A perspective on the
801/Reduced Instruction
Set Computer

From the earliest days of computers until the early
1970s, the trend in computer architecture was toward
increasing complexity. This complexity revealed itself
through the introduction of new instructions that
matched the application areas. Microcode was an im-
plementation technique that greatly facilitated this
trend; thus, most computers were implemented using
microcode. In 1975, work began at the Thomas J.
Watson Research Center on an experimental minicom-
puter. This project, termed the 801 project, questioned
the trend toward complexity in computer architecture.
It was observed that most of the complex instructions
were seldom used. Thus, a computer could be de-
signed with only simple instructions without drastically
increasing the path length or number of instructions
required to implement an application. This made it pos-
sible to implement a machine without resorting to mi-
crocode, which improved performance. This paper de-
scribed the background and evolution of these ideas in
the context of the 801 experimental minicomputer proj-
ect.

Computers are unlike other tools in that they are
truly general-purpose instruments. The inter-
face seen by an airline ticket agent is that of a
machine that makes airline reservations. A secretary
sees a text-editing machine. To the applications pro-
grammer, who uses a high-level language like FOR-
TRAN or COBOL, the computer is a FORTRAN or
COBOL machine. However, the assembly language
programmer and compiler writer see the underlying
machine architecture, an IBM System/370, a DEC
VAX, or some other instruction set.

A computer architecture is an abstract description of
a machine; interest in computer architectures tran-
scends any particular machine. Thus, there can be
many models of System/370 or vaX, all of which
can execute the same program. Because performance
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is so important, computer architecture is always
done with a particular set of implementation tech-
niques in mind. Register files, buses, and adders have
similar properties in a wide variety of realizations,
and implementation techniques such as parallel op-
erations have wide applicability. The details of the
various realizations may also influence the architect’s
decisions. For example, the architect may have to
specify what happens in the case of a parity error, an
event that does not occur on a purely abstract ma-
chine. On the other side of the architectural interface,
the architect must cater to the needs of those who
construct programs. This paper examines some is-
sues in computer architecture in the light of an
experimental processor known as the 801/RISC (re-
duced instruction set computer).

Background. Because they lacked clear criteria, com-
puter architects between 1946 and 1975 tended to
specify ever more complex systems, as hardware
capability increased and the tools used for design
became more powerful. The computers acquired
more instructions, more addressing modes, more
data types, and more special features. The experience
of IBM is not very different from that of the rest of
the industry in this respect. The 1BM Type 701 was
introduced early in the 1950s. It was truly minimal,
because any complexity would have reduced relia-
bility. Floating-point arithmetic was done with sub-
routines. By the time the 1BM Type 704 was intro-
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Table 1 Ten most-used instructions in a typical instruction

mix
Operation Instruction Percentage of
Code Name Total Executions
BC Branch 20.16
L Load word 15.49
™ Test under mask 6.06
ST Store word 5.88
LR Load register to register 4.70
LA Load effective address 4.04
LTR Load and test register 3.78
BCR Branch on register 2.69
MVC Move characters 2.10
LH Load half word 1.88

duced in the mid-1950s, it had instructions that
performed floating-point arithmetic. Providing float-
ing-point arithmetic by an instruction as opposed to
a subroutine offered no new function. However,
performance improved in two ways: (1) The new
engine had circuitry to perform efficiently floating-
point functions such as normalization that required
many basic cycles on a 701. (2) By performing the
high-level operation entirely in the CPU, the transfer
of instructions between memory and the CPU was
reduced.

This notion of adding new instructions tailored to
the expected application became a guiding principle
of computer architecture. By the early 1960s, 1BM
was producing families of computers oriented to
their expected application area. The 1BM Type 7090
was the scientific and engineering successor to the
704. It had fixed-word binary and floating-point
instructions, whereas the 7080 had variable-length
decimal arithmetic and edit instructions suited to
commercial work. By this time, much programming
was being done in high-level languages like FORTRAN
and COBOL. Both machines had FORTRAN and COBOL
compilers. Unfortunately, there were no systematic
methods of comparing architectures. However, an-
ecdotal evidence suggested that the 7090 actually
executed commercial applications faster than the
7080, even though both machines used the same
circuit technology. Nobody examined this situation,
perhaps because software and the portability of cus-
tomer applications were deemed to be problems of
higher priority that urgently required solutions.

The solution was System/360, a machine that coa-
lesced all applications. The technology to implement
a machine with many diverse instructions was pro-
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vided by very fast read-only storage that permitted
the economical implementation of microcode.' This
ushered in a new era of machines with a great
diversity of instructions. In addition, fundamental
improvements were made in the treatment of the
memory hierarchy. Virtual memory was introduced
on the System/360 Model 67 and caches on the
Model 85. The general direction of both architecture
and implementation was toward greater complexity.

In 1975 the 801 project was started at the IBM
Thomas J. Watson Research Center. (The project
was so named because the Research Center is Build-
ing Number 801.) Our intention was to re-examine
the trend toward complexity. The 801 was to be a
hardware and software system. Almost all program-
ming would be done in a high-level language. The
goal was to discover how to deliver the most com-
puting power at the lowest cost in an environment
geared to programmer productivity. A prototype ver-
sion of the 801 was built and system software was
written. This included a compiler known as the
PL.8,2~> which became a tool and a means of studying
the effectiveness of the 801 architecture. Projects
with similar goals have also been pursued at the
University of California at Berkeley and at Stanford
University.® This architectural point of view has
become known as RISC, from Paterson’s Berkeley
Reduced Instruction Set Computer (RISC) com-
puter.”®

The term RISC nicely captures the spirit of research
into the premise that less is better. The various
aspects of architecture addressed in the 801 project
are discussed in References 9 and 10. However, our
goal was not to have the fewest possible instructions,
but to simplify the machine’s data flow to make the
basic instructions run faster. Also, we had observed
that mechanisms such as virtual memory and caches
had been separately introduced on System/370, and
we thought that this project might discover whether
a more consistent and efficient implementation
might be possible if a fresh start were taken. Ade-
quacy to implement a broad spectrum of high-level
languages efficiently was also a concern. This paper
examines the reasoning that led to the experimental
801 architecture.!! Many of the lessons learned dur-
ing the project have been incorporated into Romp,
the CPU for the 1BM Personal Computer RT.'?

