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This  paper  is  intended to familiarize the reader with the 
many reasons for undertaking the design  and  imple- 
mentation of  peer networking  on  small  and  intermedi- 
ate business  machines  such  as  the  IBM Systeml36 
family.  Such  networking  function  was  recently an- 
nounced  as  IBM’s  Advanced  Peer-to-Peer  Networking 
(APPN) on Release 5 of the System/36. This paper  sets 
the stage for a companion  paper  in  this  same  issue, 
which  discusses  the  implementation  experience  and 
details of the Systeml36 APPN product. In the present 
paper, the history  of Systeml36 communication is first 
reviewed,  and  it  is  shown  how APPN  was a natural 
evolution  from  earlier  function.  Then  an  extensive 
study  of  user requirements that was  started  in 1982 is 
summarized.  The  paper  concludes  with a brief techni- 
cal tutorial  on the structure of the APPN design. 

I n  June 1986, IBM announced  a new concept in 
networking for small computers, called Advanced 

Peer-to-Peer  Networking (APPN). It was implemented 
on the business machines of the System/36 family,’ 
a series  of intermediate processors that have featured 
such distributed processing functions as remote 
logon, document distribution (SNA Distribution 
Services-sNms),* and Distributed Data Manage- 
ment ( D D M ) . ~  

Throughout  the APPN work, an attempt was made 
to understand and address the needs of  users  of small 
and intermediate systems, as contrasted with those 
of the users  of  large mainframe computers. The 
technical histories of the many different computer 
network variants were studied, customer needs  were 
analyzed, new algorithms and protocols for distrib- 
uted network control were developed, and perform- 
ance modeling and optimization studies were con- 

ducted, all for the purpose of defining the form of 
networking most suitable for intermediate machines 
in a low-cost,  high-ease-of-use environment.  The 
result was described earlier in an extended technical 
t~ to r i a l .~  

It  is the purpose of this paper to review these moti- 
vations for APPN and present a  summary of APPN 
functions, thus setting the stage for the detailed 
companion paper by Sultan et al. in this same issue.’ 

For purposes of introducing the reader to  APPN, it 
may  be described as a network design in which  ease 
of  use and simplicity were  achieved by (1) decentral- 
izing control so that each node maintains its own 
responsibility for membership in the network, (2) 
automating  the processes of directory lookup, route 
finding,  session bind, and congestion control in such 
a way as to make them as invisible as possible to 
users  of the network, and  (3) using network control 
and  data  transport algorithms that minimize control 
message overhead and maximize the robustness of 
the connection between end users. 

The clearest exposition of the  content of this design 
can be  given by dividing the operation of the network 
into five phases that take place in chronological 
order.4 These are 
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Figure 1 An APPN network  consisting of four  network nodes and two  end  nodes 

1. Connectivity services (cs) 
2. Directory services (DS) 
3. Route selection services (RSS) 
4. Session activation (ss) 
5 .  Data transport (DT) 

The first four of  these are what  might  be  called 
“transient” or “intermittent” functions, and are col- 
lectively  referred to as network control. They are 
physically  realized by interactions between the con- 
trol points that exist in every network node of the 
network. The last of the five is the “steady state” 
phase in which the network does useful  work for the 
users by transferring messages  between them. 
Roughly speaking, we can say that  data transport is 
realized in the lower  layers  of each node (up through 
the path control layers  of  Systems  Network Archi- 
tecture (SNA) and the transport layer  in Open Sys- 
tems Interconnection (OSI) parlance). As shown in 
Figure 1 (which will  be  discussed in detail later), 
there are two parts to  an APPN network, one being 
the set  of network nodes (NN,  to NN4), each capable 

of intermediate node routing, that collectively make 
up the backbone of the APPN network. The remain- 
der are end nodes, e.g., ENI  and EN2, that  cannot 
perform intermediate node function, but  must have 
this done for them by a network node. In practice, 
the end nodes will  be those elements of  lower com- 
munication function such as terminals or print serv- 
ers,  whose number is so large and whose perform- 
ance and storage capabilities are so modest that there 
is no point in including them in the backbone. Or 
they may be processors that are, for operational or 
organizational reasons, required to be  isolated from 
networking responsibilities. Although there therefore 
must be at least the two classes-NNs and ENS, it 
was considered unnecessary and undesirable to  add 
still more classes  of nodes and  thus  to produce a 
topology having further levels  of hierarchy. 

