL program for later use. The prompter identifies
parameters, defaults, and valid values so that the user can enter
commands without frequent reference to publications. The list of
valid values can be requested by keying in a question mark in the field
of interest. All the information necessary for this assistance is
obtained from the command description object.

Prompting can be requested at almost any time during the keying of a
command. The user can key in however much he/she knows and ask
for prompting if and when the need arises. In this way the interface
adapts to match the user level. The assistance is available for the user
needing it, but the assistance is not a frustration to the user not
needing it. The prompting uses however many lines are on the screen
of the device that is displaying descriptions and input fields for
multiple parameters at a time. Optional device features such as
reverse image are utilized to assist the user in error correction. Figure
4 shows a prompt display for three parameters of the Copy File
command. Beginning at line 3 there is a line per value with the text
description of the parameter followed by the keyword name, followed
by the input field for the value.

BOTTERILL IBM SYST J o VOL 21 @ NO 4 o 1982

Each input field is the length of the longest value supported for that
parameter. If the parameter has a default value, it is shown in the
input field. Defaults are named so as to be descriptive of the option
they represent. The CRTFILE parameter is shown in the example with
a default of *NO. That value can be accepted or keyed over with the
other valid value of *YES. The user can quickly review the command
parameters and their defaults and key in only the values that he wants
to change. (This is illustrated later in Figure 7.) In this way the user is
freed from having to specify parameter names or having to adhere to
special positional or syntactical requirements.

After the values have been keyed in, they are validity-checked, and
immediate feedback is given. In order to allow for easy error
correction, the display is reshown with the values in error reverse-
imaged, the error messages at the bottom of the display, the cursor on
the first value in error, and the keyboard unlocked ready for the user
to key in the correction. The user can correct one or more of the
erroneous values or change any other values and have those values
checked again. This process continues until the user and the system
agree that the command is ready for execution or entry into a source
file.

In summary, the System/38 CL is designed to be a user interface
separate from the programs that provide the function. It is designed
to have a minimum of syntactical rules; thus, the commands them-
selves exhibit a high degree of consistency. When assistance is
needed, a command prompter is available to provide assistance in
entry of the command as well as to provide immediate feedback to
allow correction of incorrect specification. Surveys of end users and

their evaluation of System/38 usability indicate that both program-
mers and operators are happy with the ease of learning of the system
commands and with the ease with which they can be entered. The
prompting and consistency are almost always identified as the major
reasons for the System/38 CL being rated easy to use by a majority of
users surveyed.

Data Description Specifications

On previous systems, data in external storage has been defined by the
program accessing the data (input specifications in RPG II, DECLARE
statements in PL/T). Data on the System/38, in contrast, can be
externally described—that is, the description of files and formats is
external to the using program. It is stored in the file object. Just as
there is a single CL control interface to the System/38, there is a
single data description interface. This data description is accom-
plished via Data Description Specifications (DDS) written by the
application programmer or, in the case of display formats, defined
indirectly by simply laying out the display format interactively, using
the Screen Design Aid. DDS allows him/her to describe each file,
each record in a file, each field in a record, and the order of the fields.

IBM SYST J e VOL 21 ® NO 4 e 1982 BOTTERILL

Figure 5 Example of DDS source statement

These descriptions are stored within the file when it is created. DDS is
used to create physical files (containing data), alternative views of
that data (logical files), display formats (display files), printer output
formats (printer files), and communication formats (communication
files).

The DDS source statement consists of a fixed-format area for the most
common specifications (e.g., field name, length, and data type) and a
free-form area for less-used specifications. Figure 5 shows the
primary fields and the basic form layout.

This type of format was chosen because it is very similar to the way
users document fields in records today. It is similar to the specifica-
tion of a set of declare statements in many programming languages
and directly corresponds to the RPG input and output specification

form approach with which the vast majority of System/38 users are
familiar.

The programmer simply lists the fields, one per line, specifying the
name, length, and data type. A minimum amount of coding is
required, and the result can be easily read.

A variety of special processing options and device-dependent attri-
butes can be specified in the free-form area. They are specified with
keywords or keywords with values, which follow many of the same
syntactical rules as CL. In this way the user does not need to learn a
new approach to specifying free-form information.

