
Design  and  use of a 
program execution 
analyzer 

Execution  analyzers are used to improve the per- 
formance  of programs, operating systems, and 
hardware systems. This paper  presents a general 
overview of  these tools, especially those designed 
for use by application programmers. The design 
tradeofis  of a wide variety of execution  analyzers 
are examined. In addition, the design and use of a 
new  execution  analyzer are presented;  its purpose 
is to assist in  the optimization of highly modular 
PL/I programs. 

A n execution analyzer is a tool for measuring 
specific details  about  the execution of pro- 

grams, for example, pinpointing where  a  program 
spends its  time,  identifying  what  program  paths are 
actually  executed, or identifying  what  subroutines 
are called. An execution analyzer  can reveal sur- 
prising facts  about  a  program that  a programmer 
can use to improve the program, sometimes dramat- 
ically. 

This  paper discusses the design of a  program execu- 
tion analyzer. A general definition of this class of 
software tools is presented,  and  a wide variety of 
techniques used by existing analyzers are surveyed. 
In addition, the design and use of a new program 
execution analyzer  that we call the Experimental 
PL/I Execution Analyzer (EPLEA)' are discussed. 
The purpose of EPLEA is to  support the optimization 
of execution time of highly modular PL/I programs. 
Experience with this tool is presented as  a  case 
study.  The casual  reader should gain a  better  under- 

by L. R. Power 

standing of the value and use of execution ana- 
lyzers. The general-purpose  architecture  and survey 
of techniques should benefit anyone designing a 
special-purpose execution analyzer or evaluating 
existing analyzers. The case  study should be of 
particular  interest  to PL/I programmers. 

Although  the  primary  intent of this  paper is to 
discuss execution analyzers for use by application 
programmers, many of the design tradeoffs dis- 
cussed apply as well to operating system perform- 
ance tools and  hardware  monitors.  Measurement 
tools for operating systems are readily available2"' 
and have received good coverage in the  litera- 
ture."-''  Hardware monitors have received less 
attention  and will be mentioned briefly. Many  more 
program execution analyzers have been dceloped 
than  are mentioned here.  This is certainly  a  testa- 
ment  to  their usefulness, but  it is also a  result of the 
wide variety of user requirements,  programming 
languages,  and system dependencies that they must 
deal with. In fact,  it is the need for a  unique 
measurement tool that has attracted  the  author to 
this area of research. 
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Four rather  different execution analyzers have been 
selected as examples for more detailed discussions. 
Two of them, TIME IT'^ and  the PL/I Execution 

Each  of these execution  analyzers 
reports its results  in a different 

manner,  and  each is tailored to a 
different use. 

Analyzer (PLEA),I7 periodically interrupt  a  program 
and record its  current  location. TIMEIT works for 
any  program,  whereas PLEA is specialized for PL/I 
programs. The Dynamic  Analyzer (DYNA)'82'9 and 
XI COUNT^^ trace a  program's execution, DYNA by 
modifying its  source code and XICOUNT by means of 
a  hardware assist. Each of these execution analyzers 
reports  its  results in a  different  manner,  and  each is 
tailored to a  different use. 

What is  an  execution  analyzer? 

In this section we characterize, in general  terms, 
what  sort of details are measured by an execution 
analyzer  and how the  requisite data  are reported 
and used. As the  name implies, an execution ana- 
lyzer involves both program execution and analysis 
of data or code. 

Programs have both static and dynamic properties. 
An execution analyzer is a mechanism for measur- 
ing a specific set of dynamic  properties of an 
executing program. Static properties  include pro- 
gram size, external  references,  static  link-edit  map 
(as generated by the OS/VS Linkage  Editor2' or the 
CMS  LOAD command22),  and  static call graph.23 
Dynamic  properties  include CPU and  storage usage, 
1/0 demand, paging behavior, and  dynamic  call 
graph.24  There is  no general way to  predict the 
dynamic  properties of a  program, which can  be 
measured only by actually  executing the  program. 
Static analysis  lacks the necessary performance 
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data, such as loop iteration  counts,  and even the 
most careful  estimates are often inaccurate. 

Execution analyzers divide the execution of a pro- 
gram  into such smaller units as  statements, pro- 
cedures, or user tasks, and  extract  and report 
measurements on these smaller units. Obtaining 
measurements may itself require a  rather detailed 
analysis of the program and its run-time environ- 
ment.25 For example, it  can be quite difficult to 
determine which procedure has control at each point 
during  the execution of a  large  program. An execu- 
tion analyzer often performs data reduction and 
analysis to  enhance  the usefulness of its reports. 
Here, for example, in addition to a detailed state- 
ment-by-statement report, an execution analyzer 
may aggregate data by procedure names to produce 
a  shorter  summary  report. 

The  output of an execution analyzer is a  report 
called an execution  profile. Typically in the form of 
a  table or graph,  an execution profile is designed for 
interpretation by a  programmer.  Its purpose is to 
assist a  programmer in making  changes that will 
improve such specific dynamic  properties of the 
analyzed  program as making the program  run 
faster. Use of an execution profile is a discovery 
process similar to program  debugging. A program- 
mer studies  an execution profile in conjunction with 
a  program listing to discover something that was 
previously unknown about  the  program.  This 
knowledge is then used to  tune  the program, usually 
by making relatively small  changes.  For an  operat- 
ing system,  this may mean discovering a bottleneck 
that  can be resolved by adding  additional I/O gear 
or by increasing data blocking. For an application 
program,  this may mean  identifying  an inefficient 
use of storage  that  can be  corrected by a minor 
algorithmic  change. 

