
Design and use of a
program execution
analyzer

Execution analyzers are used to improve the per-
formance of programs, operating systems, and
hardware systems. This paper presents a general
overview of these tools, especially those designed
for use by application programmers. The design
tradeofis of a wide variety of execution analyzers
are examined. In addition, the design and use of a
new execution analyzer are presented; its purpose
is to assist in the optimization of highly modular
PL/I programs.

A n execution analyzer is a tool for measuring
specific details about the execution of pro-

grams, for example, pinpointing where a program
spends its time, identifying what program paths are
actually executed, or identifying what subroutines
are called. An execution analyzer can reveal sur-
prising facts about a program that a programmer
can use to improve the program, sometimes dramat-
ically.

This paper discusses the design of a program execu-
tion analyzer. A general definition of this class of
software tools is presented, and a wide variety of
techniques used by existing analyzers are surveyed.
In addition, the design and use of a new program
execution analyzer that we call the Experimental
PL/I Execution Analyzer (EPLEA)' are discussed.
The purpose of EPLEA is to support the optimization
of execution time of highly modular PL/I programs.
Experience with this tool is presented as a case
study. The casual reader should gain a better under-

by L. R. Power

standing of the value and use of execution ana-
lyzers. The general-purpose architecture and survey
of techniques should benefit anyone designing a
special-purpose execution analyzer or evaluating
existing analyzers. The case study should be of
particular interest to PL/I programmers.

Although the primary intent of this paper is to
discuss execution analyzers for use by application
programmers, many of the design tradeoffs dis-
cussed apply as well to operating system perform-
ance tools and hardware monitors. Measurement
tools for operating systems are readily available2"'
and have received good coverage in the litera-
ture."-'' Hardware monitors have received less
attention and will be mentioned briefly. Many more
program execution analyzers have been dceloped
than are mentioned here. This is certainly a testa-
ment to their usefulness, but it is also a result of the
wide variety of user requirements, programming
languages, and system dependencies that they must
deal with. In fact, it is the need for a unique
measurement tool that has attracted the author to
this area of research.

OCopyright 1983 by International Business Machines Corpora-
tion. Copying in printed form for private use is permitted without
payment of royalty provided that (I) each reproduction is done
without alteration and (2) the Journal reference and IBM
copyright notice are included on the first page. The title and
abstract, but no other portions, of this paper may be copied or
distributed royalty free without further permission by computer-
based and other information-service systems. Permission to
republish any other portion of this p a p u must be obtained from
the Editor.

IBM SYSTEMS JOURNAL, VOL 22, NO 3. 1983

Four rather different execution analyzers have been
selected as examples for more detailed discussions.
Two of them, TIME IT'^ and the PL/I Execution

Each of these execution analyzers
reports its results in a different

manner, and each is tailored to a
different use.

Analyzer (PLEA),I7 periodically interrupt a program
and record its current location. TIMEIT works for
any program, whereas PLEA is specialized for PL/I
programs. The Dynamic Analyzer (DYNA)'82'9 and
XI COUNT^^ trace a program's execution, DYNA by
modifying its source code and XICOUNT by means of
a hardware assist. Each of these execution analyzers
reports its results in a different manner, and each is
tailored to a different use.

What is an execution analyzer?

In this section we characterize, in general terms,
what sort of details are measured by an execution
analyzer and how the requisite data are reported
and used. As the name implies, an execution ana-
lyzer involves both program execution and analysis
of data or code.

Programs have both static and dynamic properties.
An execution analyzer is a mechanism for measur-
ing a specific set of dynamic properties of an
executing program. Static properties include pro-
gram size, external references, static link-edit map
(as generated by the OS/VS Linkage Editor2' or the
CMS LOAD command22), and static call graph.23
Dynamic properties include CPU and storage usage,
1/0 demand, paging behavior, and dynamic call
graph.24 There is no general way to predict the
dynamic properties of a program, which can be
measured only by actually executing the program.
Static analysis lacks the necessary performance

272 POWER

data, such as loop iteration counts, and even the
most careful estimates are often inaccurate.

Execution analyzers divide the execution of a pro-
gram into such smaller units as statements, pro-
cedures, or user tasks, and extract and report
measurements on these smaller units. Obtaining
measurements may itself require a rather detailed
analysis of the program and its run-time environ-
ment.25 For example, it can be quite difficult to
determine which procedure has control at each point
during the execution of a large program. An execu-
tion analyzer often performs data reduction and
analysis to enhance the usefulness of its reports.
Here, for example, in addition to a detailed state-
ment-by-statement report, an execution analyzer
may aggregate data by procedure names to produce
a shorter summary report.

The output of an execution analyzer is a report
called an execution profile. Typically in the form of
a table or graph, an execution profile is designed for
interpretation by a programmer. Its purpose is to
assist a programmer in making changes that will
improve such specific dynamic properties of the
analyzed program as making the program run
faster. Use of an execution profile is a discovery
process similar to program debugging. A program-
mer studies an execution profile in conjunction with
a program listing to discover something that was
previously unknown about the program. This
knowledge is then used to tune the program, usually
by making relatively small changes. For an operat-
ing system, this may mean discovering a bottleneck
that can be resolved by adding additional I/O gear
or by increasing data blocking. For an application
program, this may mean identifying an inefficient
use of storage that can be corrected by a minor
algorithmic change.

There are a great variety of execution profiles. The
intended use of each is reflected in the type of data it
collects and its style of presentation. Figure 1 shows
examples of execution profiles for TIMEIT, PLEA,
DYNA, and XICOUNT. Each profile exhibits some-
thing about the execution of essentially the same
program.26 (See Appendix B for source code.)
TIMEIT supports the optimization of execution time
at the machine instruction level by using storage
address ranges (the left column of Figure 1A) to
identify segments of code. PLEA supports the opti-
mization of execution time for PL/I programs by
reporting its findings in terms of PL/I procedure
names and statement numbers. DYNA supports test-

IBM SYSTEMS JOURNAL, VOL 22, NO 3. 1983

Eigure 1(A) TlMElT execution profile

020000-02OOOF N =
0 2 0 0 1 0 - 0 2 0 0 1 F N =
0 2 0 0 2 0 - 0 2 0 0 2 F N=
0 2 0 0 3 0 - 0 2 0 0 3 F N=
0 2 0 0 4 0 - 0 2 0 0 4 F N=
0 2 0 0 5 0 - 0 2 0 0 5 F N =
0 2 0 0 6 0 - 0 2 0 0 6 F N =
0 2 0 0 7 0 - 0 2 0 0 7 F N =
020080 -02008F N =
0 2 0 0 9 0 - 0 2 0 0 9 F N =
0200AO-0200AF N =
020080 -0200BF N =
02OOCO-02OOCF N =
020000-02OOOF N =
0200EO-0200EF N =
02OOFO-02OOFF N =
020100-0201OF N =
0 2 0 1 1 0 - 0 2 0 1 1F N =
0 2 0 1 2 0 - 0 2 0 1 2 F N =
0 2 0 1 3 0 - 0 2 0 1 3 F N =
0 2 0 1 4 0 - 0 2 0 1 4 F N =
0 2 0 1 5 0 - 0 2 0 1 5 F N =
0 2 0 1 6 0 - 0 2 0 1 6 F N =
0 2 0 1 7 0 - 0 2 0 1 7 F N =
0 2 0 1 8 0 - 0 2 0 1 8 F N =
0 2 0 1 9 0 - 0 2 0 1 9 F N =
0201AO-0201AF N =
0201CO-0201CF N =
020180-0201BF N =
020100-0201OF N =
0201EO-0201EF N =
0201FO-0201FF N =

...
021R00-021AOF N =
0 2 1 A 1 0 - 0 2 1 R l F N =
021A20-021R2F N =
021A30-021R3F N =
021A40-021A4F N =
021A50-021A5F N =
021A60-021A6F N =
021R70-021R7F N =
021ABO-021A8F N =
021R90-021A9F N =
021RAO-021AAF N =
021RBO-021ABF N =
021ACO-021ACF N =
021AOO-021AOF N =
021AEO-021AEF N =
021AFO-021AFF N =
021BOO-021BOF N =
0 2 1 6 1 0 - 0 2 1 B l F N =
02 1820 -02 1 82F N=
0 2 1 8 3 0 - 0 2 1 8 3 F N =
021B40-021B4F N =
021B50-02165F N =
021B60-021B6F N =
021B70-021B7F N =
021880-021BBF N =
021B90-021B9F N =
0218A0-02 lBRF N =
021BBO-021BBF N =
0218CO-021BCF N=
021800-021BOF N =
021BEO-021BEF N =
021BFO-021BFF N =

0
0
0
0
0
0
0

0
0

0
0
0
0

0
1

0
0
0
3
3

15
6
3

3
4

0
4

0
0
0
0
0

0
1

0
1

0
0
0
3
2
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
2
0
0
0
0

0 .00%
0 . 0 0 %
0 . 0 0 %
0 .00%
0 . 0 0 %
0 . 0 0 %
0 . 0 0 %
0.00%
0 . 0 0 %
0.00%

0.00%
0.00%

0.00%
1 . 7 2 %
0.00%
0.00%
0.00%
0.00%
5. 1 7 %
5. 1 7 %

2 5 . 8 6 %
1 0 . 3 4 %

5. 17%
6 . 8 9 %
5. 1 7 %
6.89%
0 . 0 0 %
0.00%
0 . 0 0 %
0 .00%
0 . 0 0 %
0.00%

0 .00%
1 . 7 2 %

0.00%
1 . 7 2 %

0.00%
0.00%
0.00%
5. 17%
3 . 4 4 %
1 . 7 2 %
0.00%
0.00%
0.00%
0.00%
0.00%
0.00%
0.00%
0 .00%
0.00%
0.00%
0 .00%
0.00%
0.00%
0.00%
0.00%
0 .00%
0.00%
3 . 4 4 %
0 .00%
0 .00%
0 .00%
0 .00%

