
This paper is a discussion of the rationale behind the design of the
software user interface of the Systeml38. It presents the design
approaches used to produce a highly usable interactive system. The
three primary system user interfaces are also presented, showing
how the approaches were used in their design.

by J. H. Botterill

Although advancing technology is making systems that are more and
more complex available to the users of small systems, the interface
between the user and such systems cannot become correspondingly
more complex. Instead, the interface must become easier to use so
that more people and companies can take advantage of the richer
function provided by the new technology. In the small-business
environment, in particular, it is crucial that new systems be usable by
the current staff of the business and not require the addition of new
and sophisticated data processing expertise. Personnel costs already
comprise 45 to 50 percent of most data processing budgets,' and thus
it is important to minimize such costs.

In the past, much of the perceived ease of use of smaller systems was
due to their limited function and to the fact that their users were
primarily professional programmers, operators, and data entry
clerks. These users were able to learn to use the system interfaces
because they were trained as data processing personnel and the
interfaces involved only a relatively few functions. Today, with the
need for interactive systems and up-to-date data, both the personnel
and the interfaces have changed. First, functional requirements have
increased to include things like data base, communications, security,
and workstation support. Second, more and more end users want to

0 Copyright 1982 by International Business Machines Corporation. Copying in printed
form for private use is permitted without payment of royalty provided that (1) each
reproduction is done without alteration and (2) the Journal reference and IBM
copyright notice are included on the first page. The title and abstract, but no other
portions, of this paper may be copied or distributed royalty free without further

republish any other portion of this paper must be obtained from the Editor.

384 BOTTERILL IBM SYST J VOL 21 NO 4 1982

output requirements of jobs they did not submit, and with which
they may not be familiar. These requirements include special
forms, diskettes, tapes, and output distribution, as well as the
general backup and recovery of on-line data.

3. Increase ease of use for the end user who is not a data processing
professional by giving the programmers what they need to
conveniently produce easy--to-use applications for the end users.
In addition, provide the end user a simple way to request
applications, enter data, and request reports from the data base.

This paper addresses the user interface design approaches used in
developing a system to meet these requirements, concentrating on
general system-wide approaches and not specific approaches within a
particular function. The emphasis is on how the user interface was
intentionally designed so as to be easier to learn and use than systems
with a comparable level of function. Rather than having a different
interface for each type of function, with its own design approach and
rationale, the System/38 has a coherent interface design across the
entire set of system and utility function that is intended to be
conceptually simple and consistent. Not described is another impor-
tant element of designing usability into a computing system-the
development process. The development process and controls used to
ensure that the approaches and standards were adhered to are
discussed in Reference 3.

Some of the design approaches followed were

Using an object orientation
Expressing functional requests in terms of a verb acting on an

Hiding the internals
Minimizing the number of different interfaces and making them

Ensuring a high degree of consistency within and between all

Optimizing for the simple and normal

object

system-wide

interfaces

These and other approaches are described in the rest of the paper,
followed by a brief discussion of the three primary user interfaces to
the System/38, showing how the usability design approaches were
used in their design.

General approaches

Object orientation

One of the approaches is the use of an object-oriented design. Objects
are the means by which information is stored and processed. They are
named collections of data and attributes that are visible at the user

386 BOTTERILL IBM SYST J VOL 21 NO 4 I982

interface. The internal representation of the data and attributes is not
vi~ible.~ The functions of the system operate on the external objects.

Prior systems have not been consistent in defining the visible entities
within the system on which operations could be performed. They were
at different levels and had little similarity in attributes. There were
low-level entities like data control blocks and storage itself, medium-
level entities like catalogs, and the higher-level entities like data files
and programs. These entities were acted upon by low-level assembler
and macro interfaces, a medium-level job control language, and
higher-level utility and language interfaces.

On the System/38 all visible entities are high-level objects. They
have an understandable external purpose and a set of useful attri-
butes which can be set by their users. They can be operated on by a set
of control language commands or by standard functions within the
high-level programming language^.^ The system manages the secu-
rity and integrity of the objects and their content.

Objects are like furniture. There are different types of furniture that
have different uses and characteristics, but all have fundamental
similarities. If you know that an item is a piece of furniture, you know
that it is movable and is used in a room, but you do not know its
specific purpose or attributes. Knowing that it is a chair or table tells
you those things. Similarly, knowing that something is an object
identifies it as being in the system, that it can be accessed by name,
and that it can be created, changed, moved, or deleted, among other
things. As for knowing its specific purpose or attributes, you must
know its type. The types of objects fall into one of the following four
groups. If an object contains or allows access to data records, it is
called a file. If it is invoked to perform processing, it is called a
program. If it is descriptive, it is called a description. If it is a waiting
line, it is called a queue. Table 1 lists these groups of objects along
with examples of objects within each group.

