Knowledge-based systems
in the commercial
environment

Knowledge-based systems are among the first applica-
tions of artificial intelligence to make the crossover
from the laboratory to the real-world commercial envi-
ronment. Typically, artificial intelligence systems have
been implemented in the LISP programming language
on specialized hardware. The experimental nature of
early systems has allowed many of them the luxury of
having little or no interface to existing hardware, soft-
ware, or data. In this paper, arguments are presented
to demonstrate the feasibility of implementing knowl-
edge-based systems using traditional hardware and
software. Also, an architecture is proposed for knowl-
edge-based shell systems that is compatible with the
software development environment of large commer-
cial information systems organizations. To demon-
strate these concepts, an example system is shown.

uring the past several years, the knowledge-

based system (kBS) has emerged as a new class
of software. Based upon theoretical concepts con-
ceived in the early 1950s in various academic insti-
tutions such as the Massachusetts Institute of Tech-
nology, Carnegie Institute of Technology, and Stan-
ford University, these systems are finding their way
out of the laboratory and into the business place. If
the prognosticators are correct, they will alter the
way in which computers are used in the years to
come. Knowledge-based systems are designed to em-
ulate narrowly defined subsets of human decision
making. Unlike traditional transaction and algo-
rithmic systems, these systems can operate under
conditions of incomplete and uncertain information.
They may also deal with “fuzzy” data such as opin-
ions or qualitative evaluation. Moreover, in the proc-
ess of reaching some operational goal, KBS logic is

IBM SYSTEMS JOURNAL, VOL 25, NO 2, 1986

by E. D. Hodil
C. W. Butler
G. L. Richardson

generally self-diagnostic. On command, a KBS will
explain the inferences used to reach conclusions.
Because they provide a new approach to the process
of decision making, it is easy to see why KBSs are
projected to occupy a vital role in future information
systems architecture.

In concept, KBSs would appear to hold the ideal
solution for a multitude of problems encountered in
the commercial information systems world. Surpris-
ingly, real progress has been slow in coming. To date,
fewer than one hundred kBss are known to be in
commercial use. According to conventional wisdom,
the shortage of real-world systems can be explained
by the newness of the technology and the lack of
specially trained personnel. A more likely explana-
tion is that KBS shell system developers have, for the
most part, opted for languages (LISP and PROLOG)
and specialized hardware (single-user LISP worksta-
tions) that inherently isolate potential business users
from both the existing operational architecture and
the associated base of trained personnel.

There are sound technical and economic reasons
for building kBss within the architecture of a commer-
cial information systems environment. Most signifi-
cantly, the training investment for computer profes-
sionals makes the use of existing traditional tools

© Copyright 1986 by International Business Machines Corporation.
Copying in printed form for private use is permitted without
payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright
notice are included on the first page. The title and abstract, but no
other portions, of this paper may be copied or distributed royalty
free without further permission by computer-based and other
information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

HODIL, BUTLER, AND RICHARDSON 147

Figure 1 TEXpert KB Development System

INFERENCE DEVELOPMENT
UTILITIES UTILITIES
(PLA, CLIST, 1IBPF) | (PL/, CLIST, ISPF)
1. TEXPERT 1. TEXAEDT
foon, e | [ERES
4. TEXCLRV 4. TEXPA
5. TEXSA

essential wherever possible. With use of existing
professional skills and conventional development
concepts, much of the complex implementation
process can be subjugated. Another reason justifying
implementation using traditional developmental
tools is the fundamental issue of system integration.
A stand-alone special-purpose environment creates
a new architecture and thereby introduces serious
constraints to network compatibility and intercon-
nectivity. Despite the fact that kBs technology does
have certain characteristics which make it unique,
its components, particularly the data acquisition sub-
system, may need linkage to the existing information
systems architecture. As the KBS user community
grows, it is becoming more obvious that the KBS
should be integrated with the existing information
system network and its current desktop workstation.
Thus, the ergonomic factors also favor techniques
for merging knowledge-based systems into the main-
stream of commercial data processing.

There are several precedents which refute the argu-
ment that all KBS applications, or for that matter all
artificial intelligence (A1) applications, require spe-
cial-purpose languages or hardware. For example,
INTELLECT,! a commercially available natural-lan-
guage data base query program, is implemented in
PL/1 and runs on various IBM mainframes. INTELLECT
uses several of the major data base management
systems. A more recent program, the 1BM Expert
System Environment/vM (ESE) program product,’
written in Pascal, demonstrates that KBss may also
be developed using procedural languages and con-
ventional hardware. ESE also features connectability
to external data sources and external programs. Prior
to ESE, Weiss and Kulikowski constructed several

148 HODL. BUTLER, AND RICHARDSON

knowledge-based systems using a shell system called
EXPERT which is written in FORTRAN.?