11

1111

J

IBM SYSTEMS JOURNAL, VOL 22, NO 3. 1983 POWER 273

Figure 1(B) PLEA execution profile

S t a t e m e n t t r a p c o u n t s f o r m a ~ n p r o c e d u r e P R I M E

S t a t e m e n t T r a p
P e r c e n t P e r c e n t

number
o f t h l s

c o u n t p r o c e d u r e p r o g r a m
o f t o t a l

3
5
6
8

10
1 1

I n t e r r u p t s f o r t h l s p r o c e d u r e 54

Thl s p r o c e d u r e c o n s u m e d 100. 0 p e r c e n t o f t h e t o t a l CPU t I me

Figure 1(C) DYNA execution profile

L I n e
number

1 c
2 c

4 c
3

5
6
7
8

10
9

11
12 c
13
14
15
16
17
18

S o u r c e

C o u n t t h e p r ~ m e n u m b e r s b e t w e e n 1 a n d 10000.
C o u n t p r l m e s 1, 2. and 3.
N = 3
start w l th 5 f o r t h e r e s t .
00 1 I = 5 , 10000.2

A = I
R = S Q R T [AI
K = A
DO 2 J=3.K. 2

I F [I - I / J a J l 1. 1 . 2

2 CONTINUE
C o u n t t h e D r ~ m e s .
N = N + l '

1 CONTINUE

6 F O R M A T (I6.35H P r l m e n u m b e r s b e t w e e n 1
WRITE [6.61 N

END
STOP

T o t a l C o n d l t t o n a l
M o n l t o r c o u n t s

I

4998
1

4998
4998

55960
4998

52 189

4998
1227

e x e c u t e d :

e x e c u t e d :

l a b e l 1 :
l a b e l 1 :

l a b e l 2 :

4998

55960
0

3771
52 189

ing of FORTRAN programs by producing an anno- A design for an execution analyzer
tated source listing with statement execution counts
and conditional branch counts appended on the The outline of a hypothetical general-purpose exe-
right. XICOUNT supports measurement of subrou- cution analyzer is shown in Figure 2. We use this
tine path lengths by reporting actual instruction design to further describe the four analyzers just
counts grouped by subroutine calls, where each call mentioned. The design has three component func-
is represented by a box. tions that are performed in the following order.

274 POWER IBM SYSTEMS JOURNAL, VOL 22, NO 3, 1983

Figure 1(D) XICOUNT execution profile

0

40

1 I8

I 96

286

391

496

586

690

794

I BMBMASI

R I M E

I BMBMAS 1

I BMBMAS 1

Number T o t a l I n s t r u c t i o n s
Routine Address o f c a l l s i n s t r u c t i o n s a t l e v e l 1

PRIME 020058 1 838 100.0% 505 60.3%
IBMBJDS 021308 1 39 4.7% 39 4.7%
IBMBMASl 0219FO 8 294 35.1% 294 35.1%

100.0%

”-

First, instrumentation is added to the original target
program. The instrumented program is then run
under the control of the execution analyzer. Finally,
a report generator creates an execution profile.
Designing a particular execution analyzer involves
designing two pieces, the execution profile and the
instrumentation mechanism. The execution profile
addresses which dynamic properties are to be mea-
sured, and the instrumentation mechanism ad-
dresses how to get the measurement data. In prac-
tice, it is necessary to balance these two views. The
details and intricacies of programming languages
and operating systems often make it difficult to
obtain precisely the desired data.

Model of program execution. Each execution ana-
lyzer is designed to serve a specialized activity (e.g.,
program testing, program optimization, system tun-
ing, or hardware design) and must operate within a
particular set of system, hardware, and program-
ming language constraints. To this end, each ana-
lyzer presents to its users an abstracted model of
program execution and uses a measurement tech-
nique appropriate to that model. TIMEIT and
XICOUNT view program execution at the machine
instruction level. In addition, XICOUNT recognizes
subroutine calls based on standard linkage conven-
tions.*’ PLEA and DYNA view program execution at
the level of high-level language statements for PL/l

POWER 275 IBM SYSTEMS JOURNAL, VOL 22, NO 3. 1983

C O N T R O L FLOW

O R T R FLOW 0

and FORTRAN, respectively. System performance
tools present a model of execution based on the state
of user tasks and system resources (e.g., problem
programs, system program, I /O devices, memory
systems, etc.).”

The design or use of any particular execution ana-
lyzer requires an understanding of its underlying
model of program execution and its measurement
technique. The usability of an execution analyzer is
determined largely by how natural and convenient
these appear to its users. For example, one expects a
PL/I programmer to prefer PLEA and an assembly
language programmer to prefer TIMEIT because the
different terms and concepts used by each are
familiar to these respective users.

execution states such as “device active or idle” and
“CPU active or idle.” Individual execution states
have identifying attributes such as instruction loca-
tion for TIMEIT, and statement number and proce-
dure name for PLEA. Although the sequence of
execution states occurs over time, it does not by
itself provide a measure of time or resource utiliza-
tion.

Execution states, along with their attributes, are
used as measurement units, usually directly but
sometimes in groups. PLEA, DYNA, and XICOUNT
use their execution states directly for measure units.
TIMEIT collects all instructions executed within a
range of storage addresses, forming a single homo-
geneous measurement unit for a group of instruc-
tions.

Measurement techniques. Figure 3 illustrates two
basic measurement techniques, tracing and sam-
pling. There are also several varieties of sampling.
Given an ordered sequence of execution states as
previously discussed, the measurement technique
defines an associated sequence of measurement
events that are identified by their measurement
units. This sequence comprises the measurement
data produced by an execution analyzer.

276 POWER IBM SYSTEMS JOURNAL, VOL 22. NO 3, 1983

Figure 3 Tracing versus sampling

TRACE EVENTS

T I M E

. .

RANDOM T I M E - SAMPLED EVENTS

For tracing, each and every transition from one
execution state to the next is captured by the
execution analyzer as a measurement event. This
gives a complete trace of the executing program.
Tracing is, consequently, especially well suited to
program testing and debugging. DYNA and
XICOUNT both use tracing as their measurement
technique. Although tracing program execution by
itself provides only an approximate measure of
execution time (e.g., statement execution counts), it
can be supplemented with actual timings to provide
precise measurements of execution time. The pri-
mary disadvantages of tracing are the large amount
of data and the associated processing time involved.
Although a misnomer, the term event-driven sam-
pling is sometimes used to describe the tracing (or
counting) of important program and system events
such as 1/0 requests, page faults, and various asyn-
chronous activities. Most operating systems include
some of these measurements as part of their
accounting data.

For sampling, the transitions from one execution
state to the next are ignored. Instead, the current

execution state is observed (or sampled) from time
to time. Each such observation becomes a measure-
ment (or sample) event. Just which states are
sampled depends on the kind of sampling. The term
time sampling (either periodic or random) is used
when there is a known relationship between time
and the sampling technique. Random time sampling
has useful statistical properties that guarantee that
the sampling mechanism does not inadvertently
synchronize with the program execution as it might
with periodic time sampling. Such a synchroniza-
tion, although unlikely in practice, would produce
anomalous results. Sampling, as compared to trac-
ing, generally provides less data at correspondingly
lower overhead. Provided a sufficient number of
sample events are obtained, sampling is a very
effective technique for performance analysis.
Heavily used portions of code are sampled fre-
quently while lightly used portions are sampled
infrequently or not at all. Time sampling is also used
to measure the status of a program, for example,
with regard to 1/0 waits and page waits. Within the
limits of resolution of the timing mechanism, the
number of sample events can be adjusted by varying

POWER 277 IBM SYSTEMS JOURNAL, VOL 22. NO 3, 1983

the time interval between them. Time sampling is
rather easy to implement in most operating systems.
TIMEIT and PLEA both use periodic time sampling.
The primary disadvantage of sampling is that it
lacks the completeness of tracing. For performance
analysis, however, this is generally a minor loss.

The instrumented program. In order to obtain mea-
surement data, the target program must be aug-
mented in some way. This instrumented program
contains instruments to capture measurement data.

A program may be instrumented by
augmenting source code,

compiler-generated object code, the
run-time environment, the operating

system, or the hardware system.

It is the instrumented program that is actually
executed, not the target program. This is important
to note, because the instrumented program gener-
ally does not have precisely the same properties
(static and dynamic) as the target program. For
example, an instrumented program may be larger
and take longer to execute than its target program.
The degree of variation depends largely on the
instrumentation mechanism.

A program may be instrumented by augmenting
source code, compiler-generated object code, the
run-time environment, the operating system, or the
hardware system. Often a combination of these
alternatives is employed. This augmentation adds
counters and monitor code to collect measurement
data. Other static information (e.g., procedure
names) can often be taken directly from the source
or object programs. TIMEIT adds a small monitor
routine to the run-time environment. PLEA, in addi-
tion to adding a similar run-time monitor, uses
augmented object code to obtain statement num-
ber~.”.’~ DYNA augments the target source code by

278 POWER

inserting counters that measure the frequency of
statement executions. XICOUNT utilizes a hardware
monitor facility supported by its operating system.