The functions provided include some that are object-type-specific and
others that are generic and operate on multiple object types. The
object-type-specific functions primarily deal with the attributes of a
particular object type. An example of an object-type-specific function
is a create file function which defines a file and the attributes that
pertain to a file. The generic functions operate on multiple types of
objects. An example is the save object function that saves many types
of objects.

Objects are brought into existence through a create command that
defines the name, attributes, and initial value or values for the object
being created. Each object is assigned a type that is determined by
the object’s specific purpose and corresponds to its create command,
for example, Create Output Queue or Create COBOL Program. After
an object is created, it remains on the system until it is explicitly

IBM SYST J VOL 21 NO 4 1982 BOTTERILL

File File
Physical data base file
Logical data base file
Display file
Printer file
Tape file
Communications file

Program Program
Control Language program
RPG program
COBOL program

Description
Device description
Line description
Subsystem description
Job description
Edit description

Queue
Job queue
Output queue
Message queue

Data and data description

Processing description

Device attributes
Line attributes
Subsystem attributes
Job attributes
Editing attributes

Jobs
Output files
Messages

deleted by a delete command. During its existence, only operations
that are valid for that type of object are allowed to be performed on
the object. Only users who have authorization for the specific object
and for the specific operations can perform them.

The key advantage of the object orientation is that the users only see
and specify attributes that are meaningful externally. The internal
structure and actual storage occupied by the information are hidden.
Users do not have to know if a given object is implemented as multiple
data structures or as one. They do not have to know nor can they get
at the offsets or internal representation. For example, a data base file
is made up of four machine object structures: a space, a cursor, a data
space, and a data space index (see Figure 1). The system manages the
individual pieces of the file in a way that allows users to perceive the
file as a single object.

To minimize user learning, each type of object is designed similarly.
Users need not start all over again to learn about a new object’s
design or use. Instead they can expect the new object to have a design
similar to those with which they are already familiar.

This similarity relates to both the basic attributes of objects and the
common operations that can be performed on them. Each object has a

388 BOITERILL IBM SYST J VOL 21 NO 4 1982

help them and is under their direction. The user interaction needs to
be designed with an “action against object” orientation to meet this
need. Action requests, and text describing action requests, need to
begin with a simple verb and be followed by the identification of the
object of the action. Examples are Create Document, Clear Diskette,
and Copy File.

Thomas and Carroll have studied the importance of hierarchy in
producing a more usable command l a n g ~ a g e . ~ Hierarchical com-
mand languages have multiple structural elements that are combined
in a fixed way. A verb-object scheme is a dual-level hierarchy.
Thomas and Carroll report that people rate hierarchically consistent
command languages better than those that are not hierarchical. They
found that people learn hierarchical command languages more
quickly and that the frequency of some types of errors was reduced by
using a hierarchical command language.

On System/38 the requests to perform operations on these objects
come through a control language, interactive display responses, and
command keys. The system-provided control language commands
have names based on a verb-object hierarchy. A command exists in
the Control Language for each function. Examples of commands of
an operational nature are

Start Diskette Reader
Cancel Job
Hold Job
Display Active Jobs

Examples of commands of a programming nature are

Create COBOL Program
Copy File
Edit Source

Examples of commands of an end-user nature are

Display Data
Change Data
Design Query
Query Data

Where appropriate, options on the commands are also named using
the verb and object approach. For example, on the Copy File
command there is a parameter to specify whether or not to create the
target file, and it is prompted on the display screen as “Create file?”
The corresponding command keyword is CRTFILE(*YES or *NO). The
keyword is formed by concatenating the abbreviation for create
(CRT) and “FILE.” The values are YES and NO with an asterisk prefix.
The asterisk is used to distinguish the option values from user-defined
names.

BOTTERILL IBM SYST J VOL 21 NO 4 1982

Figure 2 Verb-object design

VERB-OBJECT REQUESTS

FILES PROGRAMS DESCRIPTIONS QUEUES

The system-provided user menus are also verb-object oriented. For
example, some of the options on the Program Call Menu are the
following:

Call program
Display messages
Send message

Some of the options on the programmer menu follow:

Create object
Submit job
Display submitted jobs
Edit source

Further details about these menus are provided later.

Command function (CF) keys supported on the display workstation
can also request function. They are labeled with the actual command
mnemonic which is a verb-object form or, if no command exists, by
verb or verb-object text. For example:

CF6”DSPMSG (Display Messages)
CF7-DSPSBS (Display Subsystem)
CF3-Fold/Truncate (The displayed data is the implied object)
cF5-Redisplay (The displayed data is the implied object)

In these ways requests for function are designed to appear as a
verb-object request against a set of high-level objects. Figure 2
illustrates this design.

