which additional steps should be pursued, even
though they eventually prove to be false leads, and
(3) which steps do not make any sense. It also knows
at any point during the conversation where the stu-
dent stands, i.e., what factual information has been
obtained, what conclusions can be drawn from these
facts, and what additional information is needed to
draw further conclusions. MEDCAT uses these two
perspectives to direct its questioning of the student.

MEDCAT exhibits a tolerance and understanding that
befits its role as a teacher. The primary reason for
this is that it focuses on the logic of the student’s
reasoning, rather than the absolute aspects of right
or wrong answers that limit so many computer teach-
ing systems. There are many routes to a correct
diagnosis, and even paths that ultimately prove to
be blind alleys may be worth pursuing. Indeed, these
may require investigation. The program can accom-
pany the student along these paths and respond to
his reasons, while patiently waiting for a point at
which the need to look elsewhere becomes obvious.
The fact that the program has a more comprehensive
perspective does not mean that this must be forced
upon its pupil prematurely. The program exhibits
intolerance only in the realm of observations (i.e.,
empiric data). When the student fails to obtain es-
sential information, forgets what he has already been
told, or—most of all—assumes signs or symptoms
or laboratory data that have not been elicited by the
questions, the program becomes quite critical.

CATS. Compared t0 MEDCAT, CATS is relatively in-
tolerant, because CATS deals mainly with empiric
information. In the data-acquisition phase of MED-
CAT, the HBSAG is either positive or negative, or was
not done. Similarly, in CATS, a muscle either is or is
not innervated by the musculocutaneous nerve; there
is little room for debate. Where variations do occur,
as in the section on anatomical variations, the pro-
gram discusses them, but such situations are rare.

Instead of following alternative paths of reasoning,
CATS focuses on what the student should know and
organizes this in the most efficient sequence possible.
When the student is wrong, CATS not only corrects
him, but also points out general principles that make
the correct answer easier to remember, as discussed
in the section on implementation of logic.

The basic strategy in CATS is to quiz the students
until they demonstrate a predetermined level of com-
petence. The reason for having a student mode, in
which the program asks the questions, is that stu-

232 HAGAMEN AND GARDY

dents prefer spending their time being quizzed, rather
than asking questions of their own. The program is
sufficiently detailed that we can tell the students that
they will never be asked anything on the written
exams that the program cannot answer. If they op-
erate in student mode for a brief time, they will be
asked every type of question we can ask. If they
complete the entire quiz, they will have seen every

The program records every question
a student has been asked as well as
the correctness of each answer.

question we can ask them. For each of the five major
regions of the body (e.g., upper limb), this requires a
minimum of 20 hours.

The subject matter is temporally organized so the
students are asked only about material they have
already seen in the laboratory. Within this frame-
work, the topics are hierarchically arranged so that
the program picks a muscle group (in the extremi-
ties), and then asks about each of the muscles in that
group. The program uses this as the contextual basis
for asking about the innervation, blood supply, at-
tachments, relations, functions, etc. of that particular
structure. One reason for focusing on groups—in-
deed, the basis for arranging muscles into groups—
is that it emphasizes the redundancy. There is a lot
of overlap between muscles within such a group as
to their nerve and blood supply, origins, insertions,
and actions.

The program records every question a student has
been asked as well as the correctness of each answer.
If the answers about the details of the nerve inner-
vating one muscle in the group are correct, for
example, those questions are omitted for similar
muscles. Students are permitted to choose the level
of proficiency they want to attain. If a student picks
75 percent proficiency, for example, and more than
25 percent of the answers to questions about a mus-
cle are wrong, that muscle is asked about again at
some point.

BM SYSTEMS JOURNAL, VOL 25, NO 2, 1986




After the program has completed a muscle segment,
the students are permitted to ask questions of their
own. In this way, a student may ask for general
principles (“Why?”) or ask to clear up misunder-
standings that may have arisen.

We have stated that gross anatomy is a descriptive
science; it also is a visual discipline. Students are
expected to be able to draw the structures that com-
prise the human body. For this reason, the answers
that CATS gives are accompanied by detailed anatom-
ical illustrations generated on the screen. These
drawings are displayed via the Enhanced Graphics
Adaptor (IBM PC/AT).

Meaning and the representation of thought

One of the more elusive problems in artificial intel-
ligence research is how to represent an idea ab-
stractly, i.e., independently of the exact words used
to express the thought. We need to be able to do that
if we expect to simulate human reasoning. In a sense,
that is what this paper is about. In order to bring this
into clearer focus, we briefly summarize some of the
features that directly address this question.