Event counting and execution profiles. Execution
profiles are based on counting and tabulating simi-
lar measurement events. Two events are similar if
they have the same value of some particular attri-
butes. For example, PLEA counts events with the
same statement numbers and PL/I procedure names.
Most execution profiles produce a detailed report of
the frequency of similar measurement events. Often
events are counted and tabulated by several dif-
ferent attributes such as by I/O events and library
subroutine calls. The granularity of these tabula-
tions is determined by the underlying measurement
units.

A report generator has two kinds of inputs: (1)
measurement data and (2) various tables and dic-
tionaries that associate the target program with
these measurements. These latter data may be
obtained by static analysis of the target program
and may include information describing the target
source program (e.g., FORTRAN statement num-
bers). Advantage can often be taken of some exist-
ing facility to greatly reduce the need for a new
instrumentation mechanism. A link-edit map is an
excellent example because it provides a ready-made
dictionary correlating symbolic module names to
storage addresses. A number of execution analyzers
exploit a link-edit map or compiler listing as a
source of static information.

Referring again to Figure 1, we can now state
precisely what is being reported by each of these
execution profiles. TIMEIT reports counts of periodic
time samples localized by storage address ranges.
PLEA reports counts of periodic time samples of PL/I
statements identified by their statement numbers
and procedure names. DYNA reports counts of
traced FORTRAN statements. XICOUNT reports
counts of traced machine instructions grouped by
module names as obtnined from a link-edit map.
Finally, we look at the graphic techniques employed
by these four execution profiles: TIMEIT and PLEA
use histograms; DYNA augments the source pro-
gram listing; XICOUNT depicts nested procedure
calls by means of a tree of boxes and optionally
provides a histogram (not shown).

These four examples all focus on program tracing or
execution time measurement. Indeed, this is what
most program execution analyzers do. Our design,

IBM SYSTEMS JOURNAL, VOL 22, NO 3, 1983

however, is general enough to support other kinds of
execution analyzers, such as one that traces storage
usage3' or one that samples active references to data
structures. In practice, it is common for a program
execution analyzer to incorporate some measure-
ments of the operating system environment as well
(e.g., I /O or paging activity).

Design alternatives

We have defined what an execution analyzer is and,
on the basis of four selected execution analyzers, we
have noted important variations in measurement
units, measurement techniques, instrumentation
mechanisms, and execution profiles. Appendix A is
a table summarizing the characteristics of an
expanded list of execution analyzers that are used in
this section to examine more detailed design trade-
offs. Some of these analyzers are available commer-
~ i a l l y . ~ " ~ ~

To assist in this discussion, Figure 4 presents a more
detailed design of the hypothetical execution ana-
lyzer shown in Figure 2. In addition to its run-time
state, the instrumented program is shown with three
additional pieces: probe, extractor, and recorder.
The term probe, suggested by Cheatham34 to desig-
nate an execution analyzer, identifies the most
crucial piece of our design. The extractor and
recorder are sometimes of trivial importance or are
missing altogether.

The probe is added to the target program by the
instrumentation mechanism. It gains control for
each measurement and, in so doing, implements the
measurement technique. The extractor's function is
to assemble the attributes identifying each mea-
surement event. I f the measurement unit has a
complex run-time structure (e.g., a PL/I statement),
extracting its attributes (i.e., statement number and
procedure name) is an equally complex process. All
measurement events are fed to the recorder either to
be added to an internal table or recorded onto
permanent storage for later processing. In the case
where all sampled data are maintained in storage,
the recorder and the report generator may be com-
bined.

Instrumentation mechanisms. We compare three
different instrumentation mechanisms: source, run-
time, and hardware.

Source instrumentation. Source instrumentation is
usually accomplished by a preprocessor that adds

IBM SYSTEMS JOURNAL, VOL 22. NO 3. 1983

statements to the target source program. These
probe statements typically define and increment
counters interspersed with the target code, either at
every statement or only at branch points. Since code

With source instrumentation, only
one external procedure-compilable

unit-is instrumented at a time.

motion can affect the semantics of these counters,
compiler optimization of the instrumented code
cannot be used. In some cases, this function is
available as a compiler option, such as the PL/I
COUNT option.29 The instrumented program is
usually considerably larger than the target program
and executes more slowly. The author has observed
an increase of six hundred percent in CPU time using
the PL/I COUNT option. This extreme case occurs
when the counters are implemented through sub-
routine calls. Direct in-line counting is more effi-
cient. With source instrumentation, only one exter-
nal procedure-compilable unit-is instrumented
at a time. Instrumenting an entire system requires
recompiling the entire system, which is often
impractical. Moreover, since this mechanism is
source language dependent, different preprocessors
are needed for different languages and their vari-
ants. It is used with high-level languages only, and
the measurement unit is usually the high-level lan-
guage statement. The measurement technique is
that of tracing, and the execution profile normally
tabulates the count of statement executions.

Since the amount of CPU time required for execu-
tion of different statements can vary considerably,
this style of execution profile is not the best for
performance measurements. This limitation has
been addressed by several analyzers. Both FOR-
TUNE3' and ANATEMP36 estimate the execution time
for each statement by source analysis. Only FOR-
TUNE, however, couples this with an execution
analyzer using tracing. APAT3' instruments the

Figure 4 Detailed design for an execution analyzer

r "" ""
I /

I I / //'
/

/
/

INSTRUMENTED

I

I I

I
RECORDER

L"""

/

" J

PROGRRM
I N S T R U M E N T E D

CONTROL FLOW ~-b

O A T R FLOW -b

280 POWER IBM SYSTEMS JOURNAL, VOL 22, NO 3. 1983

source program so as to actually measure execution
time for each statement. On some machines, the
resolution of the timer is not fine enough for this
technique. The distinctive advantage of source
instrumentation is that the full trace of the execu-
tion of a program is of great value in testing and
debugging and can report the statements that are
never executed. DYNA in particular promotes this as
a testing method to ensure that all program paths

There is considerable variety in
run-time instrumentation with regard

to measurement techniques and
language and system dependencies.

have been executed during testing of a FORTRAN
program. COBOLDAP38 provides similar functions
for COBOL programs.

Run-time instrumentation. Run-time instrumenta-
tion is accomplished by adding a probe monitor
routine to the run-time environment of the target
program. Generally the program need not be recom-
piled and can contain procedures written in dif-
ferent languages. There is considerable variety in
run-time instrumentation with regard to measure-
ment techniques and language and system depen-
dencies. In addition to implementing the measure-
ment technique, a run-time probe often assists in
loading and initiating the target program. Both of
these functions are highly system dependent.

Periodic time sampling is implemented through
system-provided facilities that cause timer inter-
rupts. METER39 and PLEA use the MVS STIMER TASK
fa~ili ty,~' and TIMEIT and SPYTIME4' use the VM/SP
virtual interval timer42 and manage the External
Interrupt P S W . ~ ~ Use of timer facilities by the
analyzer normally preempts their use by the target
program. These analyzers also use the MVS LINK (or
LOAD)40 and CMS SVC 20242 facilities, respectively, to
load and initiate the target program. It is important

to understand precisely how the system-provided
timer facility works. For example, the VM/SP virtual
interval timer cannot accurately implement peri-
odic time sampling. Instead of causing its own
interrupts, the VM/SP virtual interval timer merely
adopts as its own other system interrupts, in particu-
lar those immediately following the expiration of
the requested time intervals. Thus, actual time
intervals vary upwards from the requested interval.
In both VM/SP and MVS, timer interrupts may be
postponed when they occur within supervisor rou-
tines. In spite of these timing distortions, the ana-
lyzers just discussed yield satisfactory results.

With time sampling, the time can be either CPU
time or real time. At the end of each CPU time
interval, the program is always observed to be
executing some instruction in the program. The
analyzers in the preceding paragraph use CPU time
sampling. By contrast, the end of a real-time inter-
val may find the program in a wait state (e.g., 1/0
wait, page wait, supervisor scheduler wait). PROG-
TIME,44 Problem Program Evaluator (PPE),32,45 and
the STROBE analyzer3* use real-time sampling. This
can be implemented via the STIMER REAL facility4'
or an augmentation to the operating system. By
observing the program during wait states, the PPE
and STROBE analyzers can measure and report on
1/0 device and paging activities, in addition to
normal program execution. These system-depen-
dent measurements are useful in optimizing 1/0 and
improving paging behavior. Since both CPU time
and real time measurements can vary significantly,
depending on other activities in a time sharing
system, different measurements should be com-
pared only when they are taken under comparable
system loading conditions.

In general, the use of run-time instrumentation
disrupts the execution of the target program less
than source instrumentation. That is, it requires less
additional storage, less additional CPU time, and
little or no modification to the program itself. To the
extent that time sampling is used and the system
timer is accurate, the resulting measurements are
closer to actual CPU usage. In practice, these ana-
lyzers are extremely effective in isolating the ineffi-
cient portions of a program. They are convenient to
use, efficient, and above all they produce objective,
hard facts about where a program spends its time.

Several analyzers have effectively combined instru-
mentation for both tracing and time sampling-the
Optimizer 111 analyzer3' and GPROF46 are two

IBM SYSTEMS JOURNAL, VOL 22. NO 3, 1983

examples. Optimizer 111 combines time sampling
with statement tracing. The object code output by
the COBOL compiler is both automatically opti-
mized and instrumented to trace COBOL statements.
By counting and measuring (via time sampling)

Hardware monitors are more
commonly used for system tuning

and for hardware and system design,
but they have similar design

tradeoffs.

statement executions, this analyzer exploits the
strengths of both measurement techniques. GPROF
also uses time sampling in conjunction with tracing.
It traces all procedure invocations by calling a
monitor routine at the entry to each procedure.
These calls are compiler-generated. This mecha-
nism is a form of software hook, typically used by
debugging systems to gain control at particular
statements within a program. The Software Mea-
surement Tool (SMT)47 is a rather general attempt
at using software hooks for tracing and analyzing
the execution of programs.

