
Impact of memory  systems 
on computer  architecture 
and  system  organization 

The  largest  part  of  computer architecture,  in both the 
central  processing  unit  and  the  overall  system,  has 
been  and continues to be directly infhenced in one 
way  or  another  by the  types  of  memory  systems  avail- 
able.  This is readily  apparent  in  certain  areas  such as 
110 architecture and  memory  hierarchies.  However, the 
pervasiveness  of this influence  throughout  the  entire 
system is not so obvious.  This  paper  demonstrates this 
relationship and  shows  how it has  affected  computer 
architecture over the years.  Two  approaches  are  used, 
the first being  a  direct  look  at  how  specific  architec- 
tures  attempt to circumvent  the  limitations of the asso- 
ciated memory  system.  This  Includes  such topics as 
the internal  architecture of CPUs: memory  hierarchies 
and virtual memory, 110 architecture,  file  structuring, 
and data base architecture. Second, a gedanken 
(thought)  experiment is used to predict  future  trends. It 
is assumed that very  large-scale integration will evolve 
to the  point  at which we can have  nearly  any  main 
memory  system  we  desire, with some  reasonable con- 
straints. The architectural  changes  that  might  take 
place will be seen to be precisely  related to the weak- 
nesses in current memory  systems which  various 
architectures  currently  attempt to circumvent. 

T he current picture that any observer,  skilled or 
unskilled,  sees  of  much  of computer systems 

and technology  is one of  vast  knowledge,  great com- 
plexity, and often  much  confusion. The reason  for 
this picture is that the various  fields  have  grown 
explosively in a short time and in  many directions 
simultaneously. There is  seldom  enough time to 
digest it all. It is the author’s  conviction that much 
of our knowledge  can  be  reduced to simple funda- 
mentals that capture the “essence  of  things.” This 
paper  is an attempt to pull  together the evolution  of 
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a  vast  segment of computer architecture and orga- 
nization into a  simple  framework that can  be  useful 
to the expert and nonexpert. The subject  is  storage, 
and the key to understanding  all  storage as well  as 
much of computer architecture  is the problem of 
addressing or accessing information. This is the ma- 
jor theme of this  paper. 

The word “architecture” as  used in this  paper  often, 
but not exclusively,  implies the “instruction set” 
associated  with any given  system.  Although an at- 
tempt is  made to maintain this  definition  here,  there 
is an inherent difficulty in doing so because the 
“architecture” is not always apparent or available. 
The system programmer, for  instance,  has  access to 
instructions that the user  neither  sees  nor  needs. 
Also, I/O, data base, and even  system commands are 
often MACRO instructions that make use of more 
primitive  instructions.  Hence, the user’s  view  of 
architecture can be  different  from the actual hard- 
ware. The term architecture  is thus used in a  slightly 
more  general  sense. 

There are fundamentally  two major areas of com- 
puter design that have  been  and are now the nuclei 
of most of computer evolution: (1) the overall  proc- 
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essing functions of the system and (2) the memory 
system that serves  this  processor. The evolution of 
computer architecture and design  has  been the his- 
tory of  new  ways to circumvent the limitations of 
previous generations in  these  two  major  areas.  In 
order to understand this, and particularly the rela- 
tionship between  memory and the remainder of the 
system,  it  is  expedient to start with  some  simple 
concepts as to exactly  what fundamental functions 
are required. There are  basically  two  types  of  prob- 
lems that account for  most computer usage.  Al- 
though there are other classes,  they tend either to- 
ward one or the other or toward  both  areas of 
computer design,  e.g.,  artificial  intelligence.  Consider 
first computational-type problems (scientific,  engi- 
neering,  financial, etc.) that take  some  given param- 
eters,  perform  some arithmetic and logic  processing 
on them, and produce  a result. The second  class, 
called data-bused problems, are those in which  a 
large jile is accessed  for limited information. The 
information may or may not be subsequently  up- 
dated (by insertions and  deletions) or undergo  some 
computational processing and then be refiled.  Both 
types  of  problems  were  solved  by human beings  long 
before  there was any notion  of  a computer. In fact, 
it  was  such  problems that gave  rise to the need  for 
computers. Consider  what  is  required  in  a  general 
sense to deal  with  these  two  classes  of  problems. 

In computational problems, the processor-human 
or machine-must  take the arguments from  some 
input source,  perform the required computation, and 
record the result on some output source. The input 
arguments as well as the result  must  be  stored  some- 
where-in our brains,  on  a  sheet of paper, on a tape, 
disk, or other storage medium, such as main  mem- 
ory.  When many computations are to be  performed 
over  many arguments, our brains are neither as 
adequate nor as reliable as other memory  resources. 
As a  bare minimum, a  sheet of paper (or equivalent) 
is  required. Thus it  is  already  clear that computa- 
tional problems  require that the arguments be  re- 
trieved  from  some  storage medium, and, after  proc- 
essing, that the result  be  recorded on some  storage 
medium that may be the same or different  from the 
one used  for the arguments. 

In  such computational problems,  accessing the in- 
formation usually  involves the following  simple 
steps: ( 1) access the first argument of the first column; 
(2) process  it  with the first argument of the second 
column; and (3) record  it in the first  position  of the 
third column. Even in cases  where  this  horizontal 
accessing  becomes  a  complex  diagonal  accessing, 
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such  as  with  matrix  parameters, the accessing  is  still 
well-defined. 

In  file-accessing  problems, the requirements are 
much the same as those just given,  with one addi- 
tional and severe complication. The arguments to be 
retrieved are not usually so readily  defined, and/or 
the place  where the result  is to be stored  is not well- 
defined.  Consider an automobile insurance company 
file that consists of individual  folders  (records)  or- 
ganized by client  names, in alphabetical  order. If  we 
wish to determine the premium for any given  indi- 
vidual, it is  necessary to access the file for the rec- 
ord-a simple matter in this case-but then this  may 
be  followed  by an associative search,  i.e.,  compares, 
of  several  lines or pages until the desired  item  is 
located. The associative  search,  which is slow,  can 
be avoided  by  having the file  well-organized  by  col- 
umns or fields, with  the premium being one of the 
columns. It is then necessary,  however, to have  some 
index  stored either in our brains or at the beginning 
of the file to indicate where  (i.e., on which  page) the 
column exists.  An  even more complex  accessing 
problem  is  typically encountered when  it  is  necessary 
to find and revise  records  on  all  clients  with  subcom- 
pact  cars, and/or with premiums below  a  given 
value.  If the file and records  have not been  organized 
for  such  accessing, the problem  becomes  very time- 
consuming. 

If one  wishes to enter new information into a well- 
organized  file, the question  becomes one of  where to 
record the new information and how to index  it  for 
easy  access. Thus, unlike computational problems, 
the locations or addresses  of the arguments and 
results are not necessarily  well-defined and present 
fundamental difficulties. 

The point of this discussion  was to illustrate by 
practical  example the two  major fundamental func- 
tions in all  types of everyday  problems,  namely 
accessing  (reading or writing) information from 
some  storage medium, and processing this informa- 
tion. This paper  dwells  on the accessing  problem to 
show  how the practical limitations on our ability to 
access  large amounts of information have  influenced 
much of computer architecture. 

The accessing problem. The previous  discussion il- 
lustrates the fact that random access to large amounts 
of information is one major, essential function in all 
data processing. Then why do we not simply  produce 
such  a  memory? The reason,  as  always,  is  cost and 
performance. The way in  which  this  directly  affects 



Figure 1 Schematic of a  random access memory  showing  required  “and”  functions: (A) random access array, (B) dynamic  cell, 
(C) static cell, 2 bitkense lines  per cell 
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the memory  system  design  can  be understood from 
a few simple fundamentals. All memory  systems 
require a  storage medium, in addition to a  coinci- 
dence function for  writing and a  selection  mecha- 
nism  for  reading,  as  discussed  in  Reference  1, Chap- 
ter 2. The selection mechanism for  reading and 
writing of any storage medium fundamentally re- 
quires an AND logic function in some form. In ran- 
dom-access memory systems there are AND functions 

at several  places. For instance, Figure 1A shows the 
word address being  decoded via hard-wired AND 
decoders that select one of the physical  word  lines. 
(Note  that the physical  word  line  need not be the 
logical  word.) There is at least one AND-type function 
physically connected to each  storage  cell,  such  as  for 
the dynamic cell  shown in Figure 1B and two AND 
functions for static cells  shown in Figure 1C. There 
is  typically one AND for  each bit/sense line for writing 
and one for  reading as shown,  plus other AND-like 
decoders at various  levels not shown, such as chip 
select, island select, module select,  etc. 

In order to reduce cost as well as  increase  density, 
secondary-storage  devices  remove the reading/writ- 
ing AND functions from  each  cell  as well as from the 
bit/sense  lines and replace  these many ANDS with a 
few that are located  elsewhere and shared over many 
bits.  Obviously, this immediately precludes the abil- 

ity  for truly random accessing,  a  severe limitation 
but one that is  necessary to reduce  cost. In addition, 
the random access  cells,  each of which  is made up 
of several  distinguishable semiconductor devices 
wired together on a  silicon chip, are replaced by 
magnetized  spots on a continuous magnetic medium 
and have no physical structure. The magnetized 
spots are created by placing  a  magnetic  head,  essen- 
tially  a toroid with  a  small air gap,  as  close  as 
physically  possible to a  suitable  magnetic medium, 
as  shown  in  Figure 2. The external field near the gap 
magnetizes the material and under proper conditions 
can leave  a  magnetized spot as  small as 1/1OOOO 
inch or  smaller. The AND function for  writing  is the 
AND of the write current I, with the physical  location 
of the medium. For reading,  whenever the medium 
is  moved at constant velocity,  a  sense  signal ZR is 
induced in the sense  head. A strobe pulse,  derived 
from the coded, magnetized  spots,  provides the AND 
of the physical  position and electrical  signal  for 
reading. All such media require a constant velocity 
between  head and medium for both reading and 
writing.  This  becomes more critical as the density 
increases.  However,  magnetoresistive  sensors  used in 
some tape units produce read  signals  which are in- 
dependent of velocity. 

Now let us look at the addressing  problem  for sec- 
ondary storage  systems. For a  strictly sequential sys- 
tem, such as one long  piece  of tape that can pass 
only  back and forth across the read/write heads  as 
shown  in  Figure 2, it is obvious that there cannot be 
any random accessing  capability. If the head happens 
to be at the beginning of the tape and the desired 
information is at the end, the tape must sequentially 
pass  over  every  piece  of data stored on the tape. How 
can discrete  pieces of data be  written and read rather 
than the entire tape?  Since the tape must move at 
constant velocity  for  reading and writing, there must 
be start/stop intervals on the tape during which time 
the tape accelerates and decelerates.  These  intervals 
are called Inter-Record Gaps (IRG), and each IRG 
contains special characters at the leading edge  of the 
gap.  When the tape is moving,  special circuits in the 
tape controller sense  these characters and stop if it is 
appropriate. Obviously,  these  gaps can be  passed 
over  with proper logic in the tape controller. The 
various functions that a  typical tape unit can perform 
for  addressing the medium are  listed in Figure 2. 
There are usually no other functions available for 
any finer  addressability. If the user wants to read or 
write  Record  No. 40 and happens to know  (in his 
brain or built into the 110 program) that the head  is 
positioned at the start of Record  No. 30, the 110 
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Figure 2 Tap  accessing  functions 

program  must  issue  a FORWARD BLOCK command 
10 times, either directly or by an equivalent  loop. 
Then the READ or WRITE command is  issued.  How- 
ever,  if the user  does not know the current position 
of the head, the simplest  procedure  is to REWIND to 
the beginning and FORWARD BLOCK 39 times. The 
user  can attempt to determine the current position 
by reading the very  next record to the CPU and can 
use the data to find the relative  position,  if  possible. 
This may or may not be possible, and it is  complex, 
requiring an 110 routine that can be  modified to 
accept the current position as a parameter. In any 
case, this is not part of the tape unit addressability. 
Fundamentally, the only  addressability  is to a  spe- 
cific tape unit, when there are such multiple units, 
and  to the next IRG or IRG after an End of  File (EOF) 
tape mark. 

Tape-like  storage  provides  a very inexpensive, dura- 
ble, convenient method  for  storage of massive 
amounts of information such as for  archives.  How- 
ever, the sequential nature of tape greatly  limits  its 

versatility,  especially as the density  increases and the 
volume  of data also  increases.  These  addressing  lim- 
itations were  significantly  reduced  by the IBM 3850 
Mass  Storage  System (MSS), which  was introduced in 
1974. The MSS incorporates the low  cost and high 
density  of tape media  with the continuous motion 
and track addressability of  disks,  plus  a  very  large 
total capacity. 

