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From the earliest  days  of computers until the early 
1970s, the trend in computer architecture was toward 
increasing complexity. This complexity revealed  itself 
through the introduction of new instructions that 
matched the application areas. Microcode was  an  im- 
plementation technique that greatly facilitated this 
trend; thus, most computers were  implemented using 
microcode. In 1975, work began  at the Thomas J. 
Watson  Research  Center on an experimental minicom- 
puter. This project, termed the 801 project, questioned 
the trend toward complexity in computer architecture. 
It was  observed that most of the complex instructions 
were  seldom  used. Thus, a computer could be  de- 
signed with only simple instructions without drastically 
increasing the path length or  number  of instructions 
required to implement  an application. This  made it pos- 
sible to implement a machine without resorting to mi- 
crocode, which improved  performance.  This  paper  de- 
scribed the background and evolution of these  ideas in 
the context of the 801 experimental  minicomputer proj- 
ect. 

C omputers are unlike other tools in that they are 
truly general-purpose instruments.  The inter- 

face seen by an airline ticket agent is that of a 
machine  that makes airline reservations. A secretary 
sees a text-editing machine. To the applications pro- 
grammer, who uses a high-level language like FOR- 
TRAN or COBOL, the  computer is a FORTRAN or 
COBOL machine. However, the assembly language 
programmer  and compiler writer see the underlying 
machine architecture, an IBM System/370, a DEC 
VAX, or some  other  instruction set. 

A computer architecture is an abstract description of 
a machine; interest in computer architectures tran- 
scends any particular machine. Thus, there can be 
many models of System/370 or VAX, all of which 
can execute the  same program. Because performance 

is so important,  computer  architecture is always 
done with a particular set  of implementation tech- 
niques in  mind. Register files,  buses, and adders have 
similar properties in a wide variety of realizations, 
and  implementation techniques such as parallel op- 
erations have wide applicability. The details of the 
various realizations may also influence the architect’s 
decisions. For example, the architect may have to 
specify what happens in the case  of a parity error, an 
event that does not occur on a purely abstract ma- 
chine. On the  other side of the architectural interface, 
the architect must cater to the needs of those who 
construct programs. This paper examines some is- 
sues in computer architecture in  the light  of an 
experimental processor known as  the 801/~1sC (re- 
duced instruction set computer). 

Background. Because they lacked clear criteria, com- 
puter architects between 1946 and 1975 tended to 
specify ever more complex systems, as hardware 
capability increased and  the tools used for design 
became more powerful. The  computers acquired 
more instructions, more addressing modes, more 
data types, and more special features. The experience 
of IBM is not very different from that of the rest of 
the industry in this respect. The IBM Type 701  was 
introduced early in the 1950s. It was truly minimal, 
because any complexity would  have reduced relia- 
bility. Floating-point arithmetic was done with sub- 
routines. By the  time  the IBM Type 704 was intro- 
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Table 1 Ten  most-used  instructions  in a typical  instruction 
mix 

Operation 
Code 

Instruction 
Name Total Executions 

Percentage of 

BC  Branch 20.16 
L  Load  word 
TM 

15.49 
Test under  mask 6.06 

ST Store  word 
LR 

5.88 
Load  register to register 4.70 

LA Load  effective  address 4.04 
LTR  Load and test  register 3.78 
BCR  Branch on register 2.69 

LH 
MVC Move characters 2.10 

Load half word 1.88 

duced in the  mid-l950s, it had instructions that 
performed floating-point arithmetic. Providing float- 
ing-point arithmetic by an instruction as opposed to 
a subroutine offered no new function. However, 
performance improved in two ways: (1) The new 
engine had circuitry to perform efficiently  floating- 
point functions such as normalization that required 
many basic  cycles on a 701. (2) By performing the 
high-level operation entirely in the CPU, the transfer 
of instructions between memory and  the CPU was 
reduced. 

This notion of adding new instructions tailored to 
the expected application became a guiding principle 
of computer architecture. By the early  1960s, IBM 
was producing families  of computers oriented to 
their expected application area. The IBM Type 7090 
was the scientific and engineering successor to the 
704. It had fixed-word binary and floating-point 
instructions, whereas the 7080  had  variable-length 
decimal arithmetic  and edit instructions suited to 
commercial work. By this time, much programming 
was being done in  high-level  languages like FORTRAN 
and COBOL. Both machines had FORTRAN and COBOL 
compilers. Unfortunately, there were no systematic 
methods of comparing architectures. However, an- 
ecdotal evidence suggested that  the 7090 actually 
executed commercial applications faster than  the 
7080,  even though both machines used the same 
circuit technology. Nobody examined this situation, 
perhaps because  software and  the portability of  cus- 
tomer applications were deemed to be problems of 
higher priority that urgently required solutions. 

The solution was System/360, a machine that coa- 
lesced  all applications. The technology to implement 
a machine with many diverse instructions was pro- 
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vided  by  very  fast  read-only  storage that permitted 
the economical implementation of microcode.' This 
ushered in a new era of machines with a great 
diversity  of instructions. In addition, fundamental 
improvements were made in the  treatment of the 
memory hierarchy. Virtual memory was introduced 
on  the System/360 Model 67 and caches on  the 
Model 85. The general direction of both architecture 
and implementation was toward greater complexity. 

In  1975 the 801 project was started at  the IBM 
Thomas J. Watson Research Center. (The project 
was so named because the Research Center is  Build- 
ing Number 80 1 .) Our intention was to re-examine 
the  trend toward complexity. The 801 was to be a 
hardware and software  system. Almost all program- 
ming would be done in a high-level  language. The 
goal  was to discover  how to deliver the most com- 
puting power at  the lowest  cost in an environment 
geared to programmer productivity. A prototype ver- 
sion of the 801 was built and system  software was 
written. This included a compiler known as the 
P L . ~ , ~ - ~  which became a tool and a means of studying 
the effectiveness  of the 801 architecture. Projects 
with similar goals  have also been pursued at  the 
University of California at Berkeley and  at Stanford 
University.6 This architectural point of view has 
become known as RISC, from Paterson's Berkeley 
Reduced Instruction Set Computer (RISC) com- 
puter.',* 

The term RISC nicely captures the spirit of research 
into  the premise that less is better. The various 
aspects of architecture addressed in the 801 project 
are discussed in References 9 and 10. However, our 
goal  was not  to have the fewest  possible instructions, 
but to simplify the machine's data flow to make the 
basic instructions run faster.  Also, we had observed 
that mechanisms such as virtual memory and caches 
had been separately introduced on System/370, and 
we thought that this project might discover whether 
a more consistent and efficient implementation 
might be possible if a fresh start were taken. Ade- 
quacy to implement a broad spectrum of  high-level 
languages  efficiently  was  also a concern. This paper 
examines the reasoning that led to  the experimental 
801 architecture.'' Many of the lessons learned dur- 
ing the project have  been incorporated into  Romp, 
the CPU for the IBM Personal Computer RT." 