Although it seems clear that applications can be
developed today using tools and personnel that are
already in place, it is important that the insular
nature of special workstations and languages not be
carried over to mainframe/traditional language im-
plementations. Historically, one of the most success-
ful paradigms for integrating new functions into
commercial information systems has been the “pro-
grammer’s toolbox” approach. Here, the desired
function is decomposed into a library of single-
purpose subroutines, each of which may be used to
build customized applications. The chief advantages
of this method are that (1) it generally does not
require the application developer to learn new pro-
gramming languages; (2) it allows programmers to
build customized systems which use only needed
subfunctions; and (3) it permits the “orchestration”
of many types of functions (i.e., graphics, screen
management, data base management, knowledge-
base management).

To support this position, the architecture of a shell
system written primarily in PL/1 is outlined, and then
a sample application developed using the shell is
discussed. Readers who are unfamiliar with the gen-
eral features of knowledge-based systems are referred
to Hayes-Roth et al.* and Weiss and Kulikowski®
among others.

TEXpert

TEXpert is a shell system written in PL/1 and IBM’s
Interactive System Productivity Facility (1SPF). Since
ISPF supports menu-driven applications, it combines
user-friendly development and consultation facilities
with a discrete set of programmer’s toolbox utilities.
The guiding requirements for the construction of
TEXpert were threefold:

1. To engender the ease-of-use features of most
stand-alone workstation tools, i.e., easy-to-use
knowledge-base editors and debuggers.

2. To connect easily with existing software and data
bases.

3. To implement a development interface that pro-
grammers, analysts, and users of IBM MVS/TSO
environments would recognize and quickly learn.
Each of these groups needs to access the system
at its own skill level.

To accomplish these objectives, the KBS function was
first decomposed into the toolbox utility programs.

IBM SYSTEMS JOURNAL, VOL 25, NO 2, 1986

Second, a development system, depicted in Figure 1,
was built to satisfy end-user requirements and those
of the technical staff. At the core of the development
system are the inference utilities of the toolbox.
Editing and testing tasks associated with knowledge-
base construction are handled by the development
utilities. The development utilities also encompass
features such as printing and static analysis. The
driver program of the development system gives the

Central to any KBS is the knowledge
base.

user a structured interface to both the inference and
the development subsystems. Physically separate
from the procedural pieces of the system are the
knowledge bases which contain application-specific
knowledge and data. In the following sections, each
of these components is discussed.

Knowledge-base architecture. Central to any KBS is
the knowledge base. Attributes (object properties)
and rules (expert heuristics) are the primary data
structures of a knowledge base. Unique to TEXpert is
the use of ISPF tables as the repository for attribute
and rule data. The 1SPF product is itself a good
example of the toolbox utility approach advocated
here. Each knowledge base is implemented as an ISPF
table library with internal representations of attri-
butes and rules stored separately in two members of
the partitioned dataset of the tables.

Rules in the TExpert system have the usual “if” and
“then” parts of production rule systems. Rules are
typically entered using the rule editor of the devel-
opment utility but can also be created by application-
specific procedures. Internally, rules are stored in a
compressed text format to minimize the amount of
run-time parsing. The “if” part, or antecedent of a
rule, contains attribute value comparisons that must
be “true” for the rule to “fire” (i.e., assert its conse-
quent clauses). Antecedent clauses are formed using
an operator prefix notation, another parsing opti-
mization technique. The allowed comparison oper-
ators are the usual EQ, NE, GE, GT, LT, and other

IBM SYSTEMS JOURNAL, VOL 25, NO 2, 1986

operators. The clauses may be conjoined and/or
disjoined. Consequent clauses of the “then” part of
the rule are used to assign values for attributes when
and if a rule “fires.” Each consequent clause has an
a priori certainty factor associated with it. The cer-
tainty factor may take a value from zero to one,
where one is absolute certainty.

Attributes are stored with definition data and, where
appropriate, with pointers to rules that reference
them. Attributes may be declared as one of several
data types:

STRING—character string up to 31 characters
INTEGER—16-bit integer

LONG—32-bit integer

FLOAT— 1 6-bit floating point
DOUBLE—32-bit floating point
ENUM—ordered list of values

The ENUM data type is similar to the Pascal enumer-
ated data type. It allows the user to define alternative
collating sequences for use in rule comparisons. For
example, a user may declare DAY_OF_WEEK as an
ENUM attribute containing a possible value from
SUNDAY to SATURDAY. Attributes may also be de-
fined to take only one value or to take a set of values.
Finally, the user may specify the order of sourcing
for the value of an attribute (discussed in the next
section) and may declare auxiliary text data for use
in querying the user.

Admittedly, the TExpert shell lacks sophistication in
terms of knowledge representation and optimal per-
formance. One planned functional enhancement to
the system is the addition of explicit objects. Cur-
rently, with only one implied object allowed, the user
must embed object references within attributes.
Embedding objects can result in overly large knowl-
edge bases and a loss of generality. For instance, the
expression

EQ COLOR_OF(X)WHITE

where “X” is an object variable, can be used in many
contexts, whereas the current TEXpert expression

EQ COLOR_OF_DOG WHITE

may only be used in the context of “dogs.”