The internal representation. The term semantic net-
work did not originate with us. “Semantic networks
are a very popular representation scheme in artifi-
cial intelligence. Node-and-link structure captures
something essential about symbols and pointers in
symbolic computation and about association in the
psychology of memory.”® However, within this gen-
eral framework, the exact methods of implementa-
tion show much variability. MYCIN {(another medical
diagnostic program) does not use a semantic net-
work; it is a production-rule-based system.”

Because of our neurophysiologic background,® our
particular model is based on the microarchitecture
of the brain. Briefly stated, a neuron (node) dis-
charges if the algebraic sum of the effect of all its
afferent axons (pointers) exceeds its threshold. When
it fires, it does so in an all-or-nothing fashion. The
efferent fiber (pointer) from this neuron (node) influ-
ences (facilitates or inhibits) the firing of other cells
(nodes).

Because we use APL, the neuronal net is numeric.
This pointer matrix represents both the subject mat-
ter (names of things) and the logic (relations among
these concepts). The pointers may indicate such
diverse things as the strength of a relationship and
the nature of the association, and reasons for or

1BM SYSTEMS JOURNAL, VOL 25, NO 2, 1986

against decisions made by the system. Not only may
this matrix act as the mechanism to perform the
reasoning, but these same numbers may also be
translated directly into the noun and verb phrases

Contextual understanding on a
coding level is the focus of the
research reported in this paper.

that they represent to describe the reasoning. This
makes for a model that is very easy to work with for
all concerned—the programmer, the subject matter
expert, and the user.

Such a numeric representation is not the norm in
the artificial intelligence field. One textbook states:
“Artificial intelligence without one of these (Lisp-
like) languages is physics for poets—laudable and
useful, but not completely serious.™ Those who use
list-processing languages describe difficulties and
concerns that we have not experienced, including
“computational problems that arise when network
databases become large enough to represent nontriv-
ial amounts of knowledge.”® APL, on the other hand,
is designed to deal with numbers and is replete with
primitive functions to traverse such arrays. The
pointer matrix used involves direct relations between
pairs of nodes. Therefore, we do not become in-
volved with search strategies or problems arising
from the depth of search.

The contextual basis of meaning. The meaning of an
individual word depends on the context in which it
is used. On a behavioral level, this is obvious, but it
has never been implemented on a programming
level.'® For example, lack of this ability has been a
major impediment in the development of machine
translation of foreign languages.

Quillian'' approached the problem by emphasizing
the role of associative links between individual words
in the representation of meaning. His research began
at a more basic level, which included using pointers
between words to define the words themselves. Com-

HAGAMEN AND GARDY 233




binations of these words, once defined, were then
used to express concepts.

Contextual understanding on a coding level is the
focus of the research reported in this paper. Because
it may be the most significant contribution, we now
restate the essential elements to illustrate this feature.

Our model does not contain any pointers between
individual words. It begins with a naturally occurring

On an objective level, the resulting
discussions sound more natural than
other computer-mediated dialogues

dealing with similar domains.

collection of concepts (the names of things) ex-
pressed in the form of noun phrases. The pointers
run from the word to all those phrases in which it
may be found. The fact that these node descriptors
are augmented with synonyms means that these
nodes may be identified and recognized by whatever
diversity of phrasing our language permits.

Noun phrases have evolved to eliminate ambiguity.
It is their function to uniquely establish the simplest
level of context. Ambiguity reappears in the presence
of noise (typographical errors) in the input, or when
the user omits some of the words because, on a
human level of understanding, the context is estab-
lished by other means. The verb commonly provides
these more subtle semantic clues. The program can
interpret this meaning by using the expected profile.
Additional methods of making the context more
specific are demonstrated by predicate adverbials and
prepositional phrases. This is as far as this program
has reason to go. However, just as the meaning of a
word may be clearer in a sentence than it is in an
isolated phrase, so other words in a paragraph (out-
side the sentence) may modify the meaning within
that sentence.

The natural-language interface. Lexical information
(word typing) is stored only for the syntactic markers
(i.e., conjunctions, determiners, helping verbs, prep-

234 HAGAMEN AND GARDY

ositions, punctuation) that serve to break the input
into functionally useful units. Information-contain-
ing words (i.e., adjectives, nouns, verbs) are mapped
directly onto the pointer matrix where they will be
used, after the ambiguity resulting from their overlap
has been resolved by the contextual clues already
described. On a speculative level, this is much closer
to the way people process language than traditional
linguistic theory would suggest. On an objective
level, the resulting discussions sound more natural
than other computer-mediated dialogues dealing
with similar domains.