System/360 instruction traces

An illuminating insight into computer architecture
was provided by the first instruction traces on Sys-
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tem/360. The motivation was to perform an exper-
iment to determine an optimal geometry for the
cache on what would become the Model 85. How-
ever, the determination of frequency of instruction
usage was a natural by-product. It is easy to see that
most instructions on a machine with about 200
instructions will be executed very infrequently. It
came as a surprise, however, that load, store, branch,
and a few simple register operations almost com-
pletely dominated the mix of instructions. The ten
instructions that ranked highest in percentage of total
instructions executed are given in Table 1.

Together these ten instructions capture two thirds of
all instructions executed, a discovery that raises sev-
eral questions. If storage-to-register add and add
logical are not among the top ten, is it worthwhile
to have instructions that combine the two relatively
basic functions of fetching a value from storage and
then performing an arithmetic or logical operation?
System/370 has a comprehensive set of instructions
that fetch one operand from storage and the other
from a register and put the result of the operation
back into the register. Together these instructions,
which include add, subtract, compare, AND, OR, and
exclusive OR, constitute less than 6.5 percent of all
executions. Also consider other complicated instruc-
tions. Load multiple and store multiple together
account for 2.4 percent of all executions. Integer
multiply is 0.115 percent, and divide is 0.111 percent
of all executions. The loop-closing operations BXLE
and BXH are 0.066 percent. With the exception of
the instructions pack and convert to decimal (0.008
percent), the decimal and edit instructions are not
represented on this trace.

We then considered how representative of the range
of actual customer environments this trace might
have been. If small snapshots are taken, differences
based on the application and compiler or on the
human coder who wrote the program can certainly
be seen. There are scientific traces for which you can
almost see the code for the inner loop of matrix
multiply as produced by a particular FORTRAN com-
piler. In general, scientific program traces look a
little different from others. In extreme cases, they
may have 10 percent or more floating-point instruc-
tions. There may be other differences, such as signif-
icantly fewer of the instructions associated with link-
age—BAL (Branch And Link), for example. How-
ever, it is surprising how often scientific programs
spend most of their time doing integer calculations.
In many cases, a large proportion of their execution
seems to be spent in the input/output and formatting
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Table 2 Example trace results for storage-to-storage logical
operations on System/370

Operation Frequency of Use
NC AND 0.050
OCOR 0.058
XC exclusive OR 0.555

routines. Knuth has an interesting discussion of this
phenomenon.'? In the late 1960s, short object code
traces of code produced by the COBOL compiler
sometimes showed a measurable number of decimal
instructions. In recent years, this has become less
true; a number of factors account for this. Commer-
cial applications have become more diverse. Very
little decimal processing is required in an inventory
control application. More of the CPU cycles are now
concerned with data base, network, communication,
and screen formatting, all of which is systems-type
code and is often performed by some subsystem. As
the control program takes on more functions, it is
inevitable that there will be less decimal computa-
tion. Thus, there is an overall tendency for traces of
program execution to become like systems code.
With the exception of floating-point, it is very diffi-
cult to identify an instruction that is potentially
important, but only in a limited set of environments.
The existence of trace tapes tends to inhibit the
introduction of new instructions in existing architec-
tures. For example, will any newly proposed instruc-
tion be executed more frequently than the existing
Translate and Test instruction (0.001 percent)? It is
also a useful exercise for those proposing a new
architecture to construct hypothetical typical mixes.

We also considered execution time as opposed to
frequency. Obviously, the more complex the instruc-
tions, the greater the execution time. Time taken is
a function of a particular implementation, so we
cannot state general rules. However, one observation
has been that programmers and compilers some-
times choose a single operation that is relatively slow
in preference to a sequence of faster instructions.
For example, the average length of an operand of
the Move Characters (MVC) instruction that performs
storage-to-storage move on System/370 is less than
seven bytes. Thus there must be a number of one-,
two-, and four-byte moves. On virtually every Sys-
tem/370 implementation the Load-Store sequence
is considerably faster than MVC for short align moves.

The trace tapes also provide information to those
designing machines. For example, the frequency of
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Figure 1 General features of the System/360 design

Figure 2 General features of the experimentai 801 Reduced
Instruction Set Computer

storage-to-storage logical operations in one System/
370 trace is given in Table 2.

Why is the XC instruction used ten times more
frequently than NC or 0C? The explanation is that
an exclusive OR of a variable to itself provides a
means of setting storage to zero. Machine designers
can and do capitalize on this fact. Thus both oper-
ands that coincide run more than twice as fast as
operands that are disjoint. For those developing a
new architecture, the lesson may be to provide a fast
way to zero storage rather than providing storage-to-
storage logical operations.

Although many insights can be gained from trace
tapes, the important fact to the 801 project members
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was that, in practice, the simple instructions are the
most frequently used and in that sense are the most
important.