The performance issue could easily be addressed with
the use of text string encoding. As yet, this has not
proved necessary since ISPF table services provide
data compression, and TEXpert has not exhibited
serious performance degradation. In addition, some
performance improvement has already been ob-

HODIL, BUTLER, AND RICHARDSON 149

Figure 2 ASKUSER screen

TEXPERT -—--mmmmmmmm ROW 1 OF 2
COMMAND ===> SCROLL ===> (SR
PF13 =HeLP ENTER =DON'T KNOW PFO4 =WHy PFO5 =RULE
PF13 =Up PF20 =Down PF15 =END

LOCATION
LOOK AT A MAP OF THE UNITED STATES, AND DETERMINE

YOUR POSITION, NOW, 1S THIS LOCATION:
(CHOOSE ONE OF THE FOLLOWING)

=== OPTION COMMENT
WEST_OF_MISSISSIPPI 7
EAST_OF_MISSISSIPPI 7

HredrEREERERTERREEREER DOTTOM OF DATA

tained by storing precompiled pointers to relevant
attributes along with the rules. These pointers are
used by TExpert utilities to help optimize searches.

All in all, the table structure of rule and attribute
data lends itself to an ISPF table services implemen-
tation. This system works well except for limited
table-sharing facilities in WRITE mode. There also
needs to be an improved level of security for sensitive
data. Alternatives to these design limitations are
currently under consideration. One primary ap-
proach to addressing these items is to use 1BM’s DB2
relational data base for rule storage.

Inference utilities. The fundamental programs upon
which the development system is built are the infer-
ence utilities. Four programs perform the functions
traditionally associated with the inference engine of
stand-alone systems, ¢.g., problem space search, pat-
tern matching, user query, and explanation. The four
primary inference utilities are

1. TEXPERT—a backward-chaining, best-first-search
inference utility

2. TEXPLN—a program that “follows” the line of
inferences and produces a tabular representation
for the hierarchy of successful rules

3. TEXASRT—a program for asserting (and retract-
ing) attribute values

4. TEXCLRV—a program to refresh the knowledge
base with null values

The TEXPERT utility is invoked with arguments in-
dicating the appropriate knowledge base to be ex-

15(HODIL, BUTLER, AND RICHARDSON

plored for a specific problem area. The user is addi-
tionally able to specify a sensitivity factor (ranging
between zero and one) which is used as the criterion
for rule firing. Rules for which the cumulative evi-
dence exceeds an assigned threshold are “fired,” and
their consequents are made a part of the knowledge
base.

TEXPERT propagates certainty through multiple levels
of rules in the same manner as EMYCIN.® If the
antecedent of the rule is composed of conjuncts
(statements connected by the AND operator), the
maximum certainty factor of the conjuncts is mul-
tiplied with the a priori certainty factor of the con-
sequent. For disjunctive (OR) antecedents, the mini-
mum certainty factor is used. Although this scheme
is far from perfect, it is one that is commonly em-
ployed. It is important to note here that TEXPERT
certainty factors do not necessarily represent pure
statistical probability.

The TEXPERT utility accepts data from a wide range
of external sources limited only by the imagination
of the kBS builder. The built-in data acquisition
method is the ASKUSER facility. An example ASKUSER
prompt panel is shown in Figure 2. Note that unlike
the user queries of many shell systems, ASKUSER
provides a range of values from which the user may
select. When the query is constructed in this way,
the user is not required to tediously answer many
questions of the form “Is it true that attribute X has
value Y?” The self-diagnostic “Why” and “Rule”
commands that are typically found in knowledge-
based systems are also included in ASKUSER. The
“Why” command shows the user the stack of rules
under consideration, and the “Rule” command
shows the “pretty-printed” text of the rule that is
under immediate scrutiny.

It should be pointed out that for many applications
the ASKUSER facility will not be a satisfactory method
of data acquisition. As mentioned earlier, such sys-
tems as existing EDP (electronic data processing), MIS
(management information system), and Dss (deci-
sion support system) contain data upon which
knowledge engineers of future applications will un-
doubtedly want to draw. It is also true that custom-
ized user interfaces will be needed for some systems.
To give the knowledge-base builder the ability to
utilize external data and simultaneously allow for
customized interfaces, the TEXPERT program con-
tains a built-in method for implementing user-de-
fined exit routines. Synchronous exits from the shell
system are defined to TEXPERT in a run-time argu-

IBM SYSTEMS JOURNAL, VOL 25, NO 2, 1986

Figure 3 TEXPLN screen

COMMAND

PF15 =END PF19 =Up PF20

THE VALUE FOR SOCK_COLOR 1s BROWN.
(CERTAINTY FACTOR = 0.,34)

---------------- ROW 1 OF 12
SCROLL ===> CSR

=DowN

THE PATH OF REASONING IS AS FOLLOWS:
(You MAY SELECT A RULE TO SEE ITS TEXT)