Hide internals

In contrast to most prior systems, assemblers and internal dumps are
not considered essential or desirable features for the System/38.

~ Internal system implementation is hidden so that the user does not

1 IBM SYST J VOL 21 NO 4 1982 BOTTERILL 391

have to learn it. Needed function and information are provided to the
user at the external interfaces in a way that meets the usability
objectives described in this paper. The functions can be requested
through a standard user interface such as the Control Language (CL),
the Data Description Specifications, or the Interactive Displays.
Therefore, the programmer does not need to know the internal data
format to request a function using a low-level interface like a
supervisor call. He/she does not have to request dumps or load maps
to program or debug programs. A high-level debug facility is
provided to allow the programmer to find problems by using a level of
support equal to that used for writing the programs.

For example, a program named INVENTORY can be debugged by
entering an Enter Debug command:

ENTDBG PGM(INVENT0RY)

The programmer can request that the program, no matter whether it
is written in CL, RPG (Report Program Generator language), or
COBOL, stop at the statement labeled COMP by simply executing an
Add Breakpoint command specifying a standard statement label
within the program and the variables to be displayed, as shown:

ADDBKP STMT(COMPARE) PGMVAR(EMPNBR ACCT)

The contents of the variables in the program are displayed as

Variable: EMPNBR

Variable: ACCT
‘333333’

‘614-3614‘

The contents of the variable ACCT can then be changed by pressing
the CF3 key to get the command entry display and then keying in

CHGPGMVAR ACCT 316429

Execution of the program can then be restarted by keying in the
Resume Breakpoint command:

RSMBKP

Information that is in other objects, such as a device description, can
also be displayed or printed. It is returned in a form that can be used
directly by the user or reentered to recreate the same situation or
object.

In each case the internal structure and organization of the objects are
hidden from the user’s view. Information is made available in a form
that can be used by the user. The user requests are against objects,
not their internals or the system internals.

Minimize the number of user interfaces

In order to provide additional function, many previous systems
proliferated the number of specialized user interfaces. Each proce-

392 BOTTERILL IBM SYST J VOL 21 NO 4 1982

PROGRAMMER

OPERATOR n

High degree of consistency

Along with the diversity of interfaces, prior system user interfaces
have been characterized by inconsistency. Inconsistency is the natu-
ral outcome without a strong, explicit, well-managed effort. A strong
attempt has been made to make System/38 interfaces consistent.
Each interface is designed to be consistent within itself in every way
possible, including use, operation, naming, syntax, formatting,
ordering, grouping, and editing.

This consistency is carried across system interfaces where appropri-
ate. It includes the level of function (create, change, rename),
terminology, ordering, and defaulting. If the interfaces are of a
similar type, the consistency goes much further. For example, if two
interfaces use a keyword syntax, the values and keywords for like
options are alike. Similarly, like information presented on multiple
output interfaces is consistent. For example, the parameter order in
command input, in prompting, in publications, in display presenta-
tion, and in listing presentation is consistent.

IBM’S customers have greatly appreciated the consistency and in fact
rely on it. They therefore are quick to point out inconsistencies or
missing functions (e.g., a missing change command) that they have
recognized because of the prevailing consistency. Some of the cases of
missing functions are the result of normal development resource
constraints that are present in the development of any new system.
Each new release fills some of these perceived deficiencies and
corrects inconsistencies that are changeable without impacting oper-
ational compatibility for existing users.

The emphasis on consistency has definitely proven to be worthwhile.
The way users rely on it and the concern for exceptions point out the
need for continued attention to this design principle.

Early validity checking

Any time a user enters a request at a workstation that will be
processed at a later time, validity checking of the request becomes
very important. It should be unnecessary for the user to wait until the
time of processing to be told about an error in his/her request. If the
error is identified when a request is entered at a System/38 work-
station, messages are returned to the display where the invalid values
were entered. The user can then immediately correct erroneous
values while the prompt text, the list of valid values, and help text are
available. Errors are not ignored and values are not changed without
informing the user. All users can get what they want and know what
they get.

In addition to saving time, early and stringent validity checking
results in

IBM SYST J VOL 21 NO 4 1982 BOTTERILL

Improved learning. Users are informed immediately when they
make errors. Misconceptions are straightened out immediately,
not reinforced. Users learn by trying because they receive immedi-
ate feedback.
Reduced worry and uncertainty. Users always know whether a
function will be performed and have a high degree of confidence
that it will be performed correctly.
Straightforward understanding of what is used. A specified value
is not ignored or another value is not used without the definer
being aware of what is happening.
Easier problem determination. Errors are diagnosed immediately
where they are made. The users are made aware of errors while
they still understand the context, their own intent, and their 4
alternatives. Errors do not go unnoticed until the consequences are
great and both problem determination and error recovery are
more difficult.
A more reliable system. If an object is created, that object is
correct. This principle reduces the danger of unexpected failure
later if new, data-dependent paths are taken.