DDS source statements are normally entered into a data base file
member using the Source Entry Utility (SEU), or defined indirectly
by using the Screen Design Aid. In SEU, prompting and immediate
validity checking are provided. As with the prompter, the display is
set up for easy error correction.

Several benefits result from separating data descriptions and pro-
grams:

BOTTERILL IBM SYST J @ VOL 2] ® NO 4 » 1982

There is a reduction in the amount of coding required in the
high-level language. The data description is coded only once, for
the file. The Data Description Specifications for display files can
include validity-checking parameters as well, thus removing the
need for validity-checking code in every program that uses the file.
It also results in system-provided early validity checking of data
entered through system or application displays.

A high degree of data independence is achieved. Changes to data
attributes or the addition of new fields to a file do not necessarily
require the recompilation of the using program.

The user has greater control over the naming and defining of data.
It is easier, for instance, to implement installation-wide naming
conventions.

Application documentation is improved. The user can define a text
description for each file, each record type in a file, and each field
in a record. This text is stored in the file description that is a part
of each file.

The owner of a file can secure specific sensitive fields by defining a
logical file that provides only the desired data, and then authorize
only the use of that logical file.

Record lengths and other file layout considerations are no longer
important design considerations. The specific character position of
a field in a record is not specified nor is the record length.
Different record types with different lengths may be in the same
logical file.

The logic of the application can be addressed separately from the
structure of the data.

These benefits are made available to the high-level language pro-
grammer. RPG and COBOL have been naturally extended to make use
of externally described files and to utilize system data base and device
data management through the standard language input/output con-
structs. This provides for simpler and more straightforward program-
ming than the approach of having to use external calls to system-
provided subroutines.

Interactive Displays

The interactive display interface provides a set of workstation
displays that allows the interactive user, who may be a programmer,
operator, or end user, to request functions and information to meet
his/her needs.

The displays are designed to be easy to learn and use, and every
attempt was made to follow the best available display design guide-

. 11-13
lines.

Each display is clearly titled on line 1 to identify its purpose and
confirm that the desired display was received. If the display requires

user action, such as selecting an option or entering values to define a

IBM SYST J @ VOL 21 @ NO 4 @ 1982 BOTTERILL

four
display
types

request, this is communicated by instructional text in line 2. The body
of the display is dedicated to the main purpose of the display, which
may be to present a menu of choices, a series of input prompts, or
output information. Messages are always displayed at the bottom.
Lowercase text is used to improve readability.

The interactive display interface is designed to require less user
knowledge and keying than the Control Language and Data Descrip-
tion Specifications. A separate input field is normally provided for
each input value; therefore, syntactical delimiters and keywords are
not needed to separate, delimit, or identify the values. The text
preceding each input field identifies the type of information the user
should enter in that field. Input fields are underlined to identify their
location and show the maximum length of the values accepted.

Almost all displays fall into one of four basic types of display, each
designed for a purpose. The consistency across displays makes the set
of displays for all system and utility functions form a single interface
that operates under a single set of rules covering format, command
keys, messages, operation, and design philosophy. Thus, by learning
how to operate these four types of display, the user is able to operate
any one of the over one hundred system displays. The four types are
described below.

A menu allows the user to select a function from multiple alterna-
tives. Examples of menu formats are shown in Figure 6.

A prompt requests one or more values to be entered in a simple
fill-in-the-blank format with each input field preceded by text
describing the value to be entered. It is shown in Figure 7. The first
display is a command prompt and the second display is a query output
prompt. The input fields often contain a default value that is used if
another value is not keyed in. These defaults minimize the need for
values being keyed in and allow most requests to be entered by keying
in only a few values. They are designed to be self-explanatory, for
example, *ALL or *NONE. The locations of input fields and their
lengths are clearly shown by being underlined, which corresponds to
the familiar fill-in-the-blank technique.

A columnar selection display presents multiple entries, each of which
includes the name of the entity represented and its key identifying
attributes. This display type is shown in Figure 8.

This type is a keystone of interactive ease of use of the System/38. A
one-character input field is provided in front of each entry. By simply
entering an option number in front of one or more entries, the
operation represented by that option is performed on the entities. The
requesting of functions by keying in only a single digit is thus made
possible. The location of the entered number completely identifies the
target. The valid options are described below the presentation area.