Systern/360  instruction  traces 

An illuminating insight into  computer architecture 
was provided by the first instruction traces on Sys- 
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tem/360. The motivation was to perform an exper- 
iment  to  determine  an optimal geometry for the 
cache on what would become the Model 85. How- 
ever, the  determination of frequency of instruction 
usage  was a natural by-product. It is  easy to see that 
most instructions on a machine with about 200 
instructions will  be executed very infrequently. It 
came as a surprise, however, that load, store, branch, 
and a few simple register operations almost com- 
pletely dominated  the mix of instructions. The  ten 
instructions that ranked highest  in percentage of total 
instructions executed are given in Table 1. 

Together these ten instructions capture two thirds of 
all instructions executed, a discovery that raises  sev- 
eral questions. If storage-to-register add  and  add 
logical are  not  among  the  top ten, is it worthwhile 
to have instructions  that combine the two relatively 
basic functions of fetching a value from storage and 
then performing an arithmetic or logical operation? 
System/370 has a comprehensive set of instructions 
that fetch one operand from storage and  the  other 
from a register and  put  the result of the operation 
back into  the register. Together these instructions, 
which include add, subtract, compare, AND, OR, and 
exclusive OR, constitute less than 6.5 percent of all 
executions. Also consider other complicated instruc- 
tions. Load multiple and store multiple together 
account for 2.4 percent of all executions. Integer 
multiply is 0.1 15 percent, and divide is 0.1 1 1 percent 
of all executions. The loop-closing operations BXLE 
and BXH are 0.066 percent. With the exception of 
the instructions pack and convert to decimal (0.008 
percent), the decimal and edit instructions are  not 
represented on this trace. 

We then considered how representative of the range 
of actual customer environments this trace might 
have  been.  If small snapshots are taken, differences 
based on  the application and compiler or on  the 
human coder who wrote the program can certainly 
be seen. There are scientific traces for which  you can 
almost see the code for the  inner loop of matrix 
multiply as produced by a particular FORTRAN com- 
piler. In general, scientific program traces look a 
little different from others. In extreme cases,  they 
may  have 10 percent or more floating-point instruc- 
tions. There may be other differences, such as signif- 
icantly fewer of the  instructions associated  with link- 
age-BAL (Branch And Link), for example. How- 
ever, it is surprising how often scientific programs 
spend most of their time doing integer calculations. 
In many cases, a large proportion of their execution 
seems to be spent in the  input/output  and formatting 
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Table 2 Example  trace  results  for  storage-to-storage  logical 
operations on System/870 

Operation  Frequency  of Use 

NC AND 0.050 
0.058 

XC exclusive OR 0.555 

routines. Knuth has an interesting discussion of this 
phen~menon.’~ In the late 1960s, short object code 
traces of code produced by the COBOL compiler 
sometimes showed a measurable number of decimal 
instructions. In recent years, this has become less 
true; a number of factors account for this. Commer- 
cial applications have become more diverse.  Very 
little decimal processing is required in  an inventory 
control application. More of the CPU cycles are now 
concerned with data base, network, communication, 
and screen formatting, all of which  is  systems-type 
code and is often performed by some subsystem. As 
the control program takes on more functions, it is 
inevitable that there will  be  less decimal computa- 
tion. Thus, there is an overall tendency for traces of 
program execution to become like systems code. 
With the exception of floating-point, it is very  diffi- 
cult to identify an instruction that is potentially 
important,  but only in a limited set  of environments. 
The existence of trace tapes tends to inhibit the 
introduction of  new instructions in existing architec- 
tures. For example, will any newly proposed instruc- 
tion be executed more frequently than  the existing 
Translate and Test instruction (0.001 percent)? It is 
also a useful  exercise for those proposing a new 
architecture to construct hypothetical typical mixes. 

We also considered execution time as opposed to 
frequency. Obviously, the more complex the instruc- 
tions, the greater the execution time. Time taken is 
a function of a particular implementation, so we 
cannot state general  rules.  However, one observation 
has been that programmers and compilers some- 
times choose a single operation that is relatively  slow 
in preference to a sequence of faster instructions. 
For example, the average  length of an operand of 
the Move Characters (MVC) instruction that performs 
storage-to-storage move on System/370 is  less than 
seven  bytes. Thus there must be a number of one-, 
two-, and four-byte moves. On virtually every Sys- 
tem/370 implementation the Load-Store sequence 
is considerably faster than MVC for short align  moves. 

The trace tapes also provide information  to those 
designing machines. For example, the frequency of 
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Figure 1 General  features of the SystemRBO design 

Figure 2 General  features of the  experimental 801 Reduced 
Instruction  Set  Computer 

storage-to-storage  logical operations in one System/ 
370 trace is  given in Table 2. 

Why is the xc instruction used ten times more 
frequently than NC or OC? The explanation is that 
an exclusive OR of a variable to itself provides a 
means of setting storage to zero. Machine designers 
can and  do capitalize on this fact. Thus  both oper- 
ands  that coincide run more than twice as fast  as 
operands that  are disjoint. For those developing a 
new architecture, the lesson  may  be to provide a fast 
way to zero storage rather than providing storage-to- 
storage  logical operations. 

Although many insights can be gained from trace 
tapes, the  important fact to  the 80 1 prqject members 

was that, in practice, the simple instructions are the 
most frequently used and  in  that sense are  the most 
important. 