An attempt has been made on the System/38 to check the validity of
all input. For example, when a query is being defined, the specifica-
tions are validity-checked. When programming language input is
being entered, it is validity-checked to ensure later compilation.
When commands are being entered to define a batch job, they can be
optionally validity-checked to ensure that the job will not be rejected
at execution time. This aspect will be discussed in more detail later as
it pertains to the Control Language.

Optimize for simple and normal

An attempt was made to design the commands, displays, and listings
so that commonly used options or attributes are shown first and so
that specialized or less frequently used options or information are
only seen when needed. All options or attributes beyond the simple
base set are defined as optional choices.

This design minimizes the effort required to perform common
functions or find commonly needed information. Several specific
ways in which this principle has been applied on the System/38 are
described below:

9 Summary listings are provided by default, with options on the
command to get more detail. For instance, the Display Object
Description command defaults to one line of information per
object. The user can request a full listing of object attributes.
Summary displays are provided by default with one-line entries
for each item. An option can be entered in front of any entry to
request more detail. For instance, when the operator displays the
list of the spooled output files for a particular job (as shown later

396 BOTTERILL 1BM SYST J 0 VOL 21 0 NO 4 0 1982

tion requests. CL is, in many ways, a high-level language for perform-
ing system functions and application control. It can be compiled for
more efficient performance and supports variables of three data
types: character, decimal, and logical.

syntax As described in the article The Rule-Driven Control Language in
S y ~ t e m 1 3 8 , ~ the basic syntax of CL is simple and free-form. CL uses
the blank as the separator because it is a natural separator that is
common to all countries, unlike the comma, which is used as the
decimal point in many countries. The command name and associated
parameters can begin anywhere on the record, thus allowing indenta-
tion and parameter alignment. Each parameter has an associated
keyword that can be used to identify the parameter value. The
keywords may be omitted for the first set of parameters, and only
values need be entered if the user enters the values in a fixed
positional order. For example, the Copy File command is defined to
have the following form:

CPYF FROMFILE (file-name) ToFILE(fi1e-name) . . .
A request to copy File A to File B can be coded with keywords in
either of the following two ways:

CPYF FROMFILE(A) TOFILE(B)
CPYF TOFILE(B) FROMFILE(A)

The keywords can be coded in either order because the keywords
identify the values A and B. The same request can be coded
positionally without keywords. Then the values must be coded in the
order of the command definition shown above. For example:

CPYF A B

command The command names for system functions consist of verb-object pairs
naming made up from a small set of primarily three-character abbreviations.

In the above example, “CPY” is the fixed abbreviation for the verb
“Copy,” and “F” is the fixed abbreviation for the object “File.” The
rule scheme used to generate names throughout the system, including
the mnemonic name of command, keyword, and object names, is to
concatenate the abbreviations of each word in the descriptive name.
For example:

Create User Profile-CRT + USR + PRF = CRTUSRPRF
Delete User Profile-DLT + USR + PRF = DLTUSRPRF

Abbreviations other than the last one follow a rule scheme of taking
three representative letters from the word. These include the first
letter followed by two consonants. The consonants chosen are those
that are the most prominent in the pronunciation and those that are
most apt to distinguish the word from others. Other than an initial
vowel, vowels are not normally included. This is done to avoid
abbreviations that form a word in another language, possibly even a
word with an unacceptable meaning. Below are examples of abbre-
viations made up of three characters:

400 BOTTERILL IBM SYST J 0 VOL 21 NO 4 0 1982

Start STR
Diskette DKT
Reader RDR

By having abbreviations of a fixed length, it is possible for the control
language user to easily parse a name formed from multiple abbrevia-
tions and determine its meaning. For example, STRDKTRDR can be
recognized as STR + DKT + RDR, which is the command to Start
Diskette Reader. Without having such a rule, the command could be
interpreted as being formed from ST + RDK + TRDR or S + TRDK
+ TR + DR.

The last abbreviation in a name is sometimes reduced to less than
three characters to minimize keying. But it is only done if it can be
done consistently and does not produce any ambiguity in parsing the
abbreviations. For example, description is abbreviated D because the
object types are called descriptions and the word is always last, as
seen below:

DSPDEVD DSP + DEV + D Display Device Description
CRTJOBD CRT + JOB + D Create Job Description
CHGSBSD CHG + SBS + D Change Subsystem Description

Three-character abbreviations are used because two characters are
insufficient for uniqueness without using characters that do not relate
to the word being abbreviated. The set of abbreviations for words
across the system beginning with IN shown below illustrate how three
characters provide for sufficient uniqueness.

