Impact of memory systems
on computer architecture
and system organization

The largest part of computer architecture, in both the
central processing unit and the overall system, has
been and continues to be directly influenced in one
way or another by the types of memory systems avail-
able. This is readily apparent in certain areas such as
1/0 architecture and memory hierarchies. However, the
pervasiveness of this influence throughout the entire
system is not so obvious. This paper demonstrates this
relationship and shows how it has affected computer
architecture over the years. Two approaches are used,
the first being a direct look at how specific architec-
tures attempt to circumvent the limitations of the asso-
ciated memory system. This includes such topics as
the internal architecture of CPUs: memory hierarchies
and virtual memory, 1/0 architecture, file structuring,
and data base architecture. Second, a gedanken
(thought) experiment is used to predict future trends. It
is assumed that very large-scale integration will evolve
to the point at which we can have nearly any main
memory system we desire, with some reasonable con-
straints. The architectural changes that might take
place will be seen to be precisely related to the weak-
nesses in current memory systems which various
architectures currently attempt to circumvent.

he current picture that any observer, skilled or

unskilled, sees of much of computer systems
and technology is one of vast knowledge, great com-
plexity, and often much confusion. The reason for
this picture is that the various fields have grown
explosively in a short time and in many directions
simultaneously. There is seldom enough time to
digest it all. It is the author’s conviction that much
of our knowledge can be reduced to simple funda-
mentals that capture the “essence of things.” This
paper is an attempt to pull together the evolution of

274 wamcx

by R. E. Matick

a vast segment of computer architecture and orga-
nization into a simple framework that can be useful
to the expert and nonexpert. The subject is storage,
and the key to understanding all storage as well as
much of computer architecture is the problem of
addressing or accessing information. This is the ma-
jor theme of this paper.

The word “architecture” as used in this paper often,
but not exclusively, implies the “instruction set”
associated with any given system. Although an at-
tempt is made to maintain this definition here, there
is an inherent difficulty in doing so because the
“architecture” is not always apparent or available.
The system programmer, for instance, has access to
instructions that the user neither sees nor needs.
Also, 1/0, data base, and even system commands are
often MACRO instructions that make use of more
primitive instructions. Hence, the user’s view of
architecture can be different from the actual hard-
ware. The term architecture is thus used in a slightly
more general sense.

There are fundamentally two major areas of com-
puter design that have been and are now the nuclei
of most of computer evolution: (1) the overall proc-

© Copyright 1986 by International Business Machines Corporation.
Copying in printed form for private use is permitted without
payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright
notice are included on the first page. The title and abstract, but no
other portions, of this paper may be copied or distributed royalty
free without further permission by computer-based and other
information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

IBM SYSTEMS JOURNAL, VOL 25, NOS 3/4, 1986

essing functions of the system and (2) the memory
system that serves this processor. The evolution of
computer architecture and design has been the his-
tory of new ways to circumvent the limitations of
previous generations in these two major areas. In
order to understand this, and particularly the rela-
tionship between memory and the remainder of the
system, it is expedient to start with some simple
concepts as to exactly what fundamental functions
are required. There are basically two types of prob-
lems that account for most computer usage. Al-
though there are other classes, they tend either to-
ward one or the other or toward both areas of
computer design, e.g., artificial intelligence. Consider
first computational-type problems (scientific, engi-
neering, financial, etc.) that take some given param-
eters, perform some arithmetic and logic processing
on them, and produce a result. The second class,
called data-based problems, are those in which a
large file is accessed for limited information. The
information may or may not be subsequently up-
dated (by insertions and deletions) or undergo some
computational processing and then be refiled. Both
types of problems were solved by human beings long
before there was any notion of a computer. In fact,
it was such problems that gave rise to the need for
computers, Consider what is required in a general
sense to deal with these two classes of problems.

In computational problems, the processor—human
or machine—must take the arguments from some
input source, perform the required computation, and
record the result on some output source. The input
arguments as well as the result must be stored some-
where—in our brains, on a sheet of paper, on a tape,
disk, or other storage medium, such as main mem-
ory. When many computations are to be performed
over many arguments, our brains are neither as
adequate nor as reliable as other memory resources.
As a bare minimum, a sheet of paper (or equivalent)
is required. Thus it is already clear that computa-
tional problems require that the arguments be re-
trieved from some storage medium, and, after proc-
essing, that the result be recorded on some storage
medium that may be the same or different from the
one used for the arguments.

In such computational problems, accessing the in-
formation usually involves the following simple
steps: (1) access the first argument of the first column;
(2) process it with the first argument of the second
column; and (3) record it in the first position of the
third column. Even in cases where this horizontal
accessing becomes a complex diagonal accessing,

IBM SYSTEMS JOURNAL, VOL 25, NOS 3/4, 1986

such as with matrix parameters, the accessing is still
well-defined.

In file-accessing problems, the requirements are
much the same as those just given, with one addi-
tional and severe complication. The arguments to be
retrieved are not usually so readily defined, and/or
the place where the result is to be stored is not well-
defined. Consider an automobile insurance company
file that consists of individual folders (records) or-
ganized by client names, in alphabetical order. If we
wish to determine the premium for any given indi-
vidual, it is necessary to access the file for the rec-
ord—a simple matter in this case—but then this may
be followed by an associative search, i.e., compares,
of several lines or pages until the desired item is
located. The associative search, which is slow, can
be avoided by having the file well-organized by col-
umns or fields, with the premium being one of the
columns. It is then necessary, however, to have some
index stored either in our brains or at the beginning
of the file to indicate where (i.e., on which page) the
column exists. An even more complex accessing
problem is typically encountered when it is necessary
to find and revise records on all clients with subcom-
pact cars, and/or with premiums below a given
value. If the file and records have not been organized
for such accessing, the problem becomes very time-
consuming.

If one wishes to enter new information into a well-
organized file, the question becomes one of where to
record the new information and how to index it for
easy access. Thus, unlike computational problems,
the locations or addresses of the arguments and
results are not necessarily well-defined and present
fundamental difficulties.

The point of this discussion was to illustrate by
practical example the two major fundamental func-
tions in all types of everyday problems, namely
accessing (reading or writing) information from
some storage medium, and processing this informa-
tion. This paper dwells on the accessing problem to
show how the practical limitations on our ability to
access large amounts of information have influenced
much of computer architecture.

The accessing problem. The previous discussion il-
lustrates the fact that random access to large amounts
of information is one major, essential function in all
data processing. Then why do we not simply produce
such a memory? The reason, as always, is cost and
performance. The way in which this directly affects

marck 275

Figure 1

Schematic of a random access memory showing required

(C) static cell, 2 bit/'sense lines per cell

“and” functions: (A) random access array, (B) dynamic cell,

SENSE CIRCUIT

276 matick

IBM SYSTEMS JOURNAL, VOL 25, NOS 3/4, 1986

the memory system design can be understood from
a few simple fundamentals. All memory systems
require a storage medium, in addition to a coinci-
dence function for writing and a selection mecha-
nism for reading, as discussed in Reference 1, Chap-
ter 2. The selection mechanism for reading and
writing of any storage medium fundamentally re-
guires an AND logic function in some form. In ran-
dom-access memory systems there are AND functions

STORAGE
DEVICE

at several places. For instance, Figure 1A shows the
word address being decoded via hard-wired AND
decoders that select one of the physical word lines.
(Note that the physical word line need not be the
logical word.) There is at least one AND-type function
physically connected to each storage cell, such as for
the dynamic cell shown in Figure 1B and two AND
functions for static cells shown in Figure 1C. There
is typically one AND for each bit/sense line for writing
and one for reading as shown, plus other AND-like
decoders at various levels not shown, such as chip
select, island select, module select, etc.

In order to reduce cost as well as increase density,
secondary-storage devices remove the reading/writ-
ing AND functions from each cell as well as from the
bit/sense lines and replace these many ANDs with a
few that are located elsewhere and shared over many
bits. Obviously, this immediately precludes the abil-

BM SYSTEMS JOURNAL, VOL 25, NOS 3/4, 1986

ity for truly random accessing, a severe limitation
but one that is necessary to reduce cost. In addition,
the random access cells, each of which is made up
of several distinguishable semiconductor devices
wired together on a silicon chip, are replaced by
magnetized spots on a continuous magnetic medium
and have no physical structure. The magnetized
spots are created by placing a magnetic head, essen-
tially a toroid with a small air gap, as close as
physically possible to a suitable magnetic medium,
as shown in Figure 2. The external field near the gap
magnetizes the material and under proper conditions
can leave a magnetized spot as small as 1/10000
inch or smaller. The AND function for writing is the
AND of the write current I, with the physical location
of the medium. For reading, whenever the medium
is moved at constant velocity, a sense signal I is
induced in the sense head. A strobe pulse, derived
from the coded, magnetized spots, provides the AND
of the physical position and electrical signal for
reading. All such media require a constant velocity
between head and medium for both reading and
writing. This becomes more critical as the density
increases. However, magnetoresistive sensors used in
some tape units produce read signals which are in-
dependent of velocity.)

Now let us look at the addressing problem for sec-
ondary storage systems. For a strictly sequential sys-
tem, such as one long piece of tape that can pass
only back and forth across the read/write heads as
shown in Figure 2, it is obvious that there cannot be
any random accessing capability. If the head happens
to be at the beginning of the tape and the desired
information is at the end, the tape must sequentially
pass over every piece of data stored on the tape. How
can discrete pieces of data be written and read rather
than the entire tape? Since the tape must move at
constant velocity for reading and writing, there must
be start/stop intervals on the tape during which time
the tape accelerates and decelerates. These intervals
are called Inter-Record Gaps (IRG), and each IRG
contains special characters at the leading edge of the
gap. When the tape is moving, special circuits in the
tape controller sense these characters and stop if it is
appropriate. Obviously, these gaps can be passed
over with proper logic in the tape controller. The
various functions that a typical tape unit can perform
for addressing the medium are listed in Figure 2.
There are usually no other functions available for
any finer addressability. If the user wants to read or
write Record No. 40 and happens to know (in his
brain or built into the 1/0 program) that the head is
positioned at the start of Record No. 30, the 1/0

matnck 277

Figure 2 Tape accessing functions

READWRITE FORWARD -~ READ OR WRITE ALL DATA BETWEEN
1RG4 AND RG,, STOP AT IRG,

READ/WRITE BACKWARD --READ OR WRITE ALL DATA BETWEEN
1RG4 AND IRGq, STOP AT IRG,

FORWARD BLOCK ~ADVANCE TO IRG e

NO READ OR WRI

BACKWARD BLOCK —BACKSPACE TO IRG,

FORWARD FILE ~ADVANCE TO IRG3

(FIRST IRG AFTER EOF MARK)

—HEWIND TAPE
BACK TO BEGINNING

program must issue a FORWARD BLOCK command
10 times, either directly or by an equivalent loop.
Then the READ or WRITE command is issued. How-
ever, if the user does not know the current position
of the head, the simplest procedure is to REWIND to
the beginning and FORWARD BLOCK 39 times. The
user can attempt to determine the current position
by reading the very next record to the cpu and can
use the data to find the relative position, if possible.
This may or may not be possible, and it is complex,
requiring an I/0 routine that can be modified to
accept the current position as a parameter. In any
case, this is not part of the tape unit addressability.
Fundamentally, the only addressability is to a spe-
cific tape unit, when there are such multiple units,
and to the next IRG or IRG after an End of File (EOF)
tape mark.

Tape-like storage provides a very inexpensive, dura-
ble, convenient method for storage of massive
amounts of information such as for archives. How-
ever, the sequential nature of tape greatly limits its

278 wmanck

versatility, especially as the density increases and the
volume of data also increases. These addressing lim-
itations were significantly reduced by the 1BM 3850
Mass Storage System (Mss), which was introduced in
1974. The Mss incorporates the low cost and high
density of tape media with the continuous motion
and track addressability of disks, plus a very large
total capacity.