Considerations  leading  to  the 801 experiment 

In  1975,  when the 801 experiment project began, 
most System/370 machines were implemented with 
a cache and microstore, as shown  in  Figure  1. The 
cache had been introduced to provide faster access 
to main storage, that is, to bring the speed  of memory 
more in line with that of the  CPU.  The CPU fetched 
instructions from the cache and interpreted them on 
the basis of a microprogram in  the microstore. An 
average System/370 instruction might take 20 or 30 
microinstructions. Neither the cache nor the micro- 
store is part of System/370 architecture, but perhaps 
they provide an architectural opportunity. The cache 
and microstore could be, and often are, implemented 
in the same technology. Consider why the frequently 
executed first-level-interrupt handler (FLIH) and  the 
task dispatcher are executed out of the cache, 
whereas decimal divide is executed out of microstore. 
One approach is to make key system  facilities into 
high-level, complex machine instructions that  are 
executed out of the microstore. This has the advan- 
tage  of permitting the chosen functions to be imple- 
mented faster  because the microinstructions can 
each  be executed in a single  cycle.  Because the FLIH 
and dispatcher are implemented primarily with sim- 
ple operations that have a direct counterpart in 
microcode, there is a potential for a  2040- 1 improve- 
ment in performance. Further gains may be  realized 
by reducing traffic to main storage, because the 
microstore has a separate path to  the CPU. Perhaps 
even more instructions might  be  designed to exploit 
this advantage. Such instructions reflect the design 
of the system software and  the requirements of com- 
piler writers. As more specialization is introduced, it 
is inevitable that  the microstore will become larger. 
Eventually it may  be  necessary to make it writable 
and page it like the cache, using some least recently 
used (LRU) replacement scheme. 

But why do we permit only the microcoders to access 
the microstore; can it be made available to all?  If  we 
do, there will  be a new interface with many of the 
same properties of our  current  computer architec- 
ture. As more microcode is written, there will  be a 
need for microcode compilers. Such questions as 
whether the microcode compilers have an option to 
do subscript range checking will have to be answered. 
The microcode instruction interface will have to be 
precisely defined to  enhance portability to protect a 
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Figure 3 Idealized  data flow in the  experimental 801 Reduced  Instruction  Set  Computer 
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large investment in microcode. Great care will have 
to be taken to ensure  that it is  safe,  easy to use, and 
a good target for compilers. Because  good perform- 
ance is obtained by using microcode, the perform- 
ance problems of many users will have to be in the 
hands of the microcoders. The 801 group chose a 
different approach  to  a  solution. An architecture was 
specified that would not-as System/370 does- 
tacitly assume an implementation in microcode. 

The assumed 801 experimental system design  is 
shown in Figure 2.  In the architecture, the only built- 
in instructions  are those that  can be implemented in 
a single  cycle, with the simple sort of CPU that was 
used to interpret  the System/370 instruction set. The 
microstore has been exchanged for an  instruction 
cache. Figure 3 gives an idealized data flow for such 
a machine. Such an  approach provides a pervasive 
performance improvement for all executions of the 
simple instructions  that  the trace tapes have shown 
to be most frequent. The overall system design of 
Figure 2 also provides advantages over the micro- 
code implementation in Figure 1. By providing sep- 
arate  data  and  instruction caches, the bandwidth to 
memory is potentially doubled. One of the problems 
encountered with traditional cache architectures is 
that  the 110 is run through the cache. Thus the I/O 
activity tends to fill up the cache. The experimental 

80 1 architecture, by running I/O directly to memory, 
tends to increase the memory bandwidth even fur- 
ther. Notice that  the chief justification for the cache 
and microstore in Figure 1 was to reduce memory 
traffic; the 801 solution is an improvement  upon 
this. 

There is a disadvantage with this split-cache ap- 
proach. What happens if an instruction is fetched 
into  the  instruction cache and, while there, its main- 
storage reflection is copied into  the  data cache and 
modified? This is an example of the need for cache 
synchronization. Input-output has a similar prob- 
lem. In practice, nobody modifies instructions; thus, 
the 801 approach is to abandon  the practice. How- 
ever, there are  some programs that  must  construct 
programs. Loaders are the most conspicuous exam- 
ple. The 801 experimental architecture makes the 
notion of a cache explicit; those programs that  con- 
struct programs must issue instructions to synchro- 
nize the caches. The vast majority of programs need 
never  be concerned with cache synchronization, but 
its use  is required in a few areas of the system for 
programs to function correctly. The 801 requires 
software synchronization. In  the light of  current 
software practice, this imposes a modest burden on 
a very  few systems programs in return for a substan- 
tial improvement in the price/performance ratio. 
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Having specified the 801 architecture with the tacit 
assumption  that an implementation will have a split 
cache, we do not believe that we have unduly re- 
stricted the freedom of implementers. Both a cache 

A shifting of responsibility  between 
hardware  and  software was 

recognized by the 801 
experimenters. 

and noncache implementation of an 80 1 must cope 
with the fact that storage operations  and branches 
are inherently slower than register operations. We 
first describe how the 801 architecture ameliorates 
this  and  then consider why  registers are faster. The 
basic idea with loads is to use the  arithmetic  and 
logical unit (ALU) to  compute the effective address 
in one cycle. This effective address is then  sent out 
to the  memory subsystem. In order to avoid the cost 
of examining page tables in  memory, most memory 
subsystems maintain  a hardware look-aside that 
maps recently used virtual addresses to real memory. 
This is called a translation look-aside buffer (TLB). 
As TLB miss ratios of under two percent are  common, 
we concentrated on the  98 percent of references that 
hit the TLB. The memory system would be  given the 
real address by the TLB and fetches would be given 
the  data from memory. After dispatching the ad- 
dress, the CPU locks the target register  of the load 
and proceeds to execute the next instruction(s), un- 
less they use the target register,  in  which  case the 
CPU waits until  the load is complete. For this strategy 
to be  effective, compilers and assembly-language 
coders must arrange instructions to ensure a maxi- 
mum of overlap. Notice that even instructions of 
very modest complexity would inhibit  this process. 
Suppose it is desired to  add X in storage to register 
RX, and  add Y to register RY. Assuming that  it takes 
two  cycles to get to the storage data, which are 
presumed to be  in the cache, and  one cycle to  do the 
operation, on System/370 we would have the follow- 
ing code: 
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A RX,X 2 cycles to fetch 

A RY,Y 2 cycles to fetch 
1 cycle to  add 

1 cycle to add 

6 cycles total 

On the experimental 801, the code would be the 
following: 

L RO,X 2 cycles to fetch 
L R1,Y 1 cycle not overlapped 
A RX,RX,RO 0 Cycles 

(overlaps previous load) 
A RY.RY,Rl 1 

4 cycles total 

Although the  80 1 code has more instructions, it runs 
faster. Of course, one  can  adopt similar strategies on 
System/370. The experimental 801 solution is sim- 
pler in hardware. It does require that  the compiler 
writers make  the effort to schedule instructions, as 
such local rearrangement of code is called. It is 
possible, at considerable cost in hardware (not mi- 
crocode), to dynamically rearrange the  components 
of the multifunction  instructions  during execution 
to achieve the 801-type overlap. The  trouble with 
this kind of solution is that, even if one can afford 
the hardware, complexity has its own price, and  the 
ultimate result of many such solutions is a slower 
basic  cycle. If the cost of a  more complex implemen- 
tation is an increase to 1 1 levels  of  logic from 10 due 
to  chip crossings or such considerations, then  the 
machine is 10 percent slower overall and  this was 
done for 6 percent storage to register computational 
operations. The  requirement to schedule instructions 
is an example of a shifting of responsibility between 
hardware and software that was  recognized  by the 
80 1 experimenters, even though it is never explicitly 
mentioned in the architecture. 

