
which  additional  steps  should  be  pursued,  even 
though  they  eventually  prove to be  false  leads, and 
(3) which  steps do not make  any  sense.  It  also  knows 
at any point during the conversation  where the stu- 
dent stands, i.e.,  what  factual information has  been 
obtained,  what  conclusions can be  drawn  from  these 
facts, and what additional information is  needed to 
draw further conclusions. MEDCAT uses these  two 
perspectives to direct its questioning of the student. 

MEDCAT exhibits  a  tolerance and understanding that 
befits its role as a  teacher. The primary  reason  for 
this is that it focuses on the logic  of the student’s 
reasoning, rather than the absolute  aspects  of  right 
or wrong  answers that limit so many computer teach- 
ing  systems.  There are many  routes to a  correct 
diagnosis, and even paths that ultimately  prove to 
be  blind  alleys  may be  worth  pursuing.  Indeed,  these 
may  require  investigation. The program can accom- 
pany the student along  these paths and respond to 
his  reasons,  while  patiently  waiting  for  a point at 
which the need to look  elsewhere  becomes  obvious. 
The fact that the program  has  a  more  comprehensive 
perspective  does not mean that this must  be  forced 
upon its pupil  prematurely. The program  exhibits 
intolerance  only  in the realm  of  observations (i.e., 
empiric  data).  When the student fails to obtain es- 
sential information, forgets  what  he  has  already  been 
told, or-most  of  all-assumes  signs or symptoms 
or laboratory data that have not been  elicited by the 
questions, the program  becomes quite critical. 

CATS. Compared to MEDCAT, CATS is  relatively in- 
tolerant, because CATS deals  mainly  with  empiric 
information. In the data-acquisition  phase of M E D  
CAT, the HBSAG is  either  positive or negative, or was 
not done.  Similarly,  in CATS, a  muscle  either  is or is 
not innervated by the musculocutaneous  nerve;  there 
is  little  room  for  debate.  Where  variations do occur, 
as in the section on anatomical  variations, the pro- 
gram  discusses them, but such situations are  rare. 

Instead of  following alternative paths of reasoning, 
CATS focuses on what the student should  know and 
organizes this in the most  efficient  sequence  possible. 
When the student is  wrong, CATS not  only  corrects 
him, but also  points out general  principles that make 
the correct  answer  easier to remember, as discussed 
in the section on implementation of  logic. 

The basic  strategy  in CATS is to quiz the students 
until they demonstrate a  predetermined  level of com- 
petence. The reason  for  having  a student mode,  in 
which the program  asks the questions,  is that stu- 

dents  prefer  spending  their time being  quizzed, rather 
than asking  questions of their own. The program  is 
sufficiently  detailed that we can  tell the students that 
they  will  never  be  asked anything on the written 
exams that the program cannot answer. If they o p  
erate  in student mode  for  a  brief time, they  will  be 
asked  every  type  of  question we can  ask. If they 
complete the entire quiz,  they will have  seen  every 

The  program  records  every  question 
a  student  has  been  asked  as  well  as 

the  correctness of each  answer. 

question we can ask them. For  each  of the five major 
regions  of the body  (e.g., upper  limb), this requires  a 
minimum of 20 hours. 

The subject matter is  temporally  organized so the 
students are asked  only about material  they  have 
already  seen  in  the  laboratory.  Within this frame- 
work, the topics  are  hierarchically  arranged so that 
the  program  picks  a  muscle  group (in the extremi- 
ties), and then  asks about each of the muscles  in that 
group. The program  uses this as the contextual  basis 
for  asking about the innervation, blood  supply, at- 
tachments,  relations,  functions,  etc. of that particular 
structure.  One  reason  for  focusing on groups-in- 
deed, the basis  for  arranging  muscles into groups- 
is that it  emphasizes the redundancy.  There is a lot 
of overlap  between  muscles  within  such  a  group as 
to their  nerve and blood  supply,  origins,  insertions, 
and actions. 

The  program  records  every  question  a  student  has 
been  asked as well as the correctness of each  answer. 
If the answers about the details  of the nerve inner- 
vating one muscle in the group  are  correct,  for 
example,  those  questions  are omitted for  similar 
muscles. Students are permitted to choose the level 
of  proficiency  they  want to attain. If a student picks 
75 percent  proficiency,  for  example, and more than 
25 percent of the answers to questions about a  mus- 
cle are  wrong, that muscle  is  asked about again at 
some  point. 