Further improvements in addressing capability are
provided by disk and drum devices. Disks and drums
circumvent some but not all of the accessing limita-
tions of tapes. We now consider disks with a mova-
ble-arm (movable-head) unit, as diagrammed in Fig-
ure 3. Basically, the tape of Figure 2 is cut into many
short pieces, the pieces are placed in a circular fash-
ion end to end on a hard disk surface, with many
tape pieces in concentric circles, and the medium is
rotated at constant velocity. Since each of these
tracks on disk is comparable to a tape unit, there is
direct hardware addressability to each unit, i.c., to
each track. If multiple disks are stacked on one

IBM SYSTEMS JOURNAL, VOL 25, NOS 3/4, 1986

spindle, there are essentially more units (tracks) and
hence more addressability. Stacking disks has the
further advantage that in a movable-arm system with
one head per disk surface, any position of the arm
selects a cylinder of tracks (SEEK CYLINDER), As
illustrated in Figure 3, switching from the top track
(head) to any of the others in the same cylinder (SEEK
HEAD) is done at electronic speed, which is essentially
one system cycle time. Thus a disk, by its nature of
existing in two dimensions, provides many more
directly addressable units of data than a tape. This
direct or random addressability is a very important
parameter in all memory/storage systems and rep-
resents the unit that is directly addressed by fixed
hardware, requiring only one instruction containing
the unit address and no additional software. For
main memory, this unit is typically a memory word
or double word of 4 or 8 bytes, directly addressed by
the hardware decoders from the instructions READ
(address) or WRITE (address). For a simple disk sys-
tem, this unit is a track, directly accessed by the
hardware from the instructions SEEK CYLINDER (ad-
dress): SEEK HEAD (address), where address is the
cylinder/head number, i.e., the exact track address.
Thus the directly addressable unit is much larger on
disk than it is in main memory, For instance, a
track—even on early System/360 disks such as the
2311—could contain up to 3694 bytes of user data.
On a more sophisticated disk system that has sector
addressing, this addressable unit is a sector, directly
addressed by an instruction SET SECTOR {(address),
where address is the explicit sector number. How-
ever, before the sector can be accessed, a SEEK to the
correct track is required, which is a two- or three-
step operation. A sector on a modern 3380 disk is
about 512 bytes long, whereas the track can hold up
to 47476 bytes of user data. Except for cases of
simple sequential processing, the directly addressed
unit on a disk, namely, a full track or sector, is
typicaily too long to be entirely useful. A sector of
512 bytes is nearly a half page of double-spaced,
ordinary text and a track of 3694 bytes is roughly
two to four pages of text. The unit desired for proc-
essing or just to be accessed is in the range of 10 to
100 characters, e.g., “What is the name of employee
with serial number 1234567,” “List the X Airline
flights to LA on Tuesday,” “Enter reservation for
A. B. Jones.” Thus it is clear that even for simple
files, finer addressing is required at some level. The
methods chosen for implementing fine addressing
on disks are reflected back into the entire 1/0 archi-
tecture, from hardware to software access methods,
and even to main memory organization itself. The
reason for this pervasiveness is that any finer address-

IBM SYSTEMS JOURNAL, VOL 25, NOS 3/4, 1986

Figure 3 Schematic of typical movable-arm disk unit

ing at the disk level requires the use of Store Address-
ing Information (sA1) and 10 software subroutines
executed by the channel in conjunction with the disk
unit, to perform search operations. Sal is discussed
in Reference 1, Chapter 7. The track can be logically
divided into fixed- or variable-length records, with
each record preceded by some Store Addressing In-
formation. The sai is simply a well-defined address
stored on the disk in an area designated by gaps that
contain special codes. Logic circuits in the controller
sense these gap codes and know when the stored
addressing information is to start. In this manner, a
given address can be located by a search command.
These search operations consist of repeated read and
compare functions performed on the stored address-
ing information until a match occurs or the end of
the search is reached. The sAl can be various gaps,
address markers, record count, or ID keys, as shown

wanck 279

Figure 4 Essential accessing features of IBM System/360/370 disk systems showing various stored addressing information

TFOLLOWING NDEXVARKER |~
#-HEAD SPECIFIED ARER OF NEXT,

~ANALOGOUS T0 ABOVE

280 wmanck IBM SYSTEMS JOURNAL, VOL 25, NOS 3/, 1986

in Figure 4, or other forms. If this fine addressing is
either not provided or not used, the unit word must
be transferred to main memory, so that the byte
addressing and logical capability of the CPU can be
used. The System/360 and System/370 1/0 architec-
ture provides a programmable track format for var-
iable-length records. The sal for finding records con-
sists basically of two areas: (1) the 1D part of the
COUNT area and (2) the KEY area, as shown in Figure
4, along with the fundamental accessing commands
of such a disk. Either one or both of these can be
used in various ways, the trade-off being the more
SAI the less available user data space.

Only the direct addressing commands, SEEK and SET
SECTOR, are carried out entirely by the control units.
The channel is not involved, and, in fact, it can be
servicing other attached disks. Any finer addressing
requires search commands, which tie up the channel
for the entire length of the track. It should be appar-
ent that a memory system with random access to a
small unit inherently requires considerably more
hardware and thus is likely to be expensive. Cost
reduction is achieved by removing the cell structure
and sharing the read/write transducers. The further
the cost is reduced, the larger the unit of direct
addressability. Fine addressing then requires Stored
Addressing Information, which consumes available
data space, and slow read-and-compare searching
techniques. These limitations on accessibility affect
not only the process of finding the information, but
also its read-write rate. The sharing of transducers
coupled with high density influences the design to-
ward serial data paths, which have been the standard
over the years.

One final and serious access limitation of disks is
that in order to achieve high speed and high density,
only one head of a cylinder can be read or written
at a time. Multiple heads or tracks of one cylinder
cannot easily be used in parallel, because the me-
chanical and electrical tolerances require separate
mechanical track-following for each head via a feed-
back servo mechanism, In a similar fashion, it is not
feasible to distribute the data across several disk
drives, because the disks are not in spatial rotational
synchronism., (A later section on a gedanken—
thought—experiment shows how this might be alle-
viated with a simple synchronous-to-asynchronous
conversion buffer.) With today’s technology, it is not
possible to distribute data across multiple tracks in
any form so as to improve bandwidth.

Thus we deduce that a desirable memory system
should have the ability to randomly access a large

IBM SYSTEMS JOURNAL, VOL 25, NOS 3/4, 1986

number of relatively small data units. Some associ-
ative compare capabilities are also desirable. The

Practical limitations of memory have
enormously affected the central
processor.

exact nature of the associative functions is not en-
tirely clear yet, but they will be defined as we proceed.

Central processing unit architecture

Practical limitations of memory have enormously
affected the architecture of the central processor. As
indicated in the introduction, the processor must
access the information from the storage medium
before any processing can take place, and it then
must record the result on a storage medium before
continuing. A fundamental requirement of an ideal
storage system operating with an ideal processor
under worst-case conditions is that it should have
random access to about four entries for every full
cycle required to process the instructions. These
accesses are as follows: one for the next instruction,
two for the two arguments to be processed, and one
for a result to be stored, if required. For a one-cycle
processor, the storage system must either have four
random access ports or be capable of four full cycles
for each processor cycle. Both of these are extremely
difficult to provide. All random access main memo-
ries, past and present, have only one random access
port, and they have at most one access per processor
cycle. From earliest times, the speed difference has
been compensated for by the use of registers external
to the memory array and electrically closer to the
processor. Also, such registers are capable of being
accessed and manipulated at a level as fine as the bit
level. Almost all computers have some special regis-
ters such as an accumulator and a multiplier-quo-
tient register. In principle, such registers are unnec-
essary because they are typically loaded and/or un-
loaded to memory. However, it is difficult, expensive,
and redundant to make every word in memory have
a variable bit addressability or even variable word-
length addressability, as well as sufficiently fast access

warcx 281

Figure 5 Typical 16-bit instruction with separate memory and
register address fields

to the processor. Hence an intermediate staging reg-
ister is used, due to the limitations of memory.

In addition to these more specialized types of regis-
ters, it has been found that faster access to memory
can be obtained by using a small register stack that
is typically loaded and unloaded from memory. This
is usually referred to as the general-purpose-register
stack. This stack is an extension of main memory to
make it look more like the ideal. Because many
arguments and parameters are reused many times,
they are stored in this smaller and much faster local
memory. In fact, typical register stacks can often
access three, four, or more entries simultaneously
for precisely the reasons just given, namely the si-
multaneous reading of arguments and storing results.
One difficulty is that the address of an argument in
this small stack is quite different from that of its
equivalent memory address, which necessitates a
new means for accessing. Unfortunately, this re-
quirement affects the architecture of the instruction
set, regardless of what solution is used. In the most
common cases, the register addresses are just in-
cluded within the instruction, thereby taking sub-
stantial code space. For instance, for a 16-bit instruc-
tion which addresses 16 (4 address bits) or 32 regis-
ters (5 address bits), only 12 or 11 bits respectively
are available for the operation code and memory
address. (See Figure 5.) A reduced address length
reduces the amount of memory that can be accessed,
and an insufficient address length is the major reason
for the use of numerous addressing modes in some
architectures.

A significant consequence of including the register
address in the instruction code space is that it has
severely limited the number of registers that can be

282 matick

used. Early computers, such as the 1BM 650 and 1401,
had no such general-purpose registers but rather a
few special registers such as an accumulator, distrib-
utor, or multiplier/quotient register. The 1BM 704
had three index registers for base-index addressing
but no general-purpose registers. In these systems,
the main memory operated at the same speed as the
crU, hence memory itself served as the register stack.
In fact, it was common first to pick a memory
technology and then design the cpu to match the
memory speed. However, as technology improved
and computers become more useful, increased com-
putational power was needed. This pushed the de-
signs toward faster processors and larger main mem-
ory. Thus processor speed increased faster than main
memory. (See Reference 1, Chapter 1.) The value of
having small local registers whose speed matches
that of the processor became quickly evident. How-
ever, the number of such registers has not changed
much since the time when the advantages were first
recognized. For instance, the 1BM 7094 had a stack
of seven index registers, occupying three bits of the
instruction code. 1BM System/360 and System/370
architecture has 16 general-purpose registers (plus 16
special-purpose, system-control registers), and cur-
rently the maximum number on most machines, 1BM
and others, is 32 registers. The latter has most often
been accompanied by an increase in instruction
length.? Although more registers are desirable, the
compromises offset the advantages. The compromise
solution to this problem has been to introduce a
cache memory into the system that is an extension
of main memory. A cache is capable of working at
the speed of the processor but with considerable
additional complexity.

In any case, even though the general-purpose regis-
ters have helped circumvent some of the bandwidth
limitations of main memory, they have introduced
a whole new set of problems and proposed architec-
tural solutions. The two most serious problems are
the small number of general-purpose registers and
the need to have the address residing within the
instruction. A small number of registers requires a
significant amount of overhead. For example, two
different tasks or procedures (subroutines) that re-
quire all of the registers must have the same register
addresses within their instructions. Hence, if it is
necessary to switch problem state or to branch, part
or all of the register stack must be saved in main
memory and the new state must be loaded from
main memory to the registers. This can be very time-
consuming, particularly when state changes occur
frequently. Rapid state changes occur with multipro-

IBM SYSTEMS JOURNAL, VOL 25, NOS 3/4, 1986

grammed/multitasking systems, which are quite
common. The same is true with structured program-
ming languages that may have many nested subrou-
tines, each with several parameters, e.g., Pascal and
the C language. This problem is becoming more

Many methods have been explored
for augmenting the register stack
and saving changes of state.

serious as processor performance increases, espe-
cially in microsystems and minisystems. As a result,
many methods have been explored for augmenting
the register stack and saving changes of state while
attempting to minimize the impact on the instruc-
tion code. We briefly consider several methods deal-
ing mainly with the underlying problems related to
memory accessing as previously described.

The BELLMAC-32 microprocessor’ provides hardware-
implemented instructions for managing a stack of
16 registers for a highly structured language such as
C, in which procedure calls or returns occur on
average roughly once in every 20 instructions exe-
cuted.* The number of registers used and their allo-
cation for procedure calls and returns are handled
by the hardware, which typically makes these proc-
esses faster. Without such facilities, the operating
system or user would have to manage the registers,
using the available more general instructions. How-
ever, in addition to the added hardware complexity,
several of the registers have specific use for managing
the register stack, and thus they are unavailable for
holding variables. Fundamentally the only architec-
tural advantage is ease of use, but this is obtained at
the expense of fewer usable registers.