It is  now appropriate to examine why a cache is 
inherently slower than registers.  Access to a cache 
requires two sets of translation. First, the effective 
virtual page must be converted to a real  page  by 
accessing the TLB. Then  the memory subsystem must 
determine whether the cache line within the page  is 
also within the cache. Such lookups are normally 
done by hashing the address and  doing  a comparison. 
(On some architectures the cache can be kept virtual, 
which permits  the cache lookup to be done in parallel 
with the TLB lookup.)  Further complications occur 
because  misses and storage key violations are possi- 
ble. In general, the construction of a memory sub- 
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system  is  highly complex. A good summary of im- 
plementation techniques is provided in Reference 
14. The complexity of  accessing a cache can be 
contrasted with  accessing a register, the name of 
which  is in the instruction itself. In a properly archi- 
tected machine, it  is  possible to begin  fetching both 
register operands before the operation has been de- 
coded. If a register operand is not needed, it can be 
discarded. The key architectural requirement is  al- 
ways to place the source register names in the same 
positions within the instruction format. The exist- 
ence of instruction formats that permit great varia- 
bility in the placement of register names is one of 
the major barriers to improving performance on 
some machines. In general, register  access  is so sim- 
ple that it  is  feasible to fetch two operands out in a 
single  cycle.  In the idealized 801 in Figure 3 ,  there 
are three paths out of the register  file. This permits 
the CPU to  do all its work for a store in one cycle, 
although the memory subsystem may consume more 
cycles. The  quantity  to be stored can be  fetched as 
well as the base and index registers,  which are added 
to  compute  the effective address. There are also two 
paths into  the register file. The first is for normal 
results from the ALU. The second permits the result 
of a load to be returned to its target register in  the 
same cycle as a register-to-register operation. With 
three outputs  and two inputs, a register file can be 
viewed as having five times the bandwidth of a cache, 
and there is no need to go through a virtual-to-real 
translation and cache lookup. 

Branches are also inherently slower than pure register 
operations. When instruction execution is sequen- 
tial, it  is  relatively  easy for the CPU to overlap the 
execution of the  current instruction with the fetch of 
the next, but  a taken branch interrupts this process. 
Some larger machines keep branch history tables to 
predict branches. However, the 801 provides an ar- 
chitectural alternative to assist the implementers. 
The basic idea is to define a companion operation 
for every branch instruction that executes the next 
(subject) instruction in parallel  with the branch. 
These are called “execute branches” on  the 801 and 
“delayed branches” on  the Berkeley RISC. As the 
outcome of the branch cannot depend on the results 
of the subject instruction, the implementer can de- 
sign hardware to overlap execution of the branch 
and  the subject instruction. 

Such hardware is not as complex as that required for 
branch overlap on high-performance machines, but 
it is far from simple. The chief complications result 
from cache and TLB misses on  the branch itself, the 

IBM SYSTEMS JOURNAL,  VOL 26, NO 1.1987 

Table 3 Effect of execute  branches  on  one  hundred  average 
instructions  using  two  cycles 

Case  with  No  Execute  Branches 
Instruction  Number of Cycles  per Totel 

Type  Instructions  Instruction  Cycles 

Branches 20 2 40 
Storage 30 2 60 
Register 50 1 - 50 
Total I50 

Case  with  Execute  Branches 
Instruction  Number of Cycles per Total 

Type  Instructions  Instruction  Cycles 

Branches 5 2 10 
Execute  branches  15 2 30 
Storage 20 2 40 
Storage  (subject 

instructions) 10 0 0 
Register  45 1 45 
Register  (subject 

instructions)  5 0 0 
Total 125 

.__ 

subject instruction, and  the branch target. It is inter- 
esting to  do a quick analysis to determine the poten- 
tial  value of this type of branch. We assume two 
cases: A taken branch costs (a) two cycles and  (b) 
five  cycles. This bounds  the problem for high-per- 
formance cache machines and simple machines 
without caches. We assume the same distribution of 
instructions in each case. Consider the case  of the 
two-cycle cache first in Table 3 ,  which assumes that 
three quarters of all branches can be converted to 
execute form. Of  these,  two thirds cover storage 
operations, and  the rest  cover  register operations. As 
can  be  seen in Table 3 ,  this set of assumptions 
provides a 10 percent performance improvement. 
The 18 percent saving obtained on the cacheless 
implementation shown in Table 4 is  even more 
dramatic. The assumptions behind these improve- 
ments can be questioned. In particular, the average 
storage instruction may take less time because of 
overlap. One  can also question the mix, or whether 
three quarters of the branches can be converted to 
execute form and whether two thirds of the subject 
instructions will  be storage operations. However, for 
a wide  range  of reasonable assumptions, execute 
branch seems to be  very  cost-effective. It is common 
for those designing machines to invest great effort to 
obtain performance improvements of  less than  one 
percent, and here we  see a potential gain of 10 to 18 



Table 4 Effect of execute  branches  on  one  hundred  average 
instructions 

Case  with  No  Execute  Branches 
Instruction  Number of Cycles per Total 

Type  Instructions  Instruction  Cycles 

Branches 20 5 100 
Storage 30 5  150 
Register 50 1 50 
Total 300 

- 

Case  with  Execute  Branches 
Instruction Number of Cycles  per  Total 

Instructions  Instruction  Cycles Type 

Branches 5  5  25 
Execute branches 15 5 75 
Storage 20 5 100 
Storage (subject 

instructions) 10 0 0 
Register 45 1 45 
Register  (subject 

instructions) 5 0 0 
Total 245 

- 

percent. There is, however, a software price to be 
paid. The compiler writers will have to produce 
execute branches. One way to  do this is as follows. 
In the compiler phase that rearranges code to maxi- 
mize overlap on loads, an  attempt is made to move 
a suitable instruction next to each branch. Final 
assembly then flips the branch with the previous 
instruction if there is no interdependence. In practice 
great care may have to be taken. Consider the code 
that typically  closes an iterative loop: 

AI RI,RI,I Bump R1 
CI R I ,  loo Test if limit exceeded 
BLE LOOP Branch on low or equal 

Given such a sequence, it may not be possible to 
find a suitable subject instruction. 