Further improvements in  addressing  capability are 
provided by  disk and drum devices.  Disks and drums 
circumvent  some but not all  of the accessing limita- 
tions of tapes. We  now consider  disks  with  a  mova- 
ble-arm  (movable-head) unit, as  diagrammed in Fig- 
ure 3. Basically, the tape of Figure 2 is cut into many 
short  pieces, the pieces are placed in a  circular  fash- 
ion end to end on  a  hard  disk  surface,  with  many 
tape  pieces  in  concentric  circles, and the medium  is 
rotated at constant velocity.  Since  each  of  these 
tracks on disk  is  comparable to a tape unit, there  is 
direct  hardware  addressability to each unit, i.e., to 
each track. If multiple  disks are stacked on one 
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spindle, there are essentially more units (tracks) and 
hence more addressability.  Stacking  disks  has the 
further advantage that in a  movable-arm  system  with 
one head  per  disk  surface, any position of the arm 
selects  a cylinder of tracks (SEEK CYLINDER). As 
illustrated in Figure 3, switching  from the top track 
(head) to any of the others in the same cylinder (SEEK 
HEAD) is done at electronic speed,  which  is  essentially 
one system  cycle time. Thus a  disk, by its nature of 
existing in two dimensions, provides many more 
directly addressable units of data than a  tape. This 
direct or random addressability is a very important 
parameter in all memory/storage systems and rep- 
resents the unit that is directly  addressed by  fixed 
hardware, requiring only one instruction containing 
the unit address and no additional software. For 
main memory, this unit is  typically  a memory word 
or double word of 4 or 8 bytes,  directly  addressed by 
the hardware decoders  from the instructions READ 
(address) or WRITE (address). For a simple disk sys- 
tem, this unit is a track, directly  accessed by the 
hardware from the instructions SEEK CYLINDER (ad- 
dress): SEEK HEAD (address), where address is the 
cylinder/head number, i.e., the exact track address. 
Thus the directly  addressable unit is much larger on 
disk than it is in main memory. For instance, a 
track-even on early  System/360  disks such as the 
23 1 1 -could contain up  to 3694 bytes of user data. 
On a more sophisticated  disk  system that has  sector 
addressing, this addressable unit is a  sector,  directly 
addressed by an instruction SET SECTOR (address), 
where  address  is the explicit  sector number. How- 
ever,  before the sector can be  accessed,  a SEEK to the 
correct track is required, which  is  a  two- or three- 
step operation. A sector on  a modem 3380 disk  is 
about 5 12 bytes  long,  whereas the track can hold up 
to 47476 bytes of  user data. Except  for  cases of 
simple sequential processing,  the  directly  addressed 
unit on a disk, namely,  a  full  track or sector,  is 
typically too long to be  entirely  useful. A sector of 
5 12 bytes  is  nearly  a  half  page  of  double-spaced, 
ordinary text and a track of 3694 bytes  is  roughly 
two to four pages  of  text. The unit desired  for  proc- 
essing or just to be  accessed  is  in the range of 10 to 
100 characters, e.g., “What is the name of employee 
with  serial number 1234567,” “List the X Airline 
flights to LA on Tuesday,” “Enter reservation  for 
A. B. Jones.” Thus it is clear that even  for  simple 
files,  finer  addressing  is  required at some level. The 
methods chosen  for implementing fine  addressing 
on disks are reflected  back into the entire I/O archi- 
tecture, from hardware to software  access methods, 
and even to main memory organization itself. The 
reason  for this pervasiveness  is that any finer  address- 
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Figure 3 Schematic of typical  movable-arm  disk unit 

ing at the disk level requires the use  of Store Address- 
ing Information (SAI) and 110 software subroutines 
executed by the channel in conjunction with the disk 
unit, to perform search operations. SAI is  discussed 
in  Reference 1, Chapter 7. The track can be  logically 
divided into fixed- or variable-length  records,  with 
each  record  preceded by some Store Addressing  In- 
formation. The SAI is simply  a  well-defined  address 
stored on the disk in an area designated by gaps that 
contain special  codes.  Logic circuits in the controller 
sense  these gap codes and know  when the stored 
addressing information is to start. In this manner, a 
given address can be located by a  search command. 
These  search operations consist of repeated  read and 
compare functions performed on the stored address- 
ing information until a match occurs or the end of 
the search is reached. The SAI can be  various  gaps, 
address  markers,  record count, or ID keys, as shown 



Figure 4 Essential  accessing  features  of IBM System13601370  disk  systems  showing  various  stored  addressing  information 
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in  Figure 4, or other forms.  If  this  fine  addressing  is 
either not provided or not used, the unit word  must 
be  transferred to main  memory, so that the byte 
addressing and logical  capability  of the CPU can  be 
used. The System/360 and System/370 110 architec- 
ture provides  a  programmable  track format for  var- 
iable-length  records. The SA1 for finding  records  con- 
sists  basically  of  two  areas:  (1) the ID part of the 
COUNT area and (2) the KEY area, as  shown  in  Figure 
4, along  with the fundamental accessing commands 
of  such  a  disk.  Either one or both of these  can  be 
used  in  various  ways, the trade-off  being the more 
SAI, the less  available  user data space. 

Only the direct addressing commands, SEEK and SET 
SECTOR, are carried out entirely by the control units. 
The channel is not involved, and, in fact, it can  be 
servicing other attached disks.  Any  finer  addressing 
requires  search commands, which  tie up the channel 
for the entire length of the track. It should  be appar- 
ent that a memory system  with random access to a 
small unit inherently  requires  considerably  more 
hardware and thus is  likely to be  expensive.  Cost 
reduction  is  achieved by removing the cell structure 
and sharing the read/write  transducers. The further 
the cost  is  reduced, the larger the unit of direct 
addressability. Fine addressing then requires  Stored 
Addressing Information, which  consumes  available 
data space, and slow read-and-compare  searching 
techniques.  These limitations on accessibility  affect 
not only the process of finding the information, but 
also its read-write  rate. The sharing  of transducers 
coupled  with  high  density  influences the design to- 
ward  serial data paths,  which  have  been the standard 
over the years. 

One final and serious  access limitation of  disks  is 
that in order to achieve  high  speed and high  density, 
only one head  of  a  cylinder  can  be  read or written 
at a  time.  Multiple  heads or tracks  of one cylinder 
cannot easily  be  used  in parallel,  because the me- 
chanical and electrical  tolerances  require  separate 
mechanical  track-following  for  each  head  via  a  feed- 
back servo mechanism.  In  a  similar  fashion,  it  is not 
feasible to distribute the data across  several  disk 
drives,  because the disks are not in  spatial rotational 
synchronism. (A later  section on a  gedanken- 
thought-experiment  shows  how  this  might  be  alle- 
viated  with  a  simple synchronous-to-asynchronous 
conversion  buffer.)  With  today’s  technology,  it  is not 
possible to distribute data across  multiple  tracks in 
any form so as to improve  bandwidth. 

Thus we deduce that a  desirable memory system 
should  have the ability to randomly  access  a  large 
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number of  relatively  small data units.  Some  associ- 
ative compare capabilities are also  desirable. The 

Practical  limitations of memory  have 
enormously  affected  the  central 

processor. 

exact nature of the associative functions is not en- 
tirely  clear  yet,  but  they  will be defined as we proceed. 

Central  processing  unit  architecture 

Practical limitations of memory  have  enormously 
affected the architecture of the central processor. As 
indicated in the introduction, the processor  must 
access the information from the storage  medium 
before  any  processing  can  take  place, and it then 
must  record the result on a  storage  medium  before 
continuing. A fundamental requirement of an ideal 
storage  system  operating  with an ideal  processor 
under worst-case conditions is that it should  have 
random access to about four entries  for  every  full 
cycle required to process the instructions. These 
accesses are as  follows: one for the next instruction, 
two  for the two arguments to be  processed, and one 
for a result to be stored, if required.  For  a  one-cycle 
processor, the storage  system  must either have four 
random access ports or be  capable of four full  cycles 
for  each  processor  cycle,  Both  of  these are extremely 
difficult to provide. All random access  main  memo- 
ries,  past and present,  have  only one random access 
port, and they  have at most one access  per  processor 
cycle. From  earliest  times, the speed  difference  has 
been  compensated for by the use  of  registers  external 
to the memory  array and electrically  closer to the 
processor.  Also,  such  registers  are  capable of being 
accessed and manipulated at a  level as fine  as the bit 
level.  Almost  all computers have  some  special  regis- 
ters  such as an accumulator and a  multiplier-quo- 
tient  register.  In  principle,  such  registers  are  unnec- 
essary  because  they are typically  loaded and/or un- 
loaded to memory.  However,  it  is  difficult,  expensive, 
and redundant to make  every  word in memory  have 
a  variable  bit  addressability or even  variable  word- 
length  addressability,  as well  as  sufficiently  fast  access 



Figure 5 Typical  16-bit  instruction with separate  memory  and 
register  address  fields 

to the processor.  Hence an intermediate staging  reg- 
ister is used, due to the limitations of memory. 

In addition to these more specialized  types  of  regis- 
ters,  it  has  been found that faster  access to memory 
can be obtained by using  a  small  register  stack that 
is  typically  loaded and unloaded from  memory. This 
is  usually  referred to as the general-purpose-register 
stack. This stack  is an extension of main memory to 
make  it  look more like the ideal.  Because  many 
arguments and parameters are reused  many  times, 
they are stored in this smaller and much faster  local 
memory.  In  fact,  typical  register  stacks  can  often 
access  three, four, or more entries simultaneously 
for  precisely the reasons just given,  namely the si- 
multaneous reading  of arguments and storing  results. 
One difficulty  is that the address of an argument in 
this  small  stack  is quite different  from that of its 
equivalent  memory  address,  which  necessitates  a 
new means for  accessing. Unfortunately, this  re- 
quirement affects the architecture of the instruction 
set,  regardless  of  what solution is  used.  In the most 
common cases, the register  addresses are just in- 
cluded  within the instruction, thereby taking sub- 
stantial code  space. For instance, for  a  16-bit instruc- 
tion which  addresses 16 (4 address  bits) or 32  regis- 
ters (5 address  bits),  only 12 or 1  1 bits  respectively 
are available  for the operation code and memory 
address.  (See  Figure 5 . )  A reduced  address  length 
reduces the amount of memory that can be accessed, 
and  an insufficient  address  length  is the major reason 
for the use  of numerous addressing  modes in some 
architectures. 

A  significant  consequence  of  including the register 
address in the instruction code  space  is that it  has 
severely  limited the number of  registers that can  be 

used.  Early computers, such  as the IBM 650 and 1401, 
had no such  general-purpose  registers  but rather a 
few special  registers such as an accumulator, distrib- 
utor, or multiplier/quotient register. The IBM 704 
had three index  registers  for  base-index  addressing 
but no general-purpose  registers. In these  systems, 
the main  memory  operated at the same  speed as the 
CPU, hence  memory  itself  served  as the register  stack. 
In  fact,  it was common first to pick  a  memory 
technology and then design the CPU to match the 
memory  speed.  However,  as  technology  improved 
and computers become  more  useful,  increased com- 
putational power  was  needed. This pushed the de- 
signs  toward  faster  processors and larger  main  mem- 
ory. Thus processor  speed  increased  faster than main 
memory. (See  Reference 1, Chapter 1 .) The value of 
having  small  local  registers  whose  speed  matches 
that of the processor  became  quickly  evident.  How- 
ever, the number of such  registers  has not changed 
much  since the time when the advantages were  first 
recognized. For instance, the IBM 7094  had a stack 
of  seven index registers, occupying  three  bits  of the 
instruction code. IBM System/360 and System/370 
architecture  has 16 general-purpose  registers (plus 16 
special-purpose,  system-control  registers), and cur- 
rently the maximum number on  most  machines, IBM 
and others,  is  32  registers. The latter has  most  often 
been  accompanied by an increase in instruction 
length.’  Although more registers are desirable, the 
compromises offset the advantages. The compromise 
solution to this problem  has  been to introduce a 
cache  memory into the system that is an extension 
of main  memory. A cache  is  capable  of  working at 
the speed  of the processor but with  considerable 
additional complexity. 

In any case,  even  though the general-purpose regis- 
ters  have  helped circumvent some of the bandwidth 
limitations of main  memory,  they  have introduced 
a  whole  new  set  of problems and proposed  architec- 
tural solutions. The two  most  serious  problems are 
the small number of general-purpose  registers and 
the need to have the address  residing  within the 
instruction. A small number of  registers  requires  a 
significant amount of overhead. For example,  two 
different tasks or procedures (subroutines) that re- 
quire all of the registers  must  have the same register 
addresses  within their instructions.  Hence, if it is 
necessary to switch  problem  state or to branch, part 
or all  of the register  stack  must  be  saved in main 
memory and the new state must be loaded  from 
main  memory to the registers. This can be  very time- 
consuming,  particularly when state changes  occur 
frequently.  Rapid state changes occur with multipro- 
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grammed/multitasking systems,  which are quite 
common. The same is true with structured program- 
ming  languages that may  have many nested subrou- 
tines,  each  with  several parameters, e.g.,  Pascal and 
the C  language. This problem  is  becoming more 

Many  methods  have  been  explored 
for augmenting  the  register  stack 

and  saving  changes of state. 

serious as  processor performance increases,  espe- 
cially  in  microsystems and minisystems. As a  result, 
many methods have  been  explored  for augmenting 
the register stack and saving  changes of state while 
attempting to minimize the impact on the instruc- 
tion code.  We  briefly consider several methods deal- 
ing  mainly  with the underlying  problems  related to 
memory accessing  as  previously  described. 