The 801 architecture? uses five operation code bits
to provide the user with 32 directly accessible regis-
ters and an efficient compiler to make use of them.
The additional registers considerably aid both the
compiler and the user programs. The resulting re-

IBM SYSTEMS JOURNAL, VOL 25, NOS 3/4, 1986

duced instruction code space for memory addressing
and other functions drives the architecture toward
one instruction length of 32 bits, rather than mixed
16- and 32-bit instructions. This has significant im-
pact on the cache and memory bandwidth require-
ments, '

The Bell Laboratories C Machine* increases the reg-
ister stack to typically 1024 registers, but, rather than
consuming 10 instruction-code bits for addressing
these registers, the C Machine introduces a new
addressing mode. The stack address is calculated
during predecode time and is stored with the instruc-
tion in an I-buffer. In essence, the effective instruc-
tion length is made larger only inside the cpPu, but
at the expense of considerable logic complexity and
stack pointer maintenance. Four new instructions
are also required to manipulate the stack because it
obviously must be loaded and unloaded properly for
maximum performance. Unfortunately, such a large
stack is useful mainly for highly structured languages
in which there are many nested subroutines, each
with several parameters. The larger stack can hold
most of these subroutines as required by any one
given user or task. Whenever a task-switch occurs,
the stack must be made available to the new user/
task, and the old stack must be saved in main
memory. A larger stack takes longer to save and
subsequently restore. For systems with frequent task-
switches, the penalty can'be dramatic, especially
because memory bandwidth is usually the critical
performance-limiting parameter.

The Carnegie-Mellon T™ architecture® attempts to
reduce compiler complexity while maintaining the
efficiency of high-level language object programs.
This is achieved mainly by the use of a value cache,
which is fundamentally similar to other caches, ex-
cept that it stores common subexpressions that are
likely to be reused and hence do not have to be
reevaluated each time they are invoked. The advan-
tages of this value cache depend on significant oc-
currences and identification of common subexpres-
sions in the work load. In addition, a push-down
evaluation stack for data words and a control stack
are introduced. The net effect is the introduction of
additional fast local memory with combined implicit
and explicit addressing.

Members of the University of California at Berkeley
have designed a reduced-instruction-set computer
(risc)’ that makes use of a larger physical register
stack but a smaller, fixed, logical stack and renames
the register window on a task switch or procedure

wanck 283

call. This can often prevent the need to save the
stack on a subroutine jump as well as a reloading
upon return. In essence, the RISC has made the stack
larger without directly consuming instruction code
space, but it requires other hardware for proper
addressing and manipulation.

The 1BM System/38 incorporates a stack of 16 gen-
eral-purpose registers but simplifies task switching
by the use of a task dispatcher built directly in
microcode.

These are but a few of the numerous methods that

have been attempted as a way to overcome the
fundamental memory-accessing problem. All meth-

The fundamental issue remains that
of multiple accesses to a large
memory at processor speed with
adequate addressing capability.

ods tend to fall into one or more of the following
three categories: (1) add small, fast, local cache-like
storage; (2) add more registers and consume the
instruction code space; and (3) add more registers
but avoid impacting the instruction code space by
including complex hardware/software bookkeeping
capability. However, it should be clear that all solu-
tions are compromises and the fundamental issue
remains that of multiple accesses to a large memory
at processor speed with adequate addressing capabil-
ity.

Address space. The limitation imposed by memory
has had a profound effect on another aspect of cpu
architecture which, over the years, has spilled over
to influence the entire system architecture and or-
ganization. This problem is centered around the
limited size of main memory and the resulting lim-
ited address space provided to the user. In early
computers the maximum size of the memory address
was quite small, less than that of a pC today, because
early memories were quite expensive. Because there

284 wanck

were few addressable words, the addresses were to-
tally contained within the instructions, and the ad-
dress bits consumed only a small part of the instruc-
tion code space. Fifteen to eighteen address bits were
adequate for early large computers, from the 1BM 704
through the Univac 1108. As memory technology
improved, larger main memory capacity became
available; consequently, more address bits were
needed. In fact, the need for main memory is open-
ended, being subject to a Parkinson-type law that
might be termed the Law of Expanding Storage:
Problems expand to fill the storage allowed for their
completion.! To accommodate the larger address for
larger memory without significantly increasing the
instruction length, base addressing became com-
mon. The base or starting address of any memory
reference is stored in a special-purpose register or in
a particular general-purpose register, and the instruc-
tion code contains only the displacement or offset
from that base. When the address length exceeds the
displacement length, a new base is loaded into the
base register. Thus a very large address space can be
accommodated with a relatively small displacement
field in the instruction. This also provides a simple
means for relocating programs. Thus a program with
fixed addresses can be placed anywhere in memory
by adding the base to all addresses. Some systems
use an index register as well as a base; fundamentally,
they serve the same purpose. Note that this base
addressing has a direct and dramatic effect on the
instruction set format as well as machine organiza-
tion. All instructions using base addressing must
indicate a base register (either directly or implicitly)
and contain a displacement. If an index register is
also used, it must be addressed directly or indirectly.
The processor now must add the base plus displace-
ment (plus index, if used) before a memory reference
is possible. This last function, known as address
generation, was not necessary in early computers,
but it is quite common today. Base addressing has
introduced problems of its own, especially in com-
puters having small instruction lengths, that is, 8 to
16 bits. There are typically not enough bits to specify
the operation, the base register, and displacement.
Also, in such systems, there are not enough registers
to keep track of instruction locations, data locations,
and various subroutine branch addresses. Hence,
many such systems have numerous and often quite
complex addressing modes. This is the case for such
systems as the DEC-vAX, Intel 8086 and 8088 micro-
processors (the latter used in the original 1BM PC),
the Motorola 68000, and many others. These com-
plex addressing modes are fundamentally unneces-
sary but are required because of practical constraints.

IBM SYSTEMS JOURNAL, VOL 25, NOS 3/4, 1986

Virtual memory and memory hierarchy

Virtual memory hierarchies, introduced commer-
cially in the early 1970s, were aimed at solving
several problems. One was to avoid the severe main
memory fragmentation that occurred in a multitask-
ing system. Programs with data were variable in size,
yet each had to occupy its own physically contiguous
memory addresses. Hence, as programs of different
sizes were completed, new programs of different sizes
were brought in that did not necessarily match the
vacant slots, leaving large portions of memory un-
used. The use of a fixed unit of transfer—typically a
page of 4K bytes—coupled with demand paging were
introduced to solve this problem of fragmentation.
There is a perfect fit between the area cleared and
the size of the incoming entry. (Note that fragmen-
tation now occurs within the virtual address space.)
A second problem solved by virtual memory is the
severe limitation of address space given to the user.
In early systems, such as the 1BM 704, the program-
mer had a maximum of 32K words or 15 address
bits. In a nonvirtual memory, the maximum number
of address bits must equal the actual number of
physically addressable words or bytes of main mem-
ory. In a virtual memory, the user can be given an
architecture-specified number of address bits, e.g.,
24 or 32, regardless of the actual size of main mem-
ory. This eliminates the need to overlay programs
and greatly simplifies the programmer’s task. Over
the years, continued refinement of virtual memory
implementations has produced systems that appear
to have the very large storage capacity of disks, but
with an average speed about equal to that of main
memory (or cache in appropriate systems).

However, all these features have a cost. Memory
management and virtual memory hierarchies (in-
cluding cache) have had more significant and far-
reaching consequences for system architecture and
organization than any other concept. Hardware ar-
chitecture has had to include special instructions for
virtual memory management, depending on the sys-
tem. For instance, there are instructions for loading
a real address, and several instructions for purging
selectable portions or the entire Translation Looka-
side Buffer (TLB). In some systems with caches, there
are similar purging instructions for the cache and its
directory.

In software architecture, the concepts of pages and
segments as well as the use of segment and page
tables for translation are so thoroughly entrenched
that they are impossible to change. Early virtual

IBM SYSTEMS JOURNAL, VOL 25, NOS 3/4, 1986

memory designers decided to use tables for transla-
tion because of the ease of implementation and the
simple, general technique provided for the sharing
of physical memory. Thus two different users’ virtual
addresses can reference the same data page by having
the same address pointer in different page tables. It
was also argued that the use of software rather than
strictly hardware to do the translation would not
lock the architecture and, therefore, would be both

Virtual memory hierarchies have
influenced the entire memory-1/0
subsystem architecture.

flexible and changeable. Ironically, the latter proph-
ecy has turned out to be quite the opposite, but for
reasons that were unforeseen. Once segments, pages,
and the associated tables were introduced, they were
found to be convenient for performing many other
functions for controlling and managing the system.
Hence tables are inherent in the implementation of
operating systems, from the bottom layers up
through the top, and any attempt to change at any
lower level would ripple up to the top. With large
operating systems such as Mvs and vM, the cost of
change would be prohibitive. In retrospect, there
would be more flexibility in a hardware implemen-
tation. With the ever-increasing cost and complexity
of system programming and the decreasing cost with
improved performance of vLsl, it is becoming more
attractive in many cases to implement functions in
hardware rather than software. It should be kept
clearly in mind that the term sofiware really means
the use of general-purpose hardware rather than spe-
cial-purpose hardware.

Another irony of the use of translation tables is that
because they consume considerable main memory
space, a large multiprogrammed system typically
limits the size of the virtual address allotted to each
user. For instance, on vM/370 the architected virtual
space is 24 address bits or 16M bytes. However, users
are typically allotted 1 or 2M bytes, all of which is
virtual space and not physical memory. The full

MATICK 285

virtual space can be used only at special times or
with special permission. If all users were given the
full virtual space in any multiprogrammed system,
all of main memory might be consumed by the
translation tables. One solution is to page the page
tables dynamically just like other data. This is ac-
tually done in Mmvs and new versions of vM. However,
additional means for translating to the page tables
are required. This results in the consumption of more
system resources, although there is a net gain.

Virtual memory hierarchies have influenced the en-
tire memory-1/0 subsystem architecture. Data on
paging disks must be treated in units of pages, which
do not always match the inherent track or record
length available on disks. Page faults in main mem-
ory of a high-performance processor, even though
the miss ratio is less than one percent, still occur at
a rate so high that supplying sufficient 1/0 to keep
the cPU busy requires special consideration and de-
sign. In some systems, the 1/0 is also accessed with
virtual addresses. This requires additional translation
facilities and supervisory software.

Another important part of the memory hierarchy
that is not usually seen by the application program-
mer, but is of significant concern to the system
programmer, is the cache. The main purpose of the
cache is to give the memory hierarchy the appear-
ance of operating at the CpuU cycle time. In a multi-
processor configuration, such as the 1M 3090 system,
when one processor’s cache experiences an access
miss, the data may be in the cache of another proc-
essor. Searching for the data may require cross-
interrogation, control, and possibly data transfer.
This is known as the “cache coherency problem,”
and it affects the architecture, machine organization,
and operating system.

Thus it is apparent that controlling and managing
the virtual memory hierarchy is a pervasive task
requiring substantial operating-system resources, as
well as hardware and architectural assistance. If a
very large, fast memory could be implemented to
replace the memory hierarchy, substantial simplifi-
cation in hardware and software could result.

1/O architecture and file access methods

The term 1o architecture is used here as it was
originally used in early computers, namely, to refer
to the input and output of relatively simple data—
financial, scientific, or any other—for which the
location or address is reasonably well known and for

286 wmancx

which no complex addressing is needed. For practical
reasons, data base and complex file addressing make
use of secondary 1/0 storage, but they have some
additional addressing requirements that are dis-
cussed in the next section.

Fundamentally, means are required to get informa-

tion from our brains, piece of paper, or other source,
into the computer memory system. With the com-

The first commercial magnetic
storage drum was used as main
memory.

puters of around 1950, the user could and did take
a deck of cards containing program and data to the
machine room, place them in a card reader, and
push the start button. The cards were read one at a
time and went into main memory. Whenever the
data constituted a large file, such as payroll or inven-
tory, the files were maintained on punched cards
and called unit records. These files were processed in
a batch mode, which required a large number of
transactions to be accumulated over some time pe-
riod, perhaps a day, before being processed. Cards
were read into memory, one at a time, and processed
sequentially in the order of entry. If the file had to
be processed in a different order, sorting was per-
formed, often off-line using a mechanical card sorter.