Concluding remarks

We have described in some detail three aspects of
our two programs CATS and MEDCAT—the data
structure, the logic based on these structures that
may be used for answering questions, and a natural-
language system for making these features available
to the user. The simplicity of each of the individual
components and the way in which they interact
suggest that others may want to apply similar tech-
niques to different problems. The fact that the two
programs—with very similar code and data struc-
tures—can handle two such diverse subjects strongly
implies that this general approach should find other
educational uses, wherever the ability to reason plays
an important role. APL happens to be particularly
well suited for this type of application and these
types of data, but implementation certainly is not
language-dependent.

Acknowledgments

This work was supported in part by grants from the
Anonymous Gift Fund of Cornell University Medi-
cal College, the Frances L. and Edwin L. Cummings
Memorial Fund, and the Advanced Education Proj-
ects of the 1BM Corporation. We would like to thank
Mr. Ward Bell for writing certain auxiliary proces-
sors used in the 8086 version of the programs and
Dr. Grace Hucko for her helpful suggestions.

Cited references

1. W. D. Hagamen, M. Gardy, G. Bell, E. Rekosh, and S. Zatz,
“MEDCAT: An interactive computer program for medical
diagnosis,” Proceedings of NCC'85, Chicago, IL, July 1985,
Vol. 54, pp. 111-119 (published by AFIPS Press, Reston, VA).

2. W. D. Hagamen and M. Gardy, “MEDCAT/CATS: Two
contrasting artificial intelligence applications in medical edu-
cation,” Proceedings of the Second Conference on Artificial
Intelligence Applications, Miami Beach, FL, December 1985,
pp. 503-508 (published by IEEE, Los Angeles, CA).

BM SYSTEMS JOURNAL, VOL 25, NO 2, 1986




3. W. D. Hagamen, D. J. Linden, K. F. Mai, S. M. Newell, and
J. C. Weber, “A program generator,” IBM Systems Journal
14, No. 2, 102-133 (1975).

4. D. D. McDonald, “Surface generation for a variety of appli-
cations,” Proceedings of NCC’85, Chicago, IL, July 1985, Vol.
54, 105-110 (published by AFIPS Press, Reston, VA).

5. W. D. Hagamen, D. Linden, M. Leppo, W. Bell, and J. C.
Weber, “ATS in exposition,” Computers in Biology and Med-
icine 3, No. 3, 205-226 (1973).

6. A. Barr and E. A. Feigenbaum, The Handbook of Artificial
Intelligence I, William Kaufman, Inc., Los Altos, CA (1981),
p. 189.

7. B. G. Buchanan and E. H. Shortliffe, Rule-Based Expert
Systems, Addison-Wesley Publishing Co., Reading, MA
(1984).

8. W. D. Hagamen, The Functioning Brain of Man, Chas. Pfizer
& Co., Inc., New York, NY (1966).

9. P. H. Winston, Artificial Intelligence, Addison-Wesley Pub-
lishing Co., Reading, MA (1977), p. 263.

10. T. Winograd, “Computer software for working with language,”
Scientific American 251, No. 3, 131-145 (1984).

11. M. R. Quillian, “Semantic memory,” in Semantic Information
Processing, MIT Press, Cambridge, MA (1968), pp. 216-270.

Wilbur D. Hagamen Professor of Cell Biology and Anatomy,
Cornell University Medical College, 1300 York Avenue, New York,
New York 10021. Dr. Hagamen received his M.D. from Cornell
in 1951, and has taught neurosciences and/or gross anatomy there
since 1949. Until 1970, he did research in neurophysiology.
Dr. Hagamen spent a sabbatical year (1972-73) at the IBM Sys-
tems Research Institute. From 1972-79 he was Director of the
Laboratory of Computer Science at CUMC and implemented all
the data processing needs of CUMC/NYH in APL (fiscal, patient
records, and research). Dr. Hagamen also wrote APL programs for
various financial institutions, including the entire Standard &
Poor’s Blue List Retrieval System, which ran on the CUMC
computer. His computer research interests focus on artificial in-
telligence, natural language, and interactive graphics.

Martin Gardy Associate Professor and Associate Chairman of the
Department of Medicine, Cornell University Medical College, 1300
York Avenue, New York, New York 10021. Dr. Gardy is in charge
of the Department’s teaching program. He is also the Clinical
Coordinator for the Rockefeller University/CUMC M.D.-Ph.D.
program. Dr. Gardy is a graduate of the City College of New York,
where he received his B.S. in 1956, and CUMC, where he received
his M.D. in 1960. He has received many teaching awards, including
the New York State Medical Society’s award for Excellence in
Clinical Teaching. Dr. Gardy’s major interests are diagnostic prob-
lem solving and decision analysis.