The BELLMAC-32 microprocesso?  provides  hardware- 
implemented instructions for  managing  a  stack of 
16 registers  for a highly structured language  such  as 
C, in which procedure calls or returns occur on 
average  roughly  once in every  20 instructions exe- 
~ u t e d . ~  The number of registers  used and their allo- 
cation for procedure calls and returns are handled 
by the hardware,  which  typically  makes  these  proc- 
esses faster. Without such facilities, the operating 
system or user  would  have to manage the registers, 
using the available  more  general instructions. How- 
ever, in addition to the added hardware  complexity, 
several of the registers  have  specific  use  for  managing 
the register stack, and thus they are unavailable  for 
holding  variables. Fundamentally the only  architec- 
tural advantage  is  ease of  use; but this is obtained at 
the expense of  fewer usable  registers. 

The 801  architecture’  uses five operation code  bits 
to provide the user  with  32  directly  accessible  regis- 
ters and an efficient  compiler to make use  of them. 
The additional registers  considerably aid both the 
compiler and the user programs. The resulting  re- 

duced instruction code  space  for  memory  addressing 
and other functions drives the architecture toward 
one instruction length of 32  bits, rather than mixed 
16- and 32-bit instructions. This has  significant im- 
pact on the cache and memory bandwidth require- 
ments.’,’ 

The Bell Laboratories C Machine4 increases the reg- 
ister  stack to typically  1024  registers, but, rather than 
consuming 10 instruction-code bits for  addressing 
these  registers, the C  Machine introduces a new 
addressing  mode. The stack  address is calculated 
during predecode time and is stored  with the instruc- 
tion in an I-buffer. In essence, the effective instruc- 
tion length  is made larger  only  inside the CPU, but 
at the expense of considerable logic complexity and 
stack pointer maintenance. Four new instructions 
are  also  required to manipulate the stack  because it 
obviously must be loaded and unloaded properly  for 
maximum performance. Unfortunately, such  a  large 
stack  is  useful  mainly  for highly structured languages 
in which there are many nested subroutines, each 
with  several  parameters. The larger  stack  can  hold 
most of these subroutines as required by any one 
given  user or task.  Whenever  a  task-switch  occurs, 
the stack must be made available to the new user/ 
task, and the old  stack must be  saved in main 
memory. A larger  stack takes longer to save and 
subsequently  restore. For systems  with frequent task- 
switches, the penalty can’ be dramatic, especially 
because memory bandwidth is  usually the critical 
performance-limiting parameter. 

The Carnegie-Mellon TM architecture6 attempts to 
reduce compiler complexity  while maintaining the 
efficiency  of  high-level  language  object  programs. 
This is achieved  mainly by the use  of a  value  cache, 
which  is fundamentally similar to other caches,  ex- 
cept that it stores common subexpressions that are 
likely to be  reused and hence do not have to be 
reevaluated  each time they are invoked. The advan- 
tages  of this value  cache depend on significant oc- 
currences and identification of common subexpres- 
sions in the work load. In addition, a  push-down 
evaluation stack  for data words and a control stack 
are introduced. The net effect  is the introduction of 
additional fast  local memory with combined implicit 
and explicit  addressing. 

Members of the University of California at Berkeley 
have  designed  a reduced-instruction-set computer 
(RISC)’ that makes use  of a  larger  physical  register 
stack but a  smaller, fixed,  logical  stack and renames 
the register  window on a  task  switch or procedure 
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call. This can often prevent the need to save the 
stack on a subroutine jump as well as a  reloading 
upon return. In essence, the RISC has made the stack 
larger without directly consuming instruction code 
space, but it requires other hardware  for proper 
addressing and manipulation. 

The IBM System/38 incorporates a  stack of  16 gen- 
eral-purpose registers but simplifies  task  switching 
by the use  of a  task dispatcher built  directly in 
microcode. 

These are but a few  of the numerous methods that 
have  been attempted as  a way to overcome the 
fundamental memory-accessing  problem. All meth- 

The  fundamental  issue  remains  that 
of  multiple  accesses  to  a  large 

memory at  processor  speed  with 
adequate  addressing  capability. 

ods tend to fall into one or more of the following 
three categories: (1) add small,  fast,  local  cache-like 
storage; (2) add more registers and consume the 
instruction code  space; and  (3) add more registers 
but avoid impacting the instruction code  space by 
including complex  hardware/software  bookkeeping 
capability.  However, it should be  clear that all  solu- 
tions are compromises and the fundamental issue 
remains that of multiple accesses to a  large memory 
at processor  speed  with adequate addressing  capabil- 
ity. 

Address space. The limitation imposed by memory 
has had a profound effect on another aspect of CPU 
architecture which,  over the years,  has  spilled  over 
to influence the entire system architecture and or- 
ganization. This problem is centered around the 
limited size  of main memory and the resulting lim- 
ited address  space  provided to the user. In early 
computers the maximum size  of the memory address 
was quite small, less than  that of a PC today, because 
early memories were quite expensive.  Because there 
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were  few addressable  words, the addresses were to- 
tally contained within the instructions, and the ad- 
dress bits consumed only  a  small part of the instruc- 
tion code  space.  Fifteen to eighteen  address  bits were 
adequate for  early  large computers, from the IBM 704 
through the Univac  1108. As memory  technology 
improved, larger main memory  capacity  became 
available;  consequently, more address  bits were 
needed. In fact, the need  for main memory is open- 
ended,  being  subject to a Parkinson-type law that 
might  be termed the Law  of Expanding  Storage: 
Problems expand to fill the storage  allowed  for their 
completion.' To accommodate the larger  address  for 
larger  memory without significantly  increasing the 
instruction length, base addressing became com- 
mon. The base or starting address of any memory 
reference  is  stored in a  special-purpose  register or in 
a particular general-purpose  register, and the instruc- 
tion code contains only the displacement or offset 
from that base.  When the address  length  exceeds the 
displacement length,  a new  base  is loaded into the 
base  register. Thus a very  large  address  space can be 
accommodated with  a  relatively  small displacement 
field in the instruction. This also  provides  a  simple 
means for  relocating  programs. Thus a  program  with 
fixed addresses  can be  placed  anywhere in memory 
by adding the base to all  addresses.  Some  systems 
use an index  register as well as a  base; fundamentally, 
they  serve the same  purpose.  Note that this base 
addressing  has  a direct and dramatic effect on the 
instruction set format as well as machine organiza- 
tion. All instructions using  base  addressing must 
indicate a  base  register (either directly or implicitly) 
and contain a displacement. If an index  register  is 
also  used, it must be  addressed  directly or indirectly. 
The  processor now must add the base  plus  displace- 
ment (plus index, if  used)  before  a  memory  reference 
is  possible. This last function, known  as  address 
generation, was not necessary  in  early computers, 
but it is quite common today. Base addressing  has 
introduced problems of its own,  especially in com- 
puters having  small instruction lengths, that is, 8 to 
16 bits. There are  typically not enough  bits to specify 
the operation, the base  register, and displacement. 
Also, in such  systems, there are not enough registers 
to keep  track of instruction locations, data locations, 
and various subroutine branch addresses.  Hence, 
many such  systems  have numerous and often quite 
complex  addressing  modes. This is the case  for  such 
systems  as the DEC-VAX, Intel 8086 and 8088  micro- 
processors (the latter used in the original IBM PC), 
the Motorola 68000, and many others.  These com- 
plex addressing  modes are fundamentally unneces- 
sary but are  required  because of practical constraints. 
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Virtual  memory and memory  hierarchy 

Virtual memory  hierarchies, introduced commer- 
cially  in the early 1970s, were aimed at solving 
several  problems. One was to avoid the severe main 
memory fragmentation that occurred in a multitask- 
ing  system.  Programs  with data were variable  in size, 
yet  each had to occupy its own  physically contiguous 
memory addresses.  Hence,  as programs of different 
sizes  were completed, new programs of different  sizes 
were brought in that did not necessarily match the 
vacant slots,  leaving large portions of memory un- 
used. The use  of a fixed unit of transfer-typically a 
page Of 4K bytes-coupled with demand paging  were 
introduced to solve this problem of fragmentation. 
There is a perfect  fit  between the area cleared and 
the size of the incoming entry. (Note that fragmen- 
tation now occurs within the virtual address  space.) 
A second  problem  solved by virtual memory is the 
severe limitation of address  space  given to the user. 
In early  systems, such as the IBM 704, the program- 
mer had a maximum of 32K words or 15 address 
bits. In a nonvirtual memory, the maximum number 
of address bits must equal the actual number of 
physically  addressable  words or bytes of main mem- 
ory. In a virtual memory, the user can be  given an 
architecture-specified number of address  bits,  e.g., 
24 or 32, regardless of the actual size  of main mem- 
ory. This eliminates the need to overlay  programs 
and greatly  simplifies the programmer’s  task.  Over 
the years, continued refinement of virtual memory 
implementations has produced systems that appear 
to have the very  large storage  capacity of disks, but 
with an average  speed about equal to that of main 
memory (or cache  in appropriate systems). 

However,  all  these  features  have a cost.  Memory 
management and virtual  memory  hierarchies (in- 
cluding cache) have  had more significant and far- 
reaching  consequences  for  system architecture and 
organization than any other concept. Hardware ar- 
chitecture has  had to include special instructions for 
virtual memory management, depending on the sys- 
tem. For instance, there are instructions for  loading 
a real  address, and several instructions for  purging 
selectable portions or the entire Translation Looka- 
side Buffer (TLB). In some  systems  with  caches, there 
are similar purging instructions for the cache and its 
directory. 

In software architecture, the concepts of  pages and 
segments as well as the use  of segment and page 
tables  for translation are so thoroughly entrenched 
that they are impossible to change.  Early virtual 
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memory  designers  decided to use tables  for transla- 
tion because of the ease of implementation and the 
simple,  general technique provided  for the sharing 
of  physical memory. Thus two  different  users’ virtual 
addresses can reference the same data page  by having 
the same  address pointer in different page  tables.  It 
was also  argued that the use  of  software rather than 
strictly  hardware to  do the translation would not 
lock the architecture and, therefore,  would  be both 

Virtual  memory  hierarchies have 
influenced  the  entire  memory-l/O 

subsystem  architecture. 

flexible and changeable.  Ironically, the latter proph- 
ecy has turned out  to be quite the opposite, but for 
reasons that were unforeseen.  Once  segments, pages, 
and the associated  tables were introduced, they  were 
found to be convenient for  performing  many other 
functions for  controlling and managing the system. 
Hence  tables are inherent in the implementation of 
operating systems,  from the bottom layers up 
through the top, and any attempt to change at any 
lower  level  would  ripple up to the top. With  large 
operating systems  such  as MVS and VM, the cost of 
change  would  be  prohibitive. In retrospect, there 
would  be more flexibility  in a hardware implemen- 
tation. With the ever-increasing  cost and complexity 
of system programming and the decreasing  cost  with 
improved performance of VLSI, it is becoming more 
attractive in many cases to implement functions in 
hardware rather than software. It should be kept 
clearly in mind that the term software really means 
the use  of general-purpose hardware rather than spe- 
cial-purpose  hardware. 

Another  irony of the use  of translation tables is that 
because  they consume considerable main memory 
space, a large multiprogrammed system  typically 
limits the size  of the virtual address allotted to each 
user. For instance, on VM/370 the architected virtual 
space  is 24 address bits or 16M bytes.  However,  users 
are  typically allotted 1 or 2M bytes,  all  of  which  is 
virtual  space and not physical  memory. The full 



virtual  space  can  be  used  only at special  times or 
with  special  permission. If all  users  were  given the 
full  virtual  space  in  any  multiprogrammed  system, 
all  of main memory  might be consumed by the 
translation tables. One solution is to page the page 
tables  dynamically just like other data. This is  ac- 
tually done in MVS and new  versions  of VM. However, 
additional means  for  translating to the page  tables 
are required. This results in the consumption of more 
system  resources,  although there is  a  net  gain. 