Hardware instrumentation. Hardware instrumen-
tation is accomplished by putting the probe into a
separate processor. This is the least invasive mecha-
nism, leaving the source code, object code, and
run-time environment unchanged. Since this mech-
anism requires special hardware facilities, it is
relatively uncommon for program analysis. Two
rather different examples of program execution
analyzers are noted. The XICOUNT analyzer uses
the System/370 Program-Event Recording
(PER)43.48 hardware (via the VM/370 CP TRACE com-
mand).49 PER is a built-in programmable hardware
monitor that supports the tracing of the execution of
either selected or all machine instructions. Unfortu-
nately, tracing at the machine instruction level
generates large amounts of sample data, requiring
considerable processing overhead. The use of PER

also slows down the machine hardware considera-
bly. A second example of hardware instrumentation
is the s p y s o analyzer. It utilizes one of the peripheral
processors of the CDC 6000 series as a probe, which in
effect implements periodic real-time sampling of
the target program executing in the main processor.
This causes essentially no disruption of the execu-
tion of the target program.

Hardware monitors are more commonly used for
system tuning and for hardware and system design,
but they have similar design tradeoffs. A typical
hardware monitor has an array of high-speed hard-
ware counters (registers) that can be programmed
in conjunction with boolean logic and clocks to
count signals from hardware test points in the target
machine. The set of test points can be selected
manually to monitor a wide variety of hardware
activities, for example, to identify the instruction
types e x e c ~ t e d . ~ ' ~ ~ ~ Much like an 1/0 device, the
hardware monitor itself may be attached to the
same or a different computer.

The System Performance Monitor (SPM)53 is an
example of a hardware monitor that has been used
like a program execution analyzer (i.e., controlled
by special codes from the target machine) to help
improve the code generated by compilers. In addi-
tion to a hardware probe, the Hybrid Monitor
System (HMS)54 has a probe into the target
machine's storage system and a set of fully pro-
grammable high-speed processors. HMS is designed
for performance evaluation of complex multiproces-
sor operating systems.

Data extraction. Each measurement is identified by
its measurement unit attributes (e.g., storage loca-
tion, statement number, procedure name), which
are obtained from the executing program. For
source and object instrumentation, they are usually
identified implicitly by the particular counter that is
updated. Other instrumentation mechanisms re-
quire more complex processing. TIMEIT and SPY-
TIME, the simplest mechanisms, merely pick up the
location counter at the point of the timer interrupt
and convert it to the appropriate storage address
range and place no requirements on the structure of
the program's run-time environment. By contrast,
PLEA uses the location counter, the call-frame stack,
and the PL/I statement number table to locate the
procedure name and statement number for the most
recently executed PL/I statement. Incidentally, the
PL/I statement number table is accurate even when
code motion has occurred as a result of compiler

IBM SYSTEMS JOURNAL, VOL 22, NO 3. 1983

optimization. PLEA and METER examine MVS con-
trol structures to obtain information about modules
that are dynamically loaded during program execu-
tion. In addition to this information, the PPE and
STROBE analyzers extract data from system control
blocks concerning 1/0 activities and various wait
states.

Poking around in language-dependent and system-
dependent control structures at arbitrary times dur-
ing program execution exposes an execution ana-
lyzer to the possibility of program interrupts, for
example while trying to use an address pointer that
has not been properly initialized. PLEA protects
itself against this problem by setting up a program
interrupt handler via the MVS SPIE fa~i l i ty .~ '

Although using the program location counter to
identify the last instruction executed seems trivial,
it has some serious problems. In MVS, for example,
simply finding the interrupted location counter is a
major undertaking. Moreover, if the last instruction
executed was a branch instruction, it cannot be
identified by the value of the current location coun-
ter. PLEA, assuming that branches are less frequent,
always identifies the instruction immediately pre-
ceding the location counter. This causes anomalous
results at heavily executed branch points. Another
approximation used by TIMEIT and SPYTIME is
always to identify the next instruction to be exe-
cuted. This ignores the differences in execution time
for different instructions (e.g., a long move versus a
short move or a register load).

Data recording. Measurement events must be
stored either in temporary tables or in permanent
storage. If temporary tables are used, some data
reduction (i.e., counting) can be done on-the-fly and
later dumped to permanent storage or output
directly as the execution profile. There are four
tradeoffs involved here: (1) the use of additional
storage during program execution, (2) the use of
permanent storage, (3) the effect of additional 1/0
on the sampled program or the sampling technique,
and (4) the ability to rerun the report generator on
the same measurement data without having to rerun
the execution analysis itself. If there are several
execution profiles with different options, it is highly
desirable to have a permanent copy of the measure-
ment data available for rerunning the report gener-
ator. For long execution analysis runs, some on-
the-fly data reduction may be needed merely to
reduce permanent storage usage. Finally, certain
programs may be especially sensitive to storage use

or 1 / 0 activity. TIMEIT and SPYTIME both use
temporary tables, from which TIMEIT produces its
execution profile directly, and which SPYTIME
dumps to permanent storage for later processing.
PLEA and METER output one record for each mea-
surement event and process the resulting data with a
separate program. The tables of execution counts
generated by DYNA, for example, are dumped to
permanent storage at the end of program execution.
This can be a problem if the program fails to
terminate properly.

Report generator. A number of detailed execution
profiles have already been presented. From our
expanded list of examples, SPYTIME, METER, and

The summary profile quickly
identifies the few detailed profiles

that are of special interest.

TIMEMAP55 use link-edit information for converting
storage addresses to module names. TIMEMAP is
actually a postprocessor for TIMEIT. METER
extracts its link-edit information directly from the
stored version of the load module.2' The Optimizer
111 and STROBE analyzers use compiler listings to
identify high-level language statements. There are
two other styles of execution profiles: summary and
predictive. Each requires additional processing by a
report generator.

Summary profiles. Execution analysis of a large
program requires one or more hierarchical summa-
ries, such as a summary by procedures where each
procedure has its own detailed execution profile.
The summary profile quickly identifies the few
detailed profiles that are of special interest. Another
form of summary is structural in nature. A struc-
tural profile distinguishes between resources used
directly by a procedure (or task) and those used by
subprocedures (or subtasks) that were invoked by it,
either directly or indirectly. For CPU time these

IEM SYSTEMS JOURNAL, VOL 22, NO 3, 1983

resources are called self-time and inherited time,
respectively. The GPROF execution analyzer is
designed especially to report self-time and inherited
time. XICOUNT also distinguishes between self- and
inherited instruction counts. Another feature of
summary profiles is the ability to limit or expand
the amount of detail (termed “zoom-in’’ and
“zoom-out”). SPYTIME and XICOUNT provide con-
trol over this aspect.

Predictive reporting. After studying a particular
execution profile, one might like to know the effect
of making a change to the target program without
actually having to implement the change. This
would be done by rerunning the report generator
with some additional parametric data. We call this
predictive reporting. One known example of this is
the computation of stand-alone run-time from data
collected in a time-sharing environment.” This is
done in the report generator by making certain
assumptions based on an analysis of the measure-
ment data. There is a close similarity between
predictive reporting and the use by trace-driven
simulators of measurement data to predict the
behavior of a hypothetical machine when executing
the measured program.56

The EPLEA execution analyzer

EPLEA was developed in support of a research
project called which is studying the use
of data abstractions. Since data abstractions
encourage a highly modular design with a super-
abundance of procedure calls, it is of some impor-
tance to know just how much these calls cost. EPLEA
was developed to measure this overhead and to
assist in the general optimization of PL/I code
generated from data abstractions.

Requirements. EPLEA has several requirements not
satisfied by existing execution analyzers. An indi-
vidual procedure is normally optimized by making
minor adjustments to its implementation or by
replacing its algorithm altogether. Such changes
are generally local to a procedure. Optimizing a
large complex system of interrelated procedures, on
the other hand, often involves changing the struc-
ture of procedural interdependencies, moving code
across procedure boundaries, and eliminating some
procedures altogether. To assist in this style of
optimization, we need execution profiles that can
summarize large numbers of procedures, show their
interdependencies, and report both self-times and
inherited times in a way similar to that of GPROF.

284 POWER

Measuring the overhead involved in using proce-
dure calls requires additional measurement attri-
butes to identify the relevant pieces of code (e.g.,
procedure prologues and calling sequences). To a
lesser extent, we are also interested in library sub-
routine, storage management, and supervisor ser-
vice calls (primarily I/O). For usability, EPLEA
profiles must be in terms of PL/I constructs. Ideally,
EPLEA would be used to predict the effect of making
a change to the target program, which requires
accurate measurements of CPU usage.

Design and implementation. Since the PLEA execu-
tion analyzer comes close to satisfying the EPLEA
requirements, its design was used as a basis for
EPLEA.

CPU time inheritance was implemented by taking a
“snap shot” of the entire call-frame stack at each
timer interrupt.” The report generator was pro-
grammed to credit CPU time to the calling proce-
dure and tabulate it in two ways-with respect to
itself and with respect to the total program. For
example, in Figure 5A, TEXTOU called TEXT-
0U.WRITE in statement 95. This subroutine
accounts for 3 1 .O percent of total program execu-
tion time and 88.7 percent of the time taken to
execute TEXTOU. That is, TEXTOU inherits 88.7
percent of its time from TEXTOU.WRITE.