IM SYSTEMS JcumAL. VOL 25. No 2.1986 



After the program  has  completed  a  muscle  segment, 
the students are permitted to ask questions of their 
own.  In this way,  a student may  ask  for  general 
principles  (“Why?”) or ask to clear up misunder- 
standings that may  have  arisen. 

We  have  stated that gross anatomy is  a  descriptive 
science; it also  is  a  visual  discipline. Students are 
expected to be  able to draw the structures that com- 
prise the human body. For this reason, the answers 
that CATS gives are accompanied by detailed anatom- 
ical illustrations generated on the screen.  These 
drawings are displayed  via the Enhanced Graphics 
Adaptor (IBM F‘C/AT). 

Meaning  and  the  representation of thought 

One of the more elusive  problems in artificial  intel- 
ligence  research  is  how to represent an idea ab- 
stractly,  i.e.,  independently  of the exact  words  used 
to express the thought. We need to be  able to do that 
if  we expect to simulate human reasoning. In a  sense, 
that is  what this paper  is about. In order to bring  this 
into clearer  focus, we  briefly summarize some  of the 
features that directly  address  this question. 

The  internal  representation. The term semantic net- 
work did not originate  with us. “Semantic networks 
are a very popular representation  scheme in artifi- 
cial  intelligence.  Node-and-link structure captures 
something  essential about symbols and pointers in 
symbolic computation and about association  in the 
psychology  of  memory.”6  However,  within  this  gen- 
eral  framework, the exact methods of implementa- 
tion show  much  variability. MYCIN (another medical 
diagnostic  program)  does not use a semantic net- 
work; it is  a  production-rule-based  system.’ 

Because  of our neurophysiologic  background,* our 
particular model is based on the microarchitecture 
of the brain. Briefly stated, a neuron (node) dis- 
charges  if the algebraic sum of the effect  of  all  its 
afferent axons (pointers)  exceeds its threshold.  When 
it  fires, it does so in an all-or-nothing  fashion. The 
efferent  fiber (pointer) from this neuron (node) influ- 
ences  (facilitates or inhibits) the firing  of other cells 
(nodes). 

Because  we  use APL, the neuronal net  is  numeric. 
This pointer matrix  represents  both the subject mat- 
ter (names of  things) and the logic  (relations  among 
these  concepts). The pointers may indicate such 
diverse  things as the strength of a  relationship and 
the nature of the association, and reasons  for or 
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against  decisions  made by the system.  Not  only  may 
this  matrix act as the mechanism to perform the 
reasoning, but these same numbers may  also  be 
translated  directly into the noun and verb  phrases 

Contextual  understanding  on  a 
coding  level is the  focus of the 
research  reported  in  this  paper. 

that they  represent to describe the reasoning. This 
makes  for  a  model that is very  easy to work  with  for 
all  concerned-the  programmer, the subject matter 
expert, and the user. 

Such  a numeric representation  is not the norm in 
the artificial  intelligence  field. One textbook  states: 
“Artificial  intelligence  without one of  these  (Lisp- 
like)  languages  is  physics  for  poets-laudable and 
useful, but not completely  serious.’*  Those  who use 
list-processing  languages  describe  difficulties and 
concerns that we  have not experienced,  including 
“computational problems that arise  when  network 
databases  become  large  enough to represent  nontriv- 
ial amounts of kn~wledge.”~ APL, on the other hand, 
is  designed to deal  with numbers and is  replete  with 
primitive functions to traverse  such  arrays. The 
pointer  matrix  used  involves  direct  relations  between 
pairs of nodes.  Therefore, we do not become in- 
volved  with  search  strategies or problems  arising 
from the depth of  search. 

The  contextual  basis  of  meaning. The meaning of an 
individual  word  depends on the context in which it 
is  used.  On  a  behavioral  level,  this  is  obvious, but it 
has  never  been implemented on a  programming 
level.” For example,  lack of this ability  has  been  a 
major impediment in the development  of  machine 
translation of  foreign  languages. 

Quillian’ ’ approached the problem by emphasizing 
the role  of  associative  links  between  individual  words 
in the representation of  meaning.  His  research  began 
at a  more  basic  level,  which  included  using pointers 
between  words to define the words  themselves.  Com- 



binations of these  words,  once  defined,  were then 
used to express  concepts. 

Contextual understanding on a  coding  level  is the 
focus  of the research  reported in this paper.  Because 
it may  be the most  significant contribution, we  now 
restate the essential elements to illustrate this feature. 