Imagine that a user at  an  end node ENI that is 
attached to a network node NN, enters a LOGON 
request for a session  with some application at some 
other node, and  that  the name of this target resource 
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(logical unit, LU) is known but its location, EN2, is 
not. In the preparatory connectivity services phase, 
the network node becomes part of the preexisting 
backbone if it was not already a member. This takes 
place by activating a  data link function with each 
neighbor (NNI to  NN2  and NN, to NN3),  and  then 
exchanging enough information between the new 
node’s control point and  the  other nodes’ control 
points for  every node of the newly enlarged backbone 
to have an updated view of the topology  of the 
backbone (which network node is connected to 
which). Thus, the addition of a new network node 
to  the network is a dynamic function. 

Direct0r.v services must now locate the particular 
network node which either has the target LU within 
itself or within one of its end nodes. It does so by 
systematically doing what the protocol literature calls 
“flooding” of the network  with  search  messages that 
are propagated outward from the requesting node 
until the LU is found. Next route selection  services in 
NN, computes a good route  to  that target node using 
an optimum-route-finding algorithm that operates 
on  the topology information that had been created 
during  the connectivity phase. Then  the BIND mes- 
sage that had been generated from the original 
LOGON request flows along that route to  the target 
LU at  the target node, and  a session  between the two 
is created. 

The final steady state data transfer phase takes ad- 
vantage of the fact that when the BIND flowed from 
source to target (and  the bind response RSP(BIND) 
flowed back along the same physical path),  a set  of 
tables had been latched into place in all the interven- 
ing nodes so that any subsequent message  belonging 
to  that same session  between those two end users 
follows  exactly the same path until the session  is 
taken down. During this data transfer phase,  special 
“adaptive pacing” congestion control measures are 
used that do not throw away  messages but also will 
never deadlock, partly in order that  the users will  be 
shielded from having to intervene to recover from a 
congestion situation. 

These are  the basic ideas behind the Advanced  Peer- 
to-Peer Networking design. The stimulus to formu- 
late and implement this form of networking grew 
out of the past history of IBM’S intermediate systems, 
out of requirements being  expressed by our cus- 
tomers and others, and from lessons learned from 
earlier network designs, particularly Systems Net- 
work Ar~hitecture.~.’  To set the stage for the accom- 
panying paper by Sultan et al., the remainder of this 

416 GREEN ET AL 

paper reviews the history of communications in IBM’S 
intermediate systems, indicates how analysis of user 
requirements and  the study of predecessor  designs 
led naturally to APPN, and presents a more detailed 
discussion of the five phases of operation. 

A brief  history  of  IBM  intermediate  systems 
communications 

In this section we summarize the history of the 
communication hardware and software for IBM’S in- 
termediate systems, beginning with the System/360 
Model 20  of the 1960s and culminating with the 

Communication  hardware of the 
early  processors  was  quite  limited. 

System/36 of the 1980s. It will be seen that before 
APPN became available in Release 5 of System/36, 
intermediate systems could talk to each other only 
directly over a point-to-point link. Also, the utiliza- 
tion of the available communication support en- 
tailed a significant  level of communication skills. 

Communication hardware of the early  processors 
was quite limited by today’s standards. The single 
binary synchronous communications (BSC) adapter 
of the System/360 Model 20 supported rates up  to 
9600 bit+, as did the multiple adapters of the 
System/3, but with an optional 56 Kbits/s feature. 
System/32 had single-line BSC or synchronous data 
link control (SDLC) support up  to 9600 bits/s. Sys- 
tem/34 provided either programmable single-line 
BSC or SDLC adaptors or a four-line adaptor (MLCA- 
Multiple Line Communication Adapter), both with 
speeds up  to 9600 bits/s, and  one of the four MLCA 
lines could be run  at 56 Kbits/s. In addition to BSC 
and SDLC, one could run x.25 using two MLCA line 
positions. With the advent of the System/36, the 
MLCA was improved to provide up  to 19 200 bits/s 
per line, again  with one line usable to 56 Kbits/s and 
now  with one line per x.25 appearance. The 1 15 
Kbits/s aggregate rate of the new MLCA was raised to 
170 Kbits/s with the ELCA (Eight Line Communi- 
cation Adapter). 
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As for software, over the last twenty years its function 
has grown from simple batch BSC to complex inter- 
active SNA. Most of the  common link and public 
data network protocols have  been supported: Asyn- 
chronous, BSC, SDLC, and x.25 over ~ ~ 2 3 2  and x.21 
physical interfaces. The user interface for commu- 
nications has risen from the assembler subroutine 
level to native high-level  language and has become 
link-protocol independent. 