=== | INE No. ==== SOURCE = ====

1. BROWN RULE.

2. BUSINESS RULE.

3, You sSAID JOB = PROGRAMMER

y, You SAID JOB = PROGRAMMER

5. You SAID JOB = PROGRAMMER

6. ACTIV RULE.

7. BUSINESS RULE.

8. You SAID JOB = PROGRAMMER

9, You sAID JOB = PROGRAMMER

10. You SAID JOB = PROGRAMMER

1. You sAID MARITAL_STATUS = MARRIED
12. You SAID WEEKDAY = TUESDAY

36 3 3 I I3 3 I NN RN BOTTOM

ment which consists of an array of subroutine entry
points. Associated with each entry address is the
character representation of the name of the subrou-
tine. This exit array is used by TEXPERT (via a table
lookup and subscripted caLL) whenever the services
of an exit routine are required. All data communi-
cation between TEXPERT and exit routines is accom-
plished through the TEXASRT utility.

The inference mechanism of TEXPERT deviates a bit
from the norm as a result of lessons learned from
building previous kBss. One extremely useful feature
is the variable sourcing sequence for attributes. As
TEXPERT attempts to resolve a value for an attribute,
it first retrieves a sourcing sequence record from the
knowledge base. The sourcing sequence record in-
dicates the order in which various sources of data

IBM SYSTEMS JOURNAL, VOL 25, NO 2, 1986

OF DATA A6 36 3k 3 3 36 36 3 3 3 3 30 30 36 3 I 36 3630 36 30 0 3

will be tried. The sourcing sequence of a typical
attribute may specify that rules be tried first, followed
by an exit routine. Failing these, the knowledge-base
designer may indicate that a default value be assigned
to the attribute, or that a query be posed to the user.
As in 1BM’s ESE, alternative sourcing sequences may
be programmed by the knowledge-base designer us-
ing the development system. Optionally, the source
sequencing may be dynamically composed using the
exit facility.

Another inference feature that deserves mention is
the best first search. When considering alternative
rules to try, TEXPERT will order the relevant rules so
that rules with the highest a priori certainty factors
will be tried first. Thus, a knowledge-base designer
may control the order in which rules are tried by

HODL, BUTLER, AND RicHaRDSON {51

Figure 4 TEXAEDT edit options

TEXPERT
OPTION ===>

BLANK = DISPLAY ATTRIBUTE LIST

D EDIT DEFINITION, ALIAS, SOURCE ORDER
A EDIT ASKUSER SCREEN

v EDIT VALUE LIST

E EDIT EXIT LIST

DEL - DELETE ALL DATA FOR ONE ATTRIBUTE
CLR ~ CLEAR ALL VALUES FOR ALL ATTRIBUTES

KB LIBRARY:
PROJECT ===> AKYSEDH
KNOWLEDGE BASE ===> PROGEVAL
ATTRIBUTE ===>

Figure 5 TEXREDT rule edit

TEXPERT

AND ===> SCROLL ===> (SR
WHREES ENRR R TOP oF DATA AN
000001 IF
000002 AND
000003 EQ CAREER BUSINESS
000004 EQ SOCIAL_ACTIVITY ACTIVE
000005 GT WEEKDAY SUNDAY
000006 ENDA
000007 THEN
000008 ASSERT
000009 SOCK_COLOR BROWN 0.45
000010 ENDA

BOTTOM OF DATA ##sssrssnnnususssnuns

appropriately manipulating the certainty factors in
rule consequents.

The TEXPLN utility uses pointers built by TEXPERT to
generate an indented table, illustrated in Figure 3,
that shows the path of rules used to derive attribute
values. Like TEXPERT, it also accepts arguments for
the name of the knowledge base and the goal attri-
bute. The recursive mechanism of TEXPLN begins by
determining the source for the goal attribute. Sources
for attribute values are stored whenever the TEXPERT
program asserts a value for that attribute. Some
sources such as user exit routines and the user’s
terminal input are “leaf” nodes in the explanation
“tree.” Rule sources, however, require more elabo-

152 HODL. BUTLER, AND RICHARDSON

ration. When applicable, the TEXPLN program ex-
tracts the relevant rule, and in a manner very similar
to that of TEXPERT’s backchaining mechanism, re-
cursively develops explanation subtrees for each
clause of the antecedent. The user may specify
whether or not redundant paths are to be shown.

The TEXASRT subroutine gives the customized KBS
builder an easy-to-use and well-defined interface to
knowledge-base data structures. TEXASRT is the same
routine that is used from within TEXPERT to add or
assert values for attributes. Besides attribute values,
TEXASRT also updates the source pointers (used by
TEXPLN) and the associated certainty factors for val-
ues.

The single function of the TEXCLRvV subroutine is to
delete the value records from the knowledge base.
This function is used between invocations of the
TEXPERT program. If TEXCLRv is not used before
calling TEXPERT, all previous values will remain in
effect. TEXCLRV also clears the source pointers and
the certainty factors for values.