Reprint Order No. G321-5272.

IBM SYSTEMS JOURNAL, VOL 25, NO 2, 1986

HAGAMEN AND GARDY 235




The Portable Inference
Engine: Fitting significant
expertise into small
systems

The Portable Inference Engine (PIE) is the nucleus of
an expert system that allows the segmentation of rules
in order to utilize large knowledge bases in limited
memory. If the expert-systems rules can be divided into
segments of highly related rules with little interaction
among those segments, such knowledge-base seg-
ments can then be paged in and out of memory on
demand. PIE gathers information by querying the user
and executing external procedures in order to con-
clude goals.

Expert systems are traditionally used to solve
problems in a limited domain, so that a few
thousand rules may be written to represent the
knowledge needed to solve problems in that domain.
These rules generally require a large amount of com-
puter memory, with this knowledge usually being
stored in a single large knowledge base.

Recently, several expert systems have become com-
mercially available to run on personal computers.'
However, these systems are all limited by the amount
of real memory available in the machine on which
they are running. Large problems that require more
rules than can be held in memory cannot be solved
with these systems. This paper describes the Portable
Inference Engine (PIE), an expert system that utilizes
the concepts of segmentation and paging commonly
used in operating systems to overcome memory
limitations.

236 BuRNs ET AL

by N. A. Burns
T. J. Ashford
C. T. lwaskiw
R. P. Starbird
R. L. Flagg

The next section describes the problems that had to
be overcome in designing an expert system of this
type. Then the architecture of the system designed
to solve these problems is presented, followed by a
description of the operation of the expert system.
Finally, the contributions of this work are summa-
rized.

Problem characterization

PIE was initially developed as a tool for controlling
hardware fault diagnostics for the 1BM RT Personal
Computer by extending the General-Purpose System
for Inferencing (GpsI). This mission involved several
challenging requirements. For example, suppose that
the system is running on a machine suspected of
having malfunctioning components. These compo-
nents may produce unreliable or incomplete infor-
mation with which the expert system must deal. In
order to minimize the number of hardware and
software components needed to perform the diag-
nostics, the operating system, the entire expert sys-
tem, and the rule base are required to reside on
diskette and operate in one megabyte of nonpaging

© Copyright 1986 by International Business Machines Corporation.
Copying in printed form for private use is permitted without
payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright
notice are included on the first page. The title and abstract, but no
other portions, of this paper may be copied or distributed royalty
free without further permission by computer-based and other
information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

IBM SYSTEMS JOURNAL, VOL 25, NO 2, 1986




memory. As a result, code and rule-base size are of
primary concern. The expert-systems shell is re-
quired to be independent of the hardware and the
operating system so that this tool can be used in the
development of future expert systems.

A goal of the expert system was to avoid interaction
with the user when possible, so that a consultation
session should involve the hardware rather than the
human operator. Information found in the machine
itself, such as error logs and status words, is much
more reliable than user input in isolating hardware
problems. The results of tests performed on hardware
can provide a clear indication of the problem en-
countered.

Since real memory size is limited and hardware
configurations are variable and volatile, a method of
segmenting the knowledge base is needed. When the
expert system concludes that a particular component
is present and needs testing, the rules necessary for
the diagnostics of that component can be read in
and utilized in isolating machine faults.

Architecture

The resulting expert system for the RT Personal
Computer diagnostics is structured as illustrated in
Figure 1. A system checkout shell presents menus to
the user and obtains information about the type of
testing to be performed. It calls the inference engine,
CONSULT, as a subroutine, passing it a list of values
to be used in controlling the inference process. The
inference engine reads in the rule base and gathers
evidence by asking questions or running procedures.
It then formulates goals indicating which parts, if
any, are faulty, and returns the list of goals to the
system checkout program.

All rules used in the expert system are precompiled
by the CONSTRUCT program into two files. One file
contains the information necessary for building the
data structures to be used during consultation ses-
sions. The other file contains the text for asking
questions and reporting goals. In order to save mem-
ory space, records from the text file are read in one
at a time when needed.

The main CONSULT module consists of a supervisor
which is invoked by the system checkout shell. It
communicates with the operating system throughout
consultation whenever new rule-base segments must
be invoked or power must be turned off.