Considerations leading to the 801 experiment

In 1975, when the 801 experiment project began,
most System/370 machines were implemented with
a cache and microstore, as shown in Figure 1. The
cache had been introduced to provide faster access
to main storage, that is, to bring the speed of memory
more in line with that of the cpuU. The CPU fetched
instructions from the cache and interpreted them on
the basis of a microprogram in the microstore. An
average System/370 instruction might take 20 or 30
microinstructions. Neither the cache nor the micro-
store is part of System/370 architecture, but perhaps
they provide an architectural opportunity. The cache
and microstore could be, and often are, implemented
in the same technology. Consider why the frequently
executed first-level-interrupt handler (FLIH) and the
task dispatcher are executed out of the cache,
whereas decimal divide is executed out of microstore.
One approach is to make key system facilities into
high-level, complex machine instructions that are
executed out of the microstore. This has the advan-
tage of permitting the chosen functions to be imple-
mented faster because the microinstructions can
each be executed in a single cycle. Because the FLIH
and dispatcher are implemented primarily with sim-
ple operations that have a direct counterpart in
microcode, there is a potential for a 20-to-1 improve-
ment in performance. Further gains may be realized
by reducing traffic to main storage, because the
microstore has a separate path to the CPU. Perhaps
even more instructions might be designed to exploit
this advantage. Such instructions reflect the design
of the system software and the requirements of com-
piler writers. As more specialization is introduced, it
1s inevitable that the microstore will become larger.
Eventually it may be necessary to make it writable
and page it like the cache, using some least recently
used (LRU) replacement scheme.

But why do we permit only the microcoders to access
the microstore; can it be made available to all? If we
do, there will be a new interface with many of the
same properties of our current computer architec-
ture. As more microcode is written, there will be a
need for microcode compilers. Such questions as
whether the microcode compilers have an option to
do subscript range checking will have to be answered.
The microcode instruction interface will have to be
precisely defined to enhance portability to protect a
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Figure 3 Idealized data flow in the experimental 801 Reduced Instruction Set Computer
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large investment in microcode. Great care will have
to be taken to ensure that it is safe, easy to use, and
a good target for compilers. Because good perform-
ance is obtained by using microcode, the perform-
ance problems of many users will have to be in the
hands of the microcoders. The 801 group chose a
different approach to a solution. An architecture was
specified that would not—as System/370 does—
tacitly assume an implementation in microcode.

The assumed 801 experimental system design is
shown in Figure 2. In the architecture, the only built-
in instructions are those that can be implemented in
a single cycle, with the simple sort of CPU that was
used to interpret the System/370 instruction set. The
microstore has been exchanged for an instruction
cache. Figure 3 gives an idealized data flow for such
a machine. Such an approach provides a pervasive
performance improvement for all executions of the
simple instructions that the trace tapes have shown
to be most frequent. The overall system design of
Figure 2 also provides advantages over the micro-
code implementation in Figure 1. By providing sep-
arate data and instruction caches, the bandwidth to
memory is potentially doubled. One of the problems
encountered with traditional cache architectures is
that the 1/0 is run through the cache. Thus the 1/0
activity tends to fill up the cache. The experimental
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801 architecture, by running 1/0 directly to memory,
tends to increase the memory bandwidth even fur-
ther. Notice that the chief justification for the cache
and microstore in Figure 1 was to reduce memory
traffic; the 801 solution is an improvement upon
this.

There is a disadvantage with this split-cache ap-
proach. What happens if an instruction is fetched
into the instruction cache and, while there, its main-
storage reflection is copied into the data cache and
modified? This is an example of the need for cache
synchronization. Input-output has a similar prob-
lem. In practice, nobody modifies instructions; thus,
the 801 approach is to abandon the practice. How-
ever, there are some programs that must construct
programs. Loaders are the most conspicuous exam-
ple. The 801 experimental architecture makes the
notion of a cache explicit; those programs that con-
struct programs must issue instructions to synchro-
nize the caches. The vast majority of programs need
never be concerned with cache synchronization, but
its use is required in a few areas of the system for
programs to function correctly. The 801 requires
software synchronization. In the light of current
software practice, this imposes a modest burden on
a very few systems programs in return for a substan-
tial improvement in the price/performance ratio.
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Having specified the 801 architecture with the tacit
assumption that an implementation will have a split
cache, we do not believe that we have unduly re-
stricted the freedom of implementers. Both a cache

A shifting of responsibility between
hardware and software was
recognized by the 801
experimenters.

and noncache implementation of an 801 must cope
with the fact that storage operations and branches
are inherently slower than register operations. We
first describe how the 801 architecture ameliorates
this and then consider why registers are faster. The
basic idea with loads is to use the arithmetic and
logical unit (ALU) to compute the effective address
in one cycle. This effective address is then sent out
to the memory subsystem. In order to avoid the cost
of examining page tables in memory, most memory
subsystems maintain a hardware look-aside that
maps recently used virtual addresses to real memory.
This is called a translation look-aside buffer (TLB).
As TLB miss ratios of under two percent are common,
we concentrated on the 98 percent of references that
hit the TLB. The memory system would be given the
real address by the TLB and fetches would be given
the data from memory. After dispatching the ad-
dress, the CPU locks the target register of the load
and proceeds to execute the next instruction(s), un-
less they use the target register, in which case the
CPU waits until the load is complete. For this strategy
to be effective, compilers and assembly-language
coders must arrange instructions to ensure a maxi-
mum of overlap. Notice that even instructions of
very modest complexity would inhibit this process.
Suppose it is desired to add X in storage to register
RX, and add Y to register RY. Assuming that it takes
two cycles to get to the storage data, which are
presumed to be in the cache, and one cycle to do the
operation, on System/370 we would have the follow-
ing code:
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A RX.X 2 cycles to fetch
1 cycle to add
A RY)Y 2 cycles to fetch

1 cycle to add

6 cycles total

On the experimental 801, the code would be the
following:

L RO,X 2 cycles to fetch
L RLY 1 cycle not overlapped
ARXRX.R0 ( cycles

(overlaps previous load)
ARY.RY,Rl 1

4 cycles total

Although the 801 code has more instructions, it runs
faster. Of course, one can adopt similar strategies on
System/370. The experimental 801 solution is sim-
pler in hardware. It does require that the compiler
writers make the effort to schedule instructions, as
such local rearrangement of code is called. It is
possible, at considerable cost in hardware (not mi-
crocode), to dynamically rearrange the components
of the multifunction instructions during execution
to achieve the 801-type overlap. The trouble with
this kind of solution is that, even if one can afford
the hardware, complexity has its own price, and the
ultimate result of many such solutions is a slower
basic cycle. If the cost of a more complex implemen-
tation is an increase 1o 11 levels of logic from 10 due
to chip crossings or such considerations, then the
machine is 10 percent slower overall and this was
done for 6 percent storage to register computational
operations. The requirement to schedule instructions
1s an example of a shifting of responsibility between
hardware and software that was recognized by the
801 experimenters, even though it is never explicitly
mentioned in the architecture.