Significantly  powerful communication software  be- 
gan to be introduced with the System/34. Up 
through the System/32 all communications support 
had been batch in character. That is, the system 
acted either as a remote job entry (RJE) terminal to 
a mainframe computer or supported interactive 
communications with its subordinate terminals by 
sending and receiving short batches. The System/34 
was a multiple-user system and was the first such 
system to be  cardless; input could be from diskettes 
or workstation keyboards. The IBM 5250  family of 
displays and printers provided the workstation for 
each user. The System/34 supported both BSC and 
SNA/SDLC protocols, first over analog telephone- 
grade lines, and then over x.25 and x.21 data net- 
works. Interactive protocols to connected systems 
were provided by a feature of the System Support 
Program (the System/36 operating system) called the 
Interactive Communications Feature (SSP-ICF). SSP- 
ICF provided three ways of supporting subsystems. 
The first was program-to-program communication 
within the same system (that is, using no external 
communication link). Second, several BSC connec- 
tions were supported, such as the IBM System/3,2780 
Data Transmission Terminal, 3780 Data  Commu- 
nication Terminal, 374 1 Programmable Worksta- 
tion, 6670 Information Distributor, or another Sys- 
tem/34  (as a BSC peer). Communication with Infor- 
mation Management System/Virtual Storage 
(IMSIVS) and Customer Information Control System/ 
Virtual Storage (CICS/VS) over BSC was also sup- 
ported. The  third type  of  subsystem supported SNA, 
e.g., session  types (“LU Types”) LU o to CICS, LU P to 
IMS, and LU 6.0 between  System/34s. A user program 
became independent of the link protocols since these 
were handled in each subsystem. Thus, a program 
written to communicate with CICS transactions using 
BSC could communicate with the same CICS transac- 
tion using SNA without recompilation. 

The network topology for all of the System/34 com- 
munications was simply point-to-point. Even mul- 
tipoint networks were  logically and physically point- 
to-point. That is, the control point could have a 
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conversation with any tributary point; any tributary 
point could have a conversation with the control; 
but tributary-to-tributary conversations were not 
supported. These topology limitations of the inter- 
mediate systems communications were one of the 
stimuli underlying the development of APPN. 

With the System/36, all  of the  communication ca- 
pabilities of the System/34 were retained, and a 
number of new ones added. SSP-ICF was split into 
two pieces, one containing the program-to-program 
subsystems and  the  other  the control logic and user 
interface. The first retains the  name SSP-ICF, whereas 
the  other is  called the  Communication Feature. This 
feature merges the logic and user interface functions 
with the v.25 autocall, x.25, and x.21 support. This 
packaging  allows changes to be made in the two 
parts independently. For example, some users  of 
Advanced Program-to-Program Communication 
(APPC-LU 6.2) might need to use the “mapped con- 
versations,” which are used for high-level  language 
application-program-to-application-program con- 
versations which do not build the LU 6.2 data stream 
themselves. Mapped conversations are supported in 
the APPC Subsystem part of SSP-ICF. The LU 6.2 “basic 
conversation,” which requires the using program 
(e.g., SNADS and DDM) to build the entire data stream, 
is included in the  Communication Feature. As for 
other session  types, the primary side of LU o and 6.2 
and  the secondary side  of LU 0, 1, 2,  3,  6.2, and P 
reside in  the  Communication Feature. 

There are several important additional higher-level 
features of System/36 communication  support, 
which we shall  now  list. For the most part, they  use 
LU 6.2 basic conversations. 

Communication  and System Management (CandSM) 
applications on  the System/370 host include NCCF/ 
NPDA (Network Communications  Control Facility/ 
Network Problem Determination Application), DSX 
(Distributed Systems  Executive), and HCF (Host 
Command Facility). The System/36 communicates 
with NCCFINPDA using the PU-SSCP flow and with 
DSX and HCF using LU 0 flows. Prior to APPN, the 
intermediate-level system  had to be a pu-Type 2.0 
(physical unit) subordinate node connected to a Sys- 
tem/370 either directly or through 37x5 communi- 
cation controllers. With APPN, the small system can 
be part of a network composed entirely of APPN 
nodes,  with one of them providing access into a 
Subarea SNA network for purposes of  accessing 
CandSM applications on a System/370. 
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Personal Services/36 provides SNADS support for 
document transfer and electronic mail using LU 6.2 
basic conversations. The  same is true for the 5250 
Display Station Pass-Through, which  allows a user 

One  of  the  most  significant 
additional  System/36 

communication features is DDM. 

to log on at  one System/36, pass through to another, 
and  then log on to the second system. Once again, 
the availability of APPN provides these functions 
through the  support of a flexible multihop network 
topology. 