Development utilities. The five programs of the de-
velopment utilities can be functionally classified as
editing or maintenance programs. Specifically, these
procedures are

1. TEXAEDT—builds and edits knowledge-base attri-
butes
. TEXREDT—Dbuilds and edits knowledge-base rules
. TEXPR—archives rules
. TEXPA—archives attributes
. TExsA—performs static analysis

Like the inference utilities, these subprograms are
also available for use in custom applications, though
experience to date has shown that they are used to a
lesser degree.

There are two paradigms for knowledge-base editors:
batch compilation and simultaneous edit and com-
pile. With use of the compiler scheme, a language
for declaring attributes and rules is used to define a
knowledge base. The user builds the knowledge base
using a standard text editor and “compiles” it using
the development program compiler. The Knowledge
Engineering System (KES) shell system? is constructed
in this way.

The alternative method, employed by TEXpert, uti-
lizes specialized edit facilities which simultaneously
compile the source text. Figure 4 shows one of the

IBM SYSTEMS JOURNAL, VOL 25, NO 2, 1986

formatted panels used to edit attributes. Processing
behind the panel checks the input and compiles it
when a save command is issued. Similarly, an ex-
ample rule edit is shown in Figure 5. The underlying
function parses the rule both syntactically and glob-
ally and performs other edit support tasks such as
“pretty printing” of the rules and copying rule source
text from other ISPF tables. A specialized edit and
compile function is superior because it minimizes
the time required to complete a single iteration of
the create-compile-debug-edit cycle. A drawback is
that users are required to learn slightly new editing
facilities, even though this factor has been minimized
by building an interface that closely resembles the
typical ISPF environment.

The TEXPR and TEXPA knowledge-base maintenance
programs are used to format printed copies of rules
and attributes. Both TEXPR and TEXPA allow the user
to print individual rules and attributes or the entire
rule/attribute set for an application. The static anal-
ysis program, TEXSA, provides tabular overviews of
knowledge bases. One view shows the relationships
among attributes in the attribute hierarchy. Another
perspective shows the interconnections among the
rules of a knowledge base. The rule interconnection
graph is very similar to the TEXPLN graph shown
earlier. The output of TExSA differs from that of
TEXPLN in that TEXSA attempts to show the case
where all rules have fired. Taken together, these two
reports can be used to identify potential rule incon-
sistencies and “dangling ends” (branches of rule and
attribute trees that are disconnected from the trunk).
This is a new form of program debugging, for which
firm methodology has yet to be developed.

The development system. A builder of a xBs (either
a programmer or an end user) can access the services
of the development and inference utilities via the
development system. The system is a collection of
ISPF panels and Time Sharing Option (TSO) com-
mand lists designed to guide the user through the
construction of a knowledge-based system. Figure 6
shows the primary options menu for the develop-
ment system of TExpert. Note that there are options
for creating, editing, testing, and deleting knowledge
bases. The test option is implemented with the same
TEXPERT and TEXPLN subprograms previously de-
scribed. Thus, consultations work exactly the same
in finished production systems as they do in the
development phase. It is also noteworthy that no
special debugging facility is required or supplied,
since the inherent “Why” and “Rule” capabilities of
the TEXPERT program fulfill this role.

IBM SYSTEMS JOURNAL, VOL 25, NO 2, 1986

Figure 6 TEXPERT primary options

TEXPERTY
OPTION ===>
0 CREATE KB - ALLOCATE KB DATASETS
1 EDIT ATTRIBUTES - ADD/CHANGE/DELETE ATTRIBUTES
2 EDIT RULES - ADD/CHANGE/DELETE RULES
3 Test KB - TEST KNOWLEDGE BASE
4 DELETE KB - DELETE KB DATASETS
5 UTILITIES - KB DEVELOPMENT UTILITIES
T TUTORIAL - DISPLAY INFORMATION ABOUT TEXPERT
X EXIT - EXIT TEXPERT

ENTER END COMMAND TO TERMINATE TEXPERT.

USERID - AKH4SEDH
TIME - 13:03

TERMINAL - 3278
PF KEYS -~ 24

RELEASE - 1.0

Figure 7 Architecture of a custom KBS application

APPLICATION DRIVER PROGRAM

INFERENCE UTILITIES APPLICATION
KNOWLEDGE
APPLICATION \Bases
EXIT
ROUTINES

APPLICATION
DATA
BASES

N—

A final item addressed in the development system is
the integrated on-line tutorial. Most shell systems
have “help” functions, and TExpert is no different.
The TExpert tutorial subsystem follows the well-
established ISPF tutorial interface with which a large
body of professionals are already familiar. Moreover,
this facility is integrated into the ASKUSER function
of the TEXPERT program, thereby allowing applica-
tion-specific tutorial/help subsystems to be included
easily in custom applications. Users have the option
of entering the tutorial directly from the main menu,
or invoking it via the help program function key
where needed.