The introduction of commercial magnetic tape in
1951 made unit-record processing cheaper, faster,
and more reliable, with larger capacity. However,
the procedure was logically the same. The main
difference was that cards went to tape, as an inter-
mediate stage, primarily for buffering the speed dif-
ference between main memory and cards. Tape
could also hold a queue of programs to be executed
sequentially, for better system efficiency. A similar
but reversed process occurred for output. The cards
could then be separately printed off-line.

This speed differential between memory and input/
output devices, as well as a lack of good interface to

IBM SYSTEMS JOURNAL, VOL 25, NOS 3/4, 1986

main memory, has been the main factor influencing
1/0 architecture. 1/0 devices such as cards, keyboards/
terminals, tapes, disks, etc. are typically several or-
ders of magnitude slower than main memory, both
in access time and data rate. It is uneconomical to
idle the entire system while doing 1/0. A better solu-
tion is to overlap 1/0 functions with other tasks. The
manner in which this is done has profound impact
on the instruction set and overall system organiza-
tion. Thus, a brief look at the evolutionary path of
1/0 architecture is instructive. We will dwell mainly
on tapes and disks, but the same problems and
solutions apply to all 1/0.

The first commercial magnetic storage drum was
used as main memory on the 1BM 650, which was
first delivered in 1954, Magnetic drums were quickly
superseded by magnetic cores for main memory, and
since that time, drums have been used as secondary
storage devices. Drums are analogous to disks, al-
though they have shorter seek time (one head per
track), smaller rotational delay (typically four times
higher rotational speed), higher cost, and lower stor-
age capacity per unit area (limited surface area).
Therefore, they are not discussed separately.

Early tape systems ran strictly under the control of
the cpu. The CPU instruction set contained specific
instructions for operating and controlling the tape.
In fact, the instructions were very much like those
for accessing main memory, and consisted of an
operation code and the address of the tape unit. As
detailed more fully in the introduction and illus-
trated in Figure 2, a READ instruction started the
tape moving from wherever it happened to be until
the next start/stop gap was reached. During the time
the tape was moving, everything between the Inter-
Record Gap (IRG), or End Of File gap (EOF), or any
other start/stop gaps on tape was transferred to or
from main memory, as specified by the operation
code. The user could store the information desired
in any order between these start/stop gaps, but any
finer addressing had to be accomplished by using the
cpu functions via main memory. Such was the case
with computers from middle-1950s to early-1960s
vintage, e.g., from the 1BM 704 (1955) to the 1BM
1401 (1960). If the data between gaps were long and
the required information was short, the system was
inefficient in two respects: (1) the CPU was busy
throughout the entire tape operation; and (2) for
nonsequential processing, main memory could be
consumed by unnecessary data. Both of these con-
ditions are undesirable.

IBM SYSTEMS JOURNAL, VOL 25, NOS 3/4, 1986

The introduction of the 1BM 777 Tape Record Co-
ordinator in 1956 on the 1M 705I1® and the subse-
quent data channels on the 1BM 7090 (1960) and on
the 7094 ushered in a radical change in both com-
puter architecture and machine organization.’ These
units were the precursors of the System/360 and
System/370 channel architecture. In the 7090/7094
systems, the CPU instructions that operated the tape,
as well as other 1/0, were taken out of the CPU and
given to a smaller, special-purpose processor called
a data channel. These instructions, called com-
mands, were still stored in main memory, but they
were fetched, decoded, and executed by the channel
in conjunction with the tape unit. The processor
started the 1/0 by the use of a few new instructions,
which meant that there had been an architectural
change. On the 7090 series systems these new in-
structions addressed up to eight channels and any of
ten tape units on each channel. The instructions also
gave the memory address of the first 170 command.
With that, the cpu could overlap multiple 1/0 instruc-
tions to many channels and tapes for better effi-
ciency. Also, the data channel could select any user-
specified number of words between two start/stop
gaps to be transferred to or from main memory. All
tape information was organized in groups of six 6-
bit characters, or 36 bits. Thus, for nonsequential
processing, if the user knew which words of the
record were desired, the unnecessary data transfers
and consumption of main memory could be
avoided. If the user did not know the location of the
desired words, the entire data stream between the
start/stop gaps had to be transferred, which presented
no problem if purely sequential processing was being
performed. In either case, any finer addressing re-
quired the cpu.

In a system with a data channel, the processor essen-
tially needs only one type of instruction for any and
all 170 operations. The instruction operation code
must specify only that an 1/0 operation should com-
mence, and the address field need specify only the
1/0 unit and where the 1/0 subroutine is located in
memory. This architecture quickly evolved to the
System/360 channel architecture, with only such
practical changes as control signals. One significant
architectural change in the System/360 was that the
starting address of the 1/0 subroutine was not stored
in the CPU instruction, but rather in a fixed architec-
ture-specified memory location, called the Channel
Address Word. This word had to be loaded with the
correct 1/0 subroutine-starting address before the
start-1/0 instruction was issued. Now, as new 1/0
devices with different instruction sets (commands)

matck 287

evolve, only the channel and device controller re-
quire changes; the cPU architecture remains unaf-
fected. However, the machine organization with re-
spect to 170 would have to undergo significant
changes, due mainly to the practical limitations of
tapes and disks. This is discussed later in this section.

Disk architecture. Disk systems, due to technical
difficulties, became available slightly later than tapes.
Thus, their 170 architecture benefited from the tape
learning process. Even though early disks were ac-
cessed by CPU instructions in much the same manner
as tape or main memory (i.e., operation code and
address), nevertheless the actual accessing was exe-
cuted by the disk controller. Thus the CPU could be

A significant problem with large, fast
computers is that of providing
sufficient 1/0 bandwidth to
keep the CPU busy.

processing other data already in main memory, and,
although the disk instructions were part of the cpu
architecture, the cpuU did not execute them.

As discussed earlier and shown in Figures 3 and 4,
disks have a greater random accessing capability than
tapes. As a result, they were originally considered as
an extension of main memory and were organized
in very much the same way. For instance, the 1BM
1405 disk system (1960), one version of which was
marketed as the very popular RAMAC 1401, divided
the entire disk storage into fixed words called records
with 200 characters per record. Each disk surface
contained 100 tracks of 10 records per track. A
maximum of 50 disks or 100 surfaces provided
100000 records, or a total of 20 million characters.
Each word had an indelible, well-defined address
which ranged from 00000 to 99999, stored just prior
to the data area. Even though the record on a given
track had to be addressed by the Search (Read and
Compare) technique previously described, the archi-
tected form of addressing was more like main mem-
ory addressing. (The first 1BM disk system, the IBM

288 mamck

350 RAMAC, which was announced in 1956, was
identical but had 50000 records of only 100 char-
acters each.) A single record could be accessed with
a single instruction READ/WRITE (Address) and did
not require SEEK commands (move arm to track
address) followed by SEARCH, TIC (Transfer In Chan-
nel to repeat the search until found), then READ/
WRITE as in System/360 disk architecture. The ad-
dresses and records had fixed physical locations on
the disk, and dedicated hardware performed the
repetitive read-and-compare operations until the ad-
dress was located. In essence, the disk was an exten-
sion of main memory but with a much slower access
time and longer word length. As with all disks, the
entire data record of 200 characters was serially read/
written. The characters were assembled into main
memory words in the disk controller and transferred
as such to main memory.

In these early systems, even though the disk control-
ler executed the 1/0 instructions, these instructions
were still part of the cpU architecture. Every new
disk system could conceivably require changes in the
cPu architecture, which had the effect of discourag-
ing the introduction of new devices. The concept of
1/0 via a data channel, as used for tapes, was suitable
for disks as well as any 1/0 and became part of the
System/360 1/0 architecture in 1964.

A significant problem with large, fast computers is
that of providing sufficient 170 bandwidth to keep
the cpu busy. The System/360 1/0 architecture al-
lows up to 256 channels, each with up to 256 devices
attached. Practical constraints greatly limited the
number of such multiple units that could be at-
tached. However, the evolutionary path, still preva-
lent today, is that each succeeding generation of
computers has increasing numbers of channels and
1/0 devices, especially disks. Even with all the signif-
icant advances in disk technology, the 1/0 speed has
remained quite slow relative to the ever-improving
CPU and main memory cycle times. The ideal situa-
tion is to match the 1/0 bandwidth exactly with the
CPU rate of processing the data. Thus multiple 1/0
devices are necessary and can easily be accommo-
dated. A given 1/0 device can provide only a read or
write t0 main memory once every several hundred
or thousand CPU cycles, depending on the model.
Because the cPU does not require a main memory
access on every cycle, especially if there is a cache,
there are many free memory cycles to support many
1/0 devices. When the CPU and channel require mem-
ory access on the same cycle (e.g., during a cache
miss and reload or other event), a priority protocol

IBM SYSTEMS JOURNAL, VOL 25, NOS 3/4, 1986

must be used. In some cases, the channel is locked
out. If the 1/0 devices ever become very much faster,
many fewer will be required to keep the CPU busy.

Evolution of 1/O architecture. The 1/0 on early sys-
tems consisted of simple data, tables, sequential
numbers, or records. For commercial data process-
ing, sequential records were processed in a batch

Larger, more complex files and
emerging time-sharing interactive
systems all required more random

processing capability for larger

amounts of data.

mode, where each record was processed in the order
of appearance on tape, e.g., a payroll file. Techno-
logical advances made both the cpu and y/0 faster,
denser, cheaper, and with greater capacity. This
fueled the demand for even more capability. Larger,
more complex files and emerging time-sharing inter-
active systems all required more random processing
capability for larger amounts of data. The limited
capacity and high cost of main memory required
these files to be stored on higher-capacity, lower-cost
secondary-storage devices. In order to achieve high
capacity at low cost, secondary-storage systems have
had to use continuous media with external read/
write transducers and share a few of these over many
bits of storage. This is synonymous with 1/0 device
requirements, so that 1/0 devices have become sec-
ondary storage, supplementing main memory. The
result has been storage that has relatively slow access
time, slow data rate (serial), and a very large, directly
addressable unit word (track or sector) compared to
main memory.

To circumvent these limitations and make secondary
storage appear more like main memory, both in
performance and ease of use, 1/0—particularly
DAsD—has evolved in the following three major
areas over the years:

IBM SYSTEMS JOURNAL, VOL 25, NOS 3/4, 1986

e Hardware

» System organization via virtual memory architec-
ture

¢ Software utilities in the form of file access methods

In the following sections, hardware and file access
methods are discussed, with particular emphasis on
DASD.

Hardware. The evolutionary thrust of pAsD architec-
ture and system organization has been to make
relatively inexpensive, high-capacity storage appear
increasingly like main memory in terms of its ac-
cessing capability. As discussed previously, early
disks were considered as extensions of main memory
and were addressed very much like main memory.
Thus, each well-defined portion of disk space had a
fixed, indelible address. However, the unit of address-
ability was much larger than typical memory words.

As density increased, the desire for low cost still
required the sharing of read/write transducers, i.e.,
one head per track. The unit of direct addressability,
namely a track, became very large in number of bits.
This is undesirable, and, in fact, the optimal unit of
addressability is closer to a memory word size. Also,
files stored on disks had quite variable data areas.
Thus, in order both to reduce the size of the address-
able unit and to provide a variable record length for
more efficient storage, the System/360 variable-track
format was introduced and is still widely used. Lo-
cating a record on a track requires search and com-
pare operations, which are carried out in conjunction
with the channel. Thus, the channel is busy (cap-
tured) for up to one disk rotation time.

As the track density continued to increase with time,
a record became an increasingly smaller part of the
total track length. Having the channel busy for the
search over a large number of records in a full track
(worst case) is an inefficient method of using the
channels. One approach to increasing efficiency is to
divide a track into sectors and let the disk controller
sense the sector (rotational) position. In this way, the
channel can be released for other 170 until the desired
sector is reached. Although this provides finer ad-
dressing capability, the access time can still encoun-
ter a serious delay. For example, if there are many
active disk units tied to the same channel, when one
desired sector is reached, the channel may be busy
with another device and at least one additional full
rotational delay is encountered before a second at-
tempt can be made to connect to the channel. One
solution is to connect a second channel to the disk

manck 289

unit; this option was made available at the time of
introduction of the System/360 DASD.