BOTTERILL IBM SYST J @ VOL 21 @ NO 4 o 1982

Figure 6 Examples of menu displays

The approach allows any combination of operations to be requested
against an almost unlimited set of targets on one interrupt. The keys
labeled Roll Up and Roll Down are supported, allowing the user to
view all available entries and enter options for any of them before
asking that they be performed.

IBM SYST J # VOL 21 « NO 4 » 1982 BOTTERILL

Figure 7 Examples of prompt displays

The final type is the labeled values presentation display. It appears
very similar to a prompt display in that each value is shown preceded
by text describing it. All values on this display are output only. By
using the Roll keys, the user can see all values not fitting on the initial

BOTTERILL IBM SYST J e VOL 21 @ NO 4 e 1982

Figure 8 Examples of columnar selection displays

presentation of the display. The title indicates the type of informa-
tion, and line 2 (and if necessary line 3) shows the identity of the
object to which the values pertain. An example is the Job Status
Attributes display (Figure 9).

IBM SYST J @ VOL 21 ® NO 4 o 1982 BOTTERILL

Figure 9 Example of labeled value display

In addition to having just four types of displays, five ways are used to
optimize function request ease of use within the interactive inter-
face—user menus, menu/prompt front ends, interactive displays,
help, and back up/change.

Among our users there are three primary user types. They are the
programmer, system operator, and application end user. By designing
a menu for each of these common users, the following is accom-
plished:

Greatly improved the system usability for the majority of users
Provided a way to ease the user onto the system

Provided an efficient interface for the experienced user

Provided a model for supplying specialized functional grouping
menus for other users

A small number of functions account for the majority of the requests
executed by any one user type. A menu is supplied with that small set
of high-usage functions on it, thereby relieving the user of the chore
of determining what key functions to learn. The users become
immediately productive. They only need to key in a number to
identify the function they would like to request and the name of the
target that they want the function applied to. The necessity of
remembering the function and the command syntax required to
request it is eliminated.

BOTTERILL IBM SYST J e VOL 21 « NO 4 o 1982

Figure 10 System Operator Menu

Figure 11 Programmer Menu

The System Operator Menu (Figure 10) is more command-oriented.
The Programmer Menu (Figure 11) is more task-oriented.

Both of these menus are working menus designed to be effective for
continuous use by experienced users. Values specified for one option

IBM SYST J @ VOL 21 e NO 4 o 1982 BOTTERILL

menu-prompt
front ends

remain to be used for the next related option. For example, in Figure
11, Options 8, 3, and 4 are designed to be used together. By naming
the source member the same as the program to be created from it, the
program name, type of language source, and a text description can be
entered when selecting Option 8 to update the program source. No
further specification is needed to create the program and call it, using
Options 3 and 4.

Because it is usually necessary to identify the target of a function, the
menus are designed with an input area to identify the target and any
other required information. Therefore, it is not necessary to go
through a separate display to identify frequently entered values. If
the needed values are not entered, a message identifies the values that
are needed. After the function is complete, the user is back at his/her
familiar menu and is ready to perform another operation which might
involve the use of that same target. The values remain filled in for the
next operation. A set of values only needs to be entered once for a
sequence of operations requiring those values. This design makes the
menu interface effective for the experienced user who wants to do
only a minimum amount of keying for frequently requested opera-
tions.

Functions that require more extensive input result in prompt displays
with text identifying what input is needed. The text is in terms that a
particular type of user will understand.

Menus help the programmer and operator over the hurdle of getting
started. Some users prefer to use menus, others start with menus but
decide to switch to command entry."* System/38 allows this choice.
After understanding the basic functions provided on the menu, the

user can proceed to more advanced functions. Ways are provided to
enter a command on the menu or to request another display or menu
to request other functions. Through the use of the base functions, the
user sees how the system responds to requests. If the responses are
understandable and consistent, the user is left with a feeling of
understanding the system and a sense of confidence that might be
expressed as “I can even do those functions I have not tried yet.”

A set of menus and interactive prompt displays are provided for sets
of function logically used together. The user does not need to use
commands for common use functions. These interactive packages of
menu, prompt, and presentation displays shield the user at the display
workstation from having to enter syntactically structured requests.
Instead, the user only needs to select from a list of choices or enter
values in labeled input fields. No keywords, parentheses, quotation
marks, or commas need be keyed in. Although the displays are nearly
self-instructive, help displays are available to answer user questions.