A customized application

The form of a custom KBS application built using
TEXpert is shown in Figure 7. A customized appli-

HODIL, BUTLER, AND RICHARDSON 153

Figure 8 PROGEVAL data sources

COMPLEXITY
MEASURES

EXECUTION M
PERFORMANCE

SYSTEM
PROFILES

KNOWLEDGE
—>| BASEFOR (*
EXECUTION |, | PROGEVAL
SCHEDULE

USER [
INPUT

RESOURCE - TRACKING

OF ABNORMAL
ACCOUNTING ENDINGS
N—

PROGEVAL

cation driver program, similar to that of the devel-
opment system, is designed and implemented by the
knowledge-base designer. CALL invocations are made
to required inference TEXpert utilities. There is no
limit to the number of times an inference utility can
be invoked; however, recursive invocations of the
TEXPERT program currently are undefined. Option-
ally, the developer may specify application exit rou-
tines through the addresses passed to the TEXPERT
program. Logically, though not lexically, the exit
routines are subroutines of the inference utilities.

The 1SPF tables containing the knowledge base and
any data files required by the application must be
allocated before the services of the inference utilities
are requested. Also, the required panel library allo-
cations must be made before ISPF is entered, or
afterward via the 1SPF LIBDEF facility.

PROGEVAL: A sample system. The PROGEVAL pro-
totype application is used to evaluate application
programs and prescribe maintenance activities. This
system, which is still under development, consists of
two parts:

1. Program evaluation—rules and data to determine
program “fitness”

2. Prescription—rules to determine what mainte-
nance action is required to fix a code unit

154 HODL, BUTLER, AND RICHARDSON

The evaluation process is based upon measured pa-
rameters from four areas: source module complexity,
program run-time failures, job control language fail-
ures, and operations (manual procedure) failures.
The prescriptive half of the system heavily overlaps
evaluation. Most of the attributes are, in fact, the
same. Factors that are unique to prescription are the
operating cost for the maintenance of the program
and intangibles such as political sensitivity. Figure 8
shows the relationships between PROGEVAL and the
various data sources. An important feature of PRO-
GEVAL is its reliance on external data sources other
than user consultation. Except for subjective evalu-
ations concerning the quality of a code module and
the political climate surrounding the parent system
of the program, all data are gathered from existing
tracking systems.

Constructing PROGEVAL. The PROGEVAL system
was constructed using the TExpert architecture. A
primary design goal was to construct the application
in a manner consistent with 1SPF convention. Thus,
many of the features expected by ISPF users, such as

Figure 9 PROGEVAL module hierarchy

PROGEVAL
-
w
>
w
-
i :
o
g
[1 g
BATCH INTERACTIVE a
PROCESSING CONSULTATION <
I] I | -'
S
TEXCLRV TEXASRT TEXPERT TEXPLN Wy
=
=
o o
w
CUSTOMIZED E
USER 2
QUERY EXIT g
8
:
[-%
< 3

IBM SYSTEMS JOURNAL, VOL 25, NO 2, 1986

hierarchical menus, data entry panels, and informa-

- ; 3 Figure 10 PROGEVAL primary options
tional messages, appear in the user interface.

Figure 9 illustrates the dual-subsystem nature of this
application. Note that the system consists of a batch
portion and an on-line consultation part. The pur- OPTION ===>
pose of the batch component is to gather data from

. g 1 COLLECT DATA - SUBMIT DATA COLLECTION JOB
the external sources discussed earlier and to load the 2 CONSULT ~ ON=LINE CONSULTATION
results into an ISPF table. The batch subsystem is not T uToRIAL T DISPLAY INFORMATION ABOUT PROGEVAL

executed each session because the data are generally

not refreshed on a day-to-day basis. The on-line

consultation segment serves to gather user input and USERID - AI4SEDH TERMINAL - 3278
: o : TINE - 10:25 PF KEYS -~ 24

to present prescriptions regarding the status of pro-

duction load modules. The following subsections

explain each component of the design in more detail.

ENTER END COMMAND TO TERMINATE PROGEVAL

Batch component. Each of the external systems sche-
matically pictured in Figure 8 contains facts that are
needed by the knowledge base. PROGEVAL draws data
from these external systems for use in the on-line
consultation. In doing so, the batch subsystem uses
the TEXCLRV program to remove previous data from
the knowledge base, and then the TEXASRT facility

Figure 11 PROGEVAL program specification screen

assigns current values for attributes. The batch up- CONSULT =mmmmmmmmmmmm PROGEVA L mmmmmmmmmmmmmmmmmme

dating interface is initiated when the user selects COMMAND ===>

option 1 on the primary menu shown in Figure 10. PROGRAM LIBRARY:

Execution of this option may be periodic since the PROJECT T2 ATUSEMH

data change infrequently. PROGRAM ===> (BLANK FOR PROGRAM SELECTION LIST)
CONFIDENCE LEVEL ===> (0 T0 100)

On-line component. The on-line consultation system
is initiated when the user selects option 2 of the
PROGEVAL primary options menu. After invocation,
the user is presented with a program specification
screen, as shown in Figure 11. From this screen it is
possible to further specify the application library (the
set of programs the user is responsible for) and the
particular program to be examined by the knowl-
edge-based system.