Virtual  memory  hierarchies  have  influenced the en- 
tire memory-I/o  subsystem  architecture. Data on 
paging  disks  must be treated in units of  pages,  which 
do not always  match the inherent track or record 
length  available on disks.  Page  faults in main  mem- 
ory  of a high-performance  processor,  even though 
the miss ratio is  less than one percent,  still  occur at 
a rate so high that supplying  sufficient I/O to keep 
the CPU busy  requires  special  consideration and de- 
sign. In some systems, the 110 is  also  accessed  with 
virtual  addresses. This requires additional translation 
facilities and supervisory  software. 

Another important part of the memory  hierarchy 
that is not usually  seen by the application program- 
mer,  but  is of  significant  concern to the system 
programmer,  is the cache. The main  purpose of the 
cache  is to give the memory  hierarchy the appear- 
ance of operating at the CPU cycle  time.  In  a  multi- 
processor  configuration,  such  as the IBM 3090  system, 
when one processor’s  cache  experiences an access 
miss, the data may be in the cache of another proc- 
essor.  Searching  for the data may  require  cross- 
interrogation, control, and possibly data transfer. 
This is  known as the “cache  coherency problem,” 
and it  affects the architecture, machine organization, 
and operating  system. 

Thus it is apparent that controlling and managing 
the virtual  memory  hierarchy  is  a  pervasive  task 
requiring substantial operating-system  resources, as 
well  as hardware and architectural assistance.  If  a 
very  large,  fast  memory  could  be implemented to 
replace the memory  hierarchy,  substantial  simplifi- 
cation in hardware and software  could  result. 

1/0 architecture  and  file  access  methods 

The term 110 architecture is  used  here  as  it  was 
originally  used in early computers, namely, to refer 
to the input and  output of  relatively  simple  data- 
financial,  scientific, or any other-for  which the 
location or address  is  reasonably well known and for 

which no complex  addressing  is  needed.  For  practical 
reasons, data base and complex  file  addressing  make 
use  of secondary 110 storage, but they  have  some 
additional addressing requirements that are dis- 
cussed in the next  section. 

Fundamentally, means are required to get informa- 
tion  from our brains,  piece  of  paper, or other source, 
into the computer memory  system.  With the com- 

The first  commercial  magnetic 
storage drum was used as main 

memory. 

puters of around 1950, the user  could and did  take 
a  deck  of  cards containing program and data to the 
machine room, place  them in a card reader, and 
push the start button. The cards were  read one at a 
time and went into main  memory.  Whenever the 
data constituted a  large  file,  such as payroll or inven- 
tory, the files  were maintained on punched  cards 
and called unit records. These  files  were  processed in 
a  batch  mode,  which  required  a  large number of 
transactions to be  accumulated  over  some  time  pe- 
riod,  perhaps  a  day,  before  being  processed.  Cards 
were read into memory, one at a time, and processed 
sequentially in the order of entry. If the file had to 
be processed  in  a  different  order,  sorting  was  per- 
formed,  often  off-line  using  a  mechanical  card  sorter. 

The introduction of commercial  magnetic tape in 
195 1 made  unit-record  processing  cheaper,  faster, 
and more  reliable,  with  larger  capacity.  However, 
the  procedure was  logically the same. The main 
difference was that cards  went to tape, as an inter- 
mediate  stage,  primarily  for  buffering the speed  dif- 
ference  between  main  memory and cards. Tape 
could  also  hold  a queue of programs to be executed 
sequentially,  for  better  system  efficiency. A similar 
but  reversed  process  occurred  for output. The cards 
could then be  separately printed off-line. 

This speed  differential  between  memory and input/ 
output devices, as well as a  lack  of  good  interface to 
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main memory, has been the main factor influencing 
110 architecture. 110 devices such as  cards,  keyboards/ 
terminals, tapes,  disks, etc. are typically  several or- 
ders of magnitude slower than main memory, both 
in  access time and data rate.  It is uneconomical to 
idle the entire system  while doing 110. A better solu- 
tion is to overlap 110 functions with other tasks. The 
manner in  which this is done has profound impact 
on the instruction set and overall  system  organiza- 
tion. Thus, a brief  look at the evolutionary path of 
110 architecture is instructive. We  will  dwell mainly 
on tapes and disks, but the same problems and 
solutions apply to all 110. 

The first commercial magnetic  storage drum was 
used as main memory on the IBM 650, which  was 
first  delivered  in  1954.  Magnetic drums were quickly 
superseded by magnetic  cores  for main memory, and 
since that time, drums have  been  used as secondary 
storage  devices. Drums are analogous to disks,  al- 
though they  have shorter seek time (one head  per 
track), smaller rotational delay  (typically four times 
higher rotational speed),  higher  cost, and lower stor- 
age capacity  per unit area (limited surface area). 
Therefore, they are not  discussed  separately. 

Early tape systems  ran  strictly under the control of 
the CPU. The CPU instruction set contained specific 
instructions for operating and controlling the tape. 
In fact, the instructions were  very much like  those 
for  accessing main memory, and consisted of an 
operation code and the  address of the tape unit. As 
detailed more fully  in the introduction and illus- 
trated in Figure 2, a READ instruction started the 
tape moving from wherever it happened to be until 
the next start/stop gap was reached. During the time 
the tape was moving,  everything  between the Inter- 
Record Gap (IRG), or End Of  File  gap (EOF), or any 
other start/stop gaps on tape was transferred to  or 
from main memory, as  specified by the operation 
code. The user could store the information desired 
in any order between  these start/stop gaps, but any 
finer  addressing  had to be  accomplished by using the 
CPU functions via main memory. Such  was the case 
with computers from  middle-  1950s to early-  1960s 
vintage, e.g., from  the IBM 704  (1955) to the IBM 
140 I ( 1960). If the data between  gaps  were  long and 
the required information was short, the system  was 
inefficient  in  two  respects: (1)  the CPU was  busy 
throughout the entire tape operation; and ( 2 )  for 
nonsequential processing, main memory  could be 
consumed by unnecessary data. Both of these  con- 
ditions are undesirable. 
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The introduction of the IBM 777 Tape Record  Co- 
ordinator in 1956 on the IBM 705118 and the subse- 
quent data channels on the IBM 7090  (1  960) and on 
the 7094  ushered in a radical  change in both com- 
puter architecture and machine organization.’  These 
units were the precursors of the System/360 and 
System/370 channel architecture. In the 7090/7094 
systems, the CPU instructions that operated the tape, 
as  well as other 110, were taken out of the CPU and 
given to a smaller,  special-purpose  processor  called 
a data channel. These instructions, called com- 
mands, were  still  stored in main memory, but they 
were fetched,  decoded, and executed by the channel 
in conjunction with the tape unit. The processor 
started the 110 by the use  of a few  new instructions, 
which meant that there had been an architectural 
change. On the 7090  series  systems  these  new in- 
structions addressed up to eight channels and any of 
ten tape units on each channel. The instructions also 
gave the memory  address of the first 110 command. 
With that, the CPU could overlap multiple 110 instruc- 
tions to many channels and tapes for better effi- 
ciency.  Also, the data channel could  select any user- 
specified number of words  between  two start/stop 
gaps to be transferred to or from main memory. All 
tape information was organized in groups of six  6- 
bit  characters, or 36 bits. Thus, for nonsequential 
processing,  if the user  knew  which  words  of the 
record  were  desired, the unnecessary data transfers 
and consumption of main  memory  could  be 
avoided. If the user  did not know the location of the 
desired  words, the entire data stream between the 
start/stop gaps  had to be transferred, which  presented 
no problem  if  purely sequential processing  was  being 
performed. In either case, any finer  addressing  re- 
quired the CPU. 

In a system  with a data channel, the processor  essen- 
tially  needs  only one type of instruction for any and 
all 110 operations. The instruction operation code 
must  specify  only that an 110 operation should com- 
mence, and the address field  need  specify  only the 
110 unit and where the 110 subroutine is  located  in 
memory. This architecture quickly  evolved to the 
System/360 channel architecture, with  only  such 
practical  changes  as control signals. One significant 
architectural change in the System/360 was that the 
starting address of the 110 subroutine was not stored 
in the CPU instruction, but rather in a fixed architec- 
ture-specified  memory location, called the Channel 
Address Word. This word  had to be loaded  with the 
correct 110 subroutine-starting address  before  the 
start-l/o instruction was  issued.  Now, as new 110 
devices  with  different instruction sets (commands) 



evolve,  only the channel and device controller re- 
quire changes; the CPU architecture remains unaf- 
fected.  However, the machine organization with  re- 
spect to I/O would  have to undergo  significant 
changes, due mainly to the practical limitations of 
tapes and disks. This is discussed later in this section. 

Disk  architecture. Disk  systems, due to technical 
difficulties,  became  available  slightly later than tapes. 
Thus, their I/O architecture benefited  from the tape 
learning process.  Even though early  disks  were  ac- 
cessed  by CPU instructions in much the same manner 
as tape or main memory  (i.e., operation code and 
address), nevertheless the actual accessing  was  exe- 
cuted by the disk controller. Thus the CPU could be 

A significant  problem  with  large,  fast 
computers is that  of  providing 

sufficient I/O bandwidth to 
keep  the CPU busy. 

processing other data already in main  memory, and, 
although the disk instructions were part of the CPU 
architecture, the CPU did not execute them. 

As discussed  earlier and shown in Figures 3 and 4, 
disks  have a greater random accessing  capability than 
tapes. As a result,  they were originally  considered as 
an extension  of main memory and were organized 
in very much the same way. For instance, the IBM 
1405  disk  system  (1960), one version  of  which  was 
marketed as the very popular RAMAC 1401,  divided 
the entire disk  storage into fixed words  called  records 
with  200 characters per record. Each  disk  surface 
contained 1 0 0  tracks of  10  records  per track. A 
maximum of 50 disks or 100 surfaces  provided 
100000 records, or a total of  20 million characters. 
Each  word had an indelible,  well-defined  address 
which  ranged from 00000 to 99999, stored just prior 
to the data area. Even though the record on a given 
track  had to be addressed by the Search (Read and 
Compare) technique previously  described, the archi- 
tected  form of addressing was more like main mem- 
ory  addressing. (The first IBM disk  system, the IBM 
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350 RAMAC, which  was announced in 1956, was 
identical but had 50000 records of only  100 char- 
acters each.) A single  record could be  accessed  with 
a single instruction READWRITE (Address) and did 
not require SEEK commands (move arm  to track 
address)  followed by SEARCH, TIC (Transfer In Chan- 
nel to repeat the search until found), then READ/ 
WRITE as in System/360  disk architecture. The ad- 
dresses and records had fixed  physical locations on 
the disk, and dedicated hardware  performed the 
repetitive read-and-compare operations until the ad- 
dress was located. In essence, the disk  was an exten- 
sion of main memory but with a much slower  access 
time and longer  word  length. As with  all  disks, the 
entire data record of 200 characters was  serially read/ 
written. The characters were assembled into main 
memory  words in  the disk controller and transferred 
as  such to main memory. 

In these  early  systems,  even  though the disk control- 
ler  executed the 110 instructions, these instructions 
were still part of the CPU architecture. Every  new 
disk  system  could  conceivably require changes  in the 
CPU architecture, which  had the effect  of discourag- 
ing the introduction of new  devices. The concept of 
I/O via a data channel, as used for  tapes, was suitable 
for  disks  as well as any 110 and became part of the 
System/360 I/O architecture in 1964. 

A significant  problem  with  large,  fast computers is 
that of providing  sufficient I/O bandwidth to keep 
the CPU busy. The System/360 110 architecture al- 
lows up to 256 channels, each  with up  to 256  devices 
attached. Practical constraints greatly  limited the 
number of such multiple units that could  be at- 
tached.  However, the evolutionary path, still  preva- 
lent today, is that each  succeeding  generation of 
computers has  increasing numbers of channels and 
I/O devices,  especially  disks.  Even  with  all the signif- 
icant advances  in  disk  technology, the I/O speed  has 
remained quite slow relative to the ever-improving 
CPU and main  memory cycle times. The ideal situa- 
tion is to match the I/O bandwidth  exactly  with the 
CPU rate of processing the data. Thus multiple 110 
devices  are  necessary and can  easily  be accommo- 
dated. A given I/O device can provide  only a read or 
write to main  memory  once  every  several hundred 
or thousand CPU cycles, depending on the model. 
Because the CPU does not require a main  memory 
access on every  cycle,  especially  if there is a cache, 
there are many free  memory cycles to support many 
110 devices.  When the CPU and channel require  mem- 
ory  access on the same cycle  (e.g., during a cache 
miss and reload or other event), a priority  protocol 
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must be used. In some cases, the channel is  locked 
out. If the 110 devices  ever become very much faster, 
many fewer  will  be required to keep the CPU busy. 