The inference algorithm, which performs such tasks
as the selection of goals, the chaining through trees,

IBM SYSTEMS JOURNAL, VOL 25, NO 2, 1986

Figure 1  Architecture of PIE

RULE
INPUT CONSTRUCT

WRITERS

COMPILED
RULE FILES

|
!

CONSULT

THE

USER
+— | INTERFACE | *T™ Usgr

DATA

PROCEDURE
<+— | INTERFACE

I

!

PROCEDURES

and the investigation of evidence structures, is also
contained in the main CONSULT module. This infer-
ence algorithm is explained in detail in the following
section.

Two independent modules that are bound along with
the inference engine contain all machine-dependent
code; those are the User Interface Routines and the
Procedure Call Coordinator. The User Interface
Routines provide the code necessary for formatting,
displaying, and retrieving information from the ter-
minal screen. For the diagnostic application, a full-
screen, menu-driven interface is implemented.

The Procedure Call Coordinator for the diagnostics
locates the code for a particular procedure on the
diagnostic diskette and loads this code into memory,
dynamically binding the code to provide addressa-
bility for the expert system when so requested. In
addition, it builds input and output buffers for pa-
rameters passed between the two modules and man-
ages the invocation of the procedure on a procedure
call request from the rule base being investigated.

BURNS ET AL 237




Since all machine-dependent code resides in the
Procedure Call Coordinator and the user interface
module, the porting of the system can be done easily,

Each node of a rule tree has
associated with it a confidence
factor.

as has been demonstrated by porting the expert-
systems shell to a machine with a different architec-
ture in one five-day work-week.? Currently, there are
modules which make it possible to run the system
on a System/370 under vM/CMs with a glass teletype
interface, and on the RT Personal Computer with a
full-screen menu interface.

The inference process

GPSI was chosen as a basis for the expert system
needed to meet these challenges.® Gpsi was developed
at the University of Illinois under the funding of the
1BM Scientific Center in Palo Alto, California, and
was designed for diagnostic and interpretive appli-
cations. Written in Pascal and running on an 1BM
Personal Computer, Gpsi uses a rule base that is
composed of a “forest” of trees.** Each tree contains
a goal at its root and evidence needed to substantiate
this goal at its leaves. This structure reflects quite
well the complex, interrelated nature of hardware
diagnostic rules.

In order to meet the requirements for the hardware
diagnostics, the ability to invoke external procedures
to perform hardware tests had to be added to Gpsl.
In addition, support had to be added to that system
to segment the rule bases and load those rule bases
in and out of memory.

The knowledge base that drives the diagnostics is
represented as a forest of one or more n-ary trees. At
its root, each tree contains a goal to be concluded or
rejected. The leaves of the tree contain evidence of
several different kinds that can be acquired by query-
ing the user, executing external procedures, or ref-
erencing other nodes, trees, or subtrees.

238 BURNS ET AL.

Between the root goal and the various leaf evidence
are internal nodes representing a variety of functions.
AND, OR, and NOT nodes can be used to relate evi-
dence logically. OoR nodes are substantiated as soon
as any node under the OR function is substantiated.
AND nodes are invalidated as soon as any node under
the AND function is rejected. Variations of the AND
node can cause every node under the AND to be
evaluated. Special control structures and sequencing
operations can be introduced with the ALTERNATIVE,
IF, and PREEMPT nodes.

The structure of a sample rule tree is illustrated in
Figure 2. This example shows a rule intended to
determine whether a printer element needs to be
replaced. This rule is accepted if some initial evi-
dence indicates that the printer is suspected of being
faulty, and either a test run on the printer returns
evidence that this is true, or the user indicates that
the symptom of bad printing is occurring.

During the consultation session, conclusions are
made by the inference engine primarily by using
backward chaining. Once a potential goal is selected,
the underlying tree is traced in a post-order traversal
which prunes off unnecessary branches and gathers
any necessary evidence. The type of evidence to be
gathered is indicated by the type of leaf nodes on the
tree. An EVIDENCE node indicates that data should
be obtained by asking the user a specified question.
An EXTERNAL node indicates that data will be
obtained through the execution of a specified pro-
cedure. A REFERENCE node indicates that a
(sub)structure in some other rule must be investi-
gated to obtain the required information.

Each node of a rule tree has associated with it a
confidence factor. For an EVIDENCE Or an EXTERNAL
node, this confidence value is based on an association
factor given to the node by the knowledge engineer
and on the answer to the question asked or the value
returned from the procedure. A REFERENCE node
assumes the confidence value of the structure that it
references. The confidence values of other nodes are
calculated from the confidence values of the “chil-
dren” of the REFERENCE node. Computations used
for these nodes are dependent on the type of the
node.