Figure 12 PROGEVAL program list

Alternatively, the user may leave the program spec-
ification field blank and be presented with a selecta-

ble screen as shown in Figure 12. Here, a scrollable Egmm -—---———é&aﬁow 1 028;1
. M . —em> >

list of programs is displayed along with the date of - PROGRAM ~~-- CREATED —----- MODIFIED ~omommm USER ———n
most recent update ing knowl AI450001 09/25/85 11/15/85 AILSEDH
the most recent up of the supporting knowledge AI450002 09/13/85 11715/85 AT4SEDH
base (from the batch subsystem). The user may then AI450003 09/22/85 11/15/85 AI4SEDH
choose to display the supporting knowledge base, by e s A aeoH
entering the letter “D,” or he may begin the consul- AI450006 09/13/85 11/15/85 AT4SEDH
. : wgn : AI450007 09/13/85 11/15/85 ALYSEDH
tation by entering the letter “S” next to the desired ATLS0008 09/25/85 RS AT45EDH
program. AI450009 09/25/85 11/15/85 AI4SEDH
AI450010 09/22/85 11/15/85 AT4SEDH
AI450011 09/25/85 1/15/85 ATUSEDH

Before the TEXPERT inference utility is invoked, the srxxrserrunsrancsrrs BOTTON OF DATA
user is prompted to specify the level of confidence
required in evaluating the problem program (see
Figure 11). This number is then converted to the
appropriate sensitivity factor. As stated earlier, the

IBM SYSTEMS JOURNAL, VOL 25, NO 2, 1986 HODIL, BUTLER, AND RICHARDSON 155

Figure 13 CALLS to TEXPERT and TEXPLN

/*********'l-***/

PROCESSING

/** MATN

**/

/***/

POS = INDEX(PARMS.'.’):
DO I =1 T0 10 WHILE (POS ~= 0):

PARM(I) = SUBSTR(PARMS,1,(P0S-1)):

PARMS = SUBSTR(PARMS. (P0S+1)):
POS = INDEX(PARMS,’,'):

END:

PARMCI) = PARMS:

KBNAME = PARM(1):
TARGET_ATTR = PARM(2):
CSENS
CEXPL = PARM(Y4):
IF CEXPL = 'YES' THEN
EXPLAIN = "1'B:
ELSE
EXPLAIN = '0'B:

/* FIND FIRST *," */

/* GET 1ST PARM */

/* MAKE PARMS THE */
/* REMAINDER */
/* GET LAST PARM */
/* ASSIGN PARMS */
/* FOR CALLS */

PARM(3): PSENS = CSENS: SENSITIVITY = ROUNDC(PSENS/100).2):

/* CALL KB RTNS */

CALL TEXPERT(KBNAME,TARGET_ATTR,SENSITIVITY.EXPLAIN.EXIT):

IF EXPLAIN THEN
CALL TEXPLNCKBNAME,TARGET_ATTR):
RETURN: /* TO SYSTEM */

Figure 14 PROGEVAL customized user query

CONSULT -=----------- PROGEV AL ~—m—mmmmmmmmmmmmmmee
COMMAND ===>
PFO3 =ENp PFO4 =RULE PFO5 =WHY

VISIBILITY IS MEASURED BY THE LEVEL OF MANAGEMENT THAT WILL
VIEW THIS PROGRAM'S OUTPUT, OR THAT WILL BE DIRECTLY
AFFECTED BY IT,

PREVIOUS RESPONSE = HIGH

CURRENT RESPONSE ===> [(H 16H, M EDIUM, L oW)

156 HODL, BUTLER, AND RICHARDSON

sensitivity factor is used by the inference engine to
decide whether to accept the consequents of a rule.
An excerpt from the control program of the on-line
subsystem (with calls to TEXPERT and TEXPLN) is
shown in Figure 13.

The built-in ASKUSER routine of TEXpert was not
used in this application, since the special require-
ment of showing past user responses is necessary.
The customized panel shown in Figure 14 is dis-
played by an exit subroutine associated with the
VISIBILITY attribute.

The usual explanation routines (with a slight modi-
fication to handle dual-role graphs) are used to dis-
play the conclusions and prescriptions of the PRO-
GEVAL consultation. At this point the user is returned

iBM SYSTEMS JOURNAL, VOL 25, NO 2, 1986

to the program specification screen, and the process
iterates until the user exits the program.

Concluding remarks

In this paper, we have examined the rationale for
developing knowledge-based systems within the tra-
ditional framework of commercial information sys-
tems. This is in contrast to much of the literature,
which suggests that unique machines and languages
are prerequisites for KBS implementation. Second,
we have demonstrated the utility of a multilayered

A shell development environment
written in a traditional procedural
language and using common system
software offers numerous
advantages.

architecture for shell systems. Within this architec-
ture, the diverse skill levels of many professionals
can be applied without shackling application pro-
grammers to restricted, narrow interfaces.