There  are a  great  variety of execution profiles. The 
intended use of each is reflected in the type of data it 
collects and  its  style of presentation.  Figure 1 shows 
examples of execution profiles for TIMEIT, PLEA, 
DYNA, and XICOUNT. Each profile exhibits some- 
thing  about the execution of essentially the  same 
program.26  (See Appendix B for source code.) 
TIMEIT supports the optimization of execution time 
at  the machine  instruction level by using storage 
address  ranges (the left column of Figure  1A)  to 
identify  segments of code. PLEA supports  the  opti- 
mization of execution time for PL/I programs by 
reporting  its findings in terms of PL/I procedure 
names and  statement  numbers. DYNA supports  test- 
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Eigure 1(A) TlMElT execution profile 
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Figure 1(B) PLEA execution profile 
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Figure 1(C) DYNA execution profile 
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ing of FORTRAN programs by producing an anno- A design for an execution analyzer 
tated  source listing with statement  execution  counts 
and  conditional  branch  counts  appended on the  The outline of a  hypothetical  general-purpose exe- 
right. XICOUNT supports  measurement of subrou-  cution  analyzer is shown in Figure 2. We use this 
tine  path  lengths by reporting  actual  instruction design to  further  describe  the  four  analyzers  just 
counts  grouped by subroutine calls, where  each  call  mentioned. The design has  three component func- 
is represented by a box. tions that  are performed in the following order. 
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Figure 1(D) XICOUNT execution profile 
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First,  instrumentation is added to the  original  target 
program. The instrumented program is then  run 
under  the control of the execution analyzer. Finally, 
a report generator  creates an execution profile. 
Designing a  particular execution analyzer involves 
designing two  pieces, the execution profile and  the 
instrumentation mechanism. The execution profile 
addresses which dynamic properties are to be mea- 
sured,  and  the  instrumentation mechanism ad- 
dresses how to  get  the  measurement data. In prac- 
tice, it is necessary to balance these two  views. The 
details  and intricacies of programming languages 
and  operating systems often make  it difficult to 
obtain precisely the desired data. 

Model of program execution. Each execution ana- 
lyzer is designed to serve a specialized activity (e.g., 
program testing, program optimization, system tun- 
ing, or hardware design) and must operate within a 
particular set of system, hardware,  and program- 
ming language  constraints. To this  end, each ana- 
lyzer presents to its users an  abstracted model of 
program execution and uses a  measurement tech- 
nique appropriate to that model. TIMEIT and 
XICOUNT view program execution at the machine 
instruction level. In addition, XICOUNT recognizes 
subroutine calls based on standard linkage conven- 
tions.*’ PLEA and DYNA view program execution at 
the level of high-level language  statements for PL/l 
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C O N T R O L  FLOW 

O R T R  FLOW 0 

and FORTRAN, respectively. System  performance 
tools present a model of execution based on the  state 
of user tasks  and system resources (e.g., problem 
programs,  system  program, I /O devices, memory 
systems, etc.).” 

The design or use of any  particular  execution  ana- 
lyzer requires an understanding of its  underlying 
model of program execution and  its  measurement 
technique. The usability of an execution analyzer is 
determined  largely by  how natural  and convenient 
these  appear to its  users. For example,  one  expects  a 
PL/I programmer to prefer PLEA and  an assembly 
language  programmer  to  prefer TIMEIT because the 
different  terms  and  concepts used by each are 
familiar to these respective users. 

execution states  such  as “device active or idle” and 
“CPU active or idle.” Individual execution states 
have identifying attributes such as  instruction loca- 
tion for TIMEIT, and  statement  number  and proce- 
dure  name for PLEA. Although the sequence of 
execution states  occurs over time,  it does not by 
itself provide a  measure of time or resource  utiliza- 
tion. 

Execution states, along with their  attributes,  are 
used as measurement units, usually directly  but 
sometimes in groups. PLEA, DYNA, and XICOUNT 
use their execution states  directly for measure  units. 
TIMEIT collects all  instructions  executed within a 
range of storage  addresses,  forming  a single homo- 
geneous measurement  unit for a  group of instruc- 
tions. 

Measurement  techniques. Figure 3 illustrates two 
basic measurement  techniques, tracing and sam- 
pling. There  are also several varieties of sampling. 
Given an  ordered  sequence of execution states  as 
previously discussed, the measurement  technique 
defines an associated sequence of measurement 
events that  are identified by their  measurement 
units.  This sequence comprises the measurement 
data produced by an execution analyzer. 
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Figure 3 Tracing versus  sampling 
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For tracing,  each  and every transition  from  one 
execution state  to  the next is captured by the 
execution analyzer as  a measurement  event.  This 
gives a  complete  trace of the executing program. 
Tracing is, consequently, especially well suited  to 
program  testing  and  debugging. DYNA and 
XICOUNT both use tracing  as their  measurement 
technique.  Although  tracing  program execution by 
itself provides only an  approximate  measure of 
execution time  (e.g.,  statement execution counts), it 
can be supplemented with actual  timings  to provide 
precise measurements of execution time.  The pri- 
mary  disadvantages of tracing  are  the  large  amount 
of data and the associated processing time involved. 
Although  a misnomer, the  term event-driven  sam- 
pling is sometimes used to  describe the  tracing (or 
counting) of important  program  and system events 
such as 1/0 requests, page faults,  and various asyn- 
chronous activities. Most operating systems include 
some of these  measurements  as part of their 
accounting data. 

For sampling, the transitions from one execution 
state to the next are ignored.  Instead,  the  current 

execution state is observed (or sampled) from time 
to time. Each such observation becomes a  measure- 
ment (or sample) event. Just which states  are 
sampled  depends on the kind of sampling. The  term 
time  sampling (either periodic or random) is used 
when there is a known relationship between time 
and  the  sampling  technique.  Random  time  sampling 
has useful statistical properties that  guarantee  that 
the sampling  mechanism does not inadvertently 
synchronize with the program execution as it might 
with periodic time  sampling.  Such  a  synchroniza- 
tion, although unlikely in practice, would produce 
anomalous  results.  Sampling,  as  compared to trac- 
ing, generally provides less data  at correspondingly 
lower overhead. Provided a sufficient number of 
sample events are obtained,  sampling is a very 
effective  technique for performance  analysis. 
Heavily used portions of code are sampled  fre- 
quently while lightly used portions are sampled 
infrequently or not at all.  Time  sampling is also used 
to measure the  status of a  program, for example, 
with regard  to 1/0 waits and page waits. Within  the 
limits of resolution of the timing  mechanism, the 
number of sample events can be adjusted by varying 
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the  time  interval between them.  Time  sampling is 
rather easy to  implement in most operating  systems. 
TIMEIT and PLEA both use periodic time  sampling. 
The  primary  disadvantage of sampling is that  it 
lacks the  completeness of tracing. For performance 
analysis, however, this is generally a minor loss. 

The  instrumented  program. In  order  to  obtain  mea- 
surement  data,  the  target  program  must be aug- 
mented in some way. This instrumented  program 
contains  instruments  to  capture  measurement  data. 

A program may be instrumented by 
augmenting  source code, 

compiler-generated  object code, the 
run-time  environment,  the  operating 

system, or the hardware  system. 