Code-classification flags have been added to each
statement to identify the underlying code as fol-
lows:

X In-line compiled code.
P Prologue code (i.e., procedure initializa-

C Call/return sequence.
L PL/I library subroutine code.
S Supervisor service (e.g., I/O) subroutine

tion).

code.

call.
blank Inherited from another PL/I subroutine

These codes are also used in all summaries. Figure 5
shows two examples of EPLEA execution profiles.
Figures 5B and 1B are for the same program for
comparison with the original PLEA. The L and S
codes implement a special form of inherited CPU
time from library and supervisor subroutines,
respectively. The S code pinpoints and measures
those statements responsible for 1/0 activity, a
procedure which has proved to be effective in opti-
mizing 1 / 0 usage. For our purpose, the sum of P and
C is used as a measure of procedure call overhead.

IBM SYSTEMS JOURNAL, VOL 22, NO 3, 1983

Figure 5 (A) EPLEA execution profile for prime number program; (6) EPLEA execution profile showing inherited time

T r a p s f o r maln p r o c e d u r e P R I M E

P e r c e n t P e r c e n t
S t a t e m e n t T r a p T r a p o f t h l s o f t o t a l

number count we I g h t p r o c e d u r e p r o g r a m

1 P 1
3 x 1

5 c
5 x 7

5 L
1

6 X
5

20
7 x 1
8 X 1

11 L 3
11 s 4

I n t e r r u p t s f o r t h l

X : 72. 3 % 12.01 P :

T h l s p r o c e d u r e c o n

2. 0
2 . 0

2. 0
2. 0

2. 0
1. 8

2. 0
2. 0
1 .3
1. 5

s p r o c

2. 4%

lsurned

2 . 4

16. 8
2 . 4

10 .8
2. 4

48 .2
2. 4
2. 4
4. 8
7. 2

, e d u r e

12. 01 c
100. 0 pe

2. 4 I*

16. 8
2. 4

2. 4
1 0 . 8
48 .2

2. 4
2. 4

7. 2
4. 8

44 (1 .91

: 2. 4% (2 .01 L : 15 .7% 11 .61 S : 7. 2 %

r c e n t o f t h e t o t a l CPU t Ime

11. 51

T r a p s f o r s e c o n d a r y p r o c e d u r e T E X T O U

P e r c e n t P e r c e n t
S t a t e m e n t T r a p T r a p o f t h l s o f t o t a l

number count we1 g h t p r o c e d u r e p r o g r a m

2 4 S 1 3. 0 3 7 . 5 1. 4
9 0 x 2 1 . 5 37. 5
9 3 x

1 . 4

9 5
1 2 . 0

58 1 . 1
25. 0
88. 7

0. 9
31. 0 * * * * * * * * * a * * * * * TEXTOU. W R I T E

I n t e r r u p t s f o r t h I s p r o c e d u r e 4 (2. 01

X : 6 2 . 5 % (1 . 7) P : 0.0% C: 0.0% L : 0 .0% S : 37.5% 13.0)

Th I s p r o c e d u r e c o n s u m e d 3. 9 p e r c e n t o f t h e t o t a l CPU t I me

An early version of EPLEA used periodic CPU time
sampling under VM/SP. The VM/SP virtual interval
timer distortions (discussed previously) exagger-
ated measurements for supervisor and PL/I library
subroutines-depending on system load-because
system interrupts are usually more frequent in this
code. This problem was solved by implementing a
weighted time sampling, which adds a weighting
factor to each timer interrupt proportional to its
actual CPU time interval. This factor is reported for
each statemtnt and also for summarized code classi-
fications (in parentheses). Note in Figure 5 that

supervisor and PL/I library weighting factors are
generally lower than the others. Statement 24 in
Figure 5B is an interesting exception in that it is an
OPEN statement that is masked against timer inter-
rupts for a relatively long period of time. When all
percentages are computed on the basis of weighted
time sampling, these measurements are quite accu-
rate.

Two new summary profiles have been designed for
EPLEA. With many hundreds of procedures involved
in an execution profile, it is necessary to group them

IBM SYSTEMS JOURNAL, VOL 22. NO 3, 1983 POWER 285

Figure 6 EPLEA summary of procedure groups

Summary o f p r o c e d u r e g r o u p s

G r o u p P e r c e n t a g e s [b y t y p e)
name X P C L S T o t a l

OMRTCH
EXTRRCT
L I N E I N
L INEOU
PBDL
PROOFER
SORT
SORTMNG
TABLE
T E X T I N
T E X T O U
V M R T C H

100 .0 0.0
0 . 0 0. 0

0. 0 100. 0
0. 0 63. 3

100.0 0 . 0
35. 7 7. 1

10 .0 9 0 . 0
0.0 0 . 0

0 . 0 0. 0
7.6 23. 0
9. 0 31.8

10.8 1.3

0. 0
0. 0
0. 0
0. 0
0. 0
7. 1
0. 0
0. 0
0. 0
0. 0
0. 0
0. 0

5. 8
0. 0
0. 0
0. 0
0. 0
0. 0
0. 0
0. 0

50. 0
11 .5
13. 6

2. 7

68. 2
0. 0
0. 0
0. 0

35. 7
0. 0

0. 0
0. 0

50. 0
42.3
40. 9
78.3

17. 0
0. 5
0. 5
6. 0
1.5
7. 0
0. 0
5. 0

13. 0
1.0

11.0
37 .0

*I***

**

according to some scheme. A procedure group
summary profile supports the grouping require-
ments, whereby measurements for a user-defined
group of procedures are reported under a single
name. Figure 6 shows an example of this in which

In practice, the majority of code in a
large system has very little effect on

its overall performance.

the names on the left represent groups of proce-
dures. For our purposes, this feature supports the
grouping of procedures by their data abstractions.
The second summary profile, termed a calZ depen-
dency graph and shown in Figure 7, depicts a
dynamic call graph of the program.60 This graph
contains only those calls actually sampled by
EPLEA. Each box denotes a single procedure or a

group of procedures. Lines entering at the left of a
box represent calls to the box, and lines leaving from
the right represent calls from the box. All of the
numbers on this graph are percentages. The num-
bers inside the boxes are self-times that (except for
rounding errors) sum to 100 percent. The numbers
outside the boxes are inherited times, and (except
for rounding errors) the sum of the inputs to a box
always equals the sum of the outputs plus the
number inside the box. Each column of boxes is
ordered by descending percentage of CPU usage. An
important use of this graph is to report the struc-
tural dependencies between procedures, which is
information not often available elsewhere.

User experience. Before presenting actual results
using EPLEA, we make a few observations on the
code optimization process.

Performance optimization and current practice. In
current practice, questions of performance mea-
surement and optimization often receive no atten-
tion at all. When they do, they are usually not
addressed systematically. Rather, the answers often
rely solely on experience and informed guessing. In
the case of PL/I, this requires expert knowledge
indeed,6' involving knowledge of library subrou-
tines, data representations, and data conversions.
The rare expert PL/I programmer with this knowl-
edge tends to apply it uniformly to all parts of a

IBM SYSTEMS JOURNAL, VOL 22, NO 3. 1983

Figure 7 EPLEA call dependency graph

1 PROOFER 7 1
PROOFER 38 F
PROOFER 1 9

PROOFER 1 5

PROOFER 19

7 VMRTCH 3 7

4 OMRTCH 17 1
L I N E O U 6

L I N E I N 1

L I N E I N 1 6

L I N E I N 1

DMATCH 1

L T E X T I N 1 3

SORT
VMATCH 1 -
PROOFER 1 -

T E X T I N 3

3 * t
4 STORMNG 5

I

STORMNG 1 TEXTOU 1 1
L INEOU 9

POOL 1
DMATCH 1

program regardless of need. In practice, the major-
ity of code in a large system has very little effect on
its overall performance. Given the tradeoff between
optimization and maintainability, it may not be
cost-effective to optimize this code.

The use of execution analyzers can significantly
alter this practice. By concentrating on producing a
correct, well-written piece of software, most optimi-
zation issues can be deferred and addressed system-
atically later in the development cycle. As an
unbiased measurement tool, an execution analyzer
allows one to focus on those few areas of a piece of
software that have the greatest potential for
improvement. Regardless of methodology, an exe-
cution analyzer can uncover inefficiencies that often
surprise even the most skilled programmer. Out-
lined here are the steps involved in using an execu-
tion analyzer for code optimization:

1. Execute the original program with the execution
analyzer.

2. Examine the summary and detailed profiles to
locate the program areas with the highest CPU
usage.

3. Using the program listings, focus attention on
these areas and determine whether a source code
modification will improve performance. This
may require an in-depth study of a few state-
ments, possibly checking to see what the com-
piler is generating.

4. After implementing modifications, iterate the
above steps until further improvements appear
too small to be justified.