Initial INL
Initialize INZ
Integer INT
Invocation INV
Interval ITV

Using more than three characters results in names that are too long.

In a few cases, exceptions to the vowel rule were made because of the
strong precedence of common-use abbreviations that themselves were
already three characters. Examples are LIB for library, REF for
reference, REL for relation, and DUP for duplicate.

The examples in Table 2 describe this naming strategy more fully as
it applies to command names. The approach has proven to be very
extendable and rememberable. Users have found that they can
readily learn the names because the consistency is strict and the
command coding seems very natural.

Keyword names and value names frequently identify an object or
option and not an action. A single unabbreviated word is used for this
type of name wherever possible. For example, FILE, TYPE, OUTPUT,

IBM SYST J VOL 21 NO 4 1982 BOTTERILL

later be extended to support a user-specified object name.

This approach to naming results in consistent self-documenting
keywords and values without reserved name restrictions that would
be error-prone.

Each individual command is described to the system by the use of a command
Create Command function. The detailed description of each com- description
mand and its parameters is stored in a command description ~ b j e c t . ~
The object serves as a rule so that the command can have its validity
checked by a single command analyzer and interactively prompted
for by a single command prompter. The information includes:

Name of the command
Description of each parameter including keyword name, valid
values, prompt text, and a default value to be used if a value is not
specified for the parameter
Name of the program to perform the function
Identification of when the command is valid: interactive and/or
compiled environment

A Display Command function is provided to display the primary
attributes of a command description object. The prompter presents
the parameters and the acceptable values for them.

The Create Command is provided to allow a user to create commands
to invoke his own programs. These programs can be CL programs of
one or more other commands or high-level language application
programs. It allows the user to have the full benefit of the parameter
validity-checking, prompting, and defaulting facilities. In this way,
the customer can extend the command set to include personal
commands to invoke system-related functions or application pro-
grams. A study at Bell Laboratories indicates that allowing the users
to define their own commands is probably the only way to have
command names that are natural for more than 40 percent of the

As was discussed previously, early validity checking is a system-wide validity
strategy. On prior systems, control language validity checking of checking
syntax and values has usually been done at execution time prior to
actual data processing. In some cases, an early check of some type of
source has been done at source entry time. It has usually been a
separate checker, covering only noncommand, unique syntactical
errors like missing commas and unmatched parentheses.

On System/38 the command analyzer has the benefit of a command
description object which contains the full description of the command
necessary to do a thorough validity check.’ It can report errors in
keyword names, values, value type and value length, and interpa-

IBM SYST J VOL 21 NO 4 1982 BOTTERILL 403

rameter value conflicts. The validity checking is performed at
command execution time when a command is entered at a worksta-
tion, is executed within a batch job, or is executed within a CL
program.

It is performed during interactive command prompting as individual
groups of parameters are entered in response to system prompting
displays in either the source entry or execution environments.

It is performed at source entry time as commands are entered
through the source entry function to be put in a data base file for later
compilation into a CL program. Similar checking is done during the
compilation. I

A job option exists to have the CL commands validity-checked as the
job is placed on the job queue for later batch execution.

Because the validity checking is always performed by the same
command analyzer, based on the same command descriptions, the
user receives the same messages in each case.

parameter The System/38 control language utilizes a new, highly visible
defaulting defaulting approach.’ Most parameters are defined as optional. Each

optional parameter is defined with a carefully selected default. This
default is the value that is used if a value is not specified for the
parameter. Defaults are selected based on the most commonly used
value.

Using an approach with many defaults rather than requiring the user
to specify a value for every parameter helps the user by requiring less
keying and less knowledge. It requires less keying because only
special attributes need to be specified.

Less knowledge is required because users do not need to understand
all values available in order to choose one to perform the desired task.
They can let the parameter default and get the function up and
running. As learning progresses, they can change the values to tailor
them to meet special needs. For example, an output queue can be
created, and the number of job separators be allowed to default to
one. Later, if it is found that three would be better, the number can be
changed.

Many systems have used some form of defaulting approach. Several
problems have been common in these implementations that have
detracted from the strategy meeting the objectives stated above.

The first problem has been that the default taken is not what was
expected. On System/38, much of the mystery (what gets defaulted,
and when) is avoided by making all defaulting visible and well-
defined. The default value is one of the standard user-specifiable

404 BOTTERILL IBM SYST J VOL 21 NO 4 1982

or not it is the default. This benefit is important when the user knows
what he wants; the simplest thing for him to do is to just specify it.