One of the most significant of these additional Sys- 
tem/36  communication features is D D M . ~  For pres- 
ent purposes it is  sufficient to summarize its function 
by noting that DDM makes it possible for programs 
on one system to use standard disk data  management 
routines  that normally access local files to access 
instead files on other System/36s and System/38s 
and also on System/370s running cIcs/os/vs. Pro- 
grams  running on other systems such as  the IBM PC, 
another System/36, or a System/38 can access data 
on the System/36. DDM uses the LU 6.2 basic conver- 
sation over its sessions. 

Before APPN became available, DDM allowed only a 
primitive, manually controlled, and modest per- 
formance form of networking through the Network 
Resource Directory (NRD) of each DDM instance. A 
user, knowing that  a desired file  was at Node C in a 
daisy chain of nodes A-B-C, could, by sending a 
request to B  and pretending that  the file  was thought 
to be at B, count on B’s finding that  the file  was 
really at C  and sending the request to C. With APPN, 
the request goes directly to C, and does so automat- 
ically, without requiring the  manual predefinition of 
the NRDS to tell them  about  C  and  the  route to reach 
it. 

Analysis of user  requirements 

By 1982, the IBM experience with intermediate sys- 
tems  and  their  communication needs had convinced 
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many people that the ability to connect such systems 
into  a network of peers with one  another  and with 
larger systems was becoming urgent. In a study done 
that year, peer networking was identified as one of 
ten technology areas requiring the most serious at- 
tention. Work was started to clarify such a require- 
ment more exactly. The two phases of this process 
were to  make  a user requirements study and  then  a 
design requirements study, the latter to act as a 
definitional bridge between the customer’s view  of 
various network functions  and  the designer’s  view. 

In the user requirements work a task force examined 
such existing material as GUIDE and SHARE reports; 
it solicited requirement items from dozens of inter- 
ested IBM groups and  made  a priority ordering of the 
responses; it commissioned three studies by outside 
consultants; in the  end, it developed a coherent 
picture of the user’s needs. From  the half-dozen or 
so different independent sources of input,  both inside 
and outside IBM, the highest priority requirements 
turned out  to be the following interrelated set: 

Easy to use, change, manage, and grow-With 
small and  intermediate systems, the system oper- 
ators  and  the  end users tend  to be the same people, 
usually having neither training nor interest in the 
communication functions. In such circumstances 
it is imperative to hide the system details from the 
user, even at the expense of internal complexity. 
The problem is made more difficult by the fact 
that in the small and  intermediate business ma- 
chine environment, changes are much more fre- 
quent  than in the large mainframe network envi- 
ronment, there being a higher frequency of power 
on/off cycles,  logon/logoff  cycles, reconfigura- 
tions, moves, and so forth. 
Peer decentralized network control-A peer-to- 
peer dynamic (no coordinated network-wide sys- 
tem definition) style  of network control was per- 
ceived to be important, because, among  other 
things, it gave to each machine user his or her own 
control over the machine’s membership in the 
network, without requiring recourse to one  or 
more sources of authority  and  information.  This 
peer requirement is partly a reflection  of the way 
intermediate  and small systems are often used in 
organizations. Large information processing hosts 
are usually the responsibility of information ten- 
ters or headquarters operations, whereas small 
machines are usually found  at  the  department or 
subdepartment level. Placing the source of control 
within the node whose resources are being con- 
trolled rather  than at some  distant node was per- 
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ceived to offer increased autonomy, speed, and 
reliability, the last of these by avoiding  the “few 
points of failure” situation. 
Any  topology-The freedom to configure any  to- 
pology easily, rather  than being restricted to a  star, 
a bus, a hierarchy, or some  other  pattern, was 
perceived to offer cost, performance,  and ease-of- 
use advantages. 
Broad flexibility of physical-level attachments- 
Users wanted  to be able to make  connections 
easily between nodes using a choice of  leased lines, 

wide-area connections,  and local-area network 
(LAN) connections for short distances. 
Interworking with subarea sNA-Of all the  kinds 
of networks to which a  pure APPN network must 
connect, from the beginning it was perceived that 
the installed base of SNA networks was by far the 

installed at  the  time of the  requirements work 
(today over 23000), it was clear that  a seamless 
connection between a  pure APPN backbone and a 
backbone network of SNA subareas was indispen- 
sable. Moreover, it was perceived that users would 
want to use the IBM Token  Ring network for 
physical-level function and LU  6.2 for upper-level 
function. 
Simplicity and low cost-Customers wanted the 
solution to be easy to understand and, particularly 
important  at  the low end,  to require very little in 
the way of main  memory  requirements  or CPU 
cycles consumed in performing communication 
services. 
Continuous operation-The need for continuous 
nonstop  operation of the network connection was 
expressed as  an emerging requirement,  just  as  it 
has long been important for networks based en- 
tirely on mainframes. It was anticipated  that  en- 
terprises would increasingly commit  their  entire 
business to networks of small and intermediate 
systems. 