It is the  instrumented  program  that is actually 
executed, not the  target  program.  This is important 
to note, because  the  instrumented  program  gener- 
ally does not have precisely the  same  properties 
(static  and  dynamic)  as  the  target  program. For 
example,  an  instrumented  program  may be larger 
and  take longer to  execute  than its target  program. 
The  degree of variation  depends  largely on the 
instrumentation  mechanism. 

A program  may be instrumented by augmenting 
source code, compiler-generated  object  code,  the 
run-time  environment,  the  operating  system,  or  the 
hardware  system.  Often a combination of these 
alternatives is employed.  This  augmentation  adds 
counters  and  monitor  code  to collect measurement 
data.  Other  static  information (e.g., procedure 
names)  can  often be taken  directly  from  the  source 
or object  programs. TIMEIT adds  a  small  monitor 
routine  to  the  run-time  environment. PLEA, in addi- 
tion to  adding  a  similar  run-time  monitor, uses 
augmented  object  code  to  obtain  statement  num- 
ber~.”.’~ DYNA augments  the  target  source  code by 
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inserting  counters  that  measure  the  frequency of 
statement executions. XICOUNT utilizes a hardware 
monitor  facility  supported by its  operating  system. 

Event  counting  and execution  profiles. Execution 
profiles are based on  counting  and  tabulating simi- 
lar  measurement events. Two  events are similar if 
they  have  the  same  value of some  particular  attri- 
butes.  For  example, PLEA counts events  with the 
same  statement  numbers  and PL/I procedure  names. 
Most  execution profiles produce a detailed  report of 
the  frequency of similar  measurement events. Often 
events are  counted  and  tabulated by several dif- 
ferent  attributes  such as by I/O events and  library 
subroutine  calls.  The  granularity of these  tabula- 
tions is determined by the  underlying  measurement 
units. 

A  report  generator  has two kinds of inputs: (1) 
measurement  data  and (2) various  tables  and  dic- 
tionaries  that  associate  the  target  program with 
these  measurements.  These  latter  data  may be 
obtained by static  analysis of the  target  program 
and  may  include  information  describing  the  target 
source  program  (e.g., FORTRAN statement  num- 
bers).  Advantage  can  often be taken of some exist- 
ing  facility  to  greatly  reduce  the need  for a new 
instrumentation  mechanism. A link-edit map is an 
excellent example  because  it provides a ready-made 
dictionary  correlating symbolic module  names  to 
storage  addresses.  A  number of execution analyzers 
exploit a link-edit  map or compiler listing as  a 
source of static  information. 

Referring  again  to  Figure 1, we can now state 
precisely what is being reported by each of these 
execution profiles. TIMEIT reports  counts of periodic 
time  samples localized by storage  address  ranges. 
PLEA reports  counts of periodic time  samples of PL/I 
statements identified by their  statement  numbers 
and  procedure  names. DYNA reports  counts of 
traced FORTRAN statements. XICOUNT reports 
counts of traced  machine  instructions  grouped by 
module  names as obtnined  from a link-edit map. 
Finally, we look at  the  graphic  techniques employed 
by these  four execution profiles: TIMEIT and PLEA 
use histograms; DYNA augments  the  source pro- 
gram listing; XICOUNT depicts nested procedure 
calls by means of a tree of boxes and optionally 
provides a histogram  (not  shown). 

These  four  examples  all focus on program  tracing  or 
execution time  measurement.  Indeed,  this is what 
most program execution analyzers do. Our design, 
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however, is general  enough  to  support  other  kinds of 
execution  analyzers,  such  as  one  that  traces  storage 
usage3' or one  that  samples  active  references  to  data 
structures. In practice, it is common for a program 
execution  analyzer  to  incorporate  some  measure- 
ments of the  operating  system  environment  as well 
(e.g., I /O or paging  activity). 

Design alternatives 

We have defined what  an  execution  analyzer is and, 
on the basis of four  selected  execution  analyzers, we 
have  noted  important  variations in measurement 
units,  measurement  techniques,  instrumentation 
mechanisms,  and  execution profiles. Appendix  A is 
a  table  summarizing  the  characteristics of an 
expanded list of execution  analyzers  that  are used in 
this  section  to  examine  more  detailed  design  trade- 
offs. Some of these  analyzers  are  available  commer- 
~ i a l l y . ~ " ~ ~  

To assist in this discussion, Figure 4 presents  a  more 
detailed  design of the  hypothetical  execution  ana- 
lyzer shown in Figure 2. In  addition  to  its  run-time 
state,  the  instrumented  program is shown  with  three 
additional pieces: probe,  extractor, and recorder. 
The  term  probe,  suggested by Cheatham34  to desig- 
nate  an  execution  analyzer, identifies the  most 
crucial  piece of our  design. The  extractor  and 
recorder are  sometimes of trivial  importance or are 
missing  altogether. 

The probe is added  to  the  target  program by the 
instrumentation  mechanism.  It  gains  control for 
each  measurement  and, in so doing,  implements  the 
measurement  technique.  The  extractor's  function is 
to  assemble  the  attributes  identifying  each  mea- 
surement  event. I f  the  measurement  unit  has  a 
complex  run-time  structure (e.g., a PL/I statement), 
extracting  its  attributes (i.e., statement  number  and 
procedure  name) is an  equally  complex process. All 
measurement  events  are fed to  the  recorder  either  to 
be  added  to  an  internal  table or recorded  onto 
permanent  storage for later processing.  In the  case 
where  all  sampled  data  are  maintained in storage, 
the  recorder  and  the  report  generator  may  be  com- 
bined. 

Instrumentation mechanisms. We  compare  three 
different  instrumentation  mechanisms:  source,  run- 
time,  and  hardware. 

Source  instrumentation. Source  instrumentation is 
usually  accomplished by a preprocessor  that  adds 
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statements  to  the  target  source  program.  These 
probe  statements  typically define and  increment 
counters  interspersed with the  target  code,  either  at 
every statement  or only at  branch  points.  Since  code 

With source instrumentation, only 
one external procedure-compilable 

unit-is instrumented at a  time. 

motion  can  affect  the  semantics of these  counters, 
compiler  optimization of the  instrumented  code 
cannot  be  used.  In  some  cases,  this  function is 
available  as  a  compiler  option,  such  as  the PL/I 
COUNT option.29  The  instrumented  program is 
usually  considerably  larger  than  the  target  program 
and  executes  more slowly. The  author  has observed 
an  increase of six hundred  percent in CPU time  using 
the PL/I COUNT option.  This  extreme  case  occurs 
when  the  counters  are  implemented  through  sub- 
routine  calls.  Direct  in-line  counting is more effi- 
cient.  With  source  instrumentation,  only  one  exter- 
nal procedure-compilable unit-is instrumented 
at  a  time.  Instrumenting  an  entire  system  requires 
recompiling  the  entire  system,  which is often 
impractical.  Moreover,  since  this  mechanism is 
source  language  dependent,  different  preprocessors 
are  needed  for  different  languages  and  their  vari- 
ants.  It is used with high-level languages only, and 
the  measurement  unit is usually  the high-level lan- 
guage  statement.  The  measurement  technique is 
that of tracing,  and  the  execution profile normally 
tabulates  the  count of statement  executions. 