Another solution is to move some of the logic func-
tion out of the channel and into the storage controller

Improvements in read /write head

cost and performance permitted

other significant improvements in
disk accessing capability.

and provide buffering, where necessary, between the
disk and channel. This has been introduced recently
in System/370 3380 DAsD/3880 Storage Control,
which uses a DASD-cache to hold active data for fast
access. '’

It is interesting to note that in 1979, when the I1BM
3370 pasp was introduced, it had two features. First,
although there was still only one head per track, two
access mechanisms were included, each moving half
the heads, so that seek delays to different halves of
the disk could be overlapped. Also, the variable-
track format was replaced by fixed-block data areas.
Each 512-byte block of data had a unique, sequential
block identification number that could be used to
access the block. A command needed only to specify
the block ID number or range of iD numbers desired,
and the storage control converted this to the correct
physical address. The channel was released until the
block was reached. This architecture is very reminis-
cent of the original RAMAC accessing, and it resem-
bles main memory addressing more than traditional
DASD accessing.

The improvements in read/write head cost and per-
formance, brought about in part by thin-film heads
as well as vLsiI for high-density, high-speed, low-cost
logic, have permitted other significant improvements
in disk accessing capability. These factors have per-
mitted a major departure from traditional one-head-
per-track, one-access-arm-per-spindle design. The re-
cent 3380 DASD units have two access mechanisms
per spindle, two spindles, and two separate control

290 marick

units per disk unit. Also, the channels connect to the
disk units via a different interface, namely an 1BM
3880 Storage Controller, which has two separate
storage directors. The essence of all these interfaces
is to provide multiple paths between multiple CPUs,
channels, and disk units. The paths can be dynami-
cally selected to avoid access delays due to channel
misses as well as to allow additional independent
access paths to the data on a given spindle, without
tying up the cpU (System/370 Extended Architec-
ture). The 3880 DASD cache, previously mentioned,
helps in this respect. All these factors contribute
significantly to reducing the 1/0 queue time in a
multiprogrammed system'' and are becoming essen-
tial as the central processors continue to improve in
instruction execution rate.

Software utilities and access methods. Files of either
relatively simple or more complex types (data base)
often reside on many cylinders of disk space, and
can even appear on multiple disk drives. Once the
head/arm has been moved to the correct cylinder,
the nature of disk accessing requires at least half a
rotation on average or sometimes a full revolution
of the disk, regardless of the organization of the data.
If the entire cylinder must be searched, one SEEK
maximum (slow) and a maximum sequential search
through every track in the cylinder are required.
With standard System/370 architecture, this search-
ing ties up the channel for the entire time of search;
the channel cannot be released even momentarily.
A search that requires multiple cylinders is even
slower, because arm movement is very slow. A
chained search through multiple cylinders would tie
up the channel again for the entire time. Even though
the channel can be released during the SEEK time
between cylinders, when the next cylinder has been
selected, the channel may at the same time be busy
doing other 1/0, thus prolonging the current search.
This issue is an overall system queue optimization
problem. Hence, lengthy searches are undesirable for
two reasons: First, they require a long time, due to
the sequential nature of the disk; and second, they
tie up the channel, thereby preventing overlapping
of other 1/0 through this channel during the search.
Note that on disk systems that provide sector ad-
dressing, the channel is not needed during the search
for the sector address, because this is done by the
disk control unit. For such cases, a sector is equiva-
lent in terms of addressability to a track on a non-
sectored system.

The conclusion, for the addressing of files on disk
systems, is that the optimal organization and struc-

IBM SYSTEMS JOURNAL, VOL 25, NOS 3/4, 1986

ture are those that provide the correct track (or
sector) address in the least time, with the least
amount of Stored Addressing Information (sa1). This
is exactly what all access methods attempt to do.
However, there are typically some additional consid-
erations and constraints. For example, some files are
very simple and may be accessed only in a very
simple, sequential manner. This gives rise to the
sequential and partitioned organizations and access
methods. The former requires virtually no additional
Stored Addressing Information, whereas the latter
requires a small directory. As would be expected, a
file with a more complex organization and accessing
requirements needs more SAI and/or more time to
find the track and record address. This is typical of
indexed sequential and direct access methods. The
basic difference between the latter two is the amount
and complexity of the sAl needed to convert the
record symbolic name or number to the proper
cylinder, head, record address (CHR number). Once
this address is obtained, there is no difference be-
tween the indexed sequential and direct access meth-
ods and only a minor difference between them and
the partitioned access method. This is illustrated in
Figure 6. After the address conversion is accom-
plished, the partitioned method typically reads/
writes a block or a long record, whereas the indexed
sequential or direct organizations read/write a
smaller record. In the partitioned method, if finer
addressing to a smaller unit is required, the entire
block must be transferred to main memory (ie.,
unnecessary transfers and memory consumption)
and processed via the CPU.

The indexed sequential method uses the most addi-
tional sal and takes longer to convert the name to
record address. The direct access method uses a
simple one-to-one correspondence to convert a
symbolic name to a cylinder, head, and record num-
ber, but it requires considerable involvement of the
user in defining the unique keys with minimal wasted
space. All these access methods require some form
of associative searching to obtain the desired address.
However, because such functions are not available
in hardware, these access methods make use of a
simple and ancient indexing technique that is de-
scribed next.

Volume search technique. Whenever a large file is to
be accessed, it is desirable to get to the correct track
address as quickly as possible, so as to minimize the
search time. If the records are of variable length or
the names—either alphabetic or numeric—used to
reference them do not provide unique key addresses,

1BM SYSTEMS JOURNAL, VOL 25, NOS 3/4, 1986

Figure 6 Comparison of logical to physical address
conversion of the three major access methods

PHYSICAL ADDRESS

PARTITIONED

DIRECTORY

L
DATA ON DISK)

2

T INDEXED

g SEQUENTIAL
I

poe |

<€

Q

[0}

3

——

DIRECT “BEEK - GYLINDER;
SEARCH RECORD ID
T (U TRAGK

READ

a software indexing technique is commonly used in
various access algorithms to minimize the time re-
quired to search for the physical address. This is
referred to here as volume search technigue. It is
quite powerful, yet simple and easily understood.
Fundamentally, this technique is needed because of
the lack of a fully associative accessing capability in
the storage system. Associative software is provided
in lieu of associative hardware. Consider a file com-
posed of variable-length records that requires n — 1
tracks of one cylinder for storage. The index is stored

wnox 291

on the first track, so that z tracks in total are required.
The records have three-letter symbolic names that
serve as keys for read and compare (search) address-
ing, and they have a key-data format, as shown in
Figure 7. The records are stored in alphabetic key
sequence along the tracks, starting with the first name
ACE on track 1 and continuing through to record
ZAP on track n, all on cylinder 1. The index, stored
on track 0, consists of records of fixed length having
a key for addressing followed by data. There is one
such record for each track of data, the key being the
name of the record on that track with the highest
alphabetic value. The associated data constitute the
home address of the track containing this data rec-
ord. Thus the first record of the index has Key =
BUZ and data of 1 T1 (cylinder 1, track 1), where
BUZ is the largest name on track 1. The second record
of the index points to Ct T2, which has FUN as the
largest name, and so on. If we wish to access record
VAM, a search is made through the index, looking for

a key that is greater than or equal to VAM, i.€., SEARCH
KEY > or = VAM. This match occurs on the last
record of the index. The data portion is read, giving
a pointer to Ct Ta. Now a search is made of track n
for KEY = vAM. When obtained, the data can be
read/written.

Obviously this technique can be generalized to cases
where the file and/or index requires multiple cylin-
ders, multiple disk units, etc. Whenever the file
requires multiple cylinders, a second level of index
becomes desirable to point to the correct track for
the start of the record index, so as to avoid long
searches. When the index itself requires several
tracks, another level of index becomes desirable for
similar reasons. This technique is used in partitioned
and indexed sequential organizations.

Sequential access method. In the simplest, purest
sequential organization, records are stored in tandem

Figure 7 Example of index and record organization with keys for simple volume search

KEY DATA ~

*| CYLINDER1

292 matick

IBM SYSTEMS JOURNAL, VOL 25, NOS 3/4, 1986

fashion, starting at one track of a cylinder and con-
tinuing through as many tracks as necessary. Only
the cylinder, head, and record number for the start
of the file are available for addressing and no other
sal is provided. Obviously, because of this, any finer
addressing requires a transfer to memory and use of
cpU logic. Of course, a user may provide additional
keys, while still using a sequential organization.
These keys would be used for an occasional random
search. Such things are done, and one hardly ever
finds an access method used in its pure sense. If the
sequential organization requires frequent random
accessing to small records, a reorganization to index
or direct access becomes desirable.

Partitioned access method. Suppose a sequential file,
LIBSUB, is composed of two library subroutines,
SubA and SubB, stored sequentially in that order.
Further, suppose only one of these is typically used
at any one time by an application program. If SubB
1s needed, it is inefficient and wasteful to read all of
SubA and then SubB to main memory. A better way
is to give each member a sequential record address
(cylinder, head, and record number), which requires
a count area (SaI) for each member. Also, a directory
is needed at the start of the file to relate symbolic
names to the physical address, CHR number. The
simplest type of directory consists of two separate
records, each with a key and data. The keys are SubA
and SubB, and data are Cylinder = x, Head = y, and
Record Number = z, and Cylinder = x, Head = y,
and Record Number = z + 1, respectively. Now an
access to SubB first requires a sequential search
through the directory records on their keys. A match
on SubB and immediate read of its data give the CHR
number of the desired data record, SubB. If the
record is stored on the same track, it can be read
within the same revolution. If there are additional
members to the file, they can be treated in an anal-
ogous fashion. If the number of members becomes
too large, the additional sa1 for each record in the
directory and even for each member may consume
substantial storage space. It may be desirable to block
the directory records and member records to reduce
the saL If blocking is used for the directory, the
records within the block should be organized so as
to allow the volume search technique previously
described to be used, namely, Search On Key > or
= Given Name. The 1BM partitioned access method
has certain rules about how this is done, but the
fundamental purpose of the access method is still
the same.

Indexed sequential access method. The indexed se-
quential access method is basically a generalization

IBM SYSTEMS JOURNAL, VOL 25, NOS 3/4, 1986

of the partitioned organization, wherein the mem-
bers become individual smaller records of typically
256 bytes or fewer. The directory becomes a two- or
three-level index structure organized and accessed

Batch processing is done more
efficiently with a sequential type of
organization, whereas on-line
processing requires a more
random type of access.

by a generalized volume search technique described
previously. The conversion of the symbolic name to
physical CHR number via the index may take two,
three, or more track searches. In large files, this can
become an even more lengthy search, which makes
this a relatively slow process. Additions and deletions
of records and indices can also become a complex
process. However, it provides a rather versatile access
method that can handle a wide variety of files, and
the indexing is transparent to the user if an IBM
utility such as 1saM is used.

Direct access method. In its pure form, all records
of a direct organization contain a unique key that is
defined by the user. This key may convert to the
correct CHR number directly, or it may require a
small transformation via the cpu. In either case, the
conversion 1s fast, and access time is minimized.
However, the problem of key definition, record in-
sertions, and deletions can be troublesome and time-
consuming,

Another access method, Virtual Storage Access
Method (vsaMm), evolved from the access methods
just discussed. In many applications it is desirable to
be able to process a data base sometimes in batch
mode and sometimes in on-line mode. Batch proc-
essing is done more efficiently with a sequential type
of organization, whereas on-line requires a more
random type of access, as provided by either indexed
sequential or direct organization. The essence of
VSAM, with respect to data accessing capabilities, is
that it allows either or both, at the discretion of the

matick 293

user. The 1973 version of vsaM provided the func-
tional equivalent of a sequential and an indexed
sequential organization on DASD. In 1975, a new
version of vsam added the functional equivalent of
direct organization. An enhanced version, Virtual
Storage Extended vsam, provided improvement in
performance, usability, and functions but basically

Faster access to memory can be

obtained by using a small register

stack that is loaded and unloaded
from memory.

maintained the same accessing capability. There are
other features unique to vsAM, such as device inde-
pendence and ease of inserting new records.