It is now appropriate to examine why a cache is
inherently slower than registers. Access to a cache
requires two sets of translation. First, the effective
virtual page must be converted to a real page by
accessing the TLB. Then the memory subsystem must
determine whether the cache line within the page is
also within the cache. Such lookups are normally
done by hashing the address and doing a comparison.
(On some architectures the cache can be kept virtual,
which permits the cache lookup to be done in parallel
with the TLB lookup.) Further complications occur
because misses and storage key violations are possi-
ble. In general, the construction of a memory sub-
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system is highly complex. A good summary of im-
plementation techniques is provided in Reference
14. The complexity of accessing a cache can be
contrasted with accessing a register, the name of
which is in the instruction itself. In a properly archi-
tected machine, it is possible to begin fetching both
register operands before the operation has been de-
coded. If a register operand is not needed, it can be
discarded. The key architectural requirement is al-
ways to place the source register names in the same
positions within the instruction format. The exist-
ence of instruction formats that permit great varia-
bility in the placement of register names is one of
the major barriers to improving performance on
some machines. In general, register access is so sim-
ple that it is feasible to fetch two operands out in a
single cycle. In the idealized 801 in Figure 3, there
are three paths out of the register file. This permits
the CPU to do all its work for a store in one cycle,
although the memory subsystem may consume more
cycles. The quantity to be stored can be fetched as
well as the base and index registers, which are added
to compute the effective address. There are also two
paths into the register file. The first is for normal
results from the ALU. The second permits the result
of a load to be returned to its target register in the
same cycle as a register-to-register operation. With
three outputs and two inputs, a register file can be
viewed as having five times the bandwidth of a cache,
and there is no need to go through a virtual-to-real
translation and cache lookup.

Branches are also inherently slower than pure register
operations. When instruction execution is sequen-
tial, it is relatively easy for the CPU to overlap the
execution of the current instruction with the fetch of
the next, but a taken branch interrupts this process.
Some larger machines keep branch history tables to
predict branches. However, the 801 provides an ar-
chitectural alternative to assist the implementers.
The basic idea is to define a companion operation
for every branch instruction that executes the next
(subject) instruction in parallel with the branch.
These are called “execute branches” on the 801 and
“delayed branches” on the Berkeley RISC. As the
outcome of the branch cannot depend on the results
of the subject instruction, the implementer can de-
sign hardware to overlap execution of the branch
and the subject instruction.

Such hardware is not as complex as that required for
branch overlap on high-performance machines, but
it is far from simple. The chief complications result
from cache and TLB misses on the branch itself, the
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Table 3 Effect of execute branches on one hundred average
instructions using two cycles

Case with No Execute Branches

Instruction Number of Cycles per Total
Type Instructions Instruction  Cycles
Branches 20 2 40
Storage 30 2 60
Register 50 1 50
Total 150

Case with Execute Branches

Instruction Number of Cycles per  Total
Type Instructions Instruction  Cycles
Branches 5 2 10
Execute branches 15 2 30
Storage 20 2 40
Storage (subject
instructions) 10 0 0
Register 45 1 45
Register (subject
instructions) 5 0 _0
Total 125

subject instruction, and the branch target. It is inter-
esting to do a quick analysis to determine the poten-
tial value of this type of branch. We assume two
cases: A taken branch costs (a) two cycles and (b)
five cycles. This bounds the problem for high-per-
formance cache machines and simple machines
without caches. We assume the same distribution of
instructions in each case. Consider the case of the
two-cycle cache first in Table 3, which assumes that
three quarters of all branches can be converted to
execute form. Of these, two thirds cover storage
operations, and the rest cover register operations. As
can be seen in Table 3, this set of assumptions
provides a 10 percent performance improvement.
The 18 percent saving obtained on the cacheless
implementation shown in Table 4 is even more
dramatic. The assumptions behind these improve-
ments can be questioned. In particular, the average
storage instruction may take less time because of
overlap. One can also question the mix, or whether
three quarters of the branches can be converted to
execute form and whether two thirds of the subject
instructions will be storage operations. However, for
a wide range of reasonable assumptions, execute
branch seems to be very cost-effective. It is common
for those designing machines to invest great effort to
obtain performance improvements of less than one
percent, and here we see a potential gain of 10 to 18

Horkins 113




Table 4 Effect of execute branches on one hundred average
instructions

Case with No Execute Branches

Instruction Number of Cycles per Total
Type Instructions Instruction Cycles
Branches 20 5 100
Storage 30 S 150
Register 50 1 50
Total 300

Case with Execute Branches

Instruction Number of Cycles per  Total
Type Instructions Instruction  Cycles

Branches 5 ) 25
Execute branches 15 5 75
Storage 20 5 100
Storage (subject

instructions) 10 0 0
Register 45 1 45
Register (subject

instructions) 5 0 _0
Total 245

percent. There is, however, a software price to be
paid. The compiler writers will have to produce
execute branches. One way to do this is as follows.
In the compiler phase that rearranges code to maxi-
mize overlap on loads, an attempt is made to move
a suitable instruction next to each branch. Final
assembly then flips the branch with the previous
instruction if there is no interdependence. In practice
great care may have to be taken. Consider the code
that typically closes an iterative loop:

Al RI,RI,1  BumpRI
Cl R1,100  Test if limit exceeded
BLE LOOP Branch on low or equal

Given such a sequence, it may not be possible to
find a suitable subject instruction.