l 

I dial-up facilities, and packet-switched services for 

I most important.  With over 15000 SNA networks 

1 

This set of requirements was analyzed in early 1983 
in  a design requirements  study which translated these 

some of which were to be implemented  in all nodes 
of either  the  end or network node class (the  base), 
and others which were to remain  optional feature 
sets (the towers). A decision was made to have the 
end nodes identical with the pu-Type 2.1 node, 
which had already been implemented in System/36, 
System/38, Displaywriter, 5520 Administrative Sys- 
tem,  and  Scanmaster for point-to-point  communi- 
cation,  and to design the network nodes to be a set 

I needs into grossly defined features of the design, 

I 
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of functions  added to the Pu-Type 2.1. In this way, 
customers would not need to change either  the  hard- 
ware or software of their existing end nodes in  order 
for them to be APPN end nodes, and would need to 
make only modest changes for them  to be network 
nodes. 

A task force under D. P. Pozefsky then proceeded 
with the first phases of defining the protocols and 
formats  required. As this definition work proceeded 
under  the leadership of A. E. Baratz, J. P. Gray,  and 
D. P. Pozefsky, it built particularly on the IBM Re- 

Some ideas  that  seemed to  work 
well  in  earlier  networks  were 

incorporated  in APPN. 

search Division results on routing (e.g., Reference 
8), distributed  algorithms (e.g., Reference 9), and 
directory function, which had been in progress since 
1979.” In late 1984, even as APPN was being defined, 
a  joint IBM Yorktown-Rochester effort was begun, 
led by  A. E. Baratz, and this became the System/36 
Advanced Peer-to-Peer Networking product. 

Lessons  from  the  history  of  computer  networks 

In designing APPN, some ideas that seemed to work 
well in earlier networks were incorporated, with suit- 
able changes. In other cases, it was felt that  none of 
the existing designs provided the basis for a  proper 
solution and  that new inventions had to be made  in 
order  to satisfy the user requirements presented in 
the preceding section. In this section we highlight a 
few of the features of preexisting networks that  ap- 
peared to provide the  sort of function  that good 
networks of small systems should have. 

ARPANET. Perhaps  the most striking feature of 
ARPANET is the total decentralization of control. In 
the original ARPANET, nodes (Interface Message 
Processors) could  enter and leave the network at will 
and  a  “hot  potato”  routing algorithm on individual 
packets would see that they somehow reached the 
destination, even if sometimes  duplicated or out of 
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order. Later, the routing algorithm was changed to 
make this process more exact by supplying each node 
with a “topology database” that captured the node 
and link connectivity map of the  network.’’ In spite 
of the lack of integrity and performance character- 
istics  sufficient for a commercial environment,  the 
obvious ease of  use and availability advantages pro- 
vided by ARPANET’s dynamic reconfigurability and 
its proven ability to let each node know the entire 
topology  were important things to know when the 
APPN design  began to take shape. 

DECNET. Like the original ARPANET, the Digital 
Network Architecture,’’ which provides the basis of 
DECNET products, is  based on  the use of connection- 
less  flows (datagrams) rather than virtual circuits. In 
order  to meet the requirements, APPN avoided the 
use  of a datagram base  because of concerns that  the 
performance consequences of end-to-end error and 
resequencing control would  be unacceptable. There 
was also concern that  a network that did not keep 
track of the physical path by which packets pro- 
gressed through the network would be one  on which 
it would be difficult to  implement completely effec- 
tive problem determination  and  other network man- 
agement function.  The routing of  successive packets 
is not constrained, and in fact the method of conges- 
tion control used  is to throw away  overflow packets 
(an artifice regarded  as  insufficiently robust for the 
APPN environment). The layering of the function in 
DECNET is much Ckaner than  that in ARPANET, and 
a good  user interface is provided. One of the key 
features of DECNET has been that  communication 
function is  always part of an application processor, 
so that separate communication front-end machines 
are not required (e.g., interface processors in ARPA- 
NET or communication controllers in subarea SNA). 
The fact that there is therefore only one hierarchical 
level (apart from a lower  level represented by at- 
tached devices)  allows a high  degree of topological 
freedom. 

Tymnet. Tymnet in t r~duced’~  a particularly efficient 
method of handling packet routing within an inter- 
mediate node. Instead of requiring each node to 
resolve the address of the final target node into  a 
choice of which outgoing link the packet should go 
to, Tymnet assigns a  number to each virtual circuit 
on a link and sets in place a simple lookup table in 
each node that resolves the  number  into the correct 
outgoing link (and possibly a new value of the num- 
ber). The same idea is  used in x.25. Tymnet also 
introduced the idea of controlling packet flow sepa- 
rately within each virtual circuit on each link. 