Another problem that often accompanies defaulting is receiving error
messages as a result of the defaults. To minimize this situation, the
defaults in a set for a given function are carefully chosen so as to be
compatible with one another, resulting in a consistent, meaningful
action instead of error messages. In those few cases where there are
strong relationships between values for two parameters, a conditional
default is defined so that the parameter will default properly based on
the values specified on the related parameter.

parameter On many systems no interactive command prompting is provided.
prompting Some of these systems have on-line help text that can be requested at

any time. Although the help text reduces the need for use of
publications, it still requires the user to determine how to enter the
command using commas, parentheses, or other syntactical delimiters.
If the help text displays do not allow keying in of the command on the
help screens, the user must remember the instructions in the transi-
tion back to the input display. On other systems, the prompting
results in only one parameter value at a time and provides no way to
determine the valid values that can be entered. On still others, the
prompting is only available after the user makes an error.

As part of the System138 interactive display interface, which is
discussed in detail later, a system command prompter is available to
assist the CL user in entering commands. The prompting can be
requested by pressing a command function key while entering the
command. The same prompting is provided when entering a com-
mand interactively for immediate execution or entering a command
as part of a CL program for later use. The prompter identifies
parameters, defaults, and valid values so that the user can enter
commands without frequent reference to publications. The list of
valid values can be requested by keying in a question mark in the field
of interest. All the information necessary for this assistance is
obtained from the command description object.

Prompting can be requested at almost any time during the keying of a
command. The user can key in however much he/she knows and ask
for prompting if and when the need arises. In this way the interface
adapts to match the user level. The assistance is available for the user
needing it, but the assistance is not a frustration to the user not
needing it. The prompting uses however many lines are on the screen
of the device that is displaying descriptions and input fields for
multiple parameters at a time. Optional device features such as
reverse image are utilized to assist the user in error correction. Figure
4 shows a prompt display for three parameters of the Copy File
command. Beginning at line 3 there is a line per value with the text
description of the parameter followed by the keyword name, followed
by the input field for the value.

406 BOTTERILL IBM SYST J VOL 21 NO 4 1982

~~

1

Each input field is the length of the longest value supported for that
parameter. If the parameter has a default value, it is shown in the
input field. Defaults are named so as to be descriptive of the option
they represent. The CRTFILE parameter is shown in the example with
a default of *NO. That value can be accepted or keyed over with the
other valid value of *YES. The user can quickly review the command
parameters and their defaults and key in only the values that he wants
to change. (This is illustrated later in Figure 7.) In this way the user is
freed from having to specify parameter names or having to adhere to
special positional or syntactical requirements.

After the values have been keyed in, they are validity-checked, and
immediate feedback is given. In order to allow for easy error
correction, the display is reshown with the values in error reverse-
imaged, the error messages at the bottom of the display, the cursor on
the first value in error, and the keyboard unlocked ready for the user
to key in the correction. The user can correct one or more of the
erroneous values or change any other values and have those values
checked again. This process continues until the user and the system
agree that the command is ready for execution or entry into a source
file.

1

1

1

' In summary, the System/38 CL is designed to be a user interface
separate from the programs that provide the function. It is designed
to have a minimum of syntactical rules; thus, the commands them-
selves exhibit a high degree of consistency. When assistance is
needed, a command prompter is available to provide assistance in
entry of the command as well as to provide immediate feedback to

1 allow correction of incorrect specification. Surveys of end users and
their evaluation of System/38 usability indicate that both program-
mers and operators are happy with the ease of learning of the system
commands and with the ease with which they can be entered. The
prompting and consistency are almost always identified as the major
reasons for the System/38 CL being rated easy to use by a majority of
users surveyed.

Data Description Specifications

On previous systems, data in external storage has been defined by the
program accessing the data (input specifications in RPG 11, DECLARE
statements in PL/I) . Data on the System/38, in contrast, can be
externally described-that is, the description of files and formats is
external to the using program. It is stored in the file object. Just as
there is a single CL control interface to the System/38, there is a
single data description interface. This data description is accom-
plished via Data Description Specifications (DDS) written by the
application programmer or, in the case of display formats, defined
indirectly by simply laying out the display format interactively, using
the Screen Design Aid. DDS allows him/her to describe each file,
each record in a file, each field in a record, and the order of the fields.