Under the right circumstances, the code can be
reordered and the loop-closing instruction altered to
test for inequality as follows:

Cl R1,100  Test if limit reached
Al R1,R1,1  Bump R1
BNE LOOP Branch not equal

Final assembly can then flip the Al and the BNE to
produce the following sequence:

Cl R1,100
BNEX LOOP
Al RLRI1
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Notice that there must be a form of add that does
not set the condition code for this to work. Such
details are extremely important.

This transformation is not the end. Consider the
following standard loop in C that does a storage-to-
storage move:

while (*t++="*s++);

For those who do not read C, this statement moves
a string of characters located by the pointer s to the
storage located by the pointer t, one byte at a time,
terminating when a zero byte is moved. In the proc-
ess, the pointers t and s are incremented on each
iteration of the loop. The following is some code
produced by the PL8 compiler in Yorktown, with
somewhat idealized cycle counts on the right:

LOOP LCS RO,0(RS) 5
INC RS, ! 1
STCS RO,0(RT) 5
CIS R0O,0 1
BNZX LOOP 5
INC RT,1 0

17 total cycles

On the surface, it may seem that it is impossible to
improve this code. However, the store character
instruction can be made the subject of the BNzZX, as
follows:

LOOP LCS RO,0(RS) 5
INC RS,1 l
INC RT,1 l
CIs RO 1
BNZX LOOP 5
STC —0,~1(RT) 0

13 total cycles

The trick is to have the compiler move instructions
that modify the base address by a constant, altering
the displacement field to reflect the add. This trans-
formation provides a saving of almost 25 percent on
the most common idiom in C, and it is also used in
many similar situations.

The subject of execute  branches provides a good
example of the following range of considerations that
are pertinent to architectural decisions:

e Instruction frequencies

e Hardware implementation techniques in a variety
of situations
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e The way in which instructions are actually used,
including linguistic idioms

e Compiler design

¢ Details such as which instructions should set the
condition code

Having these kinds of data, the architect must eval-

uate whether a proposal such as branch and execute
is worth the inevitable hardware and software imple-

Except for loads, stores, and
branches, all the instructions can be
implemented to execute in one
cycle.

mentation problems, given the expected usage pat-
terns. Execute branches are a graphic example of the
partnership among hardware implementation, archi-
tecture, and compiler design that took place in the
experimental 801 project.

High-level function

The 801 experimental architecture provides a set of
primitive instructions. Except for loads, stores, and
branches, all the instructions can be implemented to
execute in one cycle on a simple implementation.
Now consider the function performed by more com-
plex operations, such as those that exist on System/
370.

Integer multiplication provides an example of the
variety of techniques used to implement high-level
function on the 801. We first assessed the extent of
the problem. Typical System/370 traces show that
all forms of integer multiply constitute less than 0.15
percent of all executions. Depending on the model,
it takes between five and thirty times as long to do a
multiply compared with a register add on System/
370. Considerable hardware is required to achieve
the lower number. In practice, it is often achieved
by doing integer multiply in a very expensive float-
ing-point unit. The most economical way to imple-
ment multiply is to have a 2-by-32-bit microcode
multiply step instruction. The System/370 multiply
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instruction is then implemented by executing 16
such operations in microcode.

The experimental 801 architecture provides a mul-
tiply step instruction in its instruction repertoire.
The control program provides a multiply subroutine
that is shared by all users. It consists of 16 consecu-
tive multiply-step instructions. By software conven-
tion, the multiplier and multiplicand are passed, and
the product is returned in registers. To the extent
that multiply is frequently used, the code is in the
cache; thus, the proportional time is roughly the
same as that of the microcoded System/370 imple-
mentations, even if we include linkage costs. This
should not be a surprise, because the same work is
being done. An important difference is that the mi-
crostore and multiply-step instruction are only avail-
able to the microcoder, whereas on the 801 the
instruction cache and multiply-step instruction are
available to all. Suppose there is a problem that
requires only a 12-bit multiplier. In this case, it is
possible to write a 12-bit multiply subroutine, which
remains in the cache to the extent that it is used.
Such a routine can be further specialized to handle
negative operands in special ways and to check
ranges. In effect, the programmer can define his own
variations on multiply, and it is difficult to see why
they should perform very differently than a micro-
coded routine in the same technology. It is even
possible to put multiply-step instructions in line,
providing the effect of in-line microcode.

In practice, many multipliers are constants derived
from subscript calculations. Most compilers convert
multiplies by power-of-two shifts to the left. On the
experimental 801-type machines, it is common prac-
tice to convert all constant multipliers to a series of
shifts, adds, and subtracts. In practice, it is rare to
require more than three or four instructions, so that
it may be possible to exceed the performance of an
expensive high-speed multiply unit for most cases.

In practice, both compilers and human coders try to
reduce the number of costly instructions. One ex-
ample is to have the compilers do strength reduction.
This is a compiler optimization that replaces multi-
plies that result from subscript calculations with
adds. Consider the following program fragment:

declare
x(0:100) character (50);
do i =0 to 100;
ifx(iy=y  then
leave;
end do i;
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As each element of the array x takes fifty bytes, a
reference to x(¢) requires multiplying i by fifty. The
process of strength reduction introduces an auxiliary
variable i’, which is set to zero at the beginning of
the loop and incremented by 50 on each iteration,
eliminating the need for a multiply. Such optimiza-
tions apply to the experimental 801 as well as to
more complex machines. Their tendency is to reduce
the benefit that might be obtained by having complex
operations.