Our model  does not contain any pointers between 
individual words. It begins  with  a  naturally occumng 

On  an  objective  level,  the  resulting 
discussions  sound  more  natural  than 
other  computer-mediated  dialogues 

dealing  with  similar  domains. 

collection  of  concepts (the names of  things) ex- 
pressed in the form  of noun phrases. The pointers 
run from the word to all  those  phrases in which  it 
may  be  found. The fact that these node descriptors 
are augmented with synonyms means that these 
nodes  may be identified and recognized  by  whatever 
diversity  of  phrasing our language  permits. 

Noun phrases  have  evolved to eliminate ambiguity. 
It is their function to uniquely  establish the simplest 
level  of  context.  Ambiguity  reappears in the presence 
of  noise  (typographical  errors) in the input, or when 
the user omits some of the words  because, on a 
human level  of understanding, the context is  estab- 
lished by other means. The verb commonly provides 
these more subtle semantic clues. The program  can 
interpret this meaning by  using the expected  profile. 
Additional methods of making the context more 
specific are demonstrated by predicate  adverbials and 
prepositional  phrases. This is as far as this program 
has  reason to go. However, just as the meaning of a 
word  may  be  clearer in a  sentence than it is in  an 
isolated  phrase, so other words in a  paragraph (out- 
side the sentence)  may  modify the meaning  within 
that sentence. 

The  natmd-language  interface. Lexical information 
(word  typing)  is  stored  only  for the syntactic  markers 
(i.e., conjunctions, determiners, helping  verbs, prep 

ositions, punctuation) that serve to break the input 
into functionally  useful  units. Information-contain- 
ing  words  (i.e.,  adjectives, nouns, verbs) are mapped 
directly onto the pointer matrix  where  they will  be 
used,  after the ambiguity  resulting  from their overlap 
has  been  resolved by the contextual  clues  already 
described. On a  speculative  level, this is  much  closer 
to the way people  process  language than traditional 
linguistic  theory  would  suggest.  On an objective 
level, the resulting  discussions sound more natural 
than other computer-mediated  dialogues  dealing 
with  similar  domains. 

Concluding  remarks 

We have  described in some  detail three aspects of 

structure, the logic  based on these structures that 
may  be  used  for  answering  questions, and a  natural- 
language  system  for  making  these  features  available 
to the user. The simplicity  of  each  of the individual 
components and the way in which  they interact 
suggest that others may  want to apply  similar  tech- 
niques to different  problems. The fact that the two 
programs-with  very similar  code and data struc- 
tures-can handle two  such  diverse  subjects  strongly 
implies that this general  approach  should  find other 
educational  uses,  wherever the ability to reason  plays 
an important role. APL happens to be  particularly 
well suited  for this type of application and these 
types  of data, but implementation certainly  is not 
language-dependent. 
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The  Portable  Inference 
Engine: Fitting  significant 
expertise into small 
systems 

by N. A. Burns 
T. J. Ashford 
C. T. lwaskiw 
R. P. Starbird 
R. L. Flagg 

The  Portable Inference Engine (PIE) is the nucleus of 
an expert  system that allows the segmentation of  rules 
in order to utilize large knowledge  bases in limited 
memory. If the expert-systems  rules can be divided  into 
segments of  highly related  rules with little  interaction 
among  those  segments,  such  knowledge-base  seg- 
ments can then be paged  in  and out of  memory on 
demand. PIE gathers  information by  querying the user 
and  executing  external  procedures  in  order to con- 
clude  goals. 

E xpert  systems are traditionally used to solve 
problems in a limited domain, so that a few 

thousand rules  may be written to represent the 
knowledge  needed to solve  problems in that domain. 
These  rules  generally require a large amount of com- 
puter memory, with this knowledge  usually  being 
stored in a single  large  knowledge  base. 

Recently,  several  expert  systems  have  become com- 
mercially  available to run  on personal computers.' 
However,  these  systems are all limited by the amount 
of real memory available  in the machine on which 
they are running. Large problems that require more 
rules than can be  held  in memory cannot be  solved 
with  these  systems. This paper  describes the Portable 
Inference  Engine (PIE), an expert  system that utilizes 
the concepts of segmentation and paging commonly 
used in operating systems to overcome  memory 
limitations. 
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The next  section  describes the problems that had to 
be overcome in designing an expert  system  of this 
type. Then the architecture of the system  designed 
to solve  these  problems  is  presented,  followed by a 
description of the operation of the expert  system. 
Finally, the contributions of this work are summa- 
rized. 