SNA. SNA had the most important influence on  the 
design  of APPN, not only because of the strong re- 
quirement  to be able to interconnect APPN networks 
to SNA networks, but because certain features of SNA 
were  felt to provide particularly valuable compo- 
nents of the solution. The fact that SNA provides 
integrity checks at various layer  levels (DLC, explicit 
and virtual routes, sessions and APPC conversations) 
appeared to serve the availability requirements better 
than, for example, using connectionless lower-layer 
flows and providing integrity checking at  a higher 
level (by time-consuming retransmission from the 
source node). To this end, latching the physical route 
in  place, a feature of SNA explicit routes, is considered 
indispensable. The availability of Advanced Pro- 
gram-to-Program Communication (session  type LU 
6.2)14 seemed to provide, in the form of APPC “con- 
versations,” an extremely flexible and robust way of 
supporting the user’s applications and  the  networks 
control point-to-control point communication func- 
tions. The “negotiable BIND” option in SNA, where 
both partners engage in a peer dialogue before the 
session is set up, provides a facility for two LUS to go 
into session  with each other without requiring a 
master/slave relationship between the two. Finally, 
a great deal of value was  given to  the  notion of “class 
of service,” in which a source program is able to 
specify  what sort of path properties are needed to 
best do the work  of the session  with the target 
program. 

Overview of the APPN design 

To provide a tutorial background for the  companion 
to this paper, we now  review at an intermediate level 
of detail the five phases  of the operation of APPN 
listed in the  introduction.  The discussion here is 
essentially the same as that given in Reference 4, but 
somewhat less detailed. 

Connectivity  services. Consider again the network in 
Figure 1. In each of the four network nodes and  the 
two end nodes there exists a  Control Point (cP), 
which  is responsible for coordinating the first four 
phases that were  listed in the first section of this 
paper as collectively making up “network control.” 
Imagine that  an LU in ENI named BOB wants a 
session  with an LU named TOM, whose location (un- 
known to BOB) is in EN2, and issues a logon request 
for a session  with him. Also assume for illustration 
that we are dealing with a dial-up situation in which 
NN, is not yet  even connected into the preexisting 
network consisting of NNs 2 ,  3, and 4. (The operator 
of NN, has  already entered the telephone numbers 
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Figure 2 APPN Connectivity Services makes the new node a part of the globally known  network  topology 

required for the two physical connections at node 
configuration time.) When  the  control  point of NN, 
analyzes the logon request to TOM coming from BOB, 
it searches for TOM among  the local resources and, 
not finding it, knows it  must go to  the network to 
find TOM. NN, dials NN2, and when the physical 
connection has been completed,  a data link level XID 
(Exchange Identification Information) exchange 
takes place during which enough information is ex- 
changed for a successful activation of the  data  link 
connection to follow. The two control  points  then 
go into LU 6.2 sessions with each other by the ex- 
change of BIND and RSP(BIND), whereupon the two 
CPS exchange information  about themselves and syn- 
chronize  their topology databases. It  is at this stage 
that  the new NN, learns  the topology of the  entire 
network, and  NN2  (and  the others) readjust their 
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topology databases to  include  the new NN,.  This is 
repeated with the  NNI-to-NN3  connection. Figure 2 
shows the  situation at  the end of the connectivity 
phase. 

Topology update  information flows over the CP-CP 
sessions in  the form of topology database  update 
messages (TDUS), not only when NN, enters  the 
network for  the first time,  but also whenever any 
significant topology change occurs anywhere in the 
network, e.g., whenever a link or a  node is added or 
deleted, purposely or by failure. TDus emanate from 
the adjacent NNs, fan out  throughout  the network, 
and  are processed in the nodes through which they 
pass. As described in Reference 4, the processing 
algorithms are designed to work without allowing 
temporary inconsistencies in the topology databases 



Figure 3 Directory Services locates the remote target resource 

to have any effect, without sensitivity to any chance 
pattern of failure and  then recovery of a link or node, 
and without requiring safe  storage  (e.g, on disk). 
Note that this decentralized way of generating the 
topology information that each NN will need later 
for routing eliminates any operator intervention for 
routing table entry, and in fact  allows not only the 
user, but also network node operators (if any)  to be 
oblivious to the network  topology altogether. It also 
avoids any dependence on  one or a few points of 
failure; if there is any connectivity left in a damaged 
network, connectivity services will find it and make 
a “road map” of it. 