Partly because of the lack of high-level instructions
but also because the use of subroutines is so central
to much of good programming practice, a great deal
of attention has been given to providing efficient
linkage on the experimental 801. There are three
classes of branch and link instruction:

» Relative branching is used within a bound mod-
ule. A 32-bit instruction can generally be made to
accommodate 20 to 26 address bits. This estab-
lishes a maximum size for link-edited modules of
1 to 64 megabytes.

e An absolute branch is required to get to shared
supervisor routines, such as multiply or storage-
to-storage move. The address field of the instruc-
tion is of limited size, so such microcode routines
have to be located in the first few megabytes of
virtual memory.

e A branch and link can be done on the contents of
a register in situations in which the invoked rou-
tine 1s computed at run time.

The first two forms of Branch And Link (BAL) require
no load to link to a subroutine, a significant saving
given that BAL constitutes between 1 and 2 percent
of all instructions executed.

The number of available registers and how they are
used are central to the efficiency of linkage. Because
intermediate results are maintained in registers and
can be retrieved rapidly, it is a good idea to have a
fairly large number of registers. The number of bits
required to name a register in an instruction is an
architectural constraint, but there are usually also
technological limitations on the number of registers.
A system constraint is the necessity to save and
restore registers when there is a process switch. The
first experimental version of the 801 was built with
16 registers. Studies of code produced by the pL3
compiler showed that over 50 percent of all the
procedures in a large sample had some register spil/
code, which comprises the load and store instructions
that would not be required if there were more regis-
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ters. Because the technology made a 32-register ma-
chine possible, we decided to define the next exper-
imental 801 with 32 registers. Because more bits
were required to name the registers, this necessitated

Having a uniform instruction size
also simplifies, and thus speeds, the
process of instruction fetch.

going to a machine that had only 32-bit instructions.
The 801 prototype had 16- and 32-bit instructions.
Uniform instructions have advantages beyond per-
mitting more registers. It is possible to define all
register operations so that there is no need to destroy
one of the operands. Having a uniform instruction
size also simplifies, and thus speeds, the process of
instruction fetch. For example, there can never be
two cache misses when fetching an instruction.

Reference 12 gives a detailed description of linkage
and register conventions on a 16-register computer
chip known as Romp. We give a summary for a 32-
register machine. Up to six parameters are passed in
registers; the rest are passed in storage. Studies have
shown that most procedures have very few parame-
ters, which means that a called routine can usually
use the parameters directly in the registers, and the
caller need only go to storage if the value passed has
to be fetched. For languages like FORTRAN, which do
calls by reference, parameters are pointers to the
argument. For languages like C that have value
parameters, the actual values are passed in registers.
These six registers and perhaps a few more will be
assumed to be destroyed over a call. One register is
dedicated to pointing to the stack frame, and it may
be necessary to dedicate another register to a process
communication area or similar region of storage.
Thus, there are about 20 registers that must be
preserved over each procedure call, whereas about
ten may be altered. A routine that alters only the
first ten registers need not save any registers. Para-
doxically, having more registers in the hardware can
mean fewer saves. With this approach it is possible
to have very simple linkage for simple subroutines.
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Figure 4 C-language loop to do a storage-to-storage move

while (*t++ =
return;

*g++);

Object code for Romp

51 000000 %6
5] 000000 LCS 4003

5| 000002 INC 9131

51 000004 INC 9121

51 000006 CIs 9400

51 000008 BNBX 89AF FFFC

51 00000C STC DEQ2 FFFF

7! 000010 BNBR E88F

LCS r0,SMEMORY+*s(r3)
INC r3,r3,1

INC r2,r2,l1

CIS cr,r0,0

BFX cr,b26/eq, %6

STC r0, SMEMORY+*t~1(r2)
BFR 24,115

Figure 4 shows the pL8 code for a subroutine that
does the C storage-to-storage move on the Romp
processor. There is no prologue, and the epilogue is
a branch register. More complex programs and the
requirements of different languages necessitate more
linkage instructions, but it is important that this cost
be incremental. The 801 approach, unlike the intro-
duction of powerful complex operations, permits
specialization to what i1s required in a particular
situation. There is no need to do extra work. Note
that there is a tacit assumption here that most linkage
code is to be constructed by compilers. Conventions
that have many options are just too hard for hand
coders.

The experimental 801 does not have load-multiple
or store-multiple instructions. It uses a subroutine to
save and restore registers. The save routine consists
of a series of stores into consecutive words and can
be entered at any point so that only the required
registers are saved. From a performance point of
view, this is similar to the situation that exists on
System/370 with store- and load-multiple instruc-
tions. Those instructions usually have a fixed over-
head for start-up that is roughly proportional to the
BAL and BR required in the subroutine prologue. In
addition, it is possible to bundle other functions
related to linkage in the register-save routine. Bump-
ing the stack pointer and testing for stack overflow
are examples.

The 801 has a simple data flow. The following two
examples show that it is still possible to have pow-
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erful instructions by capitalizing on the available
hardware.

Load and store instructions have an update or auto-
increment form. The idea behind this is that once
the CPU has computed the effective address of a load
or a store, the updated effective address can be
returned to the register file. Such instructions are
particularly useful in loops that traverse arrays or
strings, and no new hardware is required. On other
computers, with auto-increment, pre- and post-in-
crement forms are sometimes provided. That is, the
addition is done either before or after the address is
sent to the memory bus. Post-increment requires
another set of wires to send the contents of the base
register directly to the memory. This additional hard-
ware does not seem to be worth the slight conve-
nience of alternative formats.