Thus we see that the fundamental differences in all
access methods are (1) the amount and type of
addressing information, (2) where it is stored, (3)
how it is organized, accessed, and used, (4) the size
of the unit (record) addressed for transfer to main
memory, and (5) the method for adding and deleting
records. These are all related either directly or indi-
rectly to the addressing (accessing) capability of sec-
ondary-storage devices. Most, if not all, of this file
and 1/0 architecture would disappear if the proper
type of memory could be built at a reasonable cost
and effort. Unfortunately, this is not possible today,
although it may become possible in the future, as
discussed later in this paper.

Data base architecture

File access methods are exclusively concerned with
file organization for fast, efficient disk accessing.
Data base systems in common usage today often
make use of techniques borrowed from file access
methods, but they provide other services as well. The
architecture of data base systems attempts to give an
overall structure to data so as to achieve three major
goals:

e Provide a compact, efficient file structure with fast
disk access.

294 wmatick

e Minimize the amount of unnecessary data trans-
fers from disk to memory.

* Provide means for fast, efficient associative-type
processing, typically on a general-purpose CPU and
memory. (Data base machines are discussed later.)

Data base and complex files require larger storage
than main memory can usually provide. Hence,
secondary storage is used for such applications—
tapes in early systems and disks with tape-like ar-
chives in more recent times. A major simplification
of system design and improved performance could
be obtained if the memory hierarchy could be elim-
inated and replaced by one very large main memory.
This would be particularly true for computational
problems, where the addresses of the arguments and
results are relatively well known. Although data base
problems would also be considerably simplified, they
still have some other fundamental accessing require-
ments that are not solved simply by larger memory.
As outlined in the introduction, data base access
usually requires some logical operations on the
stored data before the address of the desired infor-
mation can be determined. This requires that a large
amount of data be searched against a given criterion
(i.e., equal or greater) to find the fields that satisfy
the criterion.

The fundamental issue in all file and data base
operations is finding or generating the address of the
desired item or items.

The smallest unit that might be used to compare
against in any file is typically a byte. Making a
random access memory that can access any arbitrary
byte in a very large file is expensive, but it is, never-
theless, possible. However, that is only one small
part of the problem. The essential problem is that
theoretically, for a general file, there are an infinite
number of addresses that can be used to access the
data. These addresses are often referred to as access
paths, because the usual method of implementation
uses several levels of indices and lengthy paths
through them for finding the address CHR number.
This large number of addresses comes about from
the fact that the address of the desired information
quite often depends on the existence or nonexistence
of certain bytes or combinations of bytes in an
arbitrary length of bytes (i.e., the record). Also, this
combination of bytes, to be used either as the address
or to compare against, changes dynamically for dif-
ferent user requests. For instance, consider storing
and accessing in main memory the automobile in-
surance file described earlier in this paper. Assume

IBM SYSTEMS JOURNAL, VOL 25, NOS 3/4, 1986

Figure 8 Insurance file organized as two-dimensional table

NAME: "

1

‘ADDRESS - |- AGE | SEX|'CAR | PREMIUM | PoLICY Emmnm“
VL TYREL o E L | DATE e
Adams J. Anytown |25 | F {
! !
v |

- ATTRIBUTE

Smith A.B.| Anytown |22 |M | Sport | 800 | 02-22-84| 02-22-86 : VALUE

! |
v |
-—
| | | | f ! | [
L __ U D SRR DN S IO 1]

that each client’s record can be stored as one logical
word in main memory and that the names are exter-
nally converted into the binary word address for
accessing. We ignore the problem of obtaining a
contiguous, unique address. Each item in the rec-
ord is stored as a field of given length, as shown in
Figure 8. If we wish to access the record for, say,
A. B. Smith, the name is converted to a binary ad-
dress (AsCII or EBCDIC to binary) either in our brains,
by the keyboard, or by a subroutine in the processor.
This address provides a direct hardware path to the
desired record, and we can print or process any of
the fields of the record.

This is, unfortunately, not the only type of access to
a file. Suppose we wish to retrieve records for all
clients who are male. There is no address available
for such a direct access. A simple solution would be
to store the records as just described, but catenate
the male/female as one bit of the address—for ex-
ample, the higher-order bit. This would separate the
records into two logical portions, one for males and
one for females. Now suppose we wish to access all
clients who are male and age 25 or under. There are
two problems: (1) There is no direct address for these
records; and (2) There will probably be multiple
records to be accessed, because the address is not
unique.

In theory, we can conceive of a memory that has
multiple access paths in the form of multiple address

IBM SYSTEMS JOURNAL, VOL 25, NOS 3/4, 1986

ports, one for every possible combination of fields of
the record that might be used for accessing. This is
very impractical, because the possible number of
such addresses can be very large—approaching infin-
ity—and typical memories have but one memory
address port. Furthermore, in the multiport address
case, it would be desirable—although not essential—
to have as many data in/out ports as there are
possible multiple records satisfying the address cri-
terion. In general, this is equal to all the records in
memory, or one data port per logical word in our
case. Memories typically have one data port. Hence,
the user is forced into simulating a multiport mem-
ory with a single-port memory. It should be imme-
diately obvious that this requires many accesses to
main memory and is therefore slow.

How is this actually done? In the simplest case, the
user first stores the correct bit string for SEX AGE into
a general-purpose register, as required for the search.
Next, each record (word, in this case) of memory is
accessed for those particular fields, which are com-
pared against the desired bit string in the general-
purpose register, using the arithmetic/logic unit of
the processor. Note that the program must either
know which fields are the correct ones or perform a
sequential search. All words that fulfill the search
criteria are stored in a separate array or are written
out to disk. Each word in the file must be processed
sequentially in this manner, which can take quite a
long time. The problem is compounded by the fact

matck 295

that the original file is typically much more complex
to start with and will be stored on disk or some other
secondary storage medium. The complexity is fur-
ther compounded by the fact that the required data
are often distributed over several separate files, and
these can be organized with different access methods.
There can be large amounts of redundant informa-
tion and/or information not pertinent to the task at
hand. Some of this information can only be judged
as irrelevant by testing against the search criteria.
Other data may be known to be irrclevant but are
buried within the record on disk. In such cases, the
entire record including irrelevant fields must be
transferred to main memory, because there is no fine
addressing capability on disk.

In the example of locating records for male clients
of age 25 or less, the file was loaded into main
memory and searched word by word or field by field.
For the more complex files, we can do the same
thing, but with a high cost. First, enormous amounts
of irrelevant data (undesired fields) are transferred
from, say, a disk to main memory, which consumes
a precious system resource, the memory bandwidth.
Second, the files are often larger than main memory
and, therefore, must be brought in piecemeal. Third,
the search through every record again consumes
memory bandwidth as well as processor cycles. Also,
the records do not normally fit nicely into logical
words, so additional processing is required to find
the address of relevant data. Fourth, the total data
needed for the search criteria are often contained in
two or more files. This requires a search on the first
file, creation of a new file that satisfies the first search,
and using the new file either to access the second file
directly and compare (simple case) or to cross-search
all entries of the second file with each entry of the
new file (complex case).

In the example, suppose the client’s SEX is indicated
in the first file and AGE in the second. Assuming both
files are accessed in terms of client NAME, we search
the first file for all clients who are MALE and create a
new file of matched cases. Because there is only one
possible entry in the second file for each client name
in the new file, the client names of the new file are
used as direct addresses (entry points) to the second
file for a comparison on AGE. Matches are flagged or
written. A much more complex search (akin to re-
lational JOIN operation) is required if the files are
accessed with different entry addresses. Suppose the
second file is accessed by PREMIUM instead of by
NAME. The first record of the new file must then be
compared with every record of the second, the next

296 manck

record of the new file likewise must be compared
with every record of the second file, and so on
through a very lengthy process.

Theoretically, many of these problems could be elim-
inated by a high-speed, large-capacity, suitably mul-
tiported memory, with associative compare capabil-
ity and high-speed and high-bandwidth 1/0 to keep
it adequately supplied. However, such a system is
not practical today in terms of cost, complexity, and

Software systems attempt to make a
general-purpose system behave as
a very large, high-function
associative processing system.

speed. The memory arrays would be extremely un-
wieldy and slow because of the circuit loading and
low density of storage cells. The packaging and wir-
ing would be complex and large in size, thus further
reducing the speed. Suitable 1/0 devices are very
expensive and of low capacity.

As a result of these limitations of the memory system,
other means have been used as well as proposed to
achieve the same result. These means have taken
two main directions, one providing hardware-assist
features in various forms and the other using the
general-purpose hardware already available, com-
bined with system subroutines and algorithms—soft-
ware.

Data base hardware. Over the years, there have been
many attempts to provide data base oriented ma-
chines—in fact, too many to discuss separately. The
general approaches have been (1) to provide a sepa-
rate small, fast associative array processor that han-
dles all the complex compare and flag functions,
rather than the cpu, and (2) to provide small asso-
ciative preprocessors at the disks that preprocess the
data, thereby reducing both the amount of unnec-
essary data transferred and the final amount of cpu
processing.

IBM SYSTEMS JOURNAL, VOL 25, NOS 3/4, 1986

Nearly all such machines have been experimental,
though there have been a few commercial machines.
The reasons for this are that there are two bottlenecks
in data base processing: (1) the complex associative
compare addressing requirements; and (2) the large
disk 1/0 bandwidth requirement. Boral and DeWitt'?
offer an excellent discussion of these issues with
respect to many different hardware approaches. All
data base hardware approaches have focused on the
first bottleneck and have thus been limited by the
1/0 bandwidth requirement. In addition, it has never
been clear that the proposed additional hardware
and the resulting complexity are really any better
than using a high-speed, general-purpose cpu, which
1s a simpler system.

Data base software. Large data base software systems
that have found widespread usage have, from earliest
times, been used with general-purpose processors
and standard memories. In essence, software systems
attempt to make a general-purpose system behave as
a very large, high-function associative processing
system, and do so with reasonable interactive re-
sponse time. To achieve this, they must strive to
achieve all three goals indicated at the beginning of
this section. The extent to which these goals are
achieved varies among the common data base sys-
tems—aGiIs, IMS, CODASYL—and results from the con-
flicting and often contradictory demands.

Early data base systems provided multiple address
ports (access paths) into the data on disk by the use
of various indices and pointers. These access paths
were contingent upon the method of organizing the
data—hierarchical tree or network—as well as as-
sumptions as to the types of associative searches that
were to be performed. These access paths could
become quite long and intricately interwoven. The
problem is that if it is desirable to have fast access to
a particular field of a random record residing on
disk, this field should be indexed in a multilevel
indexing scheme analogous to the keys in the volume
search technique previously discussed. However,
every field of the data can, in principle, be used for
the associative search. Hence, for a large data base,
not only can the index consume large volumes of
data space, but the search through various levels of
the index can be slow. Thus only certain essential
fields are typically indexed. If one were to attempt a
search that was not inherent in the access paths, this
might be either impossible or extremely difficult and
slow. The speed with which an index can process a
query is highly dependent on the amount of cluster-
ing of indices, whenever a paged, virtual-storage

1BM SYSTEMS JOURNAL, VOL 25, NOS 3/4, 1986

hierarchy is used. The indexed keys are usually stored
in sorted sequence. If a sequence of records, contig-
uous by key, is processed, one reference to the disk
will transfer many usable records to main memory.

The data organization should allow
completely general associative
searching capability to any fields or
combination of fields in the data.

On the other hand, if the sequence is contiguous not
by key but by some nonindexed field, a page transfer
may be required for each record, a severe perform-
ance penalty.

In complex indexing structures, changes in the in-
dices could inadvertently remove some pointer and
hence eliminate some access paths. The essence of
typical data base access methods is to provide a
minimal indexing scheme that satisfies the majority
of search operations. If an occasional unusual search
is performed, the occasional penalty is tolerable. All
these problems, obviously, are related to the limited
accessing capability inherent in the storage system.
Ideally, the organization of the access paths should
be independent of the data; that is, the organization
should allow completely general associative search-
ing capability to any fields or combination of fields
in the data. The relational data base systems IBM DB2
and sQL/DS attempt to be less restrictive and provide
data independence. The essential idea is to store data
in relatively simple relational record form with as
few predefined access paths as possible.!*'* When-
ever a complex function, such as join, is required,
its access paths are created on the fly and maintained
until they are no longer required. The concept is
simple in principle, but an efficient, fast implemen-
tation is essential and quite complex."