Under  the right circumstances, the code can be 
reordered and  the loop-closing instruction altered to 
test for inequality as follows: 

CI ~ 1 , 1 0 0  Test if limit reached 
AI RI,RI,I Bump R1 
BNE LOOP Branch not equal 

Final assembly can then flip the AI and the BNE to 
produce the following sequence: 

CI R1,100 
BNEX LOOP 
AI RI,RI,I 

Notice that there must be a form of add that does 
not set the condition code for this to work. Such 
details are extremely important. 

This transformation is not  the  end. Consider the 
following standard loop in C that does a storage-to- 
storage move: 

while (*t++=*s++); 

For those who do not read C, this statement moves 
a string of characters located by the  pointer s to  the 
storage located by the pointer t, one byte at  a time, 
terminating when a zero byte  is moved. In the proc- 
ess, the pointers t  and s are incremented on each 
iteration of the loop. The following  is some code 
produced by the PL.8 compiler in Yorktown, with 
somewhat idealized cycle counts  on  the right: 

LOOP LCS  RO,O(RS) 5 
INC RS,I 1 
STCS  RO,O(RT) 5 

BNZX LOOP 5 
INC RT,1 0 

CIS RO,O 1 

- 
17 total cycles 

On the surface, it  may  seem that it  is impossible to 
improve this code. However, the store character 
instruction can be made  the subject of the BNZX, as 
follows: 

LOOP LCS  RO,O(RS) 5 
INC RS,1 1 
INC RT,1 1 
CIS R0,O 1 
BNZX LOOP 5 
STC -0,-I(RT) 0 

- 
13 total cycles 

The trick is to have the compiler move instructions 
that modify the base address by a  constant, altering 
the displacement field to reflect the add. This trans- 
formation provides a saving of almost 25 percent on 
the most common idiom in C, and it is also used in 
many similar situations. 

The subject of execute- branches provides a good 
example of the following range of considerations that 
are pertinent to architectural decisions: 

Instruction frequencies 
Hardware implementation techniques in a variety 
of situations 
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The way in which instructions are actually used, 

Compiler design 
Details such as which instructions should set the 
condition code 

including linguistic idioms 

Having these kinds of data,  the architect must eval- 
uate whether a proposal such as branch and execute 
is  worth the inevitable hardware and software imple- 

Except for loads,  stores,  and 
branches,  all  the  instructions  can be 

implemented  to  execute  in  one 
cycle. 

mentation problems, given the expected usage pat- 
terns. Execute branches are a graphic example of the 
partnership among hardware implementation, archi- 
tecture, and compiler design that  took place in the 
experimental 80 1 project. 

High-level function 

The 801 experimental architecture provides a set  of 
primitive instructions. Except  for loads, stores, and 
branches, all the instructions can be implemented to 
execute in one cycle on a simple implementation. 
Now consider the function performed by more com- 
plex operations, such as those that exist on System/ 
370. 

Integer multiplication provides an example of the 
variety of techniques used to implement high-level 
function on  the 80 1. We  first  assessed the extent of 
the problem. Typical System/370 traces show that 
all forms of integer multiply constitute less than 0.15 
percent of all executions. Depending on  the model, 
it takes between five and thirty times as long to do a 
multiply compared with a register add on System/ 
370. Considerable hardware is required to achieve 
the lower number. In practice, it  is often achieved 
by doing integer multiply in a very  expensive  float- 
ing-point unit. The most economical way to imple- 
ment multiply is  to  have a 2-by-32-bit microcode 
multiply step instruction. The System/370 multiply 

IBM SYSTEMS JOURNAL,  VOL  26.  NO 1.1987 

instruction is then implemented by executing 16 
such operations in microcode. 

The experimental 801 architecture provides a mul- 
tiply step instruction in its instruction repertoire. 
The control program provides a multiply subroutine 
that is shared by all  users. It consists of 16 consecu- 
tive multiply-step instructions. By software conven- 
tion, the multiplier and multiplicand are passed, and 
the product is returned in registers. To the extent 
that multiply is frequently used, the code is in the 
cache; thus, the proportional time is  roughly the 
same as that of the microcoded System/370 imple- 
mentations, even if  we include linkage costs. This 
should not be a surprise, because the same work  is 
being done. An important difference  is that  the mi- 
crostore and multiply-step instruction are only avail- 
able to  the microcoder, whereas on the 801 the 
instruction cache and multiply-step instruction are 
available to all. Suppose there is a problem that 
requires only a 12-bit multiplier. In this case, it is 
possible to write a 12-bit multiply subroutine, which 
remains in the cache to  the extent that it  is  used. 
Such a routine can be further specialized to handle 
negative operands in special ways and  to check 
ranges. In effect, the programmer can define  his  own 
variations on multiply, and it is  difficult to see  why 
they should perform very  differently than  a micro- 
coded routine in the same technology. It is  even 
possible to  put multiply-step instructions in line, 
providing the effect  of in-line microcode. 

In practice, many multipliers are constants derived 
from subscript calculations. Most compilers convert 
multiplies by power-of-two  shifts to  the left. On  the 
experimental 80 1 -type machines, it  is common prac- 
tice to convert all constant multipliers to  a series  of 
shifts, adds, and subtracts. In practice, it is rare to 
require more than three or four instructions, so that 
it may  be  possible to exceed the performance of an 
expensive  high-speed multiply unit for most cases. 

In practice, both compilers and  human coders try to 
reduce the  number of costly instructions. One ex- 
ample is to have the compilers do strength reduction. 
This is a compiler optimization that replaces multi- 
plies that result from subscript calculations with 
adds. Consider the following program fragment: 

declare 

do i = 0 to 100; 

leave; 

x(0: 100) character (50); 

if x ( i )  = y then 

end do i; 



As each element of the array x takes fifty bytes, a 
reference to x ( i )  requires multiplying i by  fifty. The 
process of strength reduction introduces an auxiliary 
variable i’, which  is  set to zero at  the beginning of 
the loop and incremented by 50 on each iteration, 
eliminating the need for a multiply. Such optimiza- 
tions apply to the experimental 801 as well as to 
more complex machines. Their tendency is to reduce 
the benefit that might be obtained by having complex 
operations. 