Problem  characterization 

PIE was initially  developed as a tool for controlling 
hardware  fault  diagnostics  for the IBM RT Personal 
Computer by extending the General-Purpose System 
for  Inferencing (GPSI). This mission  involved  several 
challenging requirements. For example,  suppose that 
the system  is running on a machine suspected of 
having malfunctioning components. These  compo- 
nents may produce unreliable or incomplete infor- 
mation with  which the expert  system must deal. In 
order to minimize the number of hardware and 
software components needed to perform the diag- 
nostics, the operating system, the entire expert sys- 
tem, and the rule  base are required to reside on 
diskette and operate in one megabyte  of  nonpaging 

Copyright 1986 by  International  Business  Machines  Corporation. 
Copying  in  printed  form  for  private use is  permitted  without 
payment of royalty  provided  that ( 1 )  each  reproduction  is  done 
without  alteration  and (2) the Journal reference  and  IBM  copyright 
notice  are  included on the  first  page.  The  title  and  abstract,  but no 
other  portions, of this  paper  may be copied or distributed  royalty 
free  without  further  permission  by  computer-based  and  other 
information-service  systems.  Permission  to republish any  other 
portion of this  paper  must be obtained  from  the  Editor. 
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memory. As a result, code and rule-base  size are of 
primary concern. The expert-systems shell  is  re- 
quired to be independent of the hardware and  the 
operating system so that this tool can be  used in the 
development of future expert systems. 

A goal  of the expert system  was to avoid interaction 
with the user when  possible, so that a consultation 
session should involve the hardware rather than  the 
human operator. Information found in the machine 
itself, such as error logs and status words,  is much 
more reliable than user input in isolating hardware 
problems. The results of tests performed on hardware 
can provide a clear indication of the problem en- 
countered. 

Since real memory size  is limited and hardware 
configurations are variable and volatile, a method of 
segmenting the knowledge  base  is needed. When the 
expert system concludes that a particular component 
is present and needs testing, the rules necessary for 
the diagnostics of that  component  can be read in 
and utilized in isolating machine faults. 

Architecture 

The resulting expert system for the RT Personal 
Computer diagnostics is structured as illustrated in 
Figure 1. A system checkout shell presents menus  to 
the user and obtains information about  the type of 
testing to be performed. It calls the inference engine, 
CONSULT, as a subroutine, passing it a list  of  values 
to be  used in controlling the inference process. The 
inference engine reads in the rule base and gathers 
evidence by asking questions or running procedures. 
It then formulates goals indicating which parts, if 
any,  are faulty, and  returns  the list  of  goals to  the 
system checkout program. 

All rules used in the expert system are precompiled 
by the CONSTRUCT program into two files. One file 
contains  the information necessary for building the 
data  structures to be used during consultation ses- 
sions. The  other file contains  the text for asking 
questions and reporting goals. In order to save mem- 
ory space, records from the text file are read in  one 
at a time when needed. 

The main CONSULT module consists of a supervisor 
which  is invoked by the system checkout shell. It 
communicates with the operating system throughout 
consultation whenever new rule-base segments must 
be invoked or power must be turned off. 

The inference algorithm, which performs such tasks 
as the selection of  goals, the chaining through trees, 
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Figure 1 Architecture of PIE 
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and  the investigation of evidence structures, is also 
contained in the main CONSULT module. This infer- 
ence algorithm is explained in detail in  the following 
section. 

Two independent modules that  are  bound along with 
the inference engine contain all machine-dependent 
code; those are  the User Interface Routines and  the 
Procedure Call Coordinator.  The User Interface 
Routines provide the code necessary for formatting, 
displaying, and retrieving information from the ter- 
minal screen. For the diagnostic application, a full- 
screen, menu-driven interface is implemented. 

The Procedure Call Coordinator for the diagnostics 
locates the code for a particular procedure on the 
diagnostic diskette and loads this code into memory, 
dynamically binding the code to provide addressa- 
bility for the expert system  when so requested. In 
addition, it builds input  and  output buffers for pa- 
rameters passed  between the two modules and  man- 
ages the invocation of the procedure on a procedure 
call request from the rule base being investigated. 



Since  all machine-dependent code  resides in the 
Procedure Call Coordinator and the user  interface 
module, the porting of the system can be done easily, 

Each  node of a  rule  tree  has 
associated  with  it a confidence 

factor. 

as has  been demonstrated by porting the expert- 
systems  shell to a machine with  a  different  architec- 
ture in one five-day  work-week.’ Currently, there are 
modules which make it possible to run the system 
on a  System/370 under VMICMS with  a glass teletype 
interface, and  on  the RT Personal Computer with  a 
full-screen menu interface. 