An example of such a set of menu and prompt displays is that
provided with the Data File Utility that supports creating, managing,

BOTTERILL IBM SYST J o VOL 21 @ NO 4 » 1982

and using data entry applications. Another is the Query Utility that
supports creating, managing, and using data base Query report
requests. Examples of these Query displays are the second display
shown in both Figure 6 and Figure 7. Still another is the Screen
Design Aid Utility, which supports creating, managing, and testing
display formats for customer applications.

Another ease-of-use approach used on the System/38 is the provision
of a convenient means for users to move from interactive display to
interactive display or request operations from the display without
having to return to the command level of interaction. There are two
common types of circumstances in which such movement is done:

1. If a function allows you to define something, a logical follow-on

might be to test or use that function. This situation can exist on
the System/38 after a display format is defined through the
Design Format function of the Screen Design Aid, through the
Design Query Application function of the Query facility, and the
design data entry application function of the Data File Utility
(DFU).
When a function displays the contents, attributes, or status of an
object, the user often wants to change it, ask for another piece of
information, request another operation against it, or request an
operation against one or more other objects identified as part of
the information. By allowing such a request directly from that
display, the user gains the following benefits:

The user does not have to request another display to enter the
request.

The user does not have to write down the information to
remember it until the request can be entered on a subsequent
display, thus not only making the task easier but less error-
prone.

The request requires less keying than if it were entered on a
more general display because the user needs only to enter a
number next to the item to be operated on or to press a special
function key. The number or key identifies the desired opera-
tion. No keying is necessary to identify the target because the
location of the number or cursor identifies it.

If multiple objects are displayed, some key operations may be
requested on one or more objects, greatly reducing keying
time and saving the multiple interactions involved from
having to exit to a command entry display and enter multiple
individual requests.

The effectiveness of this approach can be seen by requesting a display
of submitted jobs as shown in Figure 12.

From this display the jobs can be canceled, held, or have additional
information requested about them. For example, if a two is entered

IBM SYST J & VOL 21 ® NO 4 e 1982 BOTTERILL

interactive
displays

back up/change

Figure 12 Example of a display of submitted jobs

next to the third job, the display of spooled ouput files is shown
(Figure 13).

From this display, a user can display the content of one or more files,
display the attributes of one or more files, and hold, release, or cancel
one or more of the spooled files. Any of these functions can be
requested by keying in the option number listed at the bottom of the
display. The user is in complete control without having to exit or enter
any commands or parameters.

In end-user functions such as Data Entry, Source Entry, and Query,
the HELP key is supported for each display. The resulting help text
explains the purpose of the display, what can be done from the
display, and how to do it.

Any time an error message is displayed, the cursor can be placed on
the message in question, and the HELP key can be pressed to receive
an expanded description of the condition and a description of what
can be done. It is seldom necessary to consult a message manual.

The user can normally back up to the previous display. By simply
pressing a function key in a sequence of output displays, the user may
request to go back and see the previous display again. The user can
move back and forth through the sequence as desired.

In a sequence of input displays, the same function key can be pressed
to go back and see previously entered values or even change them.

BOTTERILL IBM SYST J ¢ VOL 21 ¢ NO 4 o 1982

Figure 13 Example of a display of spooled output files

The user can change his/her mind any time prior to a function
actually being performed. At any time the user can conveniently
change entered values, proceed forward again, go back further, or
exit the function.

Concluding remarks

The System/38 user interface was explicitly designed from the
outside in to meet the defined usability requirements for the system.
System-wide design approaches were adopted and used in the inter-
face design. A strong attempt was made to give it a coherency and
consistency that would improve learnability. The coherent design
chosen sought to capitalize on both new and proven user interface
design principles and approaches.

One major approach was to minimize the number of user interfaces.
Three system-wide user interfaces are provided: a single control
language for use by the operator and programmer to request exter-
nalized system function, a single data description interface to define
device and data base data, and an interactive display interface with
display formats designed for all three major user types—program-
mer, operator, and end user. All of these types of users benefit from
the integrated design of the System/38 with system-wide user
interfaces designed for ease of use.

The programmer benefits because his/her productivity is increased.
So that businesses need not add additional staff, we sought to

IBM SYST J e VOL 21 ® NO 4 e 1982 BOTTERILL

eliminate those tasks that require greater programming expertise.
We concentrated effort on each of the areas that require expertise
and large portions of a programmer’s time and that thus sap his/her
productivity. We were convinced that without an all-out effort in the
base design, the System/38 would turn out to be just another system
with more function and less ease of use.