Directory services. The CP of NN, is  now in a 
position to act on  the logon request from BOB. As 
already mentioned, it scans its local directory (Figure 
3) to see  if BOB is in NN, or in any of its subordinate 

ENS, and then looks to its cache directory, its “little 
black book” of frequently called other parties. If it 
had  scored a hit in the local directory, the search 
would  have  been over. Whenever the CP of NN, does 
not score a hit either locally or in the cache, it 
initiates a distributed search, resulting, in our ex- 
ample, in the discovery that TOM is at  NN4. If it had 
discovered TOM listed in the cache, it  would  have 
performed a directed search, a “probe” of NN4 spe- 
cifically, in order to find out if TOM was still there. 

The distributed search algorithm does not need to 
use the topology information. Each NN sends a 
search  message to each  of its adjacent network nodes 
and waits for a reply from each. The algorithm in 
each node works in such a way that if TOM is any- 
where in the network, he  will  be found, in spite of 
arbitrary patterns of link and node failure and recov- 
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ery, and with an overhead of no  more  than two 
messages per link.’ 

Route selection  services. Once it has been deter- 
mined  that TOM is at  NN4,  the topology database  can 
be used, together with information provided by BOB 
concerning what properties of the  route  are  impor- 
tant  to him, to determine  the preferred route  through 
the network from NNI  to NN4. Which physical route 
to choose depends on which “class of service” (cos) 
was  specified indirectly in BOBS original BIND mes- 
sage to NNI. If the session is to be an interactive one, 
the  route  must have the fastest possible response 
time, even if at the expense of some  bandwidth, 
whereas for batch file transfers or remote job entry 
the converse is true, and  perhaps  a different physical 
route is better. And there  are  other examples, such 

as a “security” cos which dictates use only of en- 
crypted links on all hops making up  the  route. 

Route finding consists of two stages (in  addition to 
the preceding topology database  part of connectivity 
services). The first phase is the  preparation of a rooted 
tree database (Figure 4) which captures in each NN 
all the preferred paths to each other  NN,  one rooted 
tree for each cos, as shown in the figure. The rooted 
tree is computed in every network node every time 
a change in topology and a  subsequent LOGON re- 
quest make  it necessary. The calculation uses the 
link characteristics as broadcast in  the topology data- 
base update messages. 

Each rooted  tree  database is created by running  any 
one of several well-known shortest-path algorithms 

Figure 4 Route Selection Services provides good paths to each network node 
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(see Reference 4), where “shortest” does not neces- 
sarily mean “physically shortest” but having the 
smallest algebraic sum of link properties of the links 
(hops) making up the route. For example, for the 
interactive cos, each link property would simply be 
its delay (perhaps with a small weight  given to cost 
to prevent selecting  excessively  high-speed and ex- 
pensive  lines). 

The second phase consists of simply accessing the 
rooted tree database and building a Route Selection 
Control Vector (RSCV)  to be appended as part of the 
BIND so that  the BIND will thread its way to  the right 
destination over the right route, in this case NN4. 
The RSCV is simply an ordered list of the nodes and 
links to be traversed, in the case  of our example 

NN, - LKI - NN2 - LKB - NN3 - LK2 - NN4 

Note again that  no function in a remote (e.g., cen- 
tralized) control node needs to be  accessed and  that 
no operator functions, such as loading of routing 
tables, are required; the process is unseen by the user 
and  any operator. 

Session bind. After the  route selection control vector 
has been appended to the  BIND,  the latter is sent 
from NN,  to  NN4 (via NNs 2 and 3). This causes 
two things to  happen. 

First, when the BIND amves  at the LU called TOM, a 
negotiation of properties the session  is to have takes 
place, and if an agreement is reached, TOM sends 
back to BOB an RSP(BIND) message. Note that this is 
accomplished entirely between BOB and TOM, with- 
out recourse to some central control  point  to preside 
over the process. 

Second, as the BIND made its way along the path, a 
set  of  Session Connectors was put  in place, as shown 
in Figure 5. These are swap tables that  map a 17-bit 
number (“session identifier”) in the transmission 
header (TH) of the incoming message into a similar 
number in the TH of the outgoing message. The 
incoming value to  NN2 of the session identifier was 
picked at NN, as one  that was not already in use on 
that particular Link 1 (although it might have been 
in use on  another). As the BIND passes through N N 2 ,  

the CP of NN2 picks a 17-bit value not already in use 
on its Link 8 to  NN3  and builds the session connec- 
tor, and so forth for the  other NNs farther down the 
path. Once the session connectors have been latched 
in place along the route, every succeeding packet in 
that session  is made  to follow the same route by 
simply giving it the right  17-bit  session identifier at 
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NNI  and sending it out  the correct Link 1. Note that 
by using swappable session indicators instead of 
network  addresses one may  have 17 bits worth of 
addressability per link rather than per  network, as 
well as the benefit  of reduced processing load that 
the short header field and simple table lookup of 
session connectors incurs. (Even though the session 
indicator is therefore not an address in the usual 