Partly because  of the lack of high-level instructions 
but also because the use of subroutines is so central 
to much of good programming practice, a great deal 
of attention has been  given to providing efficient 
linkage on the experimental 801. There  are three 
classes of branch and link instruction: 

Relative branching is  used within a bound mod- 
ule. A 32-bit instruction can generally be made to 
accommodate 20 to 26 address bits. This estab- 
lishes a maximum size for link-edited modules of 
1 to 64 megabytes. 
An absolute branch is required to get to shared 
supervisor routines, such as multiply or storage- 
to-storage move. The address field of the instruc- 
tion is  of limited size, so such microcode routines 
have to be located in  the first few megabytes of 
virtual memory. 
A branch and link can be done on the  contents of 
a register in situations in which the invoked rou- 
tine is computed  at run time. 

The first two forms of Branch And Link (BAL) require 
no load to link to a subroutine, a significant  saving 
given that BAL constitutes between 1 and 2 percent 
of all instructions executed. 

The  number of available registers and how they are 
used are central to  the efficiency  of  linkage.  Because 
intermediate results are maintained in registers and 
can be retrieved rapidly, it is a good idea to have a 
fairly  large number of registers. The  number of bits 
required to  name a register in an instruction is an 
architectural constraint, but there are usually also 
technological limitations on  the  number of registers. 
A system constraint is the necessity to save and 
restore registers  when there is a process switch. The 
first experimental version  of the 801 was built with 
16 registers. Studies of code produced by the P L . ~  
compiler showed that over 50 percent of all the 
procedures in a large sample had some register spill 
code, which comprises the load and store instructions 
that would not be required if there were more regis- 
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ters. Because the technology made a 32-register ma- 
chine possible, we decided to define the next exper- 
imental 801 with 32 registers.  Because more bits 
were required to  name  the registers, this necessitated 

Having  a  uniform  instruction size 
also  simplifies,  and  thus  speeds,  the 

process of instruction  fetch. 

going to a machine that  had only 32-bit instructions. 
The 801 prototype had 16- and 32-bit instructions. 
Uniform instructions have advantages beyond per- 
mitting more registers. It is  possible to define  all 
register operations so that there is no need to destroy 
one of the operands. Having a uniform instruction 
size also simplifies, and  thus speeds, the process of 
instruction fetch. For example, there can never be 
two cache misses when fetching an instruction. 

Reference 12  gives a detailed description of linkage 
and register conventions on a 16-register computer 
chip known as Romp. We  give a summary for a 32- 
register machine. Up  to six parameters are passed in 
registers; the rest are passed in storage. Studies have 
shown that most procedures have  very  few parame- 
ters,  which means that a called routine can usually 
use the parameters directly in the registers, and  the 
caller need only go to storage if the value passed has 
to be fetched. For languages  like FORTRAN, which do 
calls by reference, parameters are pointers to  the 
argument. For languages  like C that have value 
parameters, the actual values are passed in registers. 
These six registers and perhaps a few more will be 
assumed to be destroyed over a call. One register  is 
dedicated to pointing to  the stack frame, and it may 
be  necessary to dedicate another register to a process 
communication area or similar region of storage. 
Thus, there are about 20  registers that must be 
preserved over each procedure call,  whereas about 
ten may be altered. A routine that alters only the 
first ten registers  need not save any registers. Para- 
doxically, having more registers in the hardware can 
mean fewer  saves. With this approach it is  possible 
to have  very simple linkage for simple subroutines. 
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Figure 4 C-language  loop  to do a  storage-to-storage  move 

while (kt++ = * s + + ) ;  
return; 

Object  code  for  Romp 

51 000000 
51 000000 L C S  
51 000002 I N C  
51 000004 I N C  
51 000006 C I S  
51 000008 B N B X  
51 O O O O O C   S T C  
71  000010 B N B R  

46: 
4003 L C  s rO,$MEMORY+*s(r3) 
9131 I N C  r3,r3,1 
9121 I N C  r2 , r2,l 
9400 C I S  cr , rO, 0 
89AF F F F C  B F X  cr,b26/eq,%6 
DE02 FFFF S T C  rO,$MEMORY+*t-l(r2) 
E88F BFR  24,r15 

Figure 4 shows the P L . ~  code  for a subroutine that 
does the C storage-to-storage  move  on the Romp 
processor. There is no prologue, and the epilogue  is 
a branch  register.  More  complex  programs and the 
requirements of  different  languages  necessitate  more 
linkage instructions, but  it  is important that  this  cost 
be incremental. The 80 1 approach, unlike the intro- 
duction of  powerful  complex  operations,  permits 
specialization to what  is  required in a particular 
situation. There is  no  need to do extra  work.  Note 
that there  is a tacit  assumption  here that most  linkage 
code  is to be  constructed by compilers. Conventions 
that have  many options are just too hard for hand 
coders. 

The experimental  801  does not have  load-multiple 
or store-multiple  instructions.  It uses a subroutine to 
save and restore  registers. The save routine consists 
of a series of stores into consecutive  words and can 
be  entered at any point so that only the required 
registers are saved.  From a performance point of 
view, this is  similar to the situation that exists  on 
System/370  with  store- and load-multiple  instruc- 
tions. Those instructions usually  have a fixed  over- 
head  for start-up that is  roughly proportional to the 
BAL and BR required  in the subroutine prologue.  In 
addition, it  is  possible to bundle other functions 
related to linkage  in the register-save  routine.  Bump- 
ing the stack  pointer and testing  for  stack  overflow 
are examples. 

The 801  has a simple data flow. The following  two 
examples  show that it  is  still  possible  to  have  pow- 
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erful instructions by capitalizing  on the available 
hardware. 

Load and store instructions have an update or auto- 
increment  form. The idea  behind  this  is that once 
the CPU has  computed the effective  address  of a load 
or a store, the updated  effective  address  can be 
returned to the register  file.  Such instructions are 
particularly  useful  in  loops that traverse  arrays or 
strings, and no new hardware  is  required.  On other 
computers,  with auto-increment, pre- and post-in- 
crement  forms  are  sometimes  provided. That is, the 
addition  is done either  before or after the address  is 
sent to the memory  bus.  Post-increment  requires 
another set  of  wires to send the contents of the base 
register  directly to the memory. This additional hard- 
ware does not seem to be worth the slight  conve- 
nience of alternative  formats. 