The programmer in particular benefits from the object orientation
because his/her requests correspond directly to what he/she must
accomplish. It is not necessary to learn, remember, experiment with,
and later maintain a low-level means to indirectly bring about the
correct results.

The programmer is freed from having to know the system internals in
order to debug programs. System/38 supports an interactive debug
capability that allows the user to step through any program, even
production programs, to monitor variable values, and to change
variables without requiring any hooks to be put into the program.
This capability also eliminates the need to predefine where debugging
is necessary and the need to compile and recompile to put in, and later
remove, the hooks.

The validity checking assists the programmer in two ways. First, it
helps to get the work right the first time and eliminate costly repeated
attempts. Second, because system validity checking of application
display input commands can be used, the programmer is relieved of
having to code his/her own for the applications he/she writes.

The single control language allows the programmer to install, config-
ure, operate, test, and define applications through a single set of
commands. Any function added by a new release or obtained from
other sources can be invoked through a command. All the ease of use
of command prompting and validity checking is available to any
application by defining a command. Programs can be written directly
in CL, or individual CL commands can be executed directly out of any
high-level language program. The programmer does not have to learn
assembler language to make use of system function.

The system provides a data base where data is defined through a
simple forms interface, where like fields only need to be described
once, and where interrelationships of fields are defined by using
simple references to file names and field names. The high-level
language supports references to these already-defined records and
automatically extracts the definition of defined variables for each
field. This capability makes it possible for the programmer to directly
access each field as a variable.

Finally, a complete set of interactive facilities is provided for the
programmer, with the Programmer Menu at the center. The pro-
grammer can interactively design data entry applications, design

BOTTERILL IBM SYST J 9, VOL 21 ¢NO 4 41982

query applications to produce reports from the data base, update
program source code, design interactive display formats, and submit
jobs. Desired information is carried over from option to option so that
there is a logical flow during the workstation session. Although the
individual functions were not described in this paper, the design
approaches that are presented were used in their design.

Feedback from customer surveys, user conferences, and customer
visits indicates that System/38 has made significant strides in the
area of programmer productivity and ease of use. The high-level
consistent interface, centered around the Programmer Menu and the
Control Language, has been one of the major contributors to this
success.

The system operator has benefited in several ways. Clearly, the single
control language, command prompting, and validity checking that
provide ease of use for the programmer apply to the system operator
as well.

The System Operator Menu gives the operator access to the com-
monly used operator functions. It allows the operator to conveniently
request the interactive selection displays from which he/she can
manage the work in the system.

For the end user, a computer is easier to use if he/she sees only the
displays and messages that relate to the applications being used. To
the extent that “system stuff” intrudes on that application/user
relationship, the ease of use for that end user suffers. The System/38
provides several ways for the applications programmer to insulate the
end user from the system.

At sign-on, an application program can be called from the user profile
associated with the password. The first display the user sees is his/her
first application display.

The menus and prompts needed by the end user can be easily
provided by the application programmer through Data Description
Specifications or the Screen Design Aid menu-prompt facility of the
interactive interface. As a result of these definitions, the system
provides for validity checking of user input, presentation of messages,
appropriate control of keyboard shift, and control of optional device
features, such as reverse image and display size, allowing the user to
benefit from their use wherever possible.

A menu is provided for end users, called the Program Call Menu. It
supports viewing messages, calling a program, sending a message to

the system operator, and signing off.

In general, most of the design approaches adopted have been noticed
and greatly appreciated by users of the system. The advances in

IBM SYST J ¢ VOL 21 @ NO 4 ¢ 1982 BOTTERILL

consistency, congruence, and attention to careful interface design
have resulted in significant positive user reaction. In many cases the
system has raised the level of ease of use that users consider necessary
or possible. In other cases users react with “of course, that is the way
it should be,” or “why don’t you improve this area’s ease of use too?”
As the use of computers increases and more and more users who are
not data processing professionals join the ranks of computer users,
their expectations and the need for ease of use will continue to rise.
This means that current user interface design approaches must be
further refined and completely new approaches and technologies
must be developed in order to continue the advancement in the
usefulness of computers.