The APPN flow  control is  aimed 
specifically  at  providing  fairness  and 
guaranteed  freedom from  deadlock. 

network-wide  sense, it will occasionally be called by 
that  name  in  the paper accompanying this since 
the particular FID-2 transmission header field  used 
for it originally  served the function of addressing 
spatially distinct entities.) 

Data transport. Once the session has been  set up 
between LUS such as TOM and BOB, there are several 
requirements on the flow of packets within the ses- 
sion, of  which the most important are efficiency, 
fairness, and freedom from deadlock. Efficiency 
means that  the packets flowing in the session must 
be delivered to their destination as rapidly as possible 
by neither underutilizing the  communication re- 
sources, particularly buffers in  the NNs, nor over- 
driving them so that packets are lost and recovery 
actions are required. Fairness means that if a bottle- 
neck  is caused by one particular session within a 
class, the remedial measure of throttling back packet 
flow is exerted against that session. Deadlock, a 
condition that reduces the availability as well as  the 
ease  of  use  of the network, is the situation where, for 
some reason, a node cannot rid itself  of an outgoing 
packet until it receives on one of its links some other 
packet, but this other packet will never be sent until 
the first one is sent. An operator intervention is 
required in most networks to  undo this situation. 

Two measures are used in APPN data transport to 
deal with these problems. Segmenting/reassembly is 
the breaking up of RUS (Request/Response Units 
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Figure 5 Session connectors and the flow of packets 

from the higher layers) into smaller message  seg- 
ments so as to accommodate the buffer  size  of the 
next node on the route, and  then  putting  the RU 
back together again at  the final node. In APPN, seg- 
menting can take place  essentially only at  the first 
network node on the route. The second, flow control, 
required considerable new thought. 

The APPN flow control is aimed specifically at pro- 
viding fairness and guaranteed freedom from dead- 
lock. Although it is also efficient, it is not  quite as 
efficient as would have  been some alternatives that 
allowed rare but possible deadlocks. The require- 
ment for freedom from deadlock was considered 
unavoidable in a network of small processors where 
the operator is often the unskilled  user. Instead of 
controlling the flow on each session separately end 
to  end,  or each hop separately for all  sessions  collec- 

tively, APPN controls flow on each hop of each ses- 
sion. This maximizes fairness by throttling back on 
that session and  that  hop within a session that caused 
the problem. 

Efficiency  is maximized by basing the flow control 
on being able to vary the size  of a “window,” a 
number of RUS (not  the  number of  message segments) 
that a sender on a link (hop) is  allowed by the receiver 
to send before asking for another window  of RUS. 
The procedure is illustrated in Figure 6 .  

Summary. Although it will  be found on detailed 
examination that APPN uses, and extends in many 
cases,  well-known algorithms or techniques, it has 
proved not  at all simple to  adapt these ideas to  the 
small-system,  high-ease-of-use environment. The ac- 
companying pape?  shows  how  redesign and extrap 
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Figure 6 Sample APPN flow control  scenario 
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olation of existing  ideas and the invention of  new 
ones allowed  these  objectives to be  achieved. APPN 
is a good  example of the use  of internal sophistication 
and complexity to achieve compactness and external 
simplicity. 

Concluding  remarks 

This paper  has attempted to set the stage  for the 
paper by Sultan et al.5 which  will  discuss the experi- 
ence  gained in the  System/36 implementation of 
Advanced  Peer-to-Peer  Networking. 

We have intended to portray in this paper the fact 
that APPN was a synthesis  arising  from three sources: 
(1) a study of  expressed  needs of customers, partic- 
ularly those having the most  sensitivity to what the 
technological future might offer, (2) the state of the 
computer network art, together with an identifica- 
tion of the “choke points” at which further technical 
innovation was required  (especially  in distributed 
algorithms)  in order to achieve the desired  properties, 
and (3) the whole  twenty  years of experience  with 
intermediate systems and the needs of their devel- 
opers for expanded communication function. 

We consider APPN to hold  considerable  promise  for 
a future involving  great improvements in transmis- 
sion  technology,  greater  reliance of  businesses on 
nonstop network operation, and a broadening of 
that portion of the work  force that will  be able to 
use IBM’S networks  with  ease and assurance. 
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