Since  the  amount of CPU time  required for execu- 
tion of different  statements  can  vary  considerably, 
this  style of execution profile is not  the best  for 
performance  measurements.  This  limitation  has 
been addressed by several  analyzers. Both FOR- 
TUNE3' and ANATEMP36 estimate  the  execution  time 
for each  statement by source  analysis.  Only FOR- 
TUNE, however, couples  this  with an execution 
analyzer  using  tracing. APAT3' instruments  the 
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source  program so as  to  actually  measure execution 
time for each  statement. On some machines, the 
resolution of the timer is  not  fine enough for this 
technique. The distinctive  advantage of source 
instrumentation is that  the full trace of the execu- 
tion of a  program is of great value in testing  and 
debugging  and  can  report the  statements  that  are 
never executed. DYNA in particular promotes this as 
a  testing method to  ensure  that all program  paths 

There is considerable  variety in 
run-time  instrumentation  with regard 

to  measurement  techniques  and 
language  and  system  dependencies. 

have been executed  during  testing of a FORTRAN 
program. COBOLDAP38 provides similar  functions 
for COBOL programs. 

Run-time  instrumentation. Run-time  instrumenta- 
tion is accomplished by adding  a probe monitor 
routine  to  the  run-time environment of the  target 
program.  Generally the program need not be recom- 
piled and  can  contain procedures written in dif- 
ferent  languages.  There is considerable  variety in 
run-time  instrumentation with regard to measure- 
ment  techniques  and  language  and system depen- 
dencies. In addition to implementing the measure- 
ment technique,  a  run-time probe often assists in 
loading and  initiating the  target program. Both of 
these functions are highly system dependent. 

Periodic time  sampling is implemented  through 
system-provided facilities that cause  timer  inter- 
rupts. METER39 and PLEA use the MVS STIMER TASK 
fa~ili ty,~'  and TIMEIT and SPYTIME4' use the VM/SP 
virtual  interval  timer42  and  manage the External 
Interrupt P S W . ~ ~  Use of timer facilities by the 
analyzer normally preempts  their use by the  target 
program.  These  analyzers also use the MVS LINK (or 
LOAD)40 and CMS SVC 20242 facilities, respectively, to 
load and  initiate  the  target  program.  It is important 

to understand precisely how the system-provided 
timer facility works. For example, the VM/SP virtual 
interval  timer  cannot  accurately implement peri- 
odic time  sampling.  Instead of causing  its own 
interrupts,  the VM/SP virtual  interval  timer merely 
adopts  as  its own other system interrupts, in particu- 
lar those immediately following the  expiration of 
the requested time  intervals.  Thus,  actual  time 
intervals vary upwards from the  requested  interval. 
In both VM/SP and MVS, timer  interrupts may be 
postponed when they occur within supervisor rou- 
tines.  In  spite of these  timing distortions, the  ana- 
lyzers just discussed yield satisfactory  results. 

With  time  sampling,  the  time  can be either CPU 
time or real time. At  the end of each CPU time 
interval, the program is always observed to be 
executing some instruction in the program. The 
analyzers in the preceding paragraph use CPU time 
sampling. By contrast,  the end of a  real-time  inter- 
val may find the program in a wait state (e.g., 1/0 
wait, page wait, supervisor scheduler  wait). PROG- 
TIME,44 Problem Program  Evaluator (PPE),32,45 and 
the STROBE analyzer3* use real-time  sampling.  This 
can be implemented via the STIMER REAL facility4' 
or an  augmentation to the  operating  system. By 
observing the program  during wait states,  the PPE 
and STROBE analyzers  can  measure  and  report on 
1/0 device and paging activities, in addition to 
normal program execution. These  system-depen- 
dent  measurements are useful in optimizing 1/0 and 
improving paging behavior. Since both CPU time 
and real time  measurements  can vary significantly, 
depending on other  activities in a  time  sharing 
system, different  measurements should be com- 
pared only when they are taken  under  comparable 
system loading conditions. 

In general, the use of run-time  instrumentation 
disrupts the execution of the  target program less 
than  source  instrumentation.  That is, it  requires less 
additional  storage, less additional CPU time,  and 
little or no modification to  the program  itself. To the 
extent that time  sampling is used and  the system 
timer is accurate,  the resulting measurements are 
closer to  actual CPU usage. In practice,  these ana- 
lyzers are extremely effective in isolating the ineffi- 
cient portions of a program.  They are convenient to 
use, efficient, and above all they produce objective, 
hard  facts  about where a  program spends its  time. 

Several  analyzers have effectively combined instru- 
mentation for both tracing  and  time sampling-the 
Optimizer 111 analyzer3'  and GPROF46 are two 
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examples. Optimizer 111 combines time  sampling 
with statement  tracing.  The object code  output by 
the COBOL compiler is both automatically  opti- 
mized and  instrumented to trace COBOL statements. 
By counting  and  measuring (via time  sampling) 

Hardware  monitors are more 
commonly  used  for system tuning 

and  for hardware  and  system  design, 
but  they  have  similar  design 

tradeoffs. 

statement executions, this  analyzer exploits the 
strengths of both measurement  techniques. GPROF 
also uses time  sampling in conjunction with tracing. 
It  traces all  procedure invocations by calling  a 
monitor routine at  the  entry to each  procedure. 
These  calls are compiler-generated.  This  mecha- 
nism  is a form of software hook, typically used by 
debugging systems to gain control at particular 
statements within a  program.  The  Software  Mea- 
surement Tool (SMT)47 is a rather general attempt 
at using software hooks for tracing  and  analyzing 
the execution of programs. 