The  inference  process 

GPSI was chosen as a  basis  for the expert system 
needed to meet  these  challenge^.^ GPSI was developed 
at the University of Illinois under the funding of the 
IBM Scientific Center in Palo Alto,  California, and 
was  designed  for  diagnostic and interpretive appli- 
cations. Written in Pascal and running on  an IBM 
Personal Computer, GPSI uses  a  rule  base that is 
composed of a “forest” of  tree^.^.^ Each tree contains 
a  goal at its root and evidence  needed to substantiate 
this goal at its leaves. This structure reflects quite 
well the complex, interrelated nature of hardware 
diagnostic rules. 

In order to meet the requirements for the hardware 
diagnostics, the ability to invoke external procedures 
to perform hardware tests  had to be added to GPSI. 
In addition, support had to be added to that system 
to segment the rule  bases and load those rule bases 
in and out of memory. 

The knowledge  base that drives the diagnostics is 
represented  as  a  forest of one  or more n-ary  trees. At 
its root, each tree contains a  goal to be concluded or 
rejected. The leaves  of the tree contain evidence of 
several  different kinds that can be acquired by query- 
ing the user,  executing external procedures, or ref- 
erencing other nodes,  trees, or subtrees. 
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Between the root goal and the various  leaf  evidence 
are internal nodes  representing  a  variety of functions. 
AND, OR, and NOT nodes can be  used to relate evi- 
dence  logically. OR nodes are substantiated as soon 
as any node under the OR function is substantiated. 
AND nodes are invalidated as  soon  as any node under 
the AND function is rejected. Variations of the AND 
node can cause  every  node under the AND to be 
evaluated.  Special control structures and sequencing 
operations can be introduced with the ALTERNATIVE, 
IF, and PREEMPT nodes. 

The structure of a  sample  rule tree is illustrated in 
Figure 2. This example  shows  a  rule intended to 
determine whether  a printer element needs to be 
replaced. This rule is accepted if some initial evi- 
dence indicates that the printer is suspected of  being 
faulty, and either a  test run on the printer returns 
evidence that this is true, or the user indicates that 
the symptom of bad printing is occurring. 

During the consultation session,  conclusions are 
made by the inference  engine  primarily by using 
backward  chaining. Once a potential goal is  selected, 
the underlying tree is traced in a post-order traversal 
which prunes off unnecessary branches and gathers 
any necessary  evidence. The type of evidence to be 
gathered is indicated by the type of  leaf  nodes on the 
tree. An EVIDENCE node indicates that data should 
be obtained by asking the user  a  specified question. 

obtained through the execution of a  specified  pro- 
cedure. A REFERENCE node indicates that a 
(sub)structure in some other rule must be  investi- 
gated to obtain the required information. 

Each node of a  rule tree has  associated  with it a 
confidence  factor. For an EVIDENCE or  an EXTERNAL 
node, this confidence  value is  based on an association 
factor  given to the node by the knowledge  engineer 
and on the answer to the question asked or the value 
returned from the procedure. A REFERENCE node 
assumes the confidence  value of the structure that it 
references. The confidence  values of other nodes are 
calculated  from the confidence  values of the “chil- 
dren” of the REFERENCE node. Computations used 
for  these  nodes  are dependent on the type of the 
node. 

The inference  algorithm of PIE takes the following 
actions: 

1. The confidence items for  all  evidence items and 
trees  designated as INITIAL are obtained. 

2.  On the basis  of INITIAL evidence,  a tree is  selected 
and searched to find unevaluated evidence  items. 

An EXTERNAL node indicates that data will  be 
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Figure 2 Sample rule tree in PIE 

SUSPECTED-DEVICE = PRINTER 
EVIDENCE: 

(INITIAL) 

GOAL: 
INSTALL NEW  PRINTER  ELEMENT 

3 \ 

.9 .7 
/ b J / J 

EXTERNAL:  EVIDENCE: 
PROC = PRINTER-TEST  SYMPTOM = 'BAD PRINTING' 
STATUS-BIT = 0 

/ / 

3. Necessary  evidence  is obtained and evaluated and 
any actions associated  with true nodes  are  per- 
formed. 

4. Other relevant  nodes and structures are updated 
concurrently. 

5.  New trees are selected and fired until all  trees 
have  been  traced. 

6.  The rule  base  is  exhausted and all  concluded  goals 
are presented to the user. 

Asking questions and calling procedures. Tradition- 
ally,  expert  systems  have  been  used in consultation 
sessions  with  users.  When information has  been 
gathered  from  question and answer  sessions, the 
inferencing  engine  makes  conclusions or recommen- 
dations and presents them to the user. PIE can be 
used in this manner. A section of the rules, CLASSES, 
is  devoted to defining questions and valid  responses 
to these  questions.  Text  for questions may  be  speci- 
fied, and more detailed explanations about complex 
questions given. Information about answers  may 
also be specified  in this section,  such as how many 

responses  may  be  given, the type  of  value  expected, 
and the valid  range or list  of  values that an answer 
may assume. 