A shell development environment written in a tra-
ditional procedural language and using common
system software offers numerous advantages. The
TEXpert approach outlined here allows knowledge-
based systems to be viewed as little more than the
implementation of a new application, a task which
professional programmers are accustomed to doing.
A second significant advantage is its natural integra-
tion into the existing information systems architec-
ture. Third, the TExpert architecture combines a
flexible building block approach which can be used
to handle a wide variety of custom knowledge-based
application needs. Consequently, the product can be
delivered to the client through the same standard
terminal network without special hardware. More
significantly, the existing inventory of software tools,
including graphics, data bases, editors, and debug-
gers, is readily at hand to facilitate implementation.
Each of these features assists in the orderly blending
of knowledge-based systems into the existing opera-
tional environment.

IBM SYSTEMS JOURNAL, VOL 25, NO 2, 1986

As knowledge-based systems mature in the organi-
zation and productive applications evolve, two de-
velopments will strongly favor the approach outlined
here. First, future applications will need to tap the
existing installed operational data bases extensively
in order to feed their inferencing processes. Second,
the user community will be widespread across the
organization, mandating systems that fit into the
existing “way of doing things.” Data base access and
telecommunications compatibility are vital issues in
the future KBs design architecture. Nowhere is tech-
nology better defined than in the traditional trans-
action environment using the type of tools integrated
in TExpert. Over time, management will have to
consider and reconcile these forces when making the
implementation decision for a knowledge-based sys-
tem.

Acknowledgment

The authors wish to acknowledge the work and
helpful comments of the Texaco AI team: W. S.
Dalton, R. L. S. Krog, P. H. G. Thompson, and T.
Urwongse.

Cited references

1. INTELLECT, General Information Manual, G320-9199, IBM
Corporation; available through IBM branch offices.

2. IBM Expert System Consultation Environment VM and Expert
System Development Environment/VM, General Information
Manual, GH20-9597, IBM Corporation; available through IBM
branch offices.

3. Shalom M. Weiss and Casimir A. Kulikowski, 4 Practical
Guide to Building Expert Systems, Rowman and Allanheld,
Publishers, Totowa, NJ (1984).

4. F. Hayes-Roth, D. Waterman, and D. Lenat (editors), Building
Expert Systems, Addison-Wesley Publishing Co., Reading, MA
(1983).

5. Knowledge Engineering System, User’s Manual, Software Ar-
chitecture and Engineering, Inc., Arlington, VA (1983).

General references

Avron Barr, Paul R. Cohen, and Edward A. Feigenbaum (editors),
The Handbook of Artificial Intelligence, William Kaufmann, Inc.,
Los Altos, CA (1982).

Walter Reitman (editor), Artificial Intelligence Applications for
Business, Ablex Publishing Co., Norwood, NJ (1984).

IBM Expert System Consultation Environment/VM, User’s Guide,
SH20-9606, IBM Corporation; available through IBM branch
offices.

IBM Expert System Development Environment/VM, User’s Guide,
SH20-9608, IBM Corporation; available through IBM branch
offices.

Interactive System Productivity Facility, Version 2, General Infor-
mation Manual, IBM Corporation; available through IBM branch
offices.

HODIL, BUTLER, AND RICHARDSON {157

Eart D. Hodil Texaco Inc., Computer and Information Systems
Department, P.O. Box 37327, Houston, Texas 77237. Since joining
Texaco in 1980, Mr. Hodil has served in a number of roles
including work in application maintenance and development. In
addition to his application systems experience, he has worked on
the development of several internally used software tools that aid
the development and maintenance process. His current assignment
is with the Artificial Intelligence group, where he developed TEX-
pert. He received a B.A. in economics from Mississippi State
University in 1980, and is currently working toward an M.S. in
computer science at the University of Houston.

Charles W. Butler Colorado State University, CIS Department,
Fort Collins, Colorado 80523. Dr. Butler is an associate professor
in the Computer Information Systems Department. For the last
four years, he has worked on various special projects at Texaco.
He previously served industry and government in selected staff
positions at the Department of Labor, General Telephone of
Florida, and the Tampa Bay Regional Planning Council. Dr. Butler
earned his Ph.D. in business administration at Texas A&M Uni-
versity in 1981 after receiving his B.A. and M.S. from the Univer-
sity of South Florida.

Gary L. Richardson Texaco Inc., Computer and Information
Systems Department, P.O. Box 37327, Houston, Texas 77237. Dr.
Richardson is currently Director of Technological Assessment,
Research, and Planning for Texaco’s Computer and Information
Systems Department and has held various senior management
positions within the organization since 1979. Prior to this, he
served as a professor at Texas A&M University. He has written
four computer-related texts and numerous technical articles, and
has served as a consultant to the U.S. Air Force, other government
agencies, and industry. Dr. Richardson received a B.S. in mechan-
ical engineering from Louisiana Tech University, AFIT training
in meteorology at the University of Texas, an M.S. in engineering
management at the University of Alaska, and a Ph.D. in business
administration-production management at North Texas State
University.

Reprint Order No. G321-5268.

158 HooL. BUTLER, AND RiCHARDSON IBM SYSTEMS JOURNAL, VOL 25, NO 2, 1986