Hardware  instrumentation. Hardware  instrumen- 
tation is accomplished by putting  the probe into  a 
separate processor. This is the least invasive mecha- 
nism, leaving the source code, object code, and 
run-time environment unchanged.  Since  this mech- 
anism  requires special hardware facilities, it is 
relatively uncommon for program  analysis. Two 
rather  different  examples of program execution 
analyzers are noted. The XICOUNT analyzer uses 
the  System/370  Program-Event  Recording 
(PER)43.48 hardware (via the VM/370  CP  TRACE com- 
mand).49 PER is a built-in programmable  hardware 
monitor that supports the  tracing of the execution of 
either selected or all machine  instructions.  Unfortu- 
nately,  tracing at  the machine  instruction level 
generates  large  amounts of sample data, requiring 
considerable processing overhead. The use of PER 

also slows  down the machine  hardware considera- 
bly. A second example of hardware  instrumentation 
is the s p y s o  analyzer.  It utilizes one of the peripheral 
processors of the CDC 6000 series as a probe, which in 
effect implements periodic real-time  sampling of 
the  target program  executing in the main processor. 
This  causes essentially no disruption of the execu- 
tion of the  target program. 

Hardware monitors are more commonly used for 
system tuning  and for hardware  and system design, 
but they have similar design tradeoffs. A typical 
hardware monitor has an  array of high-speed hard- 
ware  counters  (registers) that  can be programmed 
in conjunction with boolean logic and clocks to 
count  signals  from  hardware  test points in the  target 
machine. The set of test points can be selected 
manually to monitor a wide variety of hardware 
activities, for example, to  identify the instruction 
types e x e c ~ t e d . ~ ' ~ ~ ~  Much like an 1/0 device, the 
hardware monitor itself may be  attached  to  the 
same or a  different  computer. 

The System  Performance  Monitor (SPM)53 is an 
example of a  hardware monitor that has been used 
like a  program execution analyzer (i.e., controlled 
by special codes from  the  target  machine)  to  help 
improve the code generated by compilers. In addi- 
tion to a  hardware probe, the Hybrid  Monitor 
System (HMS)54 has  a  probe  into  the target 
machine's  storage system and  a  set of fully pro- 
grammable high-speed processors. HMS is designed 
for performance  evaluation of complex multiproces- 
sor operating  systems. 

Data  extraction. Each  measurement is identified by 
its  measurement  unit  attributes (e.g., storage loca- 
tion, statement  number,  procedure  name), which 
are obtained  from  the  executing  program. For 
source  and object instrumentation,  they are usually 
identified implicitly by the  particular  counter  that is 
updated.  Other  instrumentation  mechanisms  re- 
quire more complex processing. TIMEIT and SPY- 
TIME, the simplest mechanisms, merely pick up  the 
location counter at  the point of the timer  interrupt 
and convert it to the  appropriate  storage address 
range  and place no requirements on the  structure of 
the program's run-time  environment. By contrast, 
PLEA uses the location counter,  the  call-frame  stack, 
and the PL/I statement  number  table to locate the 
procedure  name  and  statement  number for the most 
recently  executed PL/I statement.  Incidentally, the 
PL/I statement  number  table is accurate even  when 
code motion has  occurred  as  a  result of compiler 
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optimization. PLEA and METER examine MVS con- 
trol structures  to  obtain  information  about modules 
that  are dynamically loaded during  program execu- 
tion. In addition to this information, the PPE and 
STROBE analyzers  extract data from system control 
blocks concerning 1/0 activities  and various wait 
states. 

Poking around in language-dependent  and  system- 
dependent control structures at  arbitrary times  dur- 
ing program execution exposes an execution ana- 
lyzer to the possibility of program  interrupts, for 
example while trying to use an  address pointer that 
has not been properly initialized. PLEA protects 
itself against  this problem by setting  up  a  program 
interrupt  handler via the MVS SPIE fa~i l i ty .~ '  

Although using the program location counter  to 
identify the last  instruction  executed  seems trivial, 
it has some serious problems. In MVS, for example, 
simply finding the  interrupted location counter is a 
major  undertaking. Moreover, if the last  instruction 
executed was a  branch  instruction,  it  cannot be 
identified by the value of the  current location coun- 
ter. PLEA, assuming that branches are less frequent, 
always identifies the instruction  immediately pre- 
ceding the location counter.  This  causes  anomalous 
results at heavily executed branch points. Another 
approximation used by TIMEIT and SPYTIME is 
always to identify the next instruction to be exe- 
cuted.  This ignores the differences in execution time 
for different  instructions (e.g., a long move versus a 
short move or a  register  load). 

Data  recording. Measurement events must be 
stored  either in temporary  tables or in permanent 
storage. If temporary  tables  are used, some data 
reduction (i.e.,  counting)  can be done on-the-fly and 
later  dumped to permanent  storage or output 
directly as  the execution profile. There are four 
tradeoffs involved here: (1) the use of additional 
storage  during  program execution, (2) the use of 
permanent  storage, (3)  the effect of additional 1/0 
on the sampled  program or the sampling  technique, 
and (4) the ability to rerun  the  report  generator on 
the  same measurement data without having to rerun 
the execution analysis itself. If there  are several 
execution profiles with different options, it is highly 
desirable  to have a  permanent copy of the measure- 
ment data available for rerunning the report  gener- 
ator. For long execution analysis runs, some on- 
the-fly data reduction may be needed merely to 
reduce  permanent  storage usage. Finally,  certain 
programs may be especially sensitive to  storage use 

or 1 / 0  activity. TIMEIT and SPYTIME both use 
temporary  tables, from which TIMEIT produces its 
execution profile directly,  and which SPYTIME 
dumps to permanent  storage for later processing. 
PLEA and METER output  one record for each  mea- 
surement event and process the  resulting data with a 
separate  program. The tables of execution counts 
generated by DYNA, for example, are dumped  to 
permanent  storage at the end of program execution. 
This  can be a problem if the  program  fails  to 
terminate properly. 

Report generator. A  number of detailed execution 
profiles have already been presented.  From  our 
expanded list of examples, SPYTIME, METER, and 

The  summary profile quickly 
identifies the few detailed profiles 

that are of special interest. 

TIMEMAP55 use link-edit information for converting 
storage  addresses to module names. TIMEMAP is 
actually a  postprocessor  for TIMEIT. METER 
extracts  its  link-edit  information  directly from the 
stored version of the load module.2' The Optimizer 
111 and STROBE analyzers use compiler listings to 
identify high-level language  statements.  There  are 
two other styles of execution profiles: summary and 
predictive. Each  requires  additional processing by a 
report  generator. 