Storage-to-storage move consumes a lot of computer
time. A reasonable guess on System/370 is 2 percent
of the executions and 10 percent or more of the time,
if MVC and MVCL are both included. On the experi-
mental 801, short moves are done with in-line loads
and stores, but long moves require a subroutine. If
both the source and target are aligned on a word
boundary, which is quite common, a table consisting
of a series of update loads and stores can move the
data at the speed of the memory bus. Unaligned
moves can be done at the same rate by exploiting
the shifter-rotater. The idea is to introduce a version
of the store instruction that takes the quantity to be
stored and rotates it by the difference in alignment
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between the source and target. Bits shifted out on
the right are saved in an internal CPU register for the
next store; those saved from the previous store are
combined with the quantity to be stored. Thus the
central part of the storage-to-storage move loop con-
sists entirely of a sequence of update load and rotate-
update-store instructions, and this sequence can pro-
ceed as fast as the bus. Of course, this requires a

The suitability of the experimental
801 as a target for compilers was a
primary consideration.

number of instructions to initialize the loop. The
existence of shift-and-rotate-type instructions pro-
vides most of the functionality to implement this
otherwise exotic instruction.

A target for compilers

The suitability of the experimental 801 as a target
for compilers was a primary consideration. On the
surface, one might expect that compiler writers
would want a machine that was close to the high-
level language. However, a machine with basic in-
structions is better suited to optimization techniques.
The most important are code motion out of loops
and the elimination of redundant computations.
Suppose a program contains a reference to x(i, j). If
optimization is done separately on each of the ad-
dressing components, the fact that one of the com-
ponents cannot be optimized need not affect the
others. If the above reference occurs in a do loop on
i, the load of base of the variable x as well as the
load and multiply of j may be moved out of the loop.
Newer languages are characterized by complex ad-
dressing paths, often involving descriptors. By pro-
ducing the straightforward code to access such vari-
ables and then performing standard optimizations,
the compiler can produce good object code. If in-
structions are complex, any variation in one of the
operands inhibits the movement or elimination of
the instruction. This subject is covered more fully in
References 12 and 14.
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A number of details make the 801 approach more
effective as a target for compilers. Condition code has
always been troublesome. To reflect the source lan-
guages, one might like to have a relational operator
that produces a zero or a one in a register. The
problem is that compare is basically a subtract, and
construction of the boolean value has to be done
very late in the cycle. There is a real danger that the
materialization of zero or one in a register may
lengthen the basic ALU cycle. Thus it seems best to
retain the condition register, which is well suited to
its primary use in branching. It also lets one avoid
repeating compares—if a three-way choice is made
among high, low, and equal—as in a binary search.
It is especially important to restrict the instructions
that set the condition code. If loads and stores set
the condition code, it may be very difficult to insert
register-spill code. The scheduling of loads and exe-
cute branches can also be constrained by instructions
that set the condition register. Finally, it is important
that it be possible to easily fetch and restore the
contents of the condition register.

It is very desirable to have a set of immediate instruc-
tions that contain the operand rather than fetching
it from a register. It is not necessary to provide full
32-bit versions, because most constants that actually
occur can be defined in 16 bits. The CPU extends
these short constants to a full 32 bits by using zeros,
ones, or sign bits. If a constant cannot be represented
in 32 bits, it has to be loaded from storage or
manufactured at execution time. The latter is pref-
erable, and, for this purpose, it is desirable to have a
version of load address that shifts the immediate
value left by 16 bits. Immediate instructions are
heavily used.

The 801 has base-plus-signed-displacement and
base-plus-index forms of loads and stores. Studies
have shown that it is rare on System/370 to use the
base, index, and displacement, all in one instruction.
Thus the experimental 801 is not designed with
hardware implementing a three-input adder that is
rarely used.

Local program addressability should be relative. Per-
haps 2 percent of System/370-executed instructions
are concerned with establishing, saving, or restoring
addressability to the program. An adequate set of
immediate operations makes it unnecessary to have
an instruction relative-addressing mode for data.

Many high-level languages have rules that can be
policed only at run time. Because enforcement is
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normally costly, most compilers make such checking
optional, and it is customary to do without checking
during production. This situation has been likened
to that of a sailor who uses his life vest only during
drills, going without it during the hurricane. To make
software checking more economical, the 801 pro-
vides instructions that compare the contents of a
register with an immediate value or another register.
A trap is taken if the test is satisfied. These trap
operations can be subjected to the same sort of
optimization as is applied to other computations.
Thus the number of trap instructions can be reduced,
and, when they must be executed, the cost is about
the same as that of a register add. Traps are one of
the ways that a low-level machine can encourage
high-level languages and such good software engi-
neering practice as run-time checks during produc-
tion.

From the compiler writer’s point of view, the exper-
imental 801 is attractive because it is regular. Many
decisions are simplified because it always pays to
replace two register operations with one. However,
it is difficult to obtain an objective measure of regu-
larity. For example, the 801 has only three of the 16
possible boolean operations. This is an irregularity,
but it is simply not worthwhile to provide them all,
because most are seldom used and the compiler can
construct them when they occur using, at most, two
instructions. The 801 is a good target for compilers
because most of the computations implied by high-
level language constructs are variations on address-
ing code. In practice, computers spend most of their
time locating data which in turn locate other data.
Such computation is facilitated by full 32-bit ad-
dressing, many registers, and instructions that can
leave the operands intact. The key to efficiency seems
to be reuse. Efficient subroutine linkage is also of
utmost importance.

Future uses of hardware

How should computer architects respond to declin-
ing hardware costs? From one point of view, the
experimental 801 is an expensive machine. It has a
full 32-bit single-cycle ALU and shifter. There are 32
general-purpose registers, each 32 bits wide, with
three output and two input ports to the register file.
Internal buses are all 32 bits wide. Externally, the
801 presents 32 address bits and data bits to the
memory-management unit, These are all expensive
items and many have been left out of machines with
more complex instruction sets.
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Because all instructions are 32 bits, the object code
for an 801 program is sometimes a little larger than
that of System/370. This shows up most on small

One of the lessons of the 801
experiment may be that the best
way to implement a large system is
to concentrate on the simpler
instructions.

procedures that do not use 32 registers. An average
code expansion seems to be about 20 percent more
than System/370 for the same high-level language
program. In most cases, this is not significant because
data misses in the storage hierarchy are much more
frequent than instruction misses. If misses are a
problem, the size of the instruction cache can be
increased, which is a good use for hardware.