In summary, data base hardware and software archi-
tectures are attempts to approximate an associative
searching system using ordinary, general-purpose
hardware in order to circumvent the need for a
memory system with inherent associative capability.

matick 297

This approach is driven by the practical constraints
imposed by today’s technologies.

Gedanken experiment: Toward the future

The essential ideas developed thus far have been the
following: (1) The major limitation on computing
systems has been the lack of an ideal memory; (2)
The ideal memory system is complex, expensive,
and probably unattainable; (3) Actual memory hier-
archies attempt to give some appearance of an ideal
system at low cost, but with severe performance
limitations and great complexity.

Even given unlimited resources, it is not clear that
the ideal or near-ideal memory system is attainable
in reality. However, we can image what it might look
like and how this might change current systems.
Such a thought experiment would not only bring
current systems into proper perspective but perhaps
would also point the direction for future goals. We
will now perform such a gedanken or thought exper-
iment.

Assume that the density and cost of integrated circuit
technology has progressed to a point that allows the
construction of a very large, fast, complex main
memory that is very cheap. We also assume a few
other innovations. One is that the main memory has
five primary ports that can support simultaneously
three (4 or 5) reads and two (1 or 0, respectively)
writes, with a cycle time equal to that of any CPU we
wish to build. We assume totally independent, asyn-
chronous secondary ports that can either read or
write to the memory. These secondary ports can be
serial ports, and they are implemented at the chip
level."” Thus, with proper organization, there can be
many asynchronous secondary ports. The implica-
tion of these assumptions is that we can have a main
memory of extremely large size (say 4 gigabytes) that
allows 32-bit addresses. The storage array is assumed
to have certain other special features. For example,
a separate portion of the logical words have fully
associative capability to do the following compari-
sons: equal, not equal, high, and low. The associative
part does not have the multiple-primary-port feature
but rather only the usual one primary port. However,
this part as well as the entire memory has the asyn-
chronous-secondary-port feature. The remaining
words do not have this associative feature but have
the multiport feature on the primary port, as shown
in Figure 9. The associative part consists of a number
of 4K-byte (virtual) pages that are used to do asso-
ciative searching (that is, they are content-addressa-

298 matck

ble). Only part of the memory is associative because
that is all that is required, and the additional com-
plexity with its cost and performance degradation is

Even with such a large main
memory, not all the information that
will ever be required or processed
by the CPU can be contained
within it.

important, even in this gedanken experiment. (The
exact number is an overall system optimization issue
that is not easily specified independently of processor
versus 1/0 speed.) The memory is logically organized
as words-of 128 bits. These 128 bits in all words of
the associative portion are compared in one cycle
with the 128 bits in a compare-data register, through
the compare mask. The compare mask provides a
finer specification of which bits are to be compared
and used for associative addressing where the data
item fields can have any bit length. Each word has
two match flags associated with it. All flags can be
compared on one cycle, with the bits set in the
compare flags register, through the compare flag
mask register. These flags, in combination with the
associative pages, the nonassociative pages, and mul-
tiport features, provide an extremely fast, efficient,
and simple way to do complex associative (i.e., con-
tent-addressable) searching of files, which is the es-
sence of all data base operations.

Even with such a large main memory, not all the
information that will ever be required or processed
by the cpU can be contained within it. Thus, some
other storage system will be needed. We might pos-
tulate that these are other similar memory systems
that are switched to as needed, or they are some
other low-cost archival storage. We assume some
disk-like archival secondary storage so as to be real-
istic. However, the relatively slow data rate of such
secondary storage is always a bottleneck. Thus, we
further assume that words are stored across paraliel
disks and that the asynchronous operation of these

IBM SYSTEMS JOURNAL, VOL 25, NOS 3/4, 1986

deal memory system

ble i

Figure 9 Schematic of one possi

b

READ LOGIC

MATCH COUNTER,
SEQUENTIAL-

o,

-
o .
o

o

e
e

it

»

PORTS (SERIAL)

.
.
.
18T
SECONDARY

4

e

Fe

A

w»»uhuu i
-

-

e
%Wwww -

ASSOCIATVE 4

NON:
WORDS

PRIMARY PORTS

32 ADDRESS

»
»
»
»

»
«
»
4
>
<
»>
«<

128 DATA

1

PP1
PP2
PP3
PP4

DATA STORED BIT-WISE

matick 299

IBM SYSTEMS JOURNAL, VOL 25, NOS 3/4, 1986

Figure 10 Schematic of hybrid memory: (A) organization of associative address register with control bits; (B) memory
organization showing address translation using on-chip associative address registers

. VIRTUALADDRESS

i
X3

DATA LINES FOR WRITING (READING) OR COMPARING

parallel disks is buffered by a two-port memory,
which is very much like main memory but with
fewer ports.'"!¢ This solves the 1/0 bandwidth prob-
lem encountered in current data base machines.

Thus, our overall memory system is organized as
shown in Figure 9. All input and output to the system
are communicated by way of the asynchronous
secondary ports in main memory, both for interac-
tive terminals and for batch jobs. In other words, the
disk Simultaneous Peripheral Operations On-Line
(sPOOLING) buffers used today for such purposes are
replaced by these asynchronous secondary ports.
Such ports, which are partially available today, can
have extremely high serial data rates and can be run
independently of the primary ports that are servicing
the cpu. The instruction length is increased to 128
bits, which allows 16 bits for operation code plus
three fields of 32 bits each for three operands, plus
16 additional bits that can be used for the USER ID.
Four of the primary ports are used for normal proc-
essing, typically with one to fetch the next instruc-
tion, two ports for two arguments read from mem-
ory, and one port for a result stored into memory.
The memory is capable of all these accesses on one
cycle. In cases where an instruction requiring mul-
tiple execution cycles is followed by single-cycle in-
structions, it is possible to end up with two (or rnore)

300 manck

results to be stored. In such a case, an instruction
fetch may not be needed; this port can then be used
to store two at a time simultaneously to memory.
The fifth port connects to the on-line archival storage
as shown.

With such a system, there is no need for the general-
purpose register stack, because all needed parameters
are available directly from main memory as fast as
they would be from a register stack. Furthermore,
there is no need for instructions and resulting wasted
cycles to load or unload registers, as well as no need
for special separate register addressing within the
instructions. Even though the memory is quite large,
eventually we will be faced with the old problem of
fragmentation of real memory space, unless some
form of relocation is inherent. Thus a virtual mem-
ory is used, but with a different form than that
commonly in use today. The full virtual address
consists of a 16-bit user 1D (obtained from a register
or the additional 16 bits in operation code), which is
catenated to the 32-bit memory address. This virtual
address is translated to the real physical address, but
the mechanism for doing this translation is contained
directly within the memory. This organization is
known as hybrid memory' and is shown in Figure
10. It eliminates the need for page and segment tables
and provides a method for complete general sharing

IBM SYSTEMS JOURNAL, VOL 25, NOS 3/4, 1986

of common or private data at the page or segment
level.'” Any number of users can privately share
pages with a given virtual address, while the same
virtual address can be used to refer to a different
page in another shared or private address space. This
sharing is obtained by the use of two additional
virtual address bits in the Associative Address Reg-
isters (AAR). These two bits are used in a special
manner, with a very small hardware-implemented
shared-segment directory.

" TOTAL SECONDARY LOGICAL ADDRESS N

<

In essence, the effective system virtual address is 50
bits, which provides many benefits. Whenever a new
chunk of virtual space, either a segment, several
segments, or part of a segment, must be allocated
(GETMAIN or related function in System/370), there
is no need to search the tables for that length of
contiguous table entries. Nor is there any need to
compact the address near the starting value, because
tables are not used for translation. Any contiguous,
random, systematic and noncontiguous, or nonsys-
tematic and noncontiguous address is acceptable to
the hybrid translation hardware. This provides
greater freedom in allocating any new portion of
virtual space. It is only necessary to ensure that the
identical virtual address is not used more than once
in the same user’s given address space.

With this enormous virtual address space, any frag-
mentation of the virtual space for a given user at a
given time is of no consequence. The result is that
there are no enormous translation tables to consume
main memory. Furthermore, the waste of main
memory due to unusable table space that results
from virtual address fragmentation is eliminated,
thereby providing substantial savings. Thus all sub-
routines, system procedures, and so forth can be
referred to symbolically, and there is no need to
translate symbolic names to new, internal virtual
addresses at link time, as is done today. The 1BM
System/38 uses a similar symbolic addressing, but
that is implemented with very different and more
conventional hardware. Also, there is no need for
address generation, which removes one bothersome
pipeline stage of the cPU and gives a faster execution
rate. The base register is replaced by the symbolic
user ID name as the higher-order 16 bits of the virtual
« address.

ON-CHIP ASSOCIATIVE REGISTERS OF FIGURE 10(A)

(PARALLEL ASSOCIATIVE COMPARES)

WORD DECODER —]

, grercoo_m_‘

B Input from terminals or any slow 1/0 device is com-

v TOALL OTHER CHIPS v municated via the asynchronous secondary ports as
: ‘ shown. Virtual addresses for these ports are provided
by the user (e.g., file name) or assigned by a super-
visor. Physical pages in a memory module are as-

IBM SYSTEMS JOURNAL, VOL 25, NOS 3/4, 1966 matick 301

signed to these devices on a demand basis. The
virtual address, which consists of the user 1D plus the
user-assigned file name, is stored in the AAR. Subse-
quent pages are given sequential virtual page num-
bers by the controlling system and do not require
searching page tables for a contiguous set of available
entries. Nonsequential page addresses or increment-
ing on higher-order bits are not different from se-
quential addresses, as far as the hardware address
translation is concerned. The input information goes
serially to the asynchronous secondary port of the
assigned physical pages, with the correct virtual ad-
dress stored in the AAR for each page. A control bit
can be maintained in the AAR to indicate that the
data are in the secondary port. When a page is full,
either the page buffer can be transferred immediately
to the array, or we can wait until a reference is made
to the page. The control bit will show that the page
is in the page buffer and it is first written to the array
before a normal access. If desired, all 1/0 can be done
via virtual addresses, using the AAR with the control
bit just mentioned. In any case, the secondary ports
replace the disk-spool buffer of today. Once the input
is complete, the user issues a system command that
specifies the operation, e.g., RUN, plus the starting
virtual address. The system queue holds this infor-
mation until the job is scheduled to run. If desired
or if necessary, programs do not need to have con-
tiguous sequential virtual addresses, because there
are no translation tables. Noncontiguous addresses
across page boundaries in a program can be easily
handled with a simple GOTO (virtual address). It is
necessary only that the virtual address has not al-
ready been used in this user’s particular address
space. A simple single-cycle check of its usage for a
page resident in main memory is easily done by the
operation read virtual access = (given address), i.e.,
a content search on the virtual addresses in the
Associative Address Registers.

The user output can be stored starting at any con-
venient virtual address in the user’s virtual address
space, for example, starting at the very top and
working downward.

Our system will be multitasked so that a reference
to off-line data causes the equivalent of today’s page
fault and subsequent task switch. However, the re-
placed page can be the entire file or any large or
small part of it, as necessary. The secondary ports in
main memory make this feasible and very fast.

Complex data base operations. In the gedanken ex-
perimental system, files can be organized as variable-

302 marck

length records and stored in their raw form with
neither indices nor any predefined access paths; i.e.,
they are data-independent. This is precisely the sit-
uation that all data base access methods strive to
achieve but never quite attain. Each file can have its
own structure. It is necessary only that all records of
a given file have the identical form and fields, and
that the programmers know or have access to a
descriptor of this structure for each file. Whenever a
large file requires a complex search, the associative
portion of the memory is used. The file is transferred
in from disk via the secondary port in a convenient
unit, such as one page at a time, and it is processed
a page at a time. After the first page is entered, it can
be associatively processed quite rapidly before the
second page is transferred. The virtual address and
page-valid bits of the AAR of the memory provide
the means to selectively enable any desired page of
the associative memory or any other portion of
memory.