For an expert  system to be  used as a  hardware 
diagnostic  supervisor,  it  must  be  able to execute  test 
units. A test unit is  a  software  procedure that per- 
forms one or more  tests  on the hardware and returns 
results to the calling  program.  Providing an expert 
system  with the ability to run test units requires the 
capability  for  external  procedure  calls. 

A section of the rule  base  is  devoted to defining 
external  procedure  calls.  Each  procedure  definition 
specifies the name of the external  procedure to call, 
the  values to be  passed to the procedure, and the 
type  of  values that will  be returned. 

Procedure  calls and class questions may  be invoked 
from the rule  trees  in the rules  section or designated 
INITIAL and evaluated  before the tracing of the rule 
trees  is  begun. An EVIDENCE node  specifies  which 
question to ask, and an EXTERNAL node specifies the 



Figure 3 Example  rule  definition 

RULES 
1 GOAL 

2 AND 
3 EXTERNAL 

TEXT = 'YOUR MONITOR IS BAD.' 

PROC = DISPLAY-TEST 

3 EVID 
RETURN-CODE = 0 

CLASS 'YES' OF ~~ONITOR-OK 

procedure to be  invoked. The results that will cause 
the node to be  concluded  may  be  specified in either 
type  of  node. If no specific  results are requested, the 
node  is  given  a  confidence  factor of 100 percent as 
soon as the operation is  completed. A sample  of the 
rule-base  definition  code  using  these  features can be 
seen in Figure 3. 

The ability to reference  values returned from  proce- 
dures without  actually  causing the procedure to be 
executed  has  been  provided. In this way,  if a  proce- 
dure has  been  executed, its return values  can  be 
examined.  Otherwise, the node is  marked  false  with- 
out executing the procedure. This allows the proce- 
dural logic  for  controlling the execution  of  tests to 
be  separated  from the analysis  of the results and the 
resolution  of  faulty  parts,  thereby  making the rules 
simpler and easier to understand. 

Multiple rule-base segmentation. During the diag- 
nostic  process, the amount of  memory  available  for 
the knowledge  base  was  restricted to approximately 
170K bytes  of  memory.  Since  each  rule  node  re- 
quires 74 bytes and the number of  nodes in the rule 
base  exceeds  2400, it is imperative that only  those 
rules  relating to components actually  present and 
being  tested in the consulting machine be  held in 
memory. At the same time, however, the knowledge 
base  should not need to be  changed  for any config- 
uration or the addition of any new component. The 

knowledge  base  used  by the expert  system  for  diag- 
nosing  hardware  problems on the RT Personal  Com- 
puter consists of multiple  rule-base  segments, as 
shown in Figure 4. The first  rule-base  segment  is the 
master  rule  base,  which  executes  procedures to de- 
termine the configuration of the machine and then 
calls  device  rule-base  segments to test the devices 
that are present.  Each  device  rule-base  segment  tests 
one or more of the device  options. The entire diag- 
nostic  system  resides on diskette and includes  all 
rules  necessary to test the workstation in any mode. 

An action can  be  associated  with any node  in  a  rule 
base to indicate that the state of the current rule  base 
should  be  saved, and a new rule  base  should  be  paged 
in. This action will only be taken if the confidence 
of the current node  is  evaluated to be  greater than 
the high  threshold  associated  with that node. The 
new rule  base  is then traced until all  rules  have  been 
evaluated. 

When  all  rules in the called  rule  base are exhausted, 
the original  rule  base  is  reloaded, and the tracing  of 
it  is  resumed  from the point at which it was sus- 
pended.  Answers  gathered in the called  rule  base and 
referred to in the original  rule  base are passed into 
the original  rule  base.  Goals  concluded in the called 
rule  base are appended to the list  of  goals  concluded 
in the calling  rule  base.  Any number of rule-base 
calls  can be made  from any rule  base, and a  called 
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rule  base  in turn may  call another rule  base as long 
as there  is no recursion.  In addition, a  rule  base  is 
not reentrant. 