The inference algorithm of PIE takes the following
actions:

1. The confidence items for all evidence items and
trees designated as INITIAL are obtained.

2. On the basis of INITIAL evidence, a tree is selected
and searched to find unevaluated evidence items.

IBM SYSTEMS JOURNAL, VOL 25, NO 2, 1986




Figure2 Sample rule tree in PIE

GOAL: &
INSTALL NEW PRINTER ELEMENT |-

EVIDENCE:
SUSPECTED_DEVICE = PRINTER
(INITIAL)

9

|-

EXTERNAL:
PROC = PRINTER_TEST SYMPTOM = ‘BAD PRINTING
STATUS_BIT = 0

EVIDENCE:

3. Necessary evidence is obtained and evaluated and
any actions associated with true nodes are per-
formed.

4. Other relevant nodes and structures are updated
concurrently.

5. New trees are selected and fired until all trees
have been traced.

6. The rule base is exhausted and all concluded goals
are presented to the user.

Asking questions and calling procedures. Tradition-
ally, expert systems have been used in consultation
sessions with users. When information has been
gathered from question and answer sessions, the
inferencing engine makes conclusions or recommen-
dations and presents them to the user. PIE can be
used in this manner. A section of the rules, CLASSES,
is devoted to defining questions and valid responses
to these questions. Text for questions may be speci-
fied, and more detailed explanations about complex
questions given. Information about answers may
also be specified in this section, such as how many

1BM SYSTEMS JOURNAL, VOL 25, NO 2, 1986

responses may be given, the type of value expected,
and the valid range or list of values that an answer
may assume.

For an expert system to be used as a hardware
diagnostic supervisor, it must be able to execute test
units. A test unit is a software procedure that per-
forms one or more tests on the hardware and returns
results to the calling program. Providing an expert
system with the ability to run test units requires the
capability for external procedure calls.

A section of the rule base is devoted to defining
external procedure calls. Each procedure definition
specifies the name of the external procedure to call,
the values to be passed to the procedure, and the
type of values that will be returned.

Procedure calls and class questions may be invoked
from the rule trees in the rules section or designated
INITIAL and evaluated before the tracing of the rule
trees is begun. An EVIDENCE node specifies which
question to ask, and an EXTERNAL node specifies the

suAns T AL 239




Figure 3 Example rule definition

CLASSES
MONITOR_OK
TEXT = ‘DOES YOUR DISPLAY MATCH THE DIAGRAM ON PAGE 107’
VALUES = 1 OF ('YES’' 'NO’)

PROCEDURES
DISPLAY_TEST
PrOC = TULU300
PAss 1000
RETURN RETURN_CODE INTEGER
EnoPROC

RULES
1 GoaL
TEXT = 'YOUR MONITOR IS BAD.’
2 AnD
3 EXTERNAL
PROC = DISPLAY_TEST
RETURN_CODE = 0
3 EviD
CLASS = ‘YES' OF MONITOR_OK

procedure to be invoked. The results that will cause
the node to be concluded may be specified in either
type of node. If no specific results are requested, the
node is given a confidence factor of 100 percent as
soon as the operation is completed. A sample of the
rule-base definition code using these features can be
seen in Figure 3.

The ability to reference values returned from proce-
dures without actually causing the procedure to be
executed has been provided. In this way, if a proce-
dure has been executed, its return values can be
examined. Otherwise, the node is marked false with-
out executing the procedure. This allows the proce-
dural logic for controlling the execution of tests to
be separated from the analysis of the results and the
resolution of faulty parts, thereby making the rules
simpler and easier to understand.

Multiple rule-base segmentation. During the diag-
nostic process, the amount of memory available for
the knowledge base was restricted to approximately
170K bytes of memory. Since each rule node re-
quires 74 bytes and the number of nodes in the rule
base exceeds 2400, it is imperative that only those
rules relating to components actually present and
being tested in the consulting machine be held in
memory. At the same time, however, the knowledge
base should not need to be changed for any config-
uration or the addition of any new component. The

240 BuRns ET AL

knowledge base used by the expert system for diag-
nosing hardware problems on the RT Personal Com-
puter consists of multiple rule-base segments, as
shown in Figure 4. The first rule-base segment is the
master rule base, which executes procedures to de-
termine the configuration of the machine and then
calls device rule-base segments to test the devices
that are present. Each device rule-base segment tests
one or more of the device options. The entire diag-
nostic system resides on diskette and includes all
rules necessary to test the workstation in any mode.