Evolution of 1 / 0  architecture. The I/O on early sys- 
tems consisted of simple data, tables, sequential 
numbers, or records. For commercial data process- 
ing, sequential records were  processed in a batch 

Larger, more  complex files  and 
emerging  time-sharing  interactive 
systems all required  more  random 

processing  capability  for  larger 
amounts  of data. 

mode, where each record  was  processed in the order 
of appearance  on tape, e.g., a payroll file. Techno- 
logical advances made both the CPU and I/O faster, 
denser, cheaper, and with greater capacity. This 
fueled the  demand for even more capability. Larger, 
more complex files and emerging time-sharing inter- 
active systems all required more random processing 
capability for larger amounts of data.  The limited 
capacity and high  cost  of main memory required 
these files to be stored on higher-capacity, lower-cost 
secondary-storage devices. In order  to achieve high 
capacity at low cost, secondary-storage systems have 
had to use continuous media with external read/ 
write transducers and share a few  of these over many 
bits of storage. This is synonymous with I/O device 
requirements, so that 110 devices  have become sec- 
ondary storage, supplementing main memory. The 
result has been  storage that has relatively  slow  access 
time, slow data rate (serial), and a very  large, directly 
addressable unit word (track or sector) compared to 
main memory. 

To circumvent these limitations and make secondary 
storage appear more like main memory, both in 
performance and ease  of  use,  110-particularly 
DAsD-has evolved in the following three major 
areas over the years: 
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Hardware 
System organization via virtual memory architec- 

Software utilities in  the form of  file access methods 

In the following sections, hardware and file access 
methods are discussed,  with particular emphasis on 

ture 

DASD. 

Hardware. The evolutionary thrust of DASD architec- 
ture  and system organization has been to make 
relatively inexpensive, high-capacity storage appear 
increasingly like main memory in  terms of its ac- 
cessing capability. As discussed previously, early 
disks  were considered as extensions of main memory 
and were addressed very much like main memory. 
Thus, each well-defined portion of  disk space had a 
fixed, indelible address. However, the  unit of address- 
ability  was much larger than typical memory words. 

As density increased, the desire for low cost still 
required the sharing of read/write transducers, i.e., 
one head per track. The unit of direct addressability, 
namely a track, became very  large in  number of bits. 
This is undesirable, and,  in fact, the  optimal unit of 
addressability is  closer to a memory word  size.  Also, 
files stored on disks had  quite variable data areas. 
Thus, in order both to reduce the size  of the address- 
able unit  and to provide a variable record length for 
more efficient storage, the System/360 variable-track 
format was introduced and is still  widely  used. Lo- 
cating a record on a track requires search and com- 
pare operations, which are carried out in conjunction 
with the channel. Thus, the channel is  busy  (cap- 
tured) for up  to  one disk rotation time. 

As the track density continued  to increase with time, 
a record became an increasingly smaller part of the 
total track length. Having the channel busy for the 
search over a large number of records in a full track 
(worst  case)  is an inefficient method of using the 
channels. One approach to increasing efficiency  is to 
divide a track into sectors and let the disk controller 
sense the sector (rotational) position. In this way, the 
channel can be  released for other I/O until the desired 
sector is reached. Although this provides finer ad- 
dressing capability, the access time  can still encoun- 
ter a serious delay. For example, if there are many 
active disk units tied to  the same channel, when one 
desired sector is reached, the channel may be busy 
with another device and  at least one additional full 
rotational delay is encountered before a second at- 
tempt  can be made to connect to  the channel. One 
solution is to connect a second channel to the disk 



unit; this option was made available at the time of 
introduction of the System/360 DASD. 

Another solution is to move  some of the logic func- 
tion out of the channel and  into the storage controller 

Improvements  in read/write  head 
cost  and  performance  permitted 
other  significant  improvements  in 

disk  accessing  capability. 

and provide  buffering,  where  necessary,  between the 
disk and channel. This has  been introduced recently 
in  System/370  3380 ~ ~ ~ ~ 1 3 8 8 0  Storage Control, 
which  uses a DASD-Cache to hold active data for  fast 
access. lo  

It is interesting to note that in  1979,  when the IBM 
3370 DASD was introduced, it had two  features. First, 
although there was  still  only one head  per track, two 
access mechanisms were included, each  moving  half 
the heads, so that seek  delays to different  halves of 
the disk could be  overlapped.  Also, the variable- 
track format was  replaced  by  fixed-block data areas. 
Each 5 12-byte  block of data had a unique, sequential 
block  identification number that could be  used to 
access the block. A command needed  only to specify 
the block ID number or range of ID numbers desired, 
and the storage control converted this to the correct 
physical  address. The channel was  released until the 
block  was  reached. This architecture is very reminis- 
cent of the original RAMAC accessing, and it resem- 
bles main memory addressing more than traditional 
DASD accessing. 

The improvements in read/write head  cost and per- 
formance, brought about in part by thin-film  heads 
as well as VLSI for  high-density,  high-speed,  low-cost 
logic,  have permitted other significant improvements 
in disk  accessing  capability. These factors have  per- 
mitted a major departure from traditional one-head- 
per-track,  one-access-arm-per-spindle  design. The re- 
cent 3380 DASD units have  two  access mechanisms 
per spindle, two  spindles, and two separate control 
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units per  disk unit. Also, the channels connect to the 
disk units via a different  interface,  namely an IBM 
3880  Storage Controller, which has two separate 
storage directors. The essence  of all these  interfaces 
is to provide multiple paths between multiple CPUS, 
channels, and disk units. The paths can be dynami- 
cally  selected to avoid  access  delays due to channel 
misses as well as to allow additional independent 
access paths to the data on a given spindle, without 
tying up the CPU (System/370  Extended  Architec- 
ture). The 3880 DASD cache,  previously mentioned, 
helps in this respect. All these  factors contribute 
significantly to reducing the I/O queue time in a 
multiprogrammed system" and are becoming  essen- 
tial  as the central processors continue to improve in 
instruction execution  rate. 

Software utilities and  access  methods.  Files of either 
relatively  simple or more complex  types (data base) 
often  reside on many cylinders of  disk  space, and 
can  even appear on multiple disk  drives. Once the 
head/arm has  been  moved to the correct  cylinder, 
the nature of disk  accessing  requires at least  half a 
rotation on average or sometimes a full  revolution 
of the disk,  regardless of the organization of the data. 
If the entire cylinder  must be searched, one SEEK 
maximum (slow) and a maximum sequential search 
through  every  track in the cylinder  are required. 
With standard System/370 architecture, this search- 
ing  ties up the channel for the entire time of search; 
the channel cannot be released  even momentarily. 
A search that requires multiple cylinders  is  even 
slower,  because arm movement is very  slow. A 
chained  search through multiple cylinders  would  tie 
up the channel again  for the entire time. Even though 
the channel can be  released during the SEEK time 
between  cylinders, when the next  cylinder  has  been 
selected, the channel may at the same time be  busy 
doing other I/O, thus prolonging the current search. 
This  issue  is an overall  system queue optimization 
problem.  Hence,  lengthy  searches are undesirable  for 
two  reasons:  First,  they  require a long time, due to 
the sequential nature of the disk; and second,  they 
tie up the channel, thereby  preventing  overlapping 
of other I/O through this channel during the search. 
Note that on disk  systems that provide  sector ad- 
dressing, the channel is not needed during the search 
for the sector  address,  because this is done by the 
disk control unit. For such  cases, a sector is equiva- 
lent in terms of addressability to a track on a non- 
sectored  system. 

The conclusion,  for the addressing of files on disk 
systems,  is that the optimal organization and struc- 
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ture are those that provide the correct  track (or 
sector)  address in the least time, with the least 
amount of Stored  Addressing Information (SAI). This 
is  exactly  what  all  access methods attempt to do. 
However, there are typically  some additional consid- 
erations and constraints.  For  example,  some  files  are 
very simple and may be accessed  only in a very 
simple,  sequential manner. This gives  rise to the 
sequential and partitioned organizations and access 
methods. The former requires  virtually no additional 
Stored  Addressing Information, whereas the latter 
requires a small  directory. As would  be  expected, a 
file  with a more  complex  organization and accessing 
requirements needs  more SAI and/or more time to 
find the track and record  address. This is  typical of 
indexed sequential and direct access  methods. The 
basic  difference  between the latter two  is the amount 
and complexity of the SAI needed to convert the 
record  symbolic name or number to the proper 
cylinder, head, record  address (CHR number).  Once 
this address  is obtained, there is no difference  be- 
tween the indexed  sequential and direct  access  meth- 
ods and only a minor difference  between  them and 
the partitioned access  method. This is  illustrated  in 
Figure 6 .  After the address  conversion  is  accom- 
plished, the partitioned method  typically  reads/ 
writes a block or a long  record,  whereas the indexed 
sequential or direct organizations  read/write a 
smaller  record.  In the partitioned method, if  finer 
addressing to a smaller unit is  required,  the entire 
block  must  be  transferred to main  memory  (i.e., 
unnecessary  transfers and memory consumption) 
and processed  via the CPU. 

The indexed  sequential  method  uses the most  addi- 
tional SAI and takes  longer to convert the name to 
record  address. The direct access  method  uses a 
simple one-to-one correspondence to convert a 
symbolic name to a cylinder,  head, and record num- 
ber, but it  requires  considerable  involvement of the 
user  in  defining the unique keys  with minimal wasted 
space. All these  access methods require  some  form 
of  associative  searching to obtain the desired  address. 
However,  because  such functions are not available 
in  hardware,  these  access  methods  make use of a 
simple and ancient indexing technique that is  de- 
scribed  next. 

Volume  search  technique. Whenever a large  file  is to 
be  accessed,  it  is  desirable to get to the correct  track 
address as quickly  as  possible, so as to minimize the 
search  time. If the records are of variable  length or 
the names-either  alphabetic or numeric-used to 
reference them do not  provide unique key  addresses, 
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Figure 6 Comparison of logical to physical  address 
conversion of the  three  major  access  methods 

PARTITIONED 

1 INDEXED 8 SEQUENTIAL 

PHYSICAL ADDRESS 

1 

a software  indexing technique is commonly used  in 
various  access  algorithms to minimize the time  re- 
quired to search  for the physical  address. This is 
referred to here as volume search technique. It is 
quite powerful,  yet  simple and easily  understood. 
Fundamentally,  this technique is  needed  because of 
the lack  of a fully  associative  accessing  capability in 
the  storage  system.  Associative  software  is  provided 
in  lieu  of  associative  hardware.  Consider a file  com- 
posed  of  variable-length  records that requires n - 1 
tracks of one cylinder  for  storage. The index  is  stored 



on the first track, so that n tracks in total are required. 
The records  have three-letter symbolic names that 
serve  as  keys  for  read and compare (search)  address- 
ing, and they  have a key-data format, as  shown in 
Figure 7. The records are stored in alphabetic key 
sequence  along the tracks, starting with the first name 
ACE on track I and continuing through to record 
ZAP on track n, all on cylinder 1. The index,  stored 
on track 0, consists of records of fixed length  having 
a key for  addressing  followed by data. There is one 
such record  for  each track of data, the key being the 
name of the record on that track  with the highest 
alphabetic value. The associated data constitute the 
home address of the track containing this data rec- 
ord. Thus the first  record of the index  has Key = 
BUZ and data of c i  TI  (cylinder 1, track l), where 
BUZ is the largest name on track 1. The second  record 
of the index points to CI TZ, which  has FUN as the 
largest name, and so on. If  we  wish to access  record 
VAM, a search is made through the index,  looking  for 

a key that is greater than or equal to VAM, i.e., SEARCH 
KEY > or = VAM. This match occurs on the last 
record of the index. The data portion is read,  giving 
a pointer to c1 Tn. Now a search  is made of track n 
for KEY = VAM. When obtained, the data can be 
read/written. 

Obviously this technique can be generalized to cases 
where the file and/or index  requires multiple cylin- 
ders, multiple disk  units,  etc.  Whenever the file 
requires multiple cylinders, a second  level of index 
becomes  desirable to point to the correct  track  for 
the start of the record  index, so as to avoid long 
searches.  When the index  itself  requires  several 
tracks, another level  of index  becomes  desirable  for 
similar  reasons. This technique is  used in partitioned 
and indexed sequential organizations. 

Sequential access method. In the simplest,  purest 
sequential organization, records are stored in tandem 

Figure 7 Example  of  index and record organization  with keys for  simple  volume  search 

KEY K E Y  
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fashion, starting at one  track  of a cylinder and con- 
tinuing through  as  many  tracks  as  necessary.  Only 
the cylinder,  head, and record number for the start 
of the file are available for addressing and no other 
SAI is  provided.  Obviously,  because of this,  any  finer 
addressing  requires a transfer to memory and use  of 
CPU logic.  Of course, a user  may  provide additional 
keys,  while  still  using a sequential  organization. 
These  keys  would  be  used  for an occasional random 
search.  Such  things  are done, and one hardly  ever 
finds an access  method  used in its  pure  sense. If the 
sequential  organization  requires  frequent random 
accessing to small  records, a reorganization to index 
or direct  access  becomes  desirable. 