Any  evidence that is common to more than one unit 
can  be  labeled “GLOBAL.” This information is  copied 
onto a  global  list  which  is  passed  between the calling 
rule  base and the rule  base  it  calls. The global  list 
allows information to be passed  by more than one 
rule-base  segment. 

Besides its usefulness  for  memory  management, the 
rule-base  call  has  also  proved  useful  for other rea- 
sons.  Division of the rule  base  allows it to be sepa- 
rated into segments of coherent knowledge  struc- 
tures. This segmenting  makes  rule  writing and de- 
bugging  easier and results  in  a more understandable 
rule  base.  Rule-base  calls  also  allow the same  rule 
base to be  used  several times to conclude goals about 
similar, yet distinct, items.  For  example,  only one 
rule  base  is  needed  for  diagnosing  a  diskette  drive, 
although  a  hardware  configuration  may  consist of 
multiple diskette drives. 

Suspending and  resuming an inference process. Dur- 
ing the course  of running hardware  diagnostics,  it  is 

sometimes  necessary to power off the machine. For 
example, the user  may  need to power off the machine 
to replace  a  part or reseat  a  card.  When the machine 
is turned back on and diagnostics are resumed,  trac- 
ing  of the rule  base  should continue at the point 
where  power  was turned OK Similarly, if a  large or 
slow program  must  be  executed to obtain data, the 
rule  base  can be suspended, the other program  exe- 
cuted, and then the execution of the rule  base  con- 
tinued after the program  has  completed. 

In order for  it to recognize that suspension  may 
occur, any structure that requires the user to power 
off the machine is given an attribute called “POWER- 
OFF.” If this attribute is encountered by the inference 
procedure  of PIE, control is  passed  back to the super- 
vising  program  of PIE before the request  is  presented 
to the user. The supervising  program  saves the infor- 
mation obtained thus far,  which  includes  values 
obtained from the user, data obtained from  external 
procedures, and concluded  goals.  It  also  writes  a  bit 
to nonvolatile  memory to indicate that resumption 
will occur.  After  saving  this information, the super- 
vising  program returns control to the inference  en- 
gine,  which then presents  text to the user  informing 
him or her to  turn off the machine. 

Figure 4 Organization of rule base segments 

OTHER DEVICES 



When  power  is turned back on, the resume  bit  in 
the nonvolatile  memory  is  checked to see  if the 
expert  system  is  resuming. If so, the supervising 
program  reads in initial information consisting of 
the name of the rule  base that was  being  processed 
when  suspension  occurred and all the saved  infor- 
mation about the rule  base. The controlling  program 
then calls the inferencing  program and passes  a 
parameter indicating that resumption has just oc- 
curred. The inferencing  program,  realizing that the 
rule  base  is  being  restarted  from  where it left off, 
does not reset  values but uses the information read 
in by the supervising  program. The inferencing  pro- 
gram then continues execution  from the point at 
which the interruption occurred. 

Implementation 

The diagnostic  expert  system  consists of about 
16 000 lines  of  Pascal  code. It runs on the RT Per- 
sonal Computer with at least one megabyte  of  mem- 
ory and  on a  System/370 under VMICMS. 

There are approximately 80 hardware parts that can 
be  identified as faulty by the diagnostic  system. The 
entire knowledge  base  is  composed  of more than 30 
rule-base  segments,  each  requiring an average of 
35 000 bytes  of  memory. The average  rule-base 
segment contains 80 rule  nodes,  executes nine test 
units, and asks five questions. The depth of the trees 
varies  from  shallow  trees  of  two  levels to very  com- 
plex trees  with as many as thirteen levels. The rule 
base  has  a total of 166 GOALS or intermediate hy- 
potheses. 

Conclusion 

The work  reported in this paper  has  achieved  two 
results. By taking the concepts  of  segmentation and 
paging, so common in operating  systems, and reap- 
plying  these  technologies in expert  systems, we have 
lifted  size limitations on knowledge  bases.  Increased 
size  makes  it  possible to have  significant  expert- 
systems  capability in desktop computers. 

The second  result  is the demonstration that expert 
systems  can  be  used to diagnose  hardware  problems 
on the machine under test. By dynamically  binding 
procedures during consultation, the consultation 
module can remain relatively  small,  yet expand its 
capability through procedure  calls. 

Cited  references 

I .  PC Magazine 4, No. 8 (April 16, 1985); entire issue. 

242 BURNS ET AL. 

2. F. D. Highland, Design of an Expert System for Shuttle Ground 
Control, Master's  Thesis,  School  of  Sciences and Technologies, 
University of Houston, Clear Lake City, Texas (1985). 