Storage-to-storage move consumes a lot of computer 
time. A reasonable  guess on System/370  is 2 percent 
of the executions and 10 percent or more of the time, 
if MVC and MVCL are both  included.  On the experi- 
mental 80 1, short  moves are done with  in-line  loads 
and  stores,  but  long  moves  require a subroutine, If 
both the source and target  are  aligned on a word 
boundary,  which  is quite common, a table  consisting 
of a series  of  update  loads  and  stores  can  move the 
data at the speed  of the memory  bus.  Unaligned 
moves  can  be done at the same  rate by exploiting 
the  shifter-rotater. The idea  is to introduce a version 
of the store instruction that takes the quantity to be 
stored and rotates  it by the difference in alignment 



between the source and target. Bits shifted out  on 
the right are saved in an  internal CPU register for the 
next store; those saved from the previous store are 
combined with the  quantity  to be stored. Thus  the 
central part of the storage-to-storage move loop con- 
sists entirely of a sequence of update load and rotate- 
update-store instructions, and this sequence can pro- 
ceed as fast as the bus.  Of course, this requires a 

The  suitability of the  experimental 
801 as a  target for compilers  was  a 

primary  consideration. 

number of instructions to initialize the loop. The 
existence of shift-and-rotate-type instructions pro- 
vides most of the functionality to implement  this 
otherwise exotic instruction. 

A target for compilers 

The suitability of the experimental 801 as a target 
for compilers was a primary consideration. On the 
surface, one might expect that compiler writers 
would want a machine that was close to  the high- 
level language. However, a machine with  basic in- 
structions is better suited to optimization techniques. 
The most important are code motion  out of loops 
and  the elimination of redundant computations. 
Suppose a program contains a reference to x( i, j ) .  If 
optimization is done separately on each of the ad- 
dressing components, the fact that  one of the com- 
ponents cannot be optimized need not affect the 
others. If the above reference occurs in a  do loop on 
i, the load  of  base of the variable x as well as the 
load and multiply o f j  may be  moved out of the loop. 
Newer  languages are characterized by complex ad- 
dressing paths, often involving descriptors. By pro- 
ducing the straightforward code to access  such  vari- 
ables and then performing standard optimizations, 
the compiler can produce good object code. If in- 
structions are complex, any variation in one of the 
operands inhibits the movement or elimination of 
the instruction. This subject is covered more fully in 
References 12 and 14. 

11 8 HOPKINS 

A number of details make  the 801 approach more 
effective as a target for compilers. Condition code has 
always  been troublesome. To reflect the source lan- 
guages, one might  like to have a relational operator 
that produces a zero or a  one in a register. The 
problem is that compare is basically a subtract, and 
construction of the boolean value has to be done 
very late in  the cycle. There is a real danger that  the 
materialization of zero or one in a register  may 
lengthen the basic ALU cycle. Thus it seems best to 
retain the condition register,  which  is well suited to 
its primary use in branching. It also lets one avoid 
repeating compares-if a three-way choice is made 
among high,  low, and equal-as in a binary search. 
It is  especially important  to restrict the instructions 
that set the condition code. If loads and stores set 
the condition code, it may be very  difficult to insert 
register-spill code. The scheduling of loads and exe- 
cute branches can also be constrained by instructions 
that set the condition register. Finally, it  is important 
that it  be  possible to easily  fetch and restore the 
contents of the condition register. 

It  is  very desirable to have a set of immediate instruc- 
tions that contain the  operand rather than fetching 
it from a register. It is not necessary to provide full 
32-bit versions,  because most constants that actually 
occur can be  defined in 16 bits. The CPU extends 
these short constants to  a full 32 bits by using  zeros, 
ones, or sign bits. If a constant cannot be represented 
in  32 bits, it has to be loaded from storage or 
manufactured at execution time. The latter is pref- 
erable, and, for this purpose, it  is desirable to have a 
version  of load address that shifts the immediate 
value  left by 16 bits. Immediate instructions are 
heavily  used. 

The 80 1 has base-plus-signed-displacement and 
base-plus-index forms of loads and stores. Studies 
have  shown that it is rare on System/370 to use the 
base, index, and displacement, all in one instruction. 
Thus  the experimental 801  is not designed  with 
hardware implementing a three-input adder that is 
rarely used. 

Local program addressability should be relative. Per- 
haps 2 percent of System/370-executed instructions 
are concerned with establishing, saving, or restoring 
addressability to  the program. An adequate set of 
immediate operations makes it unnecessary to have 
an instruction relative-addressing mode for data. 

Many high-level  languages  have rules that can be 
policed only at  run time. Because enforcement is 
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normally costly, most compilers make such checking 
optional, and it is customary to  do without checking 
during production. This situation has been likened 
to  that of a sailor who  uses  his  life  vest only during 
drills, going without it during  the  humcane. To make 
software checking more economical, the 801 pro- 
vides instructions that compare the  contents of a 
register  with an immediate value or  another register. 
A trap is taken if the test  is  satisfied. These trap 
operations can  be subjected to  the same sort of 
optimization as is applied to  other  computations. 
Thus  the  number of trap instructions can be reduced, 
and, when they must be executed, the cost is about 
the same as that of a register add.  Traps  are  one of 
the ways that  a low-level machine can encourage 
high-level  languages and such good software engi- 
neering practice as run-time checks during produc- 
tion. 

From  the compiler writer's point of  view, the exper- 
imental 801 is attractive because it is regular. Many 
decisions are simplified  because it always  pays to 
replace two register operations with one. However, 
it is  difficult to obtain an objective measure of regu- 
larity. For example, the 80 1 has only three of the 16 
possible boolean operations. This is an irregularity, 
but it is simply not worthwhile to provide them all, 
because most are seldom used and  the compiler can 
construct them when they occur using, at most, two 
instructions. The 801  is a good target for compilers 
because  most of the computations implied by high- 
level  language constructs are variations on address- 
ing code. In practice, computers spend most of their 
time locating data which in turn locate other  data. 
Such computation is facilitated by full 32-bit ad- 
dressing, many registers, and instructions that  can 
leave the operands intact. The key to efficiency  seems 
to be reuse. Efficient subroutine linkage  is  also of 
utmost importance. 

Future uses of hardware 

How should computer architects respond to declin- 
ing hardware costs? From  one point of  view, the 
experimental 801 is an expensive machine. It has a 
full  32-bit  single-cycle ALU and shifter. There are 32 
general-purpose registers, each 32 bits wide,  with 
three output  and two input ports to the register  file. 
Internal buses are all  32 bits wide. Externally, the 
801 presents 32 address bits and  data bits to  the 
memory-management unit. These are all expensive 
items and many have  been  left out of machines with 
more complex instruction sets. 
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Because  all instructions are 32 bits, the object code 
for an 801 program is sometimes a little larger than 
that of System/370. This shows up most on small 

One of the  lessons of the 801 
experiment  may be that  the  best 

way to implement  a  large  system  is 
to concentrate on  the  simpler 

instructions. 

procedures that do not use  32  registers.  An  average 
code expansion seems to be about 20 percent more 
than System/370 for the same high-level  language 
program. In most cases, this is not significant  because 
data misses in  the storage hierarchy are much more 
frequent than instruction misses.  If  misses are a 
problem, the size of the instruction cache can be 
increased, which is a good use for hardware. 