Partitioned  access  method.  Suppose a sequential  file, 
LIBSUB, is  composed of two  library subroutines, 
SubA and SubB,  stored  sequentially in that order. 
Further, suppose  only one of these is typically  used 
at any one time by an application program. If SubB 
is  needed,  it  is  inefficient and wasteful to read  all of 
SubA and then SubB to main  memory. A better way 
is to give  each  member a sequential  record  address 
(cylinder,  head, and record number), which  requires 
a count area (SAI) for  each  member.  Also, a directory 
is needed at the start of the file to relate  symbolic 
names to the physical  address, CHR number. The 
simplest  type of directory  consists of two  separate 
records,  each  with a key and data. The keys  are  SubA 
and SubB, and data are  Cylinder = x, Head = y,  and 
Record Number = z, and Cylinder = x, Head = y,  
and Record Number = z + 1, respectively. Now an 
access to SubB  first  requires a sequential  search 
through the directory  records  on their keys. A match 
on SubB and immediate read  of  its data give the CHR 
number of the desired data record,  SubB. If the 
record  is  stored on the same  track,  it  can be  read 
within the same revolution. If there are additional 
members to the file,  they  can  be treated in an anal- 
ogous  fashion. If the number of members  becomes 
too large, the additional SAI for  each  record  in the 
directory and even  for  each  member  may consume 
substantial storage  space.  It  may be desirable to block 
the directory  records and member  records to reduce 
the SAI. If  blocking  is  used  for the directory, the 
records  within the block  should  be  organized so as 
to allow the volume  search technique previously 
described to be  used,  namely,  Search On Key > or 
= Given  Name. The IBM partitioned access  method 
has  certain  rules about how  this  is done, but the 
fundamental purpose of the access  method  is  still 
the same. 

Indexed  sequential  access  method. The indexed  se- 
quential access  method  is  basically a generalization 
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of the partitioned organization,  wherein the mem- 
bers  become  individual  smaller  records of typically 
256 bytes or fewer. The directory  becomes a two- or 
three-level  index structure organized and accessed 

Batch  processing is done  more 
efficiently  with  a  sequential  type of 

organization,  whereas  on-line 
processing  requires a more 

random  type of access. 

by a generalized  volume  search technique described 
previously. The conversion of the symbolic  name to 
physical CHR number via the index  may  take  two, 
three, or more  track  searches.  In  large  files,  this  can 
become an even  more  lengthy  search,  which  makes 
this a relatively slow process.  Additions and deletions 
of records and indices  can  also  become a complex 
process.  However,  it  provides a rather versatile  access 
method that can  handle a wide  variety  of  files, and 
the  indexing  is transparent to the user if an IBM 
utility  such  as ISAM is  used. 

Direct  access  method.  In  its  pure  form,  all  records 
of a direct  organization contain a unique key that is 
defined by the user. This key  may convert to the 
correct CHR number directly, or it  may  require a 
small transformation via the CPU. In either case, the 
conversion  is  fast, and access time is  minimized. 
However, the problem of key definition,  record  in- 
sertions, and deletions  can  be  troublesome and time- 
consuming. 

Another  access method, Virtual  Storage  Access 
Method (VSAM), evolved  from the access  methods 
just discussed.  In  many  applications  it  is  desirable to 
be able to process a data base  sometimes  in  batch 
mode and sometimes in on-line  mode.  Batch  proc- 
essing  is done more  efficiently  with a sequential  type 
of organization,  whereas  on-line  requires a more 
random type of  access,  as  provided  by either indexed 
sequential  or  direct  organization. The essence  of 
VSAM, with  respect to data accessing  capabilities,  is 
that  it  allows either or both,  at the discretion of the 



user. The 1973 version of VSAM provided the func- 
tional equivalent of a sequential and  an indexed 
sequential organization on DASD. In 1975,  a new 
version  of VSAM added the functional equivalent of 
direct organization. An enhanced version, Virtual 
Storage  Extended VSAM, provided improvement in 
performance, usability, and functions but basically 

Faster  access to memory  can be 
obtained  by  using  a  small  register 
stack  that is loaded  and  unloaded 

from  memory. 

maintained the same accessing  capability. There are 
other features unique to VSAM, such as device inde- 
pendence and ease of inserting new records. 

Thus we see that the fundamental differences  in  all 
access methods are (1) the amount  and type of 
addressing information, (2) where it is stored, (3) 
how it is  organized,  accessed, and used, (4) the size 
of the unit (record) addressed  for transfer to main 
memory, and ( 5 )  the method for adding and deleting 
records. These are all  related either directly or indi- 
rectly to the addressing  (accessing)  capability  of  sec- 
ondary-storage  devices.  Most, if not all, of this file 
and 110 architecture would disappear if the proper 
type of memory could  be built at a  reasonable  cost 
and effort. Unfortunately, this is not possible today, 
although it may  become  possible in  the future, as 
discussed later in this paper. 

Data base  architecture 

File  access methods are exclusively concerned with 
file organization for  fast,  efficient  disk  accessing. 
Data base  systems  in common usage today often 
make use  of techniques borrowed from file  access 
methods, but they provide other services as well. The 
architecture of data base  systems attempts to give an 
overall structure to data so as to achieve three major 
goals: 

Provide  a compact, efficient  file structure with  fast 
disk  access. 
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Minimize the amount of  unnecessary data trans- 
fers  from  disk to memory. 
Provide means for  fast,  efficient  associative-type 
processing,  typically on a  general-purpose CPU and 
memory. (Data base  machines are discussed later.) 

Data base and complex files require larger  storage 
than main memory can usually  provide.  Hence, 
secondary  storage is used  for such applications- 
tapes in  early  systems and disks  with  tape-like ar- 
chives in more recent times. A major simplification 
of  system  design and improved performance could 
be obtained if the memory  hierarchy could be  elim- 
inated and replaced by one very  large  main  memory. 
This would  be  particularly true for computational 
problems,  where the addresses of the arguments and 
results are relatively  well  known.  Although data base 
problems  would  also  be  considerably  simplified, they 
still  have  some other fundamental accessing  require- 
ments that are not solved  simply by larger  memory. 
As outlined in the introduction, data base  access 
usually  requires some logical operations on the 
stored data before the address of the desired infor- 
mation can be determined. This requires that a  large 
amount of data be searched  against  a  given criterion 
(i.e., equal or greater) to find the fields that satisfy 
the criterion. 

The fundamental issue in all file and data base 
operations is finding or generating the address of the 
desired  item or items. 

The smallest unit that might  be  used to compare 
against in any file  is  typically  a  byte.  Making  a 
random access  memory that can  access any arbitrary 
byte in a very  large  file is  expensive, but it is,  never- 
theless,  possible.  However, that is  only one small 
part of the problem. The essential  problem  is that 
theoretically,  for  a  general file, there are an infinite 
number of addresses that can be  used to access the 
data. These addresses are often  referred to as access 
paths, because the usual method of implementation 
uses  several  levels of indices and lengthy paths 
through them for  finding the address CHR number. 
This  large number of addresses comes about from 
the fact that the address of the desired information 
quite often depends on the existence or nonexistence 
of certain bytes or combinations of  bytes in an 
arbitrary length of bytes (Le., the record). Also, this 
combination of  bytes, to be  used either as the address 
or  to compare against,  changes  dynamically  for  dif- 
ferent  user  requests. For instance,  consider storing 
and accessing in main memory the automobile in- 
surance file described  earlier  in this paper.  Assume 
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Figure 8 Insurance  file  organized  as  two-dimensional  table 
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that each  client's  record  can  be  stored  as one logical 
word  in  main  memory and that the names are exter- 
nally  converted into the binary  word  address for 
accessing. We ignore the problem of obtaining a 
contiguous, unique address.  Each  item in the rec- 
ord  is  stored  as  a  field  of  given  length,  as  shown in 
Figure 8. If  we  wish to access the record  for,  say, 
A. B. Smith, the name is  converted to a  binary  ad- 
dress (ASCII or EBCDIC to binary) either in our brains, 
by the keyboard, or by a subroutine in the processor. 
This address  provides  a  direct  hardware  path to the 
desired  record, and we can print or process  any of 
the fields  of the record. 

This is, unfortunately, not the only  type of  access to 
a  file.  Suppose  we  wish to retrieve  records  for all 
clients  who are male.  There  is  no  address  available 
for  such  a  direct  access. A simple solution would  be 
to store the records as just described, but catenate 
the male/female  as one bit of the address-for  ex- 
ample, the higher-order  bit. This would  separate the 
records into two  logical portions, one for  males and 
one for  females. Now suppose we  wish to access  all 
clients  who  are  male and age 25 or under. There are 
two  problems: (1) There  is no direct  address  for  these 
records; and (2) There will  probably  be  multiple 
records to be accessed,  because the address  is not 
unique. 

In  theory, we can  conceive  of  a  memory that has 
multiple  access  paths  in  the  form  of  multiple  address 
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ports, one for  every  possible combination of  fields of 
the record that might be  used for accessing. This is 
very impractical,  because the possible number of 
such  addresses  can be  very  large-approaching  infin- 
ity-and  typical memories  have but one memory 
address port. Furthermore, in the multiport address 
case, it would  be  desirable-although not essential- 
to have as many data in/out ports as there are 
possible  multiple  records  satisfying the address  cri- 
terion.  In  general,  this  is  equal to all the records in 
memory, or one data port  per  logical  word in our 
case.  Memories  typically  have one data port. Hence, 
the user  is  forced into simulating  a multiport mem- 
ory  with  a  single-port  memory.  It  should  be  imme- 
diately  obvious that this  requires  many  accesses to 
main  memory and is  therefore  slow. 

How  is this  actually  done?  In the simplest  case, the 
user  first  stores the correct  bit  string  for SEX AGE into 
a  general-purpose  register, as required  for the search. 
Next,  each  record  (word, in this  case) of memory  is 
accessed  for  those particular fields,  which are com- 
pared  against the desired  bit  string in the general- 
purpose  register,  using the arithmetic/logic unit of 
the processor.  Note that the program  must either 
know  which  fields are the correct  ones or perform  a 
sequential  search. All  words that fulfill the search 
criteria  are  stored in a  separate  array or are written 
out to disk.  Each  word  in the file  must  be  processed 
sequentially in this manner, which  can  take quite a 
long  time. The problem  is compounded by the fact 



that  the original file is typically much more complex 
to start with and will be stored on disk or  some  other 
secondary storage medium. The complexity is fur- 
ther  compounded by the fact that  the required data 
are often distributed over several separate files, and 
these can be organized with different access methods. 
There  can be large amounts of redundant informa- 
tion  and/or information not pertinent to  the task at 
hand.  Some of this information can only be judged 
as irrelevant by testing against the search criteria. 
Other  data may be known to be irrelevant but are 
buried within the record on disk. In such cases, the 
entire record including irrelevant fields must be 
transferred to main memory, because there is no fine 
addressing capability on disk. 

In the example of locating records for male clients 
of  age 25 or less, the file  was loaded into main 
memory and searched word by word or field  by  field. 
For the  more complex files, we can do the same 
thing, but with a high cost. First, enormous  amounts 
of irrelevant data (undesired fields) are transferred 
from, say, a disk to main memory, which consumes 
a precious system resource, the memory bandwidth. 
Second, the files are often larger than  main memory 
and, therefore, must be brought in piecemeal. Third, 
the search through every record again consumes 
memory bandwidth as well as processor cycles.  Also, 
the records do not normally fit  nicely into logical 
words, so additional processing is required to find 
the address of relevant data.  Fourth,  the total data 
needed for the search criteria are often contained in 
two or more files. This requires a search on  the first 
file, creation of a new  file that satisfies the first search, 
and using the new  file either to access the second file 
directly and compare (simple case) or  to cross-search 
all entries of the second file with each entry of the 
new  file (complex case). 

In the example, suppose the client’s SEX is indicated 
in  the first  file and AGE in  the second. Assuming both 
files are accessed in terms of client NAME, we search 
the first file for all clients who are MALE and create a 
new  file  of matched cases.  Because there is only one 
possible entry in the second file for each client name 
in  the new  file, the client names of the new  file are 
used as direct addresses (entry points) to  the second 
file for a comparison on AGE. Matches are flagged or 
written. A much more complex search (akin to re- 
lational JOIN operation) is required if the files are 
accessed  with different entry addresses. Suppose the 
second file  is  accessed  by PREMIUM instead of  by 
NAME. The first record of the new  file must  then be 
compared with every record of the second, the next 
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record  of the new  file  likewise must be compared 
with  every record of the second file, and so on 
through a very  lengthy  process. 

Theoretically, many of these problems could be elim- 
inated by a high-speed,  large-capacity, suitably mul- 
tiported memory, with associative compare capabil- 
ity and high-speed and high-bandwidth I/O to keep 
it adequately supplied. However, such a system  is 
not practical today in  terms of cost, complexity, and 

Software  systems  attempt to make  a 
general-purpose  system  behave as 

a very large,  high-function 
associative  processing  system. 

speed. The memory arrays would  be extremely un- 
wieldy and slow  because of the circuit loading and 
low density of  storage  cells. The packaging and wir- 
ing would  be complex and large in size, thus further 
reducing the speed. Suitable I/O devices are very 
expensive and of  low capacity. 