To see how this system operates, consider again the
insurance file example previously discussed, for
which it is desired to find the names of all clients
who satisfy the criteria SEX = M, AGE = or < 25,
PREMIUM = or < 1000. The ideal situation occurs if
the file is organized as one contiguous record per
client, containing all pertinent information for that
client, as that shown previously in Figure 8. It is
assumed that we know or have access to the identity
of each field. The compare mask in Figure 9 is set
up to logically compare only the fields SEX =, AGE =
or <, Premium = or <, and the compare data have
appropriately aligned data M, 25, 1000. In one cycle,
all words of page 1 are interrogated and matches are
indicated by flags F1 set at each matched word. These
flags are equipped with hardware to supply sequen-
tial-priority enable signals to the corresponding
flagged words for read/write and a count register
indicating the number of matched words. Thus, if
there are three matched words and three F1 flags
valid, a sequential read operation will read the first
matched word on the first read cycle and decrement
the counter by one, the second matched word on the
second sequential read cycle, and third word on the
third cycle, until the count is zero. Each r1 flag of
the read word is reset automatically to invalid after
each readout. These words can be placed in a new
file in the nonassociative part of memory and written
out to 1/0. Subsequent pages of the file are treated in
the same manner until the file is fully processed.

In some cases the full length of the record may exceed
the 128-bit word length of memory, i.e., x = 128 in

IBM SYSTEMS JOURNAL, VOL 25, NOS 3/4, 1986

Figure 8. The associative search must then be done
in parts. This capability is provided by the two flags,
each of which can be masked or used as part of the
compare field. Suppose in the above example that
the search criterion also included POLICY DATE <
1985 and that this field starts at bit number 129 of
the record in Figure 8; i.e., it is too long to fit within
the 128-bit word on the first transfer. There are a
number of ways to handle this, but a simple way is
to transfer the remainder of the record into a second
page and treat this case similarly to the two-file
example given later in this paper.

Unfortunately, files are never static, but rather have
new fields and search requirements added continu-
ously. Thus, typically, the desired information is
contained in two or more files and in the worst case
requires a many-to-many type of search, as follows.
Suppose the insurance file is really two separate files,
organized as shown in Figure 11. Neither file by itself
contains sufficient information to perform the total
access. Hence, the processing is as follows (although
this is not necessarily the best way).

Page 1 of file 1 is transferred to memory. An associ-
ative search on SEx = M sets flags F1 on all matching
words. A single sequential read of this page produces
the record of the first male. The name field is ex-
tracted and placed in the COMPARE DATA register. In
the meantime, page 1 of file 2 has been loaded. The
data and mask for PREMIUM = or < 1000, and AGE
= or < 25 are added to the COMPARE DATA register
as well as corresponding mask bits. An associative
search on page 1 of file 2 is done on one cycle using
these data, yielding some match flags, Fi in this page.
These matches are stored in a nonassociative part of
memory, using the sequential read operation. The
second matched name of page 1 file 1 is read and
the above process repeated on page 1 file 2. The
process is repeated for matched word 3 of page 1 file
1, and so on. By this time, other pages of file 1 and/
or 2 will have been loaded. Assume page 2 file 2 is
loaded. The three matches of page 1 file 1 are reused
to process this new page. Either the three previous
matches in page 1 file 1 can be reaccessed by an
associative search, or the previous matches can be
saved. The matches are saved by the use of flags F2.
Whenever a sequential read of a matched word
occurs, the corresponding F1 is reset invalid, but the
corresponding flag F2 is set valid. A sequential read
via flags F2 can be done, thereby resetting F2 but
setting the corresponding F1 to valid again. Hence
multiple excursions through this page can be made
without having to save the COMPARE DATA and MASK

IBM SYSTEMS JOURNAL, VOL 26, NOS 3/4, 1986

Figure 11 Insurance file with data organized in two separate
files

Smith A.B. | Anytown | M | Sport |
| RIS RO

and redoing the search. After all pages of file 2 have
been searched, the sequence must be repeated with
all subsequent pages of file 1 matched against all
pages of file 2. This is the worst case of a many-to-
many search. A many-to-one or one-to-many search
would be faster as well as simpler.

The above examples implicitly assumed that the files
all had a 2D table-like structure with all fields pres-
ent. This can often lead to a large number of sparsely
populated fields and wasted storage space. Compac-
tion can be obtained by storing only valid fields and
storing each data item as a fixed-length pair ATTRI-
BUTE NAME: ATTRIBUTE VALUE. In this case, the asso-
ciative search can specify both the NAME and VALUE
as part of the match criteria and proceed essentially
as previously described.

Many important details have been excluded pur-
posely in order to focus on the key issues, namely,

matck 303

that sophisticated, special-purpose memory systems
can significantly simplify the searching procedure.
The question of much interest is, just how feasible is
such a system? The synchronous-to-asynchronous
buffer for spreading data across disks in parallel is
partially available today with adequate speeds, as
well as the asynchronous secondary port feature of
memory.'® The hybrid virtual memory, although not
fully designed, is within our reach. No memories are
available today with the multiport or associative
feature described here. These features of main mem-
ory require significant innovation in technology and
device design to become practical. New structures
are required, wherein the functions are designed
directly in the device, i.e., directly in the silicon,
rather than in a circuit containing many intercon-
nected devices. This requires innovations, as well as
new outlooks on the part of technologists and device
and circuit designers.

Even though there are many details of the above
system that require considerable expertise to under-
stand completely, it should be apparent that in prin-
ciple, a substantial part of system and 1/0 architecture
complexity, virtual memory organization, and op-
erating system complexity is due to the practical
constraints imposed by the memory technologies.

Concluding remarks

The past 25 years have seen enormous strides in both
technology and system organization to provide so-
phisticated, high-performance computing systems.
We have seen that a major factor in this evolution
of computing systems has been and will continue to
be practical constraints imposed on our ability to
access information. The ideal large-capacity, high-
speed, low-cost memory system closely coupled to
the processor has not been feasible. Hence, practical
systems have used many techniques to give the ap-
pearance of an ideal memory system. This has been
achieved through numerous design trade-offs at
many levels of the system, often resulting in new
constraints as well as affording new options. The
next 25 years may very well bring a gradual change
in emphasis and use of vLsI to provide better access-
ing capability built directly in hardware in addition
to continued improvements in density and perform-
ance. In order to achieve this hardware accessing
capability, technology will have to be able to build
functions directly in semiconductor materials, rather
than building distinguishable standard devices that
are wired together—for example, an associative de-
vice rather than an associative cell, which is typically

304 mamcx

built from a dozen or so transistors. This would also
provide the third dimension for stacking functions,
rather than the two-dimensional form of standard
chips.

In the area of disks, we can expect to see not only
continued improvements in density and capacity,
but most likely the smallest directly addressable unit
will become smaller than a sector, approaching a
memory word size. Also, the complex logic functions
performed by the channels will migrate more and
more to the control unit to give the channels more
free time to service other 1/0 that will become more
critical as processing speed increases. In addition,
the operation of disks in parallel will likely become
commonplace and provide the enormous 1/0 band-
widths that will be necessary for future systems.

The most difficult challenge ahead is the fusing of
the system requirements within the device and tech-
nology designs to achieve practical, high-perform-
ance, high-function structures. The difficulty lies in
the fact that these areas of systems, circuits, devices,
and technology tend by necessity to be fields of
isolated expertise. Bringing these areas together is a
technical, managerial, and human problem. Achiev-
ing this is a formidable but exciting challenge.

Cited references

1. R. Matick, Computer Storage Systems and Technology, John
Wiley & Sons, Inc., New York (1977).

2. G. Radin, “The 801 minicomputer,” IBM Journal of Research
and Development 27, No. 3, 237-246 (1983).

3. A. Berenbaum, M. Condry, and P. Lu, “The operating system
and language support features of the BELLMAC-32 micro-
processor,” ACM Proceedings of Symposium on Architectural
Support for Programming Languages and Operating Systems,
March 1-3, 1982, Palo Alto, CA, pp. 30-38.

4. D. Ditzel and H. R. McLellan, “Register allocation for free;
The C Machine stack cache,” ACM Proceedings of Symposium
on Architectural Support for Programming Languages and
Operating Systems, March 1-3, 1982, Palo Alto, CA, pp. 48—
53.

5. R. E. Matick and D. T. Ling, “Architecture implications in
the design of microprocessors,” IBM Systems Journal 23, No.
3, 264-280 (1984).

6. S. P. Harbison, “An architectural alternative to optimizing
compilers” (CMU TM Architecture), ACM Proceedings of
Symposium on Architectural Support for Programming Lan-
guages and Operating Systems, March 1-3, 1982, Palo Alto,
CA, pp. 57-65.

7. D. Patterson and C. Sequin, “A VLSI RISC,” Computer 15,
8-21 (September 1982).

8. L. D. Stevens, “The evolution of magnetic storage,” IBM
Journal of Research and Development 25, No. 5, 663-675
(1981).

9. C. J. Bashe, L. R. Johnson, J. H. Palmer, and E. W. Pugh,
IBM’s Early Computers, The MIT Press, Cambridge, MA
(1986).

IBM SYSTEMS JOURNAL, VOL 25, NOS 3/4, 1986

10. C. P. Grossman, “Cache-DASD storage design for improving
system performance,” IBM Systems Journal 24, Nos. 3/4,
316-334 (1985); IBM 3880 Storage Control Record Cache
RPQ #8B0035, GA32-0086-0, IBM Corporation; available
through IBM branch offices. :

11. M. Y. Kim, “Synchronized disk interleaving,” IEEE Trans-
actions on Computers 35, No. 11, 978-988 (November 1986).

12. H. Boral and D. J. DeWitt, “Database machines: An idea
whose time has passed? A critique of the future of database
machines,” Database Machines, Springer-Verlag, Berlin
(1983).

13. M. Astrahan, M. Blasgen, D. Chamberlin, K. Eswaran,
J. Gray, P. Griffiths, W. King, R. Lorie, P. McJones, J. Mehl,
G. Putzolu, 1. Traiger, B. Wade, and V. Watson, “System R:
Relational approach to database management,” ACM Trans-
actions on Database Systems 1, No. 2, 97-137 (June 1976).

i4. M. W. Blasgen and K. P. Eswaran, “Storage and access in
relational data bases,” IBM Systems Journal 16, No. 4, 363-
377 (1977).

15. R. Matick, D. T. Ling, S. Gupta, and F. Dill, “All points
addressable raster display memory,” IBM Journal of Research
and Development 28, No. 4, 379-392 (1984).

16. M. Y. Kim and R. E. Matick, “Synchronous-to-asynchronous
conversion buffer and applications,” IBM Technical Disclo-
sure Bulletin 29, No. 5 (October 1986).

17. R. E. Matick, “Method for general sharing of data in hybrid
memory organization,” IBM Technical Disclosure Bulletin 25,
No. 5, 2606~2620 (October 1982).

Richard E. Matick /BM Thomas J. Watson Research Center,
Yorktown Heights, New York 10598. Dr. Matick received his B.S.,
M.S., and Ph.D. degrees in electrical engineering from Carnegie-
Mellon University in 1955, 1956, and 1958, respectively. He joined
IBM in October 1958 and worked in the areas of thin magnetic
films, memories, and ferroelectrics. As manager of the magnetic
film memory group from 1962 to 1964, he received an Outstanding
Invention Award for the invention and development of the thick-
film read-only memory. He spent a half year at IBM Hursley,
England, developing this memory for System/360 applications.
Dr. Matick joined the technical staff of the IBM Director of
Research in 1965 and remained until 1972, serving in various
positions, including responsibility for Research Division plans and
the post of Technical Assistant to the Director of Research. He
took a sabbatical in 1972 to teach at the University of Colorado
and at IBM in Boulder, Colorado. Dr. Matick spent the summer
of 1973 teaching and doing research at Stanford University. He is
currently working in the areas of VLSI functional memory chip
and microprocessor design. In April 1986, he received an Out-
standing Innovation Award as co-inventor of display RAM, a new
memory chip that is being used in the high-resolution dispiay
announced with the IBM RT PC and that is being used increasingly
in bit-buffered displays. Dr. Matick is the author of several books
and book chapters on computers, computer memories, and trans-
mission lines. He has also written numerous papers on magnetic
devices and memories, semiconductor circuits, memory, and logic,
as well as on virtual memory chips and systems. He holds numer-
ous patents and patent publications. Dr. Matick is also a member
of the IEEE and Eta Kappa Nu.

Reprint Order No. G321-5276.

1BM SYSTEMS JOURNAL, VOL 25, NOS 3/4, 1986 manck 305