The first few iterations of this process usually
accomplish the lion’s share of possible improve-
ments, usually involving only a very small fraction
of the original program. Since the same program

IBM SYSTEMS JOURNAL, VOL 22. NO 3, 1983

Figure 8 (A) Fragment of EPLEA execution profile for the report generator; (B) EPLEA report generator code before
optimization; (C) EPLEA report generator code after optimization

S t a t e m e n t T r a p T r a p o f t h l s o f t o t a l
P e r c e n t P e r c e n t

number count we l g h t p r o c e d u r e p r o g r a m

330
333
334
335
336
337
338
339
34 1
342
343
350

P
X
X

X
X

X
X
X
X
X
X
X

47
9

86
1086
660
249

116
43

504
157

11
2

1.0
1.0
1.2
1. 3
1.5
1.0
1.0
1.5
1. 3
1. 6
1.0
1.0

1. 1
0. 2

34.5
2. 5

24. 2
6. 1
1.0

16. 0
4. 2

6. 1
0. 0
0. 2

0. 6
0. 1

20. 2
1. 4

14. 2
3. 5
0. 6
2. 4
9. 3

0. 0
3. 6

0. 1

X X X X X X I X I X
I X X X X X X

I

X
X X X X
X

S t a t e m e n t
number

334
335
336
337
338
339
340
34 1
342

DO I=O T O LENGTH (H S T R I -2 BY 2 : / X D O
T T = r r R A r

1

f o r all c h a r a c t

+ M O O I T T . 81921

e r s I/

DO: RR=RR-8191:
I F RR>=8191 / * Mod t o o b i g ? X / THEN RR=RR-8191

EN0 :
HB=BOOL (HE. RE, ‘ 0 1 1 0 ‘ B l : / X Rccumu la te hash X /

EN0 :

S t at ernent
number

334 DO 1=0 T O ~xOIVIOEINRMELGH-~. 2, 15, 01 BY 2 , / * V a r y l n g p a r t X /

335 T T = ~ C B 8 ~ I l + M I I l ~ ~ I C B 8 ~ I + 1 l + M I I + 1 l l :
336
337

R R = MULTIPLY I T T . . 0000000000001B. 15.0) + M O O (T T . 81921 :

338
I F RR>=8191 /I Mod t o o b l g ? X / THEN

339
340
34 1 HB=BOOL (HE. RE. ‘01 10 ‘E I : / X f lccurnulate hash X /
342 EN0 :

LENGTH (N R M E I T O LENGTH (HSTRI -2 BY 2 : / * F I x e d p a r t X /

00: RR=RR-8191:
I F RR>=8191 / X Mod t o o b ~ g ? X / THEN RR=RR-8191:

EN0 :

may behave quite differently, depending on its
inputs, a variety of test runs is recommended. The
total performance improvement is measured by
observing total CPU time “before” and “after,”
without the use of the execution analyzer. Finally,
execution profiles serve as documentation for the
optimized program.

Use of EPLEA. As a challenging example, the
author ran EPLEA against its own report generator,
a PL/I program skillfully implemented according to
current practice. A fragment of the resulting execu-
tion profile appears in Figure 8A. For large mea-
surement files, the loop in statements 334-342
shown in Figure 8B used about 55 percent of the

IBM SYSTEMS JOURNAL, VOL 22. NO 3, 1983

Table 1 Details of typechecker performance improvements

Seconds
Algorithmic changes- 10 percent improvement

Symbol lookup routine 0.7
Input file format 0.8
Hash table dictionary
TOTAL

0.8
2.3

PL/I language usage-7 percent improvement

(NOSUBRG)
BIT(1) ALIGNED

0.5
0.5

Resident transient routines 0.5
TOTAL 1.5

Repackaging-45 percent improvement

Multi-ENTRYs (8) 1.4
In-line expansions (1 2) 5.3
Partial in-line expansion (1) 3.4
TOTAL 10.1

Procedure call overhead

Original code 7.5
Improved code 2.3

(33 percent of original CPU time)
(27 percent of improved CPU time)

cPU time (computed by summing the values
reported for those statements). This loop imple-
ments a hashing algorithm6* over strings containing,
among other things, PL/I procedure names. The
body of the loop hashes two characters at a time
with its iteration count fixed to a maximum length.
A close examination of the body of the loop indi-
cated that it was already highly optimized, offering
no hope of further improvement. It was noticed,
however, that the number of iterations through the
loop could be reduced. The length of the string to be
hashed had recently been increased to support a
longer procedure-naming convention. Shorter
names were padded with blanks before hashing. The
algorithm was modified to hash only the non-blank
part, making it a variable-length hashing algorithm
as shown in Figure 8C. This modification reduced
total CPU time by 48 percent. Although a relatively
minor change, this was a real algorithmic change
that could not have been done automatically. What
EPLEA did was to focus attention on a small number
of statements on the critical path. This experience
mirrors that reported by K n ~ t h , ~ ~ where the speed
of his execution analyzer was doubled by applying it
to itself.

A larger example, making use of the unique fea-
tures of EPLEA, is the optimization of the ADAPT
typechecker. This is a small system of over 250
highly modular PL/I procedures written in the style
of data abstractions. The iterative process just
described was employed through twelve iterations
over the course of one week without a detailed
understanding of the original code. The improved
system ran about three times faster than the origi-
nal. Table 1 outlines the kinds of changes that were
implemented. In each case, a concerted effort was
made to apply the minimal changes to the original
source code. In several cases the PL/I macro prepro-
cessor was used to accomplish this.63

The salient features of this example are that the
repackaging changes accounted for most of the
performance improvements, and procedure call
overhead was reduced by 69 percent. These results
are more dramatic than those previously reported
for in-line expansion^.^^ A total of 21 small proce-
dures were repackaged. ‘Eight procedures were
merely converted from secondary entry points to
individual procedures. Twelve procedures were
eliminated altogether, and their code was expanded

IBM SYSTEMS JOURNAL, VOL 22, NO 3, 1983

Table 2 Summary of PL/I call overhead tests

Test case Percent

PLEATAB
PLIDOC (without DRAW)
TIDY
LALR
GREENPRT
PROOFER
PACKPTAB
GRAPH (normal input)
ADAPT
PLOT (output of ADAPT)
GRAPH (large input)

Overhead

2.6
4.2
8.1

11.0
11.3
13.5
17.8
22.7
25.0
43. I
62.5

X

47.4
22.4
57.0
42.2
74.5
16.5
28.0
27.6
26.5
26.0
22.8

P

1.6
2.5
5.2
8.1
9.1

12.6
11.1
20.1
19.8
32.8
53.5

C

1 .o
1.7
2.9
2.9
2.2
0.9
6.7
2.6
5.2

17.1
9.0

L

8.6
15.5
6.0

34.4
6.9

16.5
28.5
25.8
32.7
22.3

6.8

S

40.8
57.7
28.7
12.2
7.1

53.3
25.6
23.6
15.6

1.6
7.6

in-line via preprocessor macros. One procedure was
split into two parts, one part being expanded in-line
and the remainder called as a subroutine. The
author believes that this and other similar examples
demonstrate the feasibility of optimizing PL/I code
that is based on data abstractions.

The optimized typechecker still has about a 27
percent procedure call overhead. It this a lot? With
the EPLEA execution analyzer, this is an easy ques-
tion to answer. Table 2 summarizes a series of
measurements made on PL/I programs readily avail-
able on the author’s computing system. The range of
this measured overhead is striking, from 2.6 percent
to over 60 percent. The low-overhead programs
have relatively simple procedure call hierarchies or
are dominated by I/o. The high-overhead programs
use extreme modularization or recursion. The in-
between group of programs (i.e., 8-25 percent
overhead) is quite diverse, including several large
systems. This group probably represents the normal
range for PL/I overhead as defined here.

Two other observations on these data are:

1. When a program is optimized, the percentage of
overhead may very well increase, even though
the program runs much faster. The actual over-
head has not necessarily increased; it represents
a greater proportion of a smaller total.

2. Program behavior can differ dramatically with
differing inputs. The GRAPH test cases are the
same program with different inputs. The pro-
gram behaves quite acceptably with one input set
and very inefficiently with the other.

Concluding remarks

We have presented a general-purpose design for
characterizing existing execution analyzers. Several
program execution analyzers have been discussed.
Design tradeoffs concerning program instrumenta-
tion, data extraction and recording, and report
generation have been discussed. A new execution
analyzer, designed for use with data abstractions
written in PL/I, has been described and its use
demonstrated. It is clear that these tools can make
an enormous difference in balancing performance
requirements with the advantages of this new soft-
ware technology. New execution analyzers will
undoubtedly be built to deal with other aspects of
this technology such as data representation and
storage utilization.

Acknowledgments

The author is indebted to the authors of the pro-
grams discussed in this paper and has spoken with
many of them about their contributions to this area.
Some of these programs have not been documented
previously in the form of reports or papers. They
were simply programmed by their authors to solve a
problem they had at the time. David A. H. Smith
has been especially helpful to the author. His
thoughts stimulated a number of the features of
EPLEA and helped unravel the mysteries of timers.
He offered a number of suggestions and encourage-
ments on this work. The author also appreciates the
thoughtful comments and suggestions of the review-
ers; they greatly improved the content of this
paper.

IBM SYSTEMS JOURNAL, VOL 22, NO 3, 1983

Appendix A: Features of execution analyzers

Execution
analyzer

TIMEIT16

TIMEMAPI'

SPYTIME"

METER"

PROGTIME~

pp~JZ.45

STROBE'?