IBM SYST J 0 VOL 21 NO 4 1982 BOTTERILL 407

There is a reduction in the amount of coding required in the
high-level language. The data description is coded only once, for
the file. The Data Description Specifications for display files can
include validity-checking parameters as well, thus removing the
need for validity-checking code in every program that uses the file.
It also results in system-provided early validity checking of data
entered through svstem or amlication disdavs.

attributes o r the addition of new fields to a file do not necessarily
require the recompilation of the using program.
The user has greater control over the naming and defining of data.
It is easier, for instance, to implement installation-wide naming
conventions.
Application documentation is improved. The user can define a text
description for each file, each record type in a file, and each field
in a record. This text is stored in the file description that is a part
of each file.
The owner of a file can secure specific sensitive fields by defining a
logical file that provides only the desired data, and then authorize
only the use of that logical file.
Record lengths and other file layout considerations are no longer
important design considerations. The specific character position of
a field in a record is not specified nor is the record length.
Different record types with different lengths may be in the same
logical file.

structure of the data.

These benefits are made available to the high-level language pro-
grammer. RPG and COBOL have been naturally extended to make use
of externally described files and to utilize system data base and device
data management through the standard language input/output con-
structs. This provides for simpler and more straightforward program-
ming than the approach of having to use external calls to system-
provided subroutines.

Interactive Displays

The interactive display interface provides a set of workstation
displays that allows the interactive user, who may be a programmer,
operator, or end user, to request functions and information to meet
his/her needs.

The displays are designed to be easy to learn and use, and every
attempt was made to follow the best available display design guide-

Each display is clearly titled on line 1 to identify its purpose and
confirm that the desired display was received. If the display requires
user action, such as selecting an option or entering values to define a

IBM SYST J 8 VOL 21 NO 4 1982 BOTTERILL 409

request, this is communicated by instructional text in line 2. The body
of the display is dedicated to the main purpose of the display, which
may be to present a menu of choices, a series of input prompts, or
output information. Messages are always displayed at the bottom.
Lowercase text is used to improve readability.

The interactive display interface is designed to require less user
knowledge and keying than the Control Language and Data Descrip-
tion Specifications. A separate input field is normally provided for
each input value; therefore, syntactical delimiters and keywords are
not needed to separate, delimit, or identify the values. The text
preceding each input field identifies the type of information the user
should enter in that field. Input fields are underlined to identify their
location and show the maximum length of the values accepted.

four Almost all displays fall into one of four basic types of display, each
display designed for a purpose. The consistency across displays makes the set

types of displays for all system and utility functions form a single interface
that operates under a single set of rules covering format, command
keys, messages, operation, and design philosophy. Thus, by learning
how to operate these four types of display, the user is able to operate
any one of the over one hundred system displays. The four types are
described below.

A menu allows the user to select a function from multiple alterna-
tives. Examples of menu formats are shown in Figure 6 .

A prompt requests one or more values to be entered in a simple
fill-in-the-blank format with each input field preceded by text
describing the value to be entered. It is shown in Figure 7. The first
display is a command prompt and the second display is a query output
prompt. The input fields often contain a default value that is used if
another value is not keyed in. These defaults minimize the need for
values being keyed in and allow most requests to be entered by keying
in only a few values. They are designed to be self-explanatory, for
example, *ALL or *NONE. The locations of input fields and their
lengths are clearly shown by being underlined, which corresponds to
the familiar fill-in-the-blank technique.

A columnar selection display presents multiple entries, each of which
includes the name of the entity represented and its key identifying
attributes. This display type is shown in Figure 8.

This type is a keystone of interactive ease of use of the Systeml38. A
one-character input field is provided in front of each entry. By simply
entering an option number in front of one or more entries, the
operation represented by that option is performed on the entities. The
requesting of functions by keying in only a single digit is thus made
possible. The location of the entered number completely identifies the
target. The valid options are described below the presentation area.

410 BOTTERILL IBM SYST J VOL 21 NO 4 1982

Figure 7 Examples of prompt displays

The final type is the labeled values presentation display. It appears
very similar to a prompt display in that each value is shown preceded
by text describing it. All values on this display are output only. By
using the Roll keys, the user can see all values not fitting on the initial

BOTTERILL IBM SYST J VOL 21 NO 4 1982

presentation of the display. The title indicates th !e type of inform

Figure 10 System Operator Menu

Figure 1 1 Programmer Menu

The System Operator Menu (Figure 10) is more command-oriented.
The Programmer Menu (Figure 1 1) is more task-oriented.

Both of these menus are working menus designed to be effective for
continuous use by experienced users. Values specified for one option

I B M SYST J VOL 21 NO 4 1982 BOITERILL

remain to be used for the next related option. For example, in Figure
11, Options 8, 3, and 4 are designed to be used together. By naming
the source member the same as the program to be created from it, the
program name, type of language source, and a text description can be
entered when selecting Option 8 to update the program source. No
further specification is needed to create the program and call it, using
Options 3 and 4.