An action can be associated with any node in a rule
base to indicate that the state of the current rule base
should be saved, and a new rule base should be paged
in. This action will only be taken if the confidence
of the current node is evaluated to be greater than
the high threshold associated with that node. The
new rule base is then traced until all rules have been
evaluated.

When all rules in the called rule base are exhausted,
the original rule base is reloaded, and the tracing of
it is resumed from the point at which it was sus-
pended. Answers gathered in the called rule base and
referred to in the original rule base are passed into
the original rule base. Goals concluded in the called
rule base are appended to the list of goals concluded
in the calling rule base. Any number of rule-base
calls can be made from any rule base, and a called

BM SYSTEMS JOURNAL, VOL 25, NO 2, 1986




rule base in turn may call another rule base as long
as there is no recursion. In addition, a rule base is
not reentrant.

Any evidence that is common to more than one unit
can be labeled “GLOBAL.” This information is copied
onto a global list which is passed between the calling
rule base and the rule base it calls. The global list
allows information to be passed by more than one
rule-base segment.

Besides its usefulness for memory management, the
rule-base call has also proved useful for other rea-
sons. Division of the rule base allows it to be sepa-
rated into segments of coherent knowledge struc-
tures. This segmenting makes rule writing and de-
bugging easier and results in a more understandable
rule base. Rule-base calls also allow the same rule
base to be used several times to conclude goals about
similar, yet distinct, items. For example, only one
rule base is needed for diagnosing a diskette drive,
although a hardware configuration may consist of
multiple diskette drives.

Suspending and resuming an inference process. Dur-
ing the course of running hardware diagnostics, it is

sometimes necessary to power off the machine. For
example, the user may need to power off the machine
to replace a part or reseat a card. When the machine
is turned back on and diagnostics are resumed, trac-
ing of the rule base should continue at the point
where power was turned off. Similarly, if a large or
slow program must be executed to obtain data, the
rule base can be suspended, the other program exe-
cuted, and then the execution of the rule base con-
tinued after the program has completed.

In order for it to recognize that suspension may
occur, any structure that requires the user to power
off the machine is given an attribute called “POWER-
OFF.” If this attribute is encountered by the inference
procedure of PIE, control is passed back to the super-
vising program of PIE before the request is presented
to the user. The supervising program saves the infor-
mation obtained thus far, which includes values
obtained from the user, data obtained from external
procedures, and concluded goals. It also writes a bit
to nonvolatile memory to indicate that resumption
will occur. After saving this information, the super-
vising program returns control to the inference en-
gine, which then presents text to the user informing
him or her to turn off the machine.

Figure 4 Organization of rule base segments

MASTER RULE BASE

STANDARD FIXED-DISK
RULE BASE

STANDARD DISKETTE
RULE BASE

PARALLEL ADAPTER
RULE BASE

OTHER DEVICES

FEATURE DISK
RULE BASE

i

FEATURE DISKETTE

RULE BASE RULE BASE

ADVANCED DISKETTE

1BM SYSTEMS JOURNAL, VOL 25, NO 2, 1986

BURNS ET AL. 241




When power is turned back on, the resume bit in
the nonvolatile memory is checked to see if the
expert system is resuming. If so, the supervising
program reads in initial information consisting of
the name of the rule base that was being processed
when suspension occurred and all the saved infor-
mation about the rule base. The controlling program
then calls the inferencing program and passes a
parameter indicating that resumption has just oc-
curred. The inferencing program, realizing that the
rule base is being restarted from where it left off,
does not reset values but uses the information read
in by the supervising program. The inferencing pro-
gram then continues execution from the point at
which the interruption occurred.

Implementation

The diagnostic expert system consists of about
16 000 lines of Pascal code. It runs on the RT Per-
sonal Computer with at least one megabyte of mem-
ory and on a System/370 under vM/CMS.

There are approximately 80 hardware parts that can
be identified as faulty by the diagnostic system. The
entire knowledge base is composed of more than 30
rule-base segments, each requiring an average of
35 000 bytes of memory. The average rule-base
segment contains 80 rule nodes, executes nine test
units, and asks five questions. The depth of the trees
varies from shallow trees of two levels to very com-
plex trees with as many as thirteen levels. The rule
base has a total of 166 GOALs or intermediate hy-
potheses.

Conclusion

The work reported in this paper has achieved two
results. By taking the concepts of segmentation and
paging, so common in operating systems, and reap-
plying these technologies in expert systems, we have
lifted size limitations on knowledge bases. Increased
size makes it possible to have significant expert-
systems capability in desktop computers.