Summary  profiles. Execution analysis of a  large 
program  requires one or more hierarchical summa- 
ries, such as  a  summary by procedures  where  each 
procedure  has  its own detailed execution profile. 
The  summary profile quickly identifies the few 
detailed profiles that  are of special interest.  Another 
form of summary is structural in nature.  A  struc- 
tural profile distinguishes between resources used 
directly by a  procedure (or task)  and  those used by 
subprocedures (or subtasks) that were invoked by it, 
either  directly or indirectly. For CPU time  these 
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resources are called self-time and inherited time, 
respectively. The GPROF execution analyzer is 
designed especially to  report  self-time  and  inherited 
time. XICOUNT also distinguishes between self- and 
inherited  instruction  counts.  Another  feature of 
summary profiles is the ability  to  limit or expand 
the  amount of detail  (termed “zoom-in’’ and 
“zoom-out”). SPYTIME and XICOUNT provide con- 
trol over this  aspect. 

Predictive  reporting. After  studying  a  particular 
execution profile, one might like to know the effect 
of making  a  change  to the  target program  without 
actually having to implement the  change.  This 
would  be done by rerunning the report  generator 
with some additional  parametric data.  We call  this 
predictive  reporting. One known example of this is 
the computation of stand-alone  run-time  from data 
collected in a  time-sharing  environment.”  This is 
done in the report  generator by making  certain 
assumptions based on an  analysis of the measure- 
ment data.  There is a close similarity between 
predictive reporting  and the use by trace-driven 
simulators of measurement data  to predict the 
behavior of a  hypothetical  machine when executing 
the measured  program.56 

The EPLEA execution analyzer 

EPLEA was developed in support of a  research 
project called which is studying the use 
of data  abstractions.  Since  data  abstractions 
encourage  a highly modular design with a  super- 
abundance of procedure calls, it is of some  impor- 
tance  to know just how much  these  calls  cost. EPLEA 
was developed to measure  this overhead and  to 
assist in the general  optimization of PL/I code 
generated  from data abstractions. 

Requirements. EPLEA has several requirements not 
satisfied by existing execution analyzers. An indi- 
vidual procedure is normally optimized by making 
minor adjustments  to  its  implementation or by 
replacing  its  algorithm  altogether.  Such  changes 
are generally local to  a  procedure.  Optimizing  a 
large complex system of interrelated  procedures, on 
the  other  hand, often involves changing the  struc- 
ture of procedural  interdependencies, moving code 
across procedure  boundaries,  and  eliminating  some 
procedures  altogether.  To assist in this  style of 
optimization, we need execution profiles that  can 
summarize  large  numbers of procedures, show their 
interdependencies,  and  report both self-times  and 
inherited  times in a way similar  to that of  GPROF. 
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Measuring  the overhead involved  in using proce- 
dure calls  requires  additional  measurement attri- 
butes  to identify the relevant pieces of code (e.g., 
procedure prologues and calling sequences).  To  a 
lesser extent, we are also interested in library  sub- 
routine,  storage  management,  and supervisor ser- 
vice calls (primarily I/O). For usability, EPLEA 
profiles must be  in terms of PL/I constructs.  Ideally, 
EPLEA would  be used to predict the effect of making 
a  change  to the  target program, which requires 
accurate measurements of CPU usage. 

Design  and  implementation. Since the PLEA execu- 
tion analyzer comes close to satisfying  the EPLEA 
requirements,  its design was used as a basis for 
EPLEA. 

CPU time  inheritance was implemented by taking  a 
“snap  shot” of the  entire  call-frame  stack  at each 
timer  interrupt.”  The report  generator was pro- 
grammed  to  credit CPU time  to  the calling proce- 
dure and  tabulate  it in two ways-with respect to 
itself and with respect to  the  total program. For 
example, in Figure  5A, TEXTOU called TEXT- 
0U.WRITE in statement 95. This  subroutine 
accounts for 3 1 .O percent of total  program execu- 
tion time  and 88.7 percent of the time  taken  to 
execute TEXTOU. That is, TEXTOU inherits 88.7 
percent of its  time  from  TEXTOU.WRITE. 

Code-classification flags have been added to each 
statement to identify the underlying code as fol- 
lows: 

X In-line compiled code. 
P Prologue code (i.e., procedure  initializa- 

C Call/return sequence. 
L PL/I library  subroutine code. 
S Supervisor service (e.g., I/O) subroutine 

tion). 

code. 

call. 
blank Inherited from another PL/I subroutine 

These codes are also used  in all summaries.  Figure 5 
shows two examples of EPLEA execution profiles. 
Figures 5B and 1B are for the  same program for 
comparison with the original PLEA. The L and S 
codes implement  a special form of inherited CPU 
time  from  library  and supervisor subroutines, 
respectively. The S code pinpoints and  measures 
those statements responsible for 1/0 activity,  a 
procedure which has proved to be effective in opti- 
mizing 1 / 0  usage. For our purpose, the sum of P and 
C is used as a  measure of procedure  call  overhead. 
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Figure 5 (A)  EPLEA execution profile for prime number program; (6) EPLEA execution profile showing inherited time 
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An early version of EPLEA used periodic CPU time 
sampling under VM/SP. The VM/SP virtual  interval 
timer  distortions (discussed previously) exagger- 
ated  measurements for supervisor and PL/I library 
subroutines-depending on system load-because 
system interrupts are usually more frequent in this 
code. This problem was  solved by implementing  a 
weighted time  sampling, which adds  a weighting 
factor to each  timer  interrupt  proportional to its 
actual CPU time  interval.  This  factor is reported for 
each statemtnt  and also for summarized code classi- 
fications (in  parentheses). Note in Figure 5 that 

supervisor and PL/I library weighting factors  are 
generally lower than  the others. Statement 24 in 
Figure 5B is an interesting exception in that it is an 
OPEN statement  that is masked against  timer  inter- 
rupts for a relatively long period of time.  When all 
percentages are computed on the basis of weighted 
time  sampling,  these  measurements are quite  accu- 
rate. 