S P Y

XI COUNT^^

PLI COUNT"

DYNA'',''

COBOLDAP"

FORTUNE]>

ANATEMPj6

PLEA"

EPLEA'

Optimizer 111"

GPROV'

APAT"

dependency
System

VM/SP

V M I S P

VM/SP

MVS

MVT

OS/VS and
DOS/VS

V M I S P
family;

OSIVS and
DOS/VS
family

CDC 6000

VM/SP

None

None

None

None

None

MVS

VM/SP

System/360
System1370

Unix

None

dependency
Language

None

None

None

None

None

None (CO-
BOL option
available)

None

None

Standard
System1370

ventions
linkage con-

compiler
os P L j l

FORTRAN

COBOL

FORTRAN

FORTRAN

PL/I

PL/I

COBOL

None

APL

Instrumenta-
tion

mechanism

Run-time

None (Post-
processor for
TIMEIT)

Run-time

Run-time

Run-time

Run-time

Run-time

Hardware

PER hardware
feature

Object

Source

Source

Source

execution ana-
None (Not an

lyzer)

ject
Run-time;ob-

Run-time; ob-
ject

ject
Run-time; ob-

ject
Run-time; ob-

Source

Measurement
unit

struction ad-
Machine in-

dress range
None

Machine in-
struction ad-
dress range
Machine in-
struction In
program orsu-
pervisor mod-
ule
Machine in-
struction ad-
dress range
Machine in-
struction in
programorsu-
pervisor; pro-
gram wait
states; I10 de-
vice
Machine in-
struction in
programorsu-
pervisor; pro-
gram state;
I/O device

struction
Machine in-

struction
Machine in-

PL/I state-
ment

Statement
FORTRAN

COBOL state-
ment

statement
FORTRAN

statement
FORTRAN

PL/I state-
ment

PL/I state-
ment

COBOL state-
ment; non-CO-
BOL machine
instruction
Procedure

APL function

Measurement
technique

CPU time sam-
pling

None

CPU time sam-
pling

CPU time sam-
pling

Real-time sam-
pling

pling
Real-time sam-

pling
Real-time sam-

Real-time sam-
pling

Tracing

Tracing

Tracing

Tracing

Tracing and
statically com-
puted tlme esti-
mates
Statically com-
puted time esti-
mates
CPU time sam-
pling

CPU time sam-
pling

Tracing and
time sampling

Tracing and
time sampling

Tracing and
CPU time
measurement

Additional
inputs

None

TIMEIT his-
togram; link-
edit map

Link-edit map

Link-edit mod.
ule

None

Link-edit mod.

listing optional
ule: COBOL

Compiler list-
ings

Link-edit map

Link-edit map

None

Source code

Source code

Source listing

Generated ma-
chine code list-
ing
P L j I state-

table
ment number

ment number
PL/I state-

table

COBOL list-
ing

Prologue mon-
itor calls;
static call

None
graph

Detailed
profile

Histogram by
machine ad-
dress
Histogram by
machine ad-
dress with mod-
ule names

module names
Histogram by

and offsets
Histograms by
module names
and offsets

Histogram by
machine ad-
dress
Histogram and
graphs by mod-
ule names and
offsets for
CPU. 110, and
paging

Chronological
and usage
charts, CPU by
source names,
110 by file and
cylinder
Histogram by
machine ad-
dresses with

Path lengths by
module names

subroutine; call
graph; histo-
gram
Table by proce-
dure names and
Statement num-

Augmented
bers

source listing
Augmented
source listing

Augmented
source listing

Augmented
source listing

Histograms by
procedure
names and
statement num-
bers
Histograms by
procedure

categorized
names and

statement num-
bers
Augmented
source listing

and 110 counts
tables for CPU

Caller/callee
tables with self-
and inherited
times
Table by func-
tion names

Profile
features

Combined with
recorder

None

Summary; re-
run options:

Summary; re-
zmm

run options;
z m m

Summaries; su.
pervisor routine
usage; COBOL
statement

tional
numbers op-

Summaries; su-
pervisor routine

options
usage; rerun

Summary

Summary; re-
run options;
z m m

None

Summary;
combined runs
Measurements

gram abort
saved on pro-

Combined with
recorder

None

Summary; su-

ule counts
pervisor mod-

Summaries; re-
run options;
call graph with
self- and inher-
ited tunes

Summaries

Summary; re-
run options

None

IBM SYSTEMS JOURNAL, VOL 22. NO 3. 1983

Appendix B

Source code for Figures lA, lB, and 5A
Statement

number

1 PRIME:
/* PRIME: Count the prime numbers between 1 and 10000.

PROC OPTIONS(MAIN) ;
2 N - 3 ; /* Count primes 1, 2, and 3 .
3 DO 1=5 T O 10000 BY 2 ; /* S t a r t w i t h 5 f o r t h e r e s t .
4 ISPRlME = 1 ;
5 DO J = 3 TO SqRT(1) BY 2 ; /* Look f o r d i v i s o r s .

/* Assume I i s pr ime.

6 ISPRIME = I -F lXED(I / J) *J ;
7 I F ISPRIME-0 THEN

LEAVE ; /+ Found d i v i s o r , I not pr ime.

* /

*/
*/
* /

*/

*/
8 END;
9 IF ISPRIME-=O THEN

N = N+l ; /* Count primes. * /
10 END;
11
12 END;

PUT EDIT (N I I ’ Prime numbers between 1 and 10000 . ’) (A) ;

Source code for Figure 1D
Statement

number

1 P R l M F .
/* PRIME: Count the prime numbers between 1 and 20. */

_ ”
/* Found d i v i s o r , I not p r ime.

*/
*/
+ /
* /

* /
8 END;
9 I F ISPRIME--0 THEN

N = N+l ; P Count primes. * /
10 END;
11
12 END:

DISPLAY (N I I ’ Prime numbers between 1 and 2 0 . ’) ;

Cited references and notes

1. L. R. Power, EPLEA-Using Execution Profiles to Ana-
lyze and Optimize Programs, Research Report RC9932,
IBM Thomas J. Watson Research Center, Yorktown
Heights, NY 10598 (1983).

2. Virtual Machine Facilityj370 PerformancelMonitor Analy-
sis, SB21-2101, IBM Corporation; available through IBM
branch offices. VMAP program number: 5798-CPX.

3. Statistics Generating Package for VM/370 (VMjSGP) Pro-
gram DescriptionlOperations Manual, SH20-1550, IBM
Corporation; available through IBM branch offices. VM/
SGP program number: 5796-PDD.

4. OSjVS2 MVS Resource Measurement Facility (RME) Gen-
eral Information Manual, GC28-0921, IBM Corporation;
available through IBM branch offices. R M F program num-
ber: 5740-XY4.

5. Service Level Reporter General Information Manual,
GH19-6169, IBM Corporation; available through IBM
branch offices. SLR program number: 5740-DC3.

6. IMS Performance Analysis and Reporting System, SB21-
2140, IBM Corporation; available through IBM branch
offices. IMSPARS program number: 5798-CQP.

7. CICSjVS Performance Analysis Reporting System, SB21-
2495, IBM Corporation; available through IBM branch
offices. CICSPARS program number: 5798-DAB.

8. VSI Performance Tool (VSIPT) Program Descriptionj
Operations Manual, SH20-1837, IBM Corporation; avail-
able through IBM branch offices. VSIPT program number:

9. VSE Performance Tool (VSEIPT) Program Descriptionj
Operations Manual, ST40-217 1, IBM Corporation; avail-

5796-PGL.

able through IBM branch offices. VSE/PT program num-
ber: 5796-PLQ.

IO. VTAM Performance Analysis Reporting System (VTAM-
PARS), SB21-2247, IBM Corporation; available through
ISM branch offices. VTAMPARS program number: 5798-
CTW.

11. W. H. Tetzlaff, “State sampling of interactive VM/370
users,” IBM Systems Journal 18, No. 1, 164- 180 (1979).

12. P. H. Callaway, “Performance measurement tools for VM/
370,” IBMSystems Journal 14, No. 2, 134-160 (1975).

13. R. M. Schardt, “An MVS tuning approach,” IBM Systems
Journal 19, No. 1, 102-119 (1980).

14. T. Beretvas, “Performance tuning in OS/VS2 MVS,” IBM
Systems Journal 17, No. 3,290-313 (1978).

15. M. Deitch, “Analytic queuing model for CICS capacity
planning,” ZBM Systems Journal 21, No. 4, 454-470
(1982).

16. M. L. Joliat,personal communication. The TIMEIT execu-
tion analyzer was written by M. L. Joliat, who is currently
with Intermetrics, Cambridge, MA.

17. R. K. Treiber and I . M. Cuthill, personal communications.
The original PLEA execution analyzer for the PL/I F-level
compiler was written for Standard Oil of California by R. K.
Treiber, who is currently at the IBM San Jose Research
Laboratory. It was later modified for the PL/I optimizing
compiler by 1. M. Cuthill, Statistics Canada, Ottawa, Ontar-
io. PLEA is available from the SHARE Program Library
Agency (SPLA), Triangle University Computing Center,
P. 0. Box 12076, Research Triangle Park, NC, by referring
to Program Number 360D-04.2.008.

18. L. G. Stucki and H. D. Walker, “Concepts and prototypes of
ARGUS,” Software Engineering Environments, H. Hunke,
Editor, North-Holland Publishing Company, New York
(1981). pp. 61-79.

19. B. A. McIntosh, N. L. Skeels, and D. H. Springer, DYNA
User’s Manual, EKS Version. For further information con-
tact L. Stucki, Manager, Software Engineering Technology,
Boeing Computer Services, Seattle, WA.

20. B. W. Wade, personal communication. The XICOUNT
execution analyzer was written by B. W. Wade, IBM San
Jose Research Laboratory.

21. OSlVS Linkage Editor and Loader, GC26-3813, IBM Cor-
poration; available through IBM branch offices.

22. IBM Virtual Machinelsystem Product: CMS Command
and Macro Reference, SC19-6209, IBM Corporation; avail-
able through IBM branch offices.