As a result of these limitations of the memory system, 
other means have  been  used as well as proposed to 
achieve the same result. These means have taken 
two main directions, one providing hardware-assist 
features in various forms and  the  other using the 
general-purpose hardware already available, com- 
bined with system subroutines and algorithms-soft- 
ware. 

Data  base hardware. Over the years, there have been 
many attempts to provide data base oriented ma- 
chines-in fact, too many to discuss separately. The 
general approaches have been ( I )  to provide a sepa- 
rate small, fast  associative array processor that han- 
dles all the complex compare and flag functions, 
rather than  the CPU, and (2) to provide small asso- 
ciative preprocessors at  the disks that preprocess the 
data, thereby reducing both the  amount of unnec- 
essary data transferred and  the final amount of CPU 
processing. 
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Nearly all such machines have been experimental, 
though there have been a few commercial machines. 
The reasons for this are  that there are two bottlenecks 
in data base  processing: (1) the complex associative 
compare addressing requirements; and (2) the large 
disk 110 bandwidth requirement. Bora1 and DeWittI2 
offer an excellent discussion of these issues  with 
respect to many different hardware approaches. All 
data base hardware approaches have  focused on the 
first bottleneck and have thus been limited by the 
I/O bandwidth requirement. In addition, it has never 
been clear that  the proposed additional hardware 
and  the resulting complexity are really any better 
than using a high-speed, general-purpose CPU, which 
is a simpler system. 

Data  base  software. Large data base software systems 
that have found widespread  usage  have, from earliest 
times, been used  with general-purpose processors 
and  standard memories. In essence, software systems 
attempt to make a general-purpose system behave as 
a very  large, high-function associative processing 
system, and  do so with reasonable interactive re- 
sponse time. To achieve this, they must strive to 
achieve all three goals indicated at  the beginning of 
this section. The extent to which these goals are 
achieved varies among  the  common  data base sys- 
tems-GIs, IMS, CODASYL-and results from the con- 
flicting and often contradictory demands. 

Early data base systems provided multiple address 
ports (access paths) into  the  data on disk by the use 
of various indices and pointers. These access paths 
were contingent upon the method of organizing the 
data-hierarchical tree or network-as  well as as- 
sumptions  as  to  the types of associative searches that 
were to be performed. These access paths could 
become quite long and intricately interwoven. The 
problem is that if it is desirable to have fast  access to 
a particular field  of a random record residing on 
disk, this field should be indexed in a multilevel 
indexing scheme analogous to  the keys in the volume 
search technique previously  discussed.  However, 
every  field  of the  data  can,  in principle, be used for 
the associative search. Hence, for a large data base, 
not only can  the index consume large volumes of 
data space, but  the search through various levels  of 
the index can be slow. Thus only certain essential 
fields are typically indexed. If one were to  attempt a 
search that was not inherent in  the access paths, this 
might be either impossible or extremely difficult and 
slow. The speed  with  which an index can process a 
query is highly dependent on the  amount of cluster- 
ing of indices, whenever a paged,  virtual-storage 
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hierarchy is used. The indexed keys are usually stored 
in sorted sequence. If a sequence of records, contig- 
uous by  key, is processed, one reference to the disk 
will transfer many usable records to main memory. 

The  data  organization  should  allow 
completely  general  associative 

searching  capability to any fields or 
combination  of fields  in  the  data. 

On the  other  hand, if the sequence is contiguous not 
by  key but by some nonindexed field, a page transfer 
may  be required for each record, a severe perform- 
ance penalty. 

In complex indexing structures, changes in the  in- 
dices could inadvertently remove some pointer and 
hence eliminate some access paths. The essence  of 
typical data base  access methods is to provide a 
minimal indexing scheme that satisfies the majority 
of search operations. If an occasional unusual search 
is performed, the occasional penalty is tolerable. All 
these problems, obviously, are related to  the limited 
accessing capability inherent in the storage  system. 
Ideally, the organization of the access paths should 
be independent of the  data;  that is, the organization 
should allow completely general associative search- 
ing capability to any fields or  combination of fields 
in the  data.  The relational data base systems IBM D B ~  
and SQL/DS attempt  to be  less restrictive and provide 
data independence. The essential idea is to store data 
in relatively simple relational record form with as 
few predefined access paths as po~sible . '~ . '~  When- 
ever a complex function, such as join, is required, 
its access paths are created on  the fly and maintained 
until they are no longer required. The concept is 
simple in principle, but an efficient,  fast implemen- 
tation is essential and  quite c0mp1ex.I~ 

In summary,  data base hardware and software archi- 
tectures are  attempts  to approximate an associative 
searching system  using ordinary, general-purpose 
hardware in order to circumvent the need for a 
memory system  with inherent associative capability. 



This approach is  driven  by the practical constraints 
imposed by today’s  technologies. 

Gedanken experiment: Toward  the  future 

The essential  ideas  developed thus far  have  been the 
following:  (1) The major limitation on computing 
systems  has  been the lack  of an ideal  memory; (2) 
The ideal  memory  system  is  complex,  expensive, 
and probably unattainable; (3)  Actual  memory  hier- 
archies attempt  to give some  appearance of an ideal 
system at low cost, but with  severe  performance 
limitations and great  complexity. 

Even  given  unlimited  resources,  it  is not clear that 
the ideal or near-ideal  memory  system  is attainable 
in reality.  However, we can  image  what  it  might  look 
like and how this might  change current systems. 
Such  a thought experiment  would not only  bring 
current systems into proper  perspective  but  perhaps 
would  also point the direction for future goals.  We 
will now perform  such  a gedanken or thought exper- 
iment. 

Assume that the density and cost of integrated  circuit 
technology  has  progressed to a point that allows the 
construction of a  very  large,  fast,  complex  main 
memory that is  very cheap. We also  assume  a few 
other innovations. One is that the main memory  has 
five primary ports that can support simultaneously 
three (4  or 5) reads and two (1 or 0, respectively) 
writes,  with  a  cycle time equal to that of any CPU we 
wish to build. We assume  totally independent, asyn- 
chronous secondary ports that can either read or 
write to the memory.  These  secondary  ports  can  be 
serial  ports, and they are implemented at the chip 
level.’’ Thus, with  proper  organization, there can  be 
many asynchronous secondary  ports. The implica- 
tion of these assumptions is that we can have  a  main 
memory of extremely  large  size (say 4 gigabytes) that 
allows  32-bit  addresses. The storage array is  assumed 
to have certain other special  features.  For  example, 
a  separate portion of the logical  words  have  fully 
associative  capability to do the following compari- 
sons: equal, not equal, high, and low. The associative 
part  does not have the multiple-primary-port  feature 
but rather only the usual one primary  port.  However, 
this  part as well as the entire memory  has the asyn- 
chronous-secondary-port  feature. The remaining 
words do not have this associative  feature but have 
the multiport feature on the primary port, as shown 
in Figure 9. The associative part consists of a number 
of  4K-byte (virtual) pages that are used to do asso- 
ciative  searching (that is,  they are content-addressa- 

298 M ~ K  

ble).  Only  part of the memory  is  associative  because 
that is  all that is  required, and the additional com- 
plexity  with  its  cost and performance  degradation  is 

Even  with  such a  large main 
memory,  not all  the  information  that 
will ever be required or processed 

by  the CPU can be contained 
within it. 

important, even in this gedanken experiment. (The 
exact number is an overall  system optimization issue 
that is not easily  specified  independently of processor 
versus 110 speed.) The memory  is  logically  organized 
as  words of 128  bits.  These  128  bits in all  words  of 
the  associative portion are  compared  in one cycle 
with the 128 bits  in  a compare-data register, through 
the compare mask. The compare mask  provides  a 
finer  specification  of  which  bits are to be  compared 
and used  for  associative  addressing  where the data 
item  fields  can  have  any  bit  length.  Each  word  has 
two match jags  associated  with it. All  flags can  be 
compared on one cycle,  with the bits  set in the 
compare Jags register,  through the compare j a g  
mask register.  These  flags, in combination with the 
associative  pages, the nonassociative  pages, and mul- 
tiport features,  provide an extremely  fast,  efficient, 
and simple way to do complex  associative  (i.e.,  con- 
tent-addressable)  searching of  files,  which is the es- 
sence  of  all data base  operations. 

Even  with  such  a  large  main  memory, not all the 
information that will  ever  be required or processed 
by the CPU can be contained  within  it. Thus, some 
other storage  system  will  be  needed.  We  might  pos- 
tulate that these are other similar  memory  systems 
that are switched to as needed, or they are some 
other low-cost  archival  storage. We assume  some 
disk-like  archival  secondary  storage so as to be real- 
istic,  However, the relatively  slow data rate of such 
secondary  storage  is  always  a  bottleneck. Thus, we 
further assume that words are stored  across  parallel 
disks and that the asynchronous operation of these 
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Figure 9 Schematic of one  possible  ideal  memory  system 
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Figure 10 Schematic of hybrid memory: (A) organization of associative  address  register  with control bits; (B) memory 
organization  showing  address  translation  using  on-chip  associative  address  registers 

parallel disks is  buffered by a two-port memory, 
which  is  very much like main memory but with 
fewer ports.'l,16 This solves the 110 bandwidth prob- 
lem encountered in current  data base machines. 

Thus, our overall memory system  is organized as 
shown in Figure 9. All input and  output  to  the system 
are  communicated by  way of the asynchronous 
secondary ports in main memory, both for interac- 
tive terminals and for batch jobs. In other words, the 
disk Simultaneous Peripheral Operations On-Line 
(SPOOLING) buffers  used today for such purposes are 
replaced by these asynchronous secondary ports. 
Such ports, which are partially available today, can 
have extremely high serial data rates and can be run 
independently of the primary ports that  are servicing 
the CPU. The instruction length is increased to 128 
bits, which  allows 16 bits for operation code plus 
three fields  of  32 bits each for three operands., plus 
16 additional bits that  can be used for the USEIR ID. 
Four of the primary ports are used for normal proc- 
essing,  typically  with one  to fetch the next instruc- 
tion, two ports for two arguments read from mem- 
ory, and  one port for a result stored into memory. 
The memory is capable of all these accesses on one 
cycle.  In  cases  where an instruction requiring mul- 
tiple execution cycles  is  followed  by  single-cycle in- 
structions, it is  possible to  end up with two (or more) 

results to be stored. In such a case, an instruction 
fetch may not be needed; this port  can  then be used 
to store two at a time simultaneously to memory. 
The fifth port connects to  the on-line archival storage 
as shown. 

With such a system, there is no need for the general- 
purpose register stack, because all needed parameters 
are available directly from main memory as fast as 
they  would be from a register stack. Furthermore, 
there is no need for instructions and resulting wasted 
cycles to load or unload registers, as well as no need 
for special separate register addressing within the 
instructions. Even though the memory is quite large, 
eventually we  will  be faced  with the old problem of 
fragmentation of real memory space, unless some 
form of relocation is inherent.  Thus a virtual mem- 
ory is used, but with a different form than  that 
commonly in use today. The full virtual address 
consists of a 16-bit  user ID (obtained from a register 
or the additional 16 bits in operation code),  which  is 
catenated to  the 32-bit memory address. This virtual 
address is translated to  the real  physical address, but 
the mechanism for doing this translation is contained 
directly within the memory. This organization is 
known as hybrid memory' and is  shown in Figure 
10. It eliminates the need for page and segment tables 
and provides a method for complete general sharing 
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of common or private data at the page or segment 
level.” Any number of users  can  privately  share 
pages  with a given virtual address,  while the same 
virtual  address can be  used to refer to a different 
page in another shared  or  private  address  space. This 
sharing is obtained by the use  of  two additional 
virtual address bits in the Associative  Address  Reg- 
isters (AAR). These  two  bits  are used in a special 
manner, with a very small  hardware-implemented 
shared-segment directory. 

In essence, the effective  system virtual address is 50 
bits,  which  provides many benefits.  Whenever a new 
chunk of virtual space, either a segment,  several 
segments, or part of a segment, must be allocated 
(GETMAIN or related function in  System/370), there 
is no need to search the tables  for that length of 
contiguous table entries. Nor is there any need to 
compact the address  near the starting value,  because 
tables  are not used for translation. Any contiguous, 
random, systematic and noncontiguous, or nonsys- 
tematic and noncontiguous address  is  acceptable to 
the hybrid translation hardware. This provides 
greater  freedom in allocating any new portion of 
virtual  space.  It is only  necessary to ensure that the 
identical virtual address  is not used more than once 
in the same user’s  given  address  space. 