In the future, the largest improvements in perform-
ance will probably come about through improving
the memory hierarchy. On-chip caches and TLB are
an obvious way to speed execution, because they
attack the fundamental problem of the performance
of the storage system. Wider data paths to memory
might also improve performance. For example, the
ability to load and store two registers might reduce
the overhead associated with call and return, if there
were a 64-bit-wide path to memory. Besides work
on CPU architecture, the 801 effort at Yorktown has
also explored a new memory hierarchy.'* This is not
the place to describe this work, but it is interesting
to note some of its characteristics because it sheds
light on the uses of hardware. Basically, it is an
attempt to share files that are directly mapped into
a user’s virtual address space. Because the 32-bit
address space is not enough, segment registers are
introduced in the memory-management unit. Be-
cause sharing at the page level would result in too
many deadlocks, 16 lock bits are provided for each
TLB entry. This permits locking, journaling, and
recovery on each 128 bytes of storage in a file. A lot
of hardware is required to implement this. The
Romp CPU is smaller than the memory-management
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unit. This cost is justified because the functions
performed are very important, and a software solu-
tion would require a great deal of overhead. Notice,
though, that the hardware does not have to do the
entire job. It is enough to give an interrupt on
reference to a locked page; systems software can do
the rest, as is the case with virtual memory.

One of the lessons of the 801 experiment may be
that the best way to implement a large system is to
concentrate on the simpler instructions. Thus, there
are proposed implementations of more complex ar-
chitectures that hardwire all the simple, frequently
occurring operations and trap on the rest—that is,

Increased parallelism is an attractive
way to circumvent the constraints
imposed by current technology.

implement them in software. The success of such an
approach has not been proved and will depend partly
on human coders changing their habits to treat future
systems more like an 801.

Increased parallelism is an attractive way to circum-
vent the constraints imposed by current technology.
The introduction of an asynchronous floating-point
coprocessor undoubtedly speeds many scientific ap-
plications. The frequency of floating-point arithme-
tic in such applications, the increased performance
from specially designed hardware, and the ability to
execute 1n parallel provides ample justification.
Combining many simple 801s or similar processors
may prove to be an efficient way to achieve large-
scale parallelism. A word of caution should be raised
here, as there have been many failed or only margin-
ally successful attempts to do this. The problem lies
with the software, not the hardware.

Concluding remarks

The basic 801 approach was conceived by John
Cocke; however, one can trace the notions much
further back. In 1951, at the dawn of the computer
age, Alan Turing suggested to Christopher Strachey,

120 Hopkins

then a mathematics teacher at Harrow School, that
it would be an interesting exercise to simulate one
computer on another. Strachey duly wrote a program
to simulate the Manchester ACE computer on itself.
After a night of debugging he was able to demon-
strate that his simulator was able to execute the
program that played God Save The King on the
hooter, albeit very slowly.'® This was an early graphic
demonstration that all computers are logically equiv-
alent. It was certainly not an accident that the prob-
lem was suggested by Turing, who had mathemati-
cally demonstrated the equivalence of all computers
fifteen years earlier. If all computers are logically
equivalent, on what basis can the architect make
sensible choices when designing the instruction set
interface that is implemented by engineers and seen
by programmers?

The development of new computer architectures has
been driven by many factors. Hardware cost, per-
formance, and reliability have always been impor-
tant considerations, but other factors have also been
taken into account from the very beginning. In 1947,
John Mauchly wrote about EDVAC, “A decision must
be made as to which operations shall be built in and
which are to be coded into instructions. . . . Ultimate
choice must depend upon the analysis by the de-
signer of the character of the work to be performed
by the machine, the frequency of the occurrence of
operations, and the ease with which the non-built-in
operations can be compounded from those which
are built in.”'” The 801 emphasis on simple instruc-
tions is just a restatement of this old wisdom. Pro-
gramming has long been recognized as a bottleneck.
After all, Turing hired Strachey on the basis of his
ability to check out a large program in a single
overnight session. Apart from hiring talented pro-
grammers, what can be done about programming?
The issue is truly complex, because today most pro-
gramming is done in high-level language. Thus, the
exact nature of the computer should concern only
the compiler writers, but programmers will use a
high-level language only if the compiler produces
object code of adequate quality. How diligently must
the compiler writer work? What is “adequate?”

The 801 project experiment can be viewed as an
attempt to answer these questions in the light of
current technology. The microcode approach arose
in IBM because it seemed necessary to produce a
uniform product line. In 1963, there were many
different architectures in the product line, each with
exotic features geared to the perceived needs of par-
ticular users. Read-only storage provided the means
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to implement a compatible family of machines with
a wide range of cost, while at the same time retaining
the same sort of instructions. Increased reliance on
high-level language programming tended to under-
cut the argument for high-level operations based on
ease of programming. Also, the introduction of
caches provided the opportunity to trade the micro-
store—which was available only to microcoders—
for an instruction cache available to all. The exist-
ence of trace tapes showing actual instruction exe-
cution demonstrated the importance of hardwiring
the simple operations and cast doubt on the eco-
nomic value of complex operations.

There is no single novelty among the 801/RISC con-
cepts. If anything, they reflect enduring values that
clearly go back to the first computers, incorporating
the few great ideas that have been developed since
then, which include virtual memory and caches. As
a research vehicle, the 801 experiment has served as
a reminder that hardware is never free, that simplic-
ity is sometimes best, and that a fresh look at existing
ideas such as virtual memory and caches can repay
big dividends.
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