ACKNOWLEDGMENTS

The author acknowledges the significant contributions to the Sys-
tem/38 user interface design made by David Peterson, the software
human factors engineer assigned to the System/38. He worked with
the author throughout the primary design period. Mr. Peterson also
served as a key contributor and reviewer for this paper.

The author also recognizes the component team leaders for their
concern for usability in the design of their portions of the system and
the members of the Design Control Department for their cross
component attention to usability and coherence of the system.

Special thanks are due to David Harvey, Design Control Department
manager, for his continued support for usability, for his standard of
excellence for this as well as the other key factors in the design of the
system software, and for serving as a key reviewer for the paper.

CITED REFERENCES

1. J. Crane, “Trends in DP budgets,” Datamation 27, No. 5, 140 (May 1981).

2. L. Runyan and W. Schatz, “Application development,” Datamation 27, No. 3,
165 (March 1981).

3. D. E. Peterson and J. H. Botterill, “System/38—An IBM usability experience,”
Proceedings—Human Factors in Computer Systems, Conference, Gaithersburg,
MD (March 15-17, 1982).

. K. W. Pinnow, J. G. Ranweiler, and J. F. Miller, “System/38 object-oriented
architecture,” IBM System/38 Technical Developments, 55-58,G580-0237, IBM
Corporation; available through IBM branch offices.

. J. C. Thomas and J. M. Carroll, “Human factors in communication,” IBM
Systems Journal 20, No. 2, 237-263 (1981).

. D.G. Harvey and A. J. Conway, “Introduction to the System/38 Control Program
Facility,” IBM System/38 Technical Developments, 74-77, G580-0237, IBM
Corporation; available through IBM branch offices.

. B. Shneiderman, Software Psychology, Winthrop Publishers, Inc., Cambridge,
MA (1979).

. A. Reed, “Error-correcting strategies and human interaction with computer
systems,” Proceedings—Human Factors in Computer Systems, Conference,
Gaithersburg, MD (March 15-17, 1982).

. J. H. Botterill and W. O. Evans, “The rule-driven Control Language in System/
38,” IBM System/38 Technical Developments, 83-86, G580-0237, IBM Corpora-
tion; available through IBM branch offices.

422 BOTTERILL IBM SYST J & VOL 21 @ NO 4 » 1982

10. G. W. Furnas, L. M. Gomez, T. K. Landauer, and S. T. Dumais, “Statistical
semantics: How can a computer use what people name things to guess what things
people mean when they name things?,” Proceedings—Human Factors in Com-
puter Systems, Conference, Gaithersburg, MD (March 15-17, 1982).

. J. Martin, Design of Man-Computer Dialogues, Prentice-Hall, Inc., Englewood
Cliffs, NJ (1973).

. S. E. Engel and R. E. Granda, Guidelines for Man/Display Interfaces, Technical
Report TR 00.2720, IBM Corporation, Poughkeepsie, NY (1975). (ITIRC No.
T6A 00235).

. D. E. Peterson, “Screen design guidelines,” Small Systems World 6, No. 8, 19
(February 1979).

. D. Gilfoil, “Warming up to computers: A study of cognitive and affective
interaction over time,” Proceedings—Human Factors in Computer Systems,
Conference, Gaithersburg, MD (March 15-17, 1982).

GENERAL REFERENCES

The following publications from the IBM Corporation are available through IBM
branch offices.

IBM System/38 Control Language Reference Manual, SC21-7731.
IBM System/38 Control Program Facility Concepts Manual, GC21-7729.
IBM System/38 Control Program Facility Programmer’s Guide, SC21-7730.

IBM System/38 Control Program Facility Reference Manual—Data Description
Specifications, SC21-78606.

IBM System/38 Data File Utility Reference Manual and User's Guide, SC21-7714.
IBM System/38 System Introduction, GC21-7728.

IBM System/38 Query Utility Reference Manual and User’s Guide, SC21-7724.
IBM System/38 Screen Design Aid Reference Manual and User’s Guide, SC21-7755.

IBM System/38 Source Entry Utility Reference Manual and User’s Guide, SC21-
7722.

IBM System/38 Technical Developments, G580-0237.

The author is located at the IBM System Products Division head-

quarters, 44 S. Broadway, White Plains, NY 10601.

Reprint Order No. G321-5174.

IBM SYST J ® VOL 2t @ NO 4 e 1982 BOTTERILL

423