23. A static call graph is one whose nodes are procedures and
whose directed arcs represent all statically bound calls from
one procedure to another (i.e., all calls except those to
variables or parameters)!6

24. A dynamic call graph is one whose nodes are procedures and
whose directed arcs represent those calls that actually occur
in a particular execution of the program; they can be either
statically bound calls or calls to variables or parameters!6

25. In order to execute a program, the addition of a set of control
blocks or data areas (e g , register save areas and 1 /0 control
blocks) and library or supervisor subroutines are required.
These data and subroutines constitute the run-time environ-

26. The execution profiles for TIMEIT and PLEA (Figures 1A
ment of the program.

and 1 B) were produced from the PL/I program in Appendix
A. The DYNA execution profile was generated from the
equivalent FORTRAN program, shown in the execution
profile in Figure IC. The XICOUNT execution profile was
generated from a modified version of the PLjI program in
Appendix B.

292 POWER IBM SYSTEMS JOURNAL, VOL 22. NO 3, 1983

27. For XICOUNT, standard linkage conventions constitute the
use of the BALR 14.15 instruction for calling a procedure
and BR 14 for returning from a procedure!’

28. The PL/I optimizing compiler will generate a statement
number table and add it to the object program if either the
GOSTMT or GONUMBER compiler option is used.29

29. OS PL/I Optimizing Compiler: Programmer’s Guide,
SC33-0006, 1BM Corporation; available through IBM
branch offices.

30. A. P. Batson and R. E. Brundage, “Measurement of the
virtual memory demands of ALGOL-60 programs,” SIG-
METRICS Symposium 74, ACM Performance Evaluation
Review3, No. 4, 121-126 (December 1974).

3 1. “System Software,” Auerbach Technology Reports, Vol-
ume J, P. Nesdore, Managing Editor, Auerbach Publishers,
Inc., Pennsauken, NJ (March 1983). Report 635.2040.020
(December 1981) describes the Optimizer 111 analyzer,
which is marketed by Capex Corp., 4125 N. 14th St.,
Phoenix, A Z 85014.

32. Datapro 70, Volume 3, M. C. Heminway, Managing Editor,
Datapro Research Corp., Deran, NJ (January 1983).
Report 7OE-098-01 (September 1981) describes the TSA/
PPE analyzer, which is marketed by Book and Babbage,
Inc., 510 Oakmead Parkway, Sunnyvale, C A 94086. Report
70E-692-01 (September 1982) describes the STROBE ana-
lyzer, which is marketed by Programart Corporation, 30
Brattle Street, Cambridge, MA 021 38.

33. “Software,” Data Sources 2, Sections K-M, No. 3, G. L.
Fisher, Editor, Ziff-Davis Publishing Co., New York, N Y
(Spring 1983).

34. T. E. Cheatham, “Comparing programming support envi-
ronments,” Software Engineering Environments, H. Hunke,
Editor, North-Holland Publishing Company, New York

35. D. Ingalls, “The execution time profile as a programming
tool,” Design and Optimization of Compilers, R. Rustin,
Editor, Prentice-Hall, Inc., Englewood Cliffs, N J (1971),

36. S. L. de Freitas and P. J. Lavelle, “A method for the time
analysis of programs,” IBM Systems Journal 17, No. I ,
26-38 (1978).

37. APL Performance Analysis Tools, SH20-2620, IBM Cor-
poration; available through IBM branch offices. APAT
program number: 5796-PPJ.

38. N. Fujimura and K. Ushijima, “Experience with a COBOL
analyzer,” IEEE Computer Software and Applications
Conference, Chicago (October 1980), pp. 640-645.

39. E. Mahoney and M. Henderson, METER-A Tool for
Evaluating Application Programs, Technical Report
TR03.070, Santa Teresa Laboratory, San Jose, CA 95150
(August 1979).

40. OS/VS2 MVS Supervisor Services and Macro Instructions,
GC28-0683, IBM Corporation; available through IBM
branch offices.

41. R. G . Scarborough, personal communication. The SPY-
TIME execution analyzer was writ ten by R. G.
Scarborough, IBM Scientific Center, Palo Alto, CA 94304.

42. IBM Virtual MachineISystem Product: System Program-
mer’s Guide, SC19-6203, IBM Corporation; available
through IBM branch offices.

43. IBM System/370 Principles of Operation, GA22-7000,
IBM Corporation; available through IBM branch offices.

44. D. E. Knuth, “An empirical study of FORTRAN pro-
grams,” Software Practice and Experience 1, No. 2, 105-
133 (April 1971).

(1981),pp. 11-25.

pp. 107-128.

45. K. W. Kolence, “A software view of measurement tools,”
Datamation 17, 32-38 (January 1971).

46. S. L. Graham, P. B. Kessler, and M. K. McKusick, “gprof
A call graph execution profiler,” Proceedings of the Sigplan
I982 Symposium on Compiler Construction, ACM Sigplan
Notices 17, No. 6, 120-126 (June 1982).

47. D. Ferrari and M. Liu, “A general-purpose software mea-
surement tool,” SIGMETRICS Symposium 74, ACM Per-
formance Evaluation Review 3, No. 4, 94- 105 (December
1974).

48. Access to the PER hardware is available under VM/SP via a
facility documented in “PER Debugging for Virtual
Machines.” For further information contact K. Anderson,
University of Maine, Orono, ME, or T. Johnston, Stanford
Linear Accelerator Center, Stanford, CA.

49. IBM Virtual Machine/System Product: CP Command Ref-
erence for General Users, SC19-6211, IBM Corporation;
available through IBM branch offices.

50. S. Jasik, “Monitoring program execution on the CDC 6000
series machines,” Design and Optimization of Compilers, R.
Rustin, Editor, Prentice-Hall, lnc., Englewood Cliffs, N J

5 1. M. R. Sinnott and A. J. Bytheway, “What is going on inside
the machine? (The effectiveness of hardware monitoring as
a measurement tool),” Computer Performance Evaluation,
Online Conferences Limited, Uxbridge, England (1976), pp.
371-388.

52. C. D. Warner, “Monitoring: a key to cost efficiency,”
Datamation 17,40-49 (January 1971).

53. R . Ibbett, “The hardware monitoring of a high performance
processor,” Computer Performance Evaluation, N. Benwell,
Editor, Advanced Book Program, Cranfield Institute of
Technology, UK (December 1978), pp. 274-292.

54. R. W. Hadsell, M. G . Keinzle, and K. R. Milliken, The
Hybrid Monitor System, Research Report RC9339, IBM
Thomas J. Watson Research Center, Yorktown Heights,
N Y 10598 (1983).

55. R. G. Scarborough, personal communication. TIMEMAP is
a postprocessor to the TIMEIT execution analyzer written

CA 94304.
by R. G . Scarborough, IBM Scientific Center, Palo Alto,

56. S. W. Sherman, “Trace driven modeling: An update,”
Proceedings of Symposium on Simulation of Computer
Systems, Conference, Boulder, Colorado (August 10- 12,
1976), pp. 85-91.

57. J. L. Archibald, “The External Structure: Experience with
an automated module interconnection language,” The Jour-
nal of Systems and Software 2, No. 2, 147-157 (June
1981).

58. B. M. Leavenworth, ADAPT Reference Manual, Technical
Memo No. 19, IBM Thomas J. Watson Research Center,
Yorktown Heights, N Y 10598 (June 1981).

59. D. A. H. Smith, personal communication. D. A. H. Smith,
IBM Thomas J . Watson Research Center, Yorktown
Heights, N Y 10598, modified the PLEA execution analyzer
to implement inherited CPU time and to make it run on
VM/SP.

60. H. A. Ellozy, personal communication. The EPLEA call
dependency graphz4 is an adaptation of the GRAPH pro-
gram written by H. A. Ellozy, IBM Thomas J. Watson
Research Center, Yorktown Heights, N Y 10598. The
GRAPH program was originally implemented to support the
ADAPT External Structure.”

61. M. A. McNeil and W. J. Tracz, “PL/I program efficiency,”
Sigplan Notices 15, No. 6, 46-60 (June 1980).

(1971), pp. 129-136.

IBM SYSTEMS JOURNAL, VOL 2 ’2. NO 3, 1983 POWER 293

62. J. L. Carter and M. N . Wegman, “Universal classes of hash
functions,” Proceedings of the Ninth Annual ACM Sympo-
sium on Theory of Computing, Conference, Boulder,
Colorado (May 2-4, 1977), pp. 106-1 12.

63. OS PL/I Checkout and Optimizing Compilers: Language
Reference Manual, GC33-0009, IBM Corporation; avail-
able through IBM branch offices.

64. R. W. Scheifler, “An analysis of inline substitution for a
structured programming language,” Communications of the
ACM 20, No. 9,647-654 (September 1977).

Leigh R. Power IBM Research Division, Thomas J . Watson
Research Center, P.O. Box 218, Yorktown Heights. New York
10598. Since joining IBM in 1963 as a member of the Service
Bureau Corporation, Mr. Power has designed and implemented
systems for 1 / 0 control, interactive computing, information
retrieval, text processing, and sorting. Since 1970, Mr. Power has
been a research staff member at the IBM Thomas J. Watson
Research Center, where he is currently working in the field of
software technology. In addition to contributing to the develop-
ment of the ADAPT tools, Mr. Power has become especially
interested in the performance implications of data abstractions.
Mr. Power received his B.A. degree in physics from Cornell
University in 1963 and attended the IBM Systems Research
Institute in 1967 and 1969.

Reprint Order No. G321-5196.

294 POWER IBM SYSTEMS JI 3URNAL. VOL 22, NO 3, 1983