Two new summary profiles have been designed for 
EPLEA. With many hundreds of procedures involved 
in an execution profile, it is necessary to group  them 
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Figure 6 EPLEA summary of procedure groups 
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68. 2 
0. 0 
0. 0 
0. 0 
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0. 0 

0. 0 
0. 0 
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17. 0 
0. 5 
0. 5 
6. 0 
1.5 
7. 0 
0. 0 
5. 0 

13. 0 
1.0 

11.0 
37 .0  

*I*** 

**  

according  to some scheme. A procedure  group 
summary profile supports the grouping  require- 
ments, whereby measurements for a user-defined 
group of procedures are reported  under  a single 
name.  Figure 6 shows an  example of this in which 

In practice, the majority of code in a 
large system  has  very little effect on 

its overall  performance. 

the names on the left  represent  groups of proce- 
dures. For our purposes, this  feature  supports  the 
grouping of procedures by their data  abstractions. 
The second summary profile, termed  a calZ depen- 
dency  graph and shown in Figure 7, depicts  a 
dynamic  call  graph of the program.60  This  graph 
contains only those calls  actually  sampled by 
EPLEA. Each box denotes  a single procedure or a 

group of procedures. Lines entering at  the left of a 
box represent  calls  to the box, and lines leaving from 
the  right  represent  calls from the box. All of the 
numbers on this  graph  are percentages. The num- 
bers inside the boxes are self-times that (except for 
rounding  errors)  sum to 100 percent. The numbers 
outside the boxes are inherited  times,  and (except 
for rounding  errors) the sum of the inputs  to  a box 
always  equals the  sum of the  outputs plus the 
number inside the box. Each column of boxes  is 
ordered by descending percentage of CPU usage. An 
important use of this  graph is to  report  the  struc- 
tural dependencies between procedures, which is 
information not often  available elsewhere. 

User experience. Before presenting actual  results 
using EPLEA, we make  a few observations on the 
code optimization process. 

Performance  optimization and  current practice. In 
current  practice, questions of performance  mea- 
surement  and  optimization often receive no atten- 
tion at all.  When  they do, they are usually not 
addressed  systematically. Rather,  the answers often 
rely solely on experience and informed guessing. In 
the  case of PL/I, this  requires  expert knowledge 
indeed,6' involving knowledge of library  subrou- 
tines, data representations,  and data conversions. 
The  rare expert PL/I programmer with this knowl- 
edge tends  to  apply  it uniformly to all parts of a 
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Figure 7 EPLEA call dependency graph 
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program  regardless of need.  In practice,  the  major- 
ity of code in a large  system  has very little effect on 
its overall performance. Given the tradeoff  between 
optimization  and  maintainability, it may not  be 
cost-effective to  optimize  this code. 

The use of execution  analyzers  can significantly 
alter  this  practice. By concentrating on producing a 
correct, well-written  piece of software, most optimi- 
zation issues can be deferred  and  addressed  system- 
atically  later in the  development cycle. As  an 
unbiased  measurement tool, an execution analyzer 
allows  one to focus on those few areas of a  piece of 
software  that  have  the  greatest  potential  for 
improvement.  Regardless of methodology, an exe- 
cution  analyzer  can uncover inefficiencies that  often 
surprise even the most  skilled programmer.  Out- 
lined here  are  the  steps involved in using an  execu- 
tion analyzer for code  optimization: 

1.  Execute  the  original  program with the execution 
analyzer. 

2. Examine  the  summary  and  detailed profiles to 
locate  the  program  areas with the highest CPU 
usage. 

3. Using  the  program listings,  focus attention on 
these  areas  and  determine  whether a source  code 
modification will improve performance.  This 
may  require  an  in-depth  study of a few state- 
ments, possibly checking  to see what  the com- 
piler is generating. 

4. After  implementing modifications, iterate  the 
above  steps until further  improvements  appear 
too small to be justified. 

The first few iterations of this process  usually 
accomplish the lion’s share of possible improve- 
ments, usually involving only  a  very small  fraction 
of the  original  program.  Since  the  same  program 
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Figure 8 (A) Fragment of  EPLEA execution profile for the report generator; (B) EPLEA report generator code  before 
optimization; (C)  EPLEA report generator code  after optimization 
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34 1 HB=BOOL (HE. RE. ‘01  10 ‘E I : / X  f lccurnulate hash  X /  
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LENGTH ( N R M E I  T O  LENGTH (HSTRI  -2 BY 2 : / *  F I x e d  p a r t  X /  

00: RR=RR-8191: 
I F  RR>=8191 / X  Mod t o o  b ~ g ?  X /  THEN RR=RR-8191: 

EN0 : 

may  behave  quite  differently,  depending on its 
inputs,  a  variety of test  runs is recommended.  The 
total  performance  improvement is measured by 
observing total CPU time  “before”  and  “after,” 
without  the use of the execution analyzer.  Finally, 
execution profiles serve  as  documentation for the 
optimized  program. 

Use of EPLEA. As a  challenging  example,  the 
author  ran EPLEA against  its own report  generator, 
a PL/I  program skillfully implemented  according  to 
current  practice. A fragment of the  resulting execu- 
tion profile appears in Figure 8A. For large  mea- 
surement files, the loop in statements  334-342 
shown in Figure 8B used about 55 percent of the 

IBM SYSTEMS JOURNAL, VOL 22. NO 3, 1983 



Table 1 Details of typechecker performance improvements 

Seconds 
Algorithmic changes- 10 percent improvement 

Symbol lookup routine 0.7 
Input  file format 0.8 
Hash table dictionary 
TOTAL 

0.8 
2.3 

PL/I language usage-7 percent improvement 

(NOSUBRG) 
BIT( 1) ALIGNED 

0.5 
0.5 

Resident transient routines 0.5 
TOTAL 1.5 

Repackaging-45 percent improvement 

Multi-ENTRYs (8)  1.4 
In-line expansions (1 2)  5.3 
Partial in-line expansion ( 1 )  3.4 
TOTAL 10.1 

Procedure call overhead 

Original code 7.5 
Improved code 2.3 

(33 percent of original CPU time) 
(27 percent of improved CPU time) 

cPU time  (computed by summing the values 
reported for those statements).  This loop imple- 
ments  a hashing algorithm6* over strings  containing, 
among  other  things, PL/I procedure  names. The 
body of the loop hashes two characters at a  time 
with its  iteration  count fixed to a  maximum  length. 
A close examination of the body of the loop indi- 
cated that it was already highly optimized, offering 
no hope of further improvement. It was noticed, 
however, that  the number of iterations  through  the 
loop could be  reduced. The length of the  string  to be 
hashed had recently been increased to  support  a 
longer  procedure-naming  convention.  Shorter 
names were padded with blanks before hashing. The 
algorithm was modified to hash only the non-blank 
part, making it a  variable-length hashing algorithm 
as shown in Figure 8C. This modification reduced 
total CPU time by 48 percent.  Although  a relatively 
minor change,  this was a real algorithmic  change 
that could not have been done  automatically.  What 
EPLEA did was to focus attention on a  small  number 
of statements on the critical  path.  This experience 
mirrors that reported by K n ~ t h , ~ ~  where  the speed 
of his execution analyzer was doubled by applying it 
to itself. 