3. M. T. Harandi, "The architecture of an expert system environ- 
ment,'' Proceedings of the Fifh International  Workshop on 
Expert Systems, Avignon, France (May 1985), pp. 555-572. 

4. P. Nielsen, A User's Manual for Construct and Consult  in the 
GPSI Environment, Department of Computer Science, Univer- 
sity  of Illinois at Urbana-Champaign (1984). 

5. M. T. Harandi, "A tree-bad knowledge representation scheme 
for diagnostic expert systems," Proceedings of the 1984 Con&- 
ence on Intelligent Systems and Machines, Rochester, MN 
(l984), pp. 70-74. 

Nancy A. Bums IBM  Engineering Systems Products, 11400 Bur- 
net Road, Austin, Texas 78758. Mrs. Bums is  a senior associate 
programmer for IBM, currently working  with IBM  Fellow G. 
Glenn Henry. She was previously  a technical member of the team 
that developed an expert system to perform diagnostics on  the 
IBM RT Personal Computer. Mrs. Bums received  a B.S. in statis- 
tics and quantitative methods at Louisiana State University and 
an M.A. in mathematical sciences at the University of North 
Florida.  She  is  a member of the Association for Computing Ma- 
chinery and its Special Interest Group  on Artificial  Intelligence, 
the American  Association  for  Artificial  Intelligence, and the As- 
sociation for Computational Linguistics. 

T. Jay Ashford IBM Academic Information Systems, Palo Alto 
Scientific Center, P.O. Box 10500, Palo Alto, California 94303. 
Mr. Ashford  was the manager of the Advanced  Engineering Sys- 
tems Diagnostic Control Programs Department. His prior experi- 
ence includes work in small-systems and 1/0 architectures, diag- 
nostic and maintenance strategy, and word  processing  software 
design. His technical interests include expert systems, operating 
systems, and systems architecture. He joined IBM in 1974 after 
receiving the B.A. and M.E.E.  degrees  from Rice University in 
197 1. Prior to joining IBM,  he  worked  for the Calspan Corporation 
in the areas of statistical analysis and estimation. He is currently 
working at the Palo Alto  Scientific Center in expert-systems  de- 
velopment. 

Christine T. lwaskiw IBMFederalSystems Division, 18100  Fred- 
erick Pike, Gaithersburg, Maryland 20879. Ms.  Iwaskiw  is  a senior 
associate engineer in FSD. She  was  previously  a technical member 
of the team which  developed the hardware diagnostics for the IBM 
RT Personal Computer. Her experience includes work in power 
supply development, display hardware diagnostics,  graphics soft- 
ware, and expert systems. Her technical interests include expert 
systems, computer graphics, and systems architecture. She joined 
IBM in 1981 after receiving  a B.E.E. degree from the University 
of  Delaware. Ms.  Iwaskiw  recently  received  her  master's  degree in 
electrical engineering at the University  of Texas in Austin.  She is 
a member of the Institute of  Electrical and Electronics Engineers, 
the Society  of Women Engineers, and  the American  Association 
for Artificial  Intelligence. 

Roberta P. Starbird IBM  Engineering Systems Products, 11400 
Burnet Road, Austin, Texas 78758. Ms. Starbird received her B.A. 
in mathematics from the University  of  Virginia and her M.A. in 
mathematics with a minor in computer science from the Univer- 
sity of Texas.  She joined IBM in 1979, then worked for two and a 

IBM SYSTEMS JOURNAL. VOL 25. No 2. 19% 



half  years in Systems  Assurance doing performance analysis on 
small computers. For the next three and a half  years,  she  was the 
leader of a team working to develop a portable expert system to 
be used for diagnostics on  the IBM RT Personal Computer. She 
then became the manager of the Hardware System Integration and 
Test Department. 

Richard  L. Flagg IBM Deutschland GmbH, Pueninger Strasse 
140, 7000 Stuttgart 80, Germany. Mr. Flag  received  his B.S. in 
mathematics from Shepherd College in 1964. He joined IBMs 
Federal  Systems  Division in 1966. His experience includes pattern 
analysis, process.control, word  processing, communications, and 
operating systems for diagnostics. He was the technical leader for 
the advanced Engineering  Systems Development Diagnostic Con- 
trol Programs Department. He is currently a customer service 
engineer in Stuttgart. 

Reprint Order No. (3321-5273. 

H?M SYSTEMS XXIRNAL, VOL 25. NO 2. 1 9 8 6  


