A perspective on Advanced
Peer-to-Peer Networking

This paper is intended to familiarize the reader with the
many reasons for undertaking the design and imple-
mentation of peer networking on small and intermedi-
ate business machines such as the IBM System/36
family. Such networking function was recently an-
nounced as IBM’s Advanced Peer-to-Peer Networking
(APPN) on Release 5 of the System/36. This paper sets
the stage for a companion paper in this same issue,
which discusses the implementation experience and
details of the System/36 APPN product. In the present
paper, the history of System/36 communication is first
reviewed, and it is shown how APPN was a natural
evolution from earlier function. Then an extensive
study of user requirements that was started in 1982 is
summarized. The paper concludes with a brief techni-
cal tutorial on the structure of the APPN design.

In June 1986, 1BM announced a new concept in
networking for small computers, called Advanced
Peer-to-Peer Networking (APPN). It was implemented
on the business machines of the System/36 family,’
a series of intermediate processors that have featured
such distributed processing functions as remote
logon, document distribution (SNA Distribution
Services-SNADS),> and Distributed Data Manage-
ment (DDM).’

Throughout the APPN work, an attempt was made
to understand and address the needs of users of small
and intermediate systems, as contrasted with those
of the users of large mainframe computers. The
technical histories of the many different computer
network variants were studied, customer needs were
analyzed, new algorithms and protocols for distrib-
uted network control were developed, and perform-
ance modeling and optimization studies were con-
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ducted, all for the purpose of defining the form of
networking most suitable for intermediate machines
in a low-cost, high-ease-of-use environment. The
result was described earlier in an extended technical
tutorial.*

It is the purpose of this paper to review these moti-
vations for APPN and present a summary of APPN
functions, thus setting the stage for the detailed
companion paper by Sultan et al. in this same issue.’

For purposes of introducing the reader to APPN, it
may be described as a network design in which ease
of use and simplicity were achieved by (1) decentral-
izing control so that each node maintains its own
responsibility for membership in the network, (2)
automating the processes of directory lookup, route
finding, session bind, and congestion control in such
a way as to make them as invisible as possible to
users of the network, and (3) using network control
and data transport algorithms that minimize control
message overhead and maximize the robustness of
the connection between end users.

The clearest exposition of the content of this design
can be given by dividing the operation of the network
into five phases that take place in chronological
order.* These are
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Figure 1 An APPN network consisting of four network nodes and two end nodes

Connectivity services (CS)
Directory services (DS)
Route selection services (RSS)
Session activation (SS)

Data transport (DT)

il ol A S

The first four of these are what might be called
“transient” or “intermittent” functions, and are col-
lectively referred to as network control. They are
physically realized by interactions between the con-
trol points that exist in every network node of the
network. The last of the five is the “steady state”
phase in which the network does useful work for the
users by transferring messages between them.
Roughly speaking, we can say that data transport is
realized in the lower layers of each node (up through
the path control layers of Systems Network Archi-
tecture (SNA) and the transport layer in Open Sys-
tems Interconnection (0sI) parlance). As shown in
Figure 1 (which will be discussed in detail later),
there are two parts to an APPN network, one being
the set of network nodes (NN, to NN,), each capable
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of intermediate node routing, that collectively make
up the backbone of the APPN network. The remain-
der are end nodes, e.g., EN; and EN,, that cannot
perform intermediate node function, but must have
this done for them by a network node. In practice,
the end nodes will be those elements of lower com-
munication function such as terminals or print serv-
ers, whose number is so large and whose perform-
ance and storage capabilities are so modest that there
1s no point in including them in the backbone. Or
they may be processors that are, for operational or
organizational reasons, required to be isolated from
networking responsibilities. Although there therefore
must be at least the two classes—NNs and EN, it
was considered unnecessary and undesirable to add
still more classes of nodes and thus to produce a
topology having further levels of hierarchy.

Imagine that a user at an end node EN, that is
attached to a network node NN, enters a LOGON
request for a session with some application at some
other node, and that the name of this target resource
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(logical unit, LU) is known but its location, EN,, is
not. In the preparatory connectivity services phase,
the network node becomes part of the preexisting
backbone if it was not already a member. This takes
place by activating a data link function with each
neighbor (NN, to NN, and NN, to NN3), and then
exchanging enough information between the new
node’s control point and the other nodes’ control
points for every node of the newly enlarged backbone
to have an updated view of the topology of the
backbone (which network node is connected to
which). Thus, the addition of a new network node
to the network is a dynamic function.

Directory services must now locate the particular
network node which either has the target LU within
itself or within one of its end nodes. It does so by
systematically doing what the protocol literature calls
“flooding” of the network with search messages that
are propagated outward from the requesting node
until the LU is found. Next route selection services in
NN; computes a good route to that target node using
an optimum-route-finding algorithm that operates
on the topology information that had been created
during the connectivity phase. Then the BIND mes-
sage that had been generated from the original
LOGON request flows along that route to the target
LU at the target node, and a session between the two
1s created.

The final steady state data transfer phase takes ad-
vantage of the fact that when the BIND flowed from
source to target (and the bind response RSP(BIND)
flowed back along the same physical path), a set of
tables had been latched into place in all the interven-
ing nodes so that any subsequent message belonging
to that same session between those two end users
follows exactly the same path until the session is
taken down. During this data transfer phase, special
“adaptive pacing” congestion control measures are
used that do not throw away messages but also will
never deadlock, partly in order that the users will be
shielded from having to intervene to recover from a
congestion situation.