Because it is usually necessary to identify the target of a function, the
menus are designed with an input area to identify the target and any
other required information. Therefore, it is not necessary to go
through a separate display to identify frequently entered values. If
the needed values are not entered, a message identifies the values that
are needed. After the function is complete, the user is back at his/her
familiar menu and is ready to perform another operation which might
involve the use of that same target. The values remain filled in for the
next operation. A set of values only needs to be entered once for a
sequence of operations requiring those values. This design makes the
menu interface effective for the experienced user who wants to do
only a minimum amount of keying for frequently requested opera-
tions.

Functions that require more extensive input result in prompt displays
with text identifying what input is needed. The text is in terms that a
particular type of user will understand.

Menus help the programmer and operator over the hurdle of getting
started. Some users prefer to use menus, others start with menus but
decide to switch to command entry.I4 System/38 allows this choice.
After understanding the basic functions provided on the menu, the
user can proceed to more advanced functions. Ways are provided to
enter a command on the menu or to request another display or menu
to request other functions. Through the use of the base functions, the
user sees how the system responds to requests. If the responses are
understandable and consistent, the user is left with a feeling of
understanding the system and a sense of confidence that might be
expressed as “I can even do those functions I have not tried yet.”

menu-prompt A set of menus and interactive prompt displays are provided for sets
front ends of function logically used together. The user does not need to use

commands for common use functions. These interactive packages of
menu, prompt, and presentation displays shield the user at the display
workstation from having to enter syntactically structured requests.
Instead, the user only needs to select from a list of choices or enter
values in labeled input fields. No keywords, parentheses, quotation
marks, or commas need be keyed in. Although the displays are nearly
self-instructive, help displays are available to answer user questions.

An example of such a set of menu and prompt displays is that 1
provided with the Data File Utility that supports creating, managing, ~

416 BOTTERILL IBM SYST J 0 VOL 21 NO 4 1982

Figure 13 Example of a display of spooled output files

The user can change his/her mind any time prior to a function
actually being performed. At any time the user can conveniently
change entered values, proceed forward again, go back further, or
exit the function.

Concluding remarks

The System/38 user interface was explicitly designed from the
outside in to meet the defined usability requirements for the system.
System-wide design approaches were adopted and used in the inter-
face design. A strong attempt was made to give it a coherency and
consistency that would improve learnability. The coherent design
chosen sought to capitalize on both new and proven user interface
design principles and approaches.

One major approach was to minimize the number of user interfaces.
Three system-wide user interfaces are provided: a single control
language for use by the operator and programmer to request exter-
nalized system function, a single data description interface to define
device and data base data, and an interactive display interface with
display formats designed for all three major user types-program-
mer, operator, and end user. All of these types of users benefit from
the integrated design of the System138 with system-wide user
interfaces designed for ease of use.

The programmer benefits because his/her productivity is increased.
So that businesses need not add additional staff, we sought to

IBM SYST J VOL 21 NO 4 1982 BOTTERILL

We concentrated effort on each of the areas that require expertise
and large portions of a programmer’s time and that thus sap his/her
productivity. We were convinced that without an all-out effort in the
base design, the System/38 would turn out to be just another system
with more function and less ease of use. I

The programmer in particular benefits from the object orientation
because his/her requests correspond directly to what he/she must
accomplish. It is not necessary to learn, remember, experiment with,
and later maintain a low-level means to indirectly bring about the
correct results. I

The programmer is freed from having to know the system internals in
order to debug programs. System/38 supports an interactive debug
capability that allows the user to step through any program, even
production programs, to monitor variable values, and to change
variables without requiring any hooks to be put into the program. (

This capability also eliminates the need to predefine where debugging
is necessary and the need to compile and recompile to put in, and later
remove, the hooks.

The validity checking assists the programmer in two ways. First, it ,
helps to get the work right the first time and eliminate costly repeated ~

attempts. Second, because system validity checking of application
display input commands can be used, the programmer is relieved of
having to code his/her own for the applications he/she writes.

The single control language allows the programmer to install, config-
ure, operate, test, and define applications through a single set of
commands. Any function added by a new release or obtained from
other sources can be invoked through a command. All the ease of use
of command prompting and validity checking is available to any
application by defining a command. Programs can be written directly
in CL, or individual CL commands can be executed directly out of any
high-level language program. The programmer does not have to learn
assembler language to make use of system function.

The system provides a data base where data is defined through a
simple forms interface, where like fields only need to be described
once, and where interrelationships of fields are defined by using
simple references to file names and field names. The high-level
language supports references to these already-defined records and
automatically extracts the definition of defined variables for each

I access each field a s a variable:

Finally, a complete set of interactive facilities is provided for the
programmer, with the Programmer Menu at the center. The pro-
grammer can interactively design data entry applications, design

I 420 BOTTERILL IBM SYST J VOL 21 NO 4 1982

IBM SYST J VOL 21 NO 4 1982 BOTTERILL 423