A  larger example, making use of the unique fea- 
tures of EPLEA, is the  optimization of the ADAPT 
typechecker.  This is a  small system of over 250 
highly modular PL/I procedures written in the  style 
of data abstractions. The iterative process just 
described was employed through twelve iterations 
over the course of one week without  a  detailed 
understanding of the original code. The improved 
system ran  about  three times faster  than  the origi- 
nal.  Table 1 outlines the kinds of changes that were 
implemented. In each  case,  a  concerted effort was 
made  to  apply  the  minimal  changes  to  the  original 
source code. In several cases the PL/I macro prepro- 
cessor was used to accomplish this.63 

The salient  features of this  example are  that  the 
repackaging  changes  accounted for most of the 
performance  improvements,  and  procedure call 
overhead was reduced by 69 percent.  These  results 
are more dramatic  than those previously reported 
for in-line  expansion^.^^ A  total of 21 small proce- 
dures were repackaged. ‘Eight procedures were 
merely converted from secondary  entry points to 
individual procedures. Twelve procedures were 
eliminated  altogether,  and  their code was expanded 
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Table 2 Summary of PL/I call overhead tests 

Test case Percent 

PLEATAB 
PLIDOC (without DRAW) 
TIDY 
LALR 
GREENPRT 
PROOFER 
PACKPTAB 
GRAPH (normal input) 
ADAPT 
PLOT (output of ADAPT) 
GRAPH (large input) 

Overhead 

2.6 
4.2 
8.1 

11.0 
11.3 
13.5 
17.8 
22.7 
25.0 
43. I 
62.5 

X 

47.4 
22.4 
57.0 
42.2 
74.5 
16.5 
28.0 
27.6 
26.5 
26.0 
22.8 

P 

1.6 
2.5 
5.2 
8.1 
9.1 

12.6 
11.1 
20.1 
19.8 
32.8 
53.5 

C 

1 .o 
1.7 
2.9 
2.9 
2.2 
0.9 
6.7 
2.6 
5.2 

17.1 
9.0 

L 

8.6 
15.5 
6.0 

34.4 
6.9 

16.5 
28.5 
25.8 
32.7 
22.3 

6.8 

S 

40.8 
57.7 
28.7 
12.2 
7.1 

53.3 
25.6 
23.6 
15.6 

1.6 
7.6 

in-line via preprocessor macros. One procedure was 
split into two parts,  one  part being expanded in-line 
and  the  remainder called as a  subroutine. The 
author believes that this  and  other  similar  examples 
demonstrate  the feasibility of optimizing PL/I code 
that is based on data abstractions. 

The optimized typechecker still has about  a 27 
percent procedure  call  overhead. It this  a  lot?  With 
the EPLEA execution analyzer,  this is an easy ques- 
tion to answer.  Table  2  summarizes  a series of 
measurements  made on PL/I programs  readily  avail- 
able on the author’s  computing  system. The  range of 
this  measured overhead is striking, from 2.6  percent 
to over 60  percent. The low-overhead programs 
have relatively simple  procedure call hierarchies or 
are dominated by I/o. The high-overhead programs 
use extreme  modularization or recursion. The in- 
between group of programs (i.e., 8-25 percent 
overhead) is quite diverse, including several large 
systems. This  group  probably  represents the normal 
range for PL/I overhead as defined here. 

Two other observations on these data  are: 

1. When  a  program is optimized, the percentage of 
overhead may very well increase, even though 
the program  runs  much  faster. The  actual over- 
head has not necessarily increased; it represents 
a  greater proportion of a  smaller  total. 

2. Program behavior can differ dramatically with 
differing inputs. The GRAPH test  cases are  the 
same  program with different  inputs. The pro- 
gram behaves quite  acceptably with one  input  set 
and very inefficiently with the  other. 

Concluding remarks 

We have presented a  general-purpose design for 
characterizing existing execution analyzers.  Several 
program execution analyzers have been discussed. 
Design tradeoffs concerning program  instrumenta- 
tion, data extraction  and  recording,  and  report 
generation have been discussed. A new execution 
analyzer, designed for use with data abstractions 
written in PL/I, has been described and  its use 
demonstrated.  It is clear that these tools can  make 
an  enormous difference in balancing  performance 
requirements with the advantages of this new soft- 
ware technology. New execution analyzers will 
undoubtedly be built  to deal with other  aspects of 
this technology such as  data representation  and 
storage  utilization. 
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Appendix A: Features  of execution analyzers 
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Appendix B 

Source  code  for  Figures lA, lB, and  5A 
Statement 

number 

1 PRIME: 
/* PRIME: Count  the  prime numbers between 1 and  10000. 

PROC OPTIONS(MAIN) ; 
2 N - 3 ;  /* Count  primes 1, 2,  and 3 .  
3 DO 1=5 T O  10000 BY 2 ; /* S t a r t   w i t h   5  f o r  t h e   r e s t .  
4 ISPRlME = 1 ; 
5 DO J = 3  TO SqRT(1) BY 2 ; /* Look f o r  d i v i s o r s .  

/*  Assume I i s  pr ime. 

6 ISPRIME = I -F lXED( I / J ) *J  ; 
7 I F  ISPRIME-0 THEN 

LEAVE ; /+ Found d i v i s o r ,  I not  pr ime. 

* /  

*/ 
*/ 
* /  

*/ 

*/ 
8 END; 
9 IF ISPRIME-=O THEN 

N = N+l ; /* Count  primes. * /  
10 END; 
11 
12 END; 

PUT EDIT (N I I ’  Prime numbers between 1 and 10000 . ’ ) (A ) ;  

Source  code  for  Figure 1D 
Statement 

number 

1 P R l M F .  
/* PRIME: Count  the  prime numbers between 1 and 20. */ 

_ ”  
/* Found d i v i s o r ,  I not   p r ime.  

*/ 
*/ 
+ /  
* /  

* /  
8 END; 
9 I F  ISPRIME--0 THEN 

N = N+l ; P Count  primes. * /  
10 END; 
11 
12 END: 

DISPLAY (N I I ’  Prime numbers  between 1 and 2 0 . ’ ) ;  
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