The second result is the demonstration that expert
systems can be used to diagnose hardware problems
on the machine under test. By dynamically binding
procedures during consultation, the consultation
module can remain relatively small, yet expand its
capability through procedure calls.

Cited references

1. PC Magazine 4, No. 8 (April 16, 1985); entire issue.

242 BURNS ET AL

2. F. D. Highland, Design of an Expert System for Shuttle Ground
Control, Master’s Thesis, School of Sciences and Technologies,
University of Houston, Clear Lake City, Texas (1985).

3. M. T. Harandi, “The architecture of an expert system environ-
ment,” Proceedings of the Fifih International Workshop on
Expert Systems, Avignon, France (May 1985), pp. 555-572.

4. P. Nielsen, A User’s Manual for Construct and Consult in the
GPSI Environment, Department of Computer Science, Univer-
sity of Illinois at Urbana-Champaign (1984).

5. M. T. Harandi, “A tree-based knowledge representation scheme
for diagnostic expert systems,” Proceedings of the 1984 Confer-
ence on Intelligent Systems and Machines, Rochester, MN
(1984), pp. 70-74.

Nancy A. Bums IBM Engineering Systems Products, 11400 Bur-
net Road, Austin, Texas 78758. Mrs. Burns is a senior associate
programmer for IBM, currently working with IBM Fellow G.
Glenn Henry. She was previously a technical member of the team
that developed an expert system to perform diagnostics on the
IBM RT Personal Computer. Mrs. Burns received a B.S. in statis-
tics and quantitative methods at Louisiana State University and
an M.A. in mathematical sciences at the University of North
Florida. She is a member of the Association for Computing Ma-
chinery and its Special Interest Group on Artificial Intelligence,
the American Association for Artificial Intelligence, and the As-
sociation for Computational Linguistics.

T. Jay Ashford IBM Academic Information Systems, Palo Alto
Scientific Center, P.O. Box 10500, Palo Alto, California 94303.
Mr. Ashford was the manager of the Advanced Engineering Sys-
tems Diagnostic Control Programs Department. His prior experi-
ence includes work in small-systems and I/O architectures, diag-
nostic and maintenance strategy, and word processing software
design. His technical interests include expert systems, operating
systems, and systems architecture. He joined IBM in 1974 after
receiving the B.A. and M.E.E. degrees from Rice University in
1971. Prior to joining IBM, he worked for the Calspan Corporation
in the areas of statistical analysis and estimation. He is currently
working at the Palo Alto Scientific Center in expert-systems de-
velopment.

Christine T. lwaskiw /BM Federal Systems Division, 18100 Fred-
erick Pike, Gaithersburg, Maryland 20879. Ms. Iwaskiw is a senior
associate engineer in FSD. She was previously a technical member
of the team which developed the hardware diagnostics for the IBM
RT Personal Computer. Her experience includes work in power
supply development, display hardware diagnostics, graphics soft-
ware, and expert systems. Her technical interests include expert
systems, computer graphics, and systems architecture. She joined
IBM in 1981 after receiving a B.E.E. degree from the University
of Delaware. Ms. Iwaskiw recently received her master’s degree in
electrical engineering at the University of Texas in Austin. She is
a member of the Institute of Electrical and Electronics Engineers,
the Society of Women Engineers, and the American Association
for Artificial Intelligence.

Roberta P. Starbird /BM Engineering Systems Products, 11400
Burnet Road, Austin, Texas 78758. Ms. Starbird received her B.A.
in mathematics from the University of Virginia and her M.A. in
mathematics with a minor in computer science from the Univer-
sity of Texas. She joined IBM in 1979, then worked for two and a

BM SYSTEMS JOURNAL, VOL 25, NO 2, 1986




half years in Systems Assurance doing performance analysis on
small computers. For the next three and a half years, she was the
leader of a team working to develop a portable expert system to
be used for diagnostics on the IBM RT Personal Computer. She
then became the manager of the Hardware System Integration and
Test Department.

Richard L. Flagg /BM Deutschland GmbH, Pueninger Strasse
140, 7000 Stutigart 80, Germany. Mr. Flagg received his B.S. in
mathematics from Shepherd College in 1964. He joined IBM’s
Federal Systems Division in 1966. His experience includes pattern
analysis, process-control, word processing, communications, and
operating systems for diagnostics. He was the technical leader for
the advanced Engineering Systems Development Diagnostic Con-
trol Programs Department. He is currently a customer service
engineer in Stuttgart.

Reprint Order No. G321-5273.

BM SYSTEMS JOURNAL, VOL 25, NO 2, 1986

BURNS ET AL. 243