In the future, the largest improvements in perform- 
ance will probably come about through improving 
the memory hierarchy. On-chip caches and TLB are 
an obvious way to speed execution, because  they 
attack the  fundamental problem of the performance 
of the storage system. Wider data paths to memory 
might also improve performance. For example, the 
ability to load and store two registers  might reduce 
the overhead associated with call and  return, if there 
were a 64-bit-wide path to memory. Besides  work 
on CPU architecture, the 801 effort at Yorktown has 
also explored a new memory hierar~hy.'~ This is not 
the place to describe this work, but it is interesting 
to note some of its characteristics because it sheds 
light on  the uses  of hardware. Basically, it is an 
attempt  to share files that are directly mapped into 
a user's virtual address space.  Because the 32-bit 
address space is not enough, segment registers are 
introduced in the memory-management unit. Be- 
cause sharing at  the page  level  would  result in too 
many deadlocks, 16  lock bits are provided for each 
TLB entry. This permits locking, journaling, and 
recovery on each 128  bytes of storage in  a file. A lot 
of hardware is required to  implement this. The 
Romp CPU is smaller than  the memory-management 



unit. This cost  is justified because the functions 
performed are very important,  and  a software solu- 
tion would require a great deal of overhead. Notice, 
though, that  the hardware does not have to do the 
entire job.  It is enough to give an  interrupt on 
reference to  a locked  page; systems software can do 
the rest, as is the case  with virtual memory. 

One of the lessons of the 801 experiment may be 
that  the best way to  implement  a large  system  is to 
concentrate on  the simpler instructions. Thus, there 
are proposed implementations of more complex ar- 
chitectures that hardwire all the simple, frequently 
occumng operations and  trap on the rest-that  is, 

Increased  parallelism  is  an  attractive 
way  to  circumvent  the  constraints 
imposed by current  technology. 

implement them in software. The success  of such an 
approach has not been proved and will depend partly 
on  human coders changing their habits to  treat future 
systems more like an 80 1. 

Increased parallelism is an attractive way to circum- 
vent the constraints imposed by current technology. 
The  introduction of an asynchronous floating-point 
coprocessor undoubtedly speeds many scientific ap- 
plications. The frequency of floating-point arithme- 
tic in such applications, the increased performance 
from specially  designed hardware, and  the ability to 
execute in parallel provides ample justification. 
Combining many simple 801s or similar processors 
may prove to be an efficient way to achieve large- 
scale parallelism. A word  of caution should be  raised 
here, as there have  been many failed or only margin- 
ally  successful attempts  to do this. The problem lies 
with the software, not  the hardware. 

Concluding remarks 

The basic 801 approach was conceived by John 
Cocke;  however, one can trace the notions much 
further back. In  195 1, at the dawn of the  computer 
age,  Alan Turing suggested to Christopher Strachey, 
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then a mathematics teacher at Harrow School, that 
it would be an interesting exercise to simulate one 
computer on another. Strachey duly wrote a program 
to simulate the Manchester ACE computer  on itself. 
After a night of debugging  he was able to  demon- 
strate that his simulator was able to execute the 
program that played God Save The King on the 
hooter, albeit very slowly.’6 This was an early graphic 
demonstration that all computers  are logically equiv- 
alent. It was certainly not  an accident that  the prob- 
lem  was  suggested  by Turing, who had mathemati- 
cally demonstrated the equivalence of  all computers 
fifteen  years earlier. If all computers  are logically 
equivalent, on what  basis can the architect make 
sensible choices when  designing the instruction set 
interface that is implemented by engineers and seen 
by programmers? 

The development of new computer architectures has 
been driven by many factors. Hardware cost, per- 
formance, and reliability  have  always  been impor- 
tant considerations, but  other factors have also been 
taken into account from the very beginning. In 1947, 
John Mauchly wrote about EDVAC, “A decision must 
be made as to which operations shall  be built in and 
which are  to be coded into instructions. . . . Ultimate 
choice must depend upon the analysis by the de- 
signer of the character of the work to be performed 
by the machine, the frequency of the occurrence of 
operations, and  the ease  with  which the non-built-in 
operations can be compounded from those which 
are built in.””  The 801 emphasis on simple instruc- 
tions is just  a restatement of this old wisdom. Pro- 
gramming has long been recognized as a bottleneck. 
After all, Turing hired Strachey on the basis of  his 
ability to check out  a large program in a single 
overnight session. Apart from hiring talented pro- 
grammers, what can  be done  about programming? 
The issue  is truly complex, because today most pro- 
gramming is done in high-level language. Thus,  the 
exact nature of the computer should concern only 
the compiler writers, but programmers will  use a 
high-level  language only if the compiler produces 
object code of adequate quality. How diligently must 
the compiler writer work? What is “adequate?” 

The 801 project experiment can be  viewed as an 
attempt  to answer these questions in the light of 
current technology. The microcode approach arose 
in IBM because  it seemed necessary to produce a 
uniform product line. In 1963, there were many 
different architectures in  the product line, each  with 
exotic features geared to  the perceived needs of par- 
ticular users. Read-only storage provided the means 
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high-level  language programming tended to under- 
cut  the  argument for  high-level operations based on 
ease of programming. Also, the  introduction of 
caches provided the  opportunity  to trade the micro- 
store-which  was available only to microcoders- 
for an instruction cache available to all. The exist- 
ence of trace tapes showing actual instruction exe- 
cution demonstrated the importance of hardwiring 
the simple operations and cast doubt on the eco- 
nomic value of complex operations. 

There is no single  novelty among  the 8OI/RISC con- 
cepts. If anything, they  reflect enduring values that 
clearly  go  back to  the first computers, incorporating 
the few great ideas that have been developed since 
then, which include virtual memory and caches. As 
a research  vehicle, the 80 1 experiment has served as 
a reminder that hardware is  never  free, that simplic- 
ity  is sometimes best, and  that a fresh look at existing 
ideas such as virtual memory and caches can repay 
big dividends. 
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