With this enormous virtual address  space,  any  frag- 
mentation of the virtual  space  for a given  user at a 
given time is  of no consequence. The result is that 
there are no enormous translation tables to consume 
main  memory. Furthermore, the waste  of main 
memory due  to unusable  table  space that results 
from virtual address fragmentation is eliminated, 
thereby  providing substantial savings. Thus all  sub- 
routines,  system  procedures, and so forth can be 
referred to symbolically, and there is no need to 
translate symbolic names to new, internal virtual 
addresses at link time, as is done today. The IBM 
System/38  uses a similar symbolic  addressing, but 
that is implemented with  very different and more 
conventional hardware. Also, there is no need  for 
address generation, which  removes one bothersome 
pipeline  stage of the CPU and gives a faster  execution 
rate. The base  register  is  replaced by the symbolic 
user ID name as the higher-order 16 bits of the virtual 
address. 

Input from terminals or any slow I/O device  is com- 
municated via the asynchronous secondary ports as 
shown.  Virtual  addresses  for  these ports are  provided 
by the user  (e.g., file name) or  assigned by a super- 
visor.  Physical  pages in a memory module are as- 
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signed to these devices on a demand basis. The 
virtual address, which consists of the user ID plus the 
user-assigned  file name, is stored in the AAR. Subse- 
quent pages are given sequential virtual page num- 
bers by the controlling system and  do not require 
searching page tables  for  a contiguous set  of  ava.ilable 
entries. Nonsequential page addresses or increlaent- 
ing on higher-order  bits are not different  from se- 
quential addresses, as far  as the hardware  address 
translation is concerned. The  input information goes 
serially to the asynchronous secondary port of the 
assigned  physical  pages,  with the correct  virtuid ad- 
dress stored in the AAR for  each page. A control bit 
can be maintained in the AAR to indicate that the 
data are in the secondary port. When  a page  is full, 
either the page  buffer can be transferred immediately 
to the array, or we can wait until a  reference  is  made 
to the page. The control bit will  show that the page 
is  in the page  buffer and it is  first  written to the array 
before  a normal access. If desired,  all I/O can be done 
via virtual addresses,  using the AAR with the control 
bit just mentioned. In any case, the secondary ports 
replace the disk-spool  buffer of today. Once the input 
is complete, the user  issues  a  system command that 
specifies the operation, e.g., RUN, plus the starting 
virtual address. The system queue holds this infor- 
mation until the job is  scheduled to run. If desired 
or if necessary, programs do not need to have con- 
tiguous sequential virtual addresses,  because  there 
are no translation tables. Noncontiguous addresses 
across page boundaries in a  program can be  easily 
handled with  a simple GOTO (virtual address).  It is 
necessary  only that the virtual address has not al- 
ready  been  used  in this user’s particular address 
space. A simple  single-cycle  check  of its usage for  a 
page  resident in main memory is  easily done by the 
operation read virtual access = (given  address), i.e., 
a content search on the virtual addresses in the 
Associative  Address  Registers. 

The user output can be stored starting at any con- 
venient virtual address in the user’s virtual address 
space,  for  example, starting at the very top and 
working  downward. 

Our system  will  be multitasked so that a  reference 
to off-line data causes the equivalent of  today’s  page 
fault and subsequent task  switch.  However, the re- 
placed  page can be the entire file or any larg,e or 
small part of it, as  necessary. The secondary ports in 
main memory make this feasible and very fast. 

Complex  data  base  operations. In the gedanken ex- 
perimental system, files can be  organized  as  variable- 

length  records and stored  in their raw form  with 
neither  indices nor any predefined  access  paths;  i.e., 
they are data-independent. This is  precisely the sit- 
uation that all data base  access methods strive to 
achieve but never quite attain. Each file can  have its 
own structure. It is necessary  only that all  records of 
a given  file  have the identical form and fields, and 
that the programmers know or have  access to a 
descriptor of this structure for  each  file.  Whenever  a 
large  file  requires  a  complex  search, the associative 
portion of the memory is  used. The file  is transferred 
in  from  disk via the secondary port in a convenient 
unit, such  as one page at a time, and it is  processed 
a page at a time. After the first  page  is entered, it can 
be associatively  processed quite rapidly  before the 
second page  is transferred. The virtual address and 
page-valid bits of the AAR of the memory  provide 
the means to selectively  enable any desired  page  of 
the  associative  memory  or any other portion of 
memory. 

To see  how this system  operates,  consider  again the 
insurance file example  previously  discussed,  for 
which it is  desired to find the names of  all clients 
who  satisfy the criteria SEX = M,  AGE = or < 25, 
PREMIUM = or < 1000. The ideal situation occurs if 
the file is  organized  as one contiguous record  per 
client, containing all pertinent information for that 
client,  as that shown  previously  in  Figure 8. It is 
assumed that we know or have  access to the identity 
of each  field. The compare mask in Figure 9 is  set 
up to logically compare only the fields SEX =, AGE = 
or <, Premium = or <, and the compare data have 
appropriately aligned data M, 25,  1000. In one cycle, 
all  words of  page 1 are interrogated and matches are 
indicated by  flags FI  set at each matched word.  These 
flags are equipped with  hardware to supply  sequen- 
tial-priority enable signals to the corresponding 
flagged  words for  read/write and a count register 
indicating the number of matched  words. Thus, if 
there are three matched words and three FI  flags 
valid,  a sequential read operation will read the first 
matched  word on the first  read  cycle and decrement 
the counter by one, the second  matched  word on the 
second sequential read  cycle, and third word on the 
third cycle, until the count is  zero.  Each FI  flag  of 
the  read  word is  reset automatically to invalid  after 
each readout. These  words can be  placed  in  a  new 
file in the nonassociative part of memory and written 
out to 110. Subsequent pages  of the file are  treated in 
the same manner until the file  is  fully  processed. 

In some  cases the full  length of the record  may exceed 
the  128-bit  word  length of memory, i.e., x = 128 in 
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Figure  8. The associative  search  must then be done 
in  parts. This capability  is  provided by the two flags, 
each of  which can be  masked or used as part of the 
compare field.  Suppose in the above  example that 
the search criterion also included POLICY DATE < 
1985 and that this field starts at bit number 129  of 
the record  in  Figure 8;  i.e., it is too long to fit within 
the 128-bit  word on the first transfer. There are  a 
number of ways to handle this, but a  simple way  is 
to transfer the remainder of the record into a  second 
page and treat this case  similarly to the two-file 
example  given later in this paper. 

Unfortunately, files are never static, but rather have 
new  fields and search requirements added continu- 
ously. Thus, typically, the desired information is 
contained in  two or more files and in the worst  case 
requires a many-to-many type of search,  as follows. 
Suppose the insurance file  is  really  two separate files, 
organized as shown  in  Figure 1 1. Neither file  by  itself 
contains sufficient information to perform the total 
access.  Hence, the processing  is  as  follows (although 
this is not necessarily the best  way). 

Page 1 of  file 1 is transferred to memory. An associ- 
ative search on SEX = M sets flags FI on all matching 
words. A single sequential read of this page produces 
the record of the first male. The name field  is  ex- 
tracted and placed  in the COMPARE DATA register. In 
the meantime, page 1 of  file 2  has  been  loaded. The 
data and mask  for PREMIUM = or < 1000, and AGE 
= or < 25 are added to the COMPARE  DATA register 
as well as corresponding mask  bits. An associative 
search on page 1 of file 2  is done on one cycle  using 
these data, yielding  some match flags, FI  in this page. 
These matches are stored in a  nonassociative part of 
memory, using the sequential read operation. The 
second matched name of  page 1 file 1 is  read and 
the above  process  repeated on page 1 file  2. The 
process  is  repeated  for matched word 3 of  page 1 file 
1, and so on. By this time, other pages  of  file 1 and/ 
or 2 will have  been  loaded.  Assume  page 2 file 2 is 
loaded. The three matches of  page 1 file 1 are reused 
to process this new  page. Either the three previous 
matches in page 1 file 1 can be  reaccessed  by an 
associative  search, or the previous matches can be 
saved. The matches are saved by the use  of  flags ~ 2 .  
Whenever  a sequential read of a matched word 
occurs, the corresponding F I  is  reset invalid, but the 
corresponding flag ~2 is set  valid. A sequential read 
via  flags ~2 can be done, thereby  resetting ~2 but 
setting the corresponding F I  to valid  again.  Hence 
multiple excursions through this page can be  made 
without having to save the COMPARE DATA and MASK 
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Figure 11 Insurance  file  with  data  organized  in two separate 
files 

FILE 1 

1 Adams J. 1 Anytown 1 F I I 
t 

I I I I  I 
I I I I  I 
I I I I  I """"""""""_ 
FtLE 2 

I I I  I I """"""""""_ 

and redoing the search.  After  all pages  of  file 2  have 
been  searched, the sequence  must be repeated  with 
all subsequent pages  of  file 1 matched  against  all 
pages  of  file  2. This is the worst  case of a  many-to- 
many search. A many-to-one or one-to-many search 
would  be  faster  as well as  simpler. 

The above  examples  implicitly  assumed that the files 
all  had  a 2D table-like structure with  all fields  pres- 
ent. This can often  lead to a  large number of sparsely 
populated fields and wasted  storage  space.  Compac- 
tion can be obtained by storing  only  valid fields and 
storing each data item as a  fixed-length  pair ATTRI- 
BUTE NAME: ATTRIBUTE VALUE. In this case, the asso- 
ciative  search  can specify both the NAME and VALUE 
as part of the match criteria and proceed  essentially 
as  previously  described. 

Many important details  have  been  excluded pur- 
posely in order to focus on the key  issues,  namely, 



that sophisticated, special-purpose memory systems 
can significantly  simplify the searching  procedure. 
The question of much interest is, just how  feasible  is 
such a  system? The synchronous-to-asynchronous 
buffer  for  spreading data across  disks in parallel is 
partially  available  today  with adequate speeds,  as 
well as the asynchronous secondary port feature of 
memory.” The hybrid virtual memory, although not 
fully  designed,  is  within our reach. No memories are 
available today with the multiport or associative 
feature described  here.  These features of main mem- 
ory require significant innovation in  technology and 
device  design to become  practical. New structures 
are required, wherein the functions are designed 
directly in the device,  i.e.,  directly in the silicon, 
rather than in a circuit containing many intercon- 
nected  devices. This requires innovations, as well as 
new outlooks on the part of technologists and device 
and circuit designers. 

Even though there are many details of the above 
system that require considerable  expertise to under- 
stand completely, it should be apparent that in prin- 
ciple,  a substantial part of  system and I/O architecture 
complexity, virtual memory organization, and op- 
erating system  complexity  is due  to the practical 
constraints imposed by the memory  technologies. 

Concluding remarks 

The past 25 years  have  seen enormous strides  in both 
technology and system organization to provide so- 
phisticated,  high-performance computing systems. 
We have  seen that a major factor in this evolution 
of computing systems has been and will continue to 
be  practical constraints imposed on  our ability to 
access information. The ideal  large-capacity,  high- 
speed,  low-cost  memory  system  closely  coupled to 
the processor  has not been  feasible.  Hence,  practical 
systems  have used many techniques to give the ap- 
pearance of an ideal  memory  system. This has  been 
achieved through numerous design  trade-offs at 
many levels  of the system, often resulting in new 
constraints as well as  affording new options. The 
next 25 years  may  very  well  bring  a  gradual  change 
in emphasis and use of VLSI to provide better access- 
ing  capability  built  directly in hardware  in addition 
to continued improvements in  density and perform- 
ance. In order to achieve this hardware  accessing 
capability,  technology will have to be  able to build 
functions directly in semiconductor materials, rather 
than building  distinguishable standard devices that 
are wired  together-for  example, an associative de- 
vice rather than an associative  cell,  which  is  typically 
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built  from  a  dozen or so transistors. This would  also 
provide the third dimension for  stacking functions, 
rather than the two-dimensional  form of standard 
chips. 

In the area of  disks, we can expect to see not only 
continued improvements in density and capacity, 
but most  likely the smallest  directly  addressable unit 
will become  smaller than a  sector, approaching a 
memory  word size. Also, the complex  logic functions 
performed by the channels will migrate more and 
more to the control unit to give the channels more 
free time to service other I/O that will become more 
critical as processing  speed  increases. In addition, 
the operation of disks  in  parallel will  likely  become 
commonplace and provide the enormous I/O band- 
widths that will  be  necessary  for future systems. 

The most  difficult  challenge ahead is the fusing of 
the  system requirements within the device and tech- 
nology  designs to achieve  practical,  high-perform- 
ance,  high-function structures. The difficulty  lies in 
the  fact that these areas of systems,  circuits,  devices, 
and technology tend by necessity to be fields of 
isolated  expertise.  Bringing  these areas together is a 
technical,  managerial, and human problem.  Achiev- 
ing this is a formidable but exciting  challenge. 
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