These are the basic ideas behind the Advanced Peer-
to-Peer Networking design. The stimulus to formu-
late and implement this form of networking grew
out of the past history of 1BM’s intermediate systems,
out of requirements being expressed by our cus-
tomers and others, and from lessons learned from
carlier network designs, particularly Systems Net-
work Architecture.®’ To set the stage for the accom-
panying paper by Sultan et al., the remainder of this
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paper reviews the history of communications in IBM’s
intermediate systems, indicates how analysis of user
requirements and the study of predecessor designs
led naturally to APPN, and presents a more detailed
discussion of the five phases of operation.

A brief history of IBM intermediate systems
communications

In this section we summarize the history of the
communication hardware and software for 1BM’s in-
termediate systems, beginning with the System/360
Model 20 of the 1960s and culminating with the

Communication hardware of the
early processors was quite limited.

System/36 of the 1980s. It will be seen that before
APPN became available in Release 5 of System/36,
intermediate systems could talk to each other only
directly over a point-to-point link. Also, the utiliza-
tion of the available communication support en-
tailed a significant level of communication skills.

Communication hardware of the early processors
was quite limited by today’s standards. The single
binary synchronous communications (BSC) adapter
of the System/360 Model 20 supported rates up to
9600 bits/s, as did the multiple adapters of the
System/3, but with an optional 56 Kbits/s feature.
System/32 had single-line BSC or synchronous data
link control (SDLC) support up to 9600 bits/s. Sys-
tem/34 provided either programmable single-line
BSC or SDLC adaptors or a four-line adaptor (MLCA—
Multiple Line Communication Adapter), both with
speeds up to 9600 bits/s, and one of the four MLCA
lines could be run at 56 Kbits/s. In addition to BSC
and SDLC, one could run X.25 using two MLCA line
positions. With the advent of the System/36, the
MLCA was improved to provide up to 19200 bits/s
per line, again with one line usable to 56 Kbits/s and
now with one line per X.25 appearance. The 115
Kbits/s aggregate rate of the new MLCA was raised to
170 Kbits/s with the ELcA (Eight Line Communi-
cation Adapter).
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As for software, over the last twenty years its function
has grown from simple batch BSC to complex inter-
active SNA. Most of the common link and public
data network protocols have been supported: Asyn-
chronous, BSC, SDLC, and X.25 over R$232 and X.21
physical interfaces. The user interface for commu-
nications has risen from the assembler subroutine
level to native high-level language and has become
link-protocol independent.

Significantly powerful communication software be-
gan to be introduced with the System/34. Up
through the System/32 all communications support
had been batch in character. That is, the system
acted either as a remote job entry (RJE) terminal to
a mainframe computer or supported interactive
communications with its subordinate terminals by
sending and receiving short batches. The System/34
was a multiple-user system and was the first such
system to be cardless; input could be from diskettes
or workstation keyboards. The 1BM 5250 family of
displays and printers provided the workstation for
each user. The System/34 supported both Bsc and
SNA/SDLC protocols, first over analog telephone-
grade lines, and then over Xx.25 and x.21 data net-
works. Interactive protocols to connected systems
were provided by a feature of the System Support
Program (the System/36 operating system) called the
Interactive Communications Feature (SSP-ICF). SSP-
ICF provided three ways of supporting subsystems.
The first was program-to-program communication
within the same system (that is, using no external
communication link). Second, several BSC connec-
tions were supported, such as the 1BM System/3, 2780
Data Transmission Terminal, 3780 Data Commu-
nication Terminal, 3741 Programmable Worksta-
tion, 6670 Information Distributor, or another Sys-
tem/34 (as a BSC peer). Communication with Infor-
mation Management System/Virtual Storage
(mms/vs) and Customer Information Control System/
Virtual Storage (CICS/vS) over BSC was also sup-
ported. The third type of subsystem supported SNA,
e.g., session types (“LU Types”) LU 0 to CICS, LU P to
IMS, and LU 6.0 between System/34s. A user program
became independent of the link protocols since these
were handled in each subsystem. Thus, a program
written to communicate with CICS transactions using
BSC could communicate with the same CICS transac-
tion using SNA without recompilation.

The network topology for all of the System/34 com-
munications was simply point-to-point. Even mul-
tipoint networks were logically and physically point-
to-point. That is, the control point could have a
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conversation with any tributary point; any tributary
point could have a conversation with the control;
but tributary-to-tributary conversations were not
supported. These topology limitations of the inter-
mediate systems communications were one of the
stimuli underlying the development of AppN.

With the System/36, all of the communication ca-
pabilities of the System/34 were retained, and a
number of new ones added. ssp-ICF was split into
two pieces, one containing the program-to-program
subsystems and the other the control logic and user
interface. The first retains the name Ssp-ICF, whereas
the other is called the Communication Feature. This
feature merges the logic and user interface functions
with the v.25 autocall, x.25, and x.21 support. This
packaging allows changes to be made in the two
parts independently. For example, some users of
Advanced Program-to-Program Communication
(APPC—LU 6.2) might need to use the “mapped con-
versations,” which are used for high-level language
application-program-to-application-program con-
versations which do not build the LU 6.2 data stream
themselves. Mapped conversations are supported in
the APPC Subsystem part of sSP-ICF. The LU 6.2 “basic
conversation,” which requires the using program
(e.g., SNADS and DDM) to build the entire data stream,
is included in the Communication Feature. As for
other session types, the primary side of LU 0 and 6.2
and the secondary side of LU o, 1, 2, 3, 62, and P
reside in the Communication Feature.

There are several important additional higher-level
features of System/36 communication support,
which we shall now list. For the most part, they use
LU 6.2 basic conversations.

Communication and System Management (CandSM)
applications on the System/370 host include NCCF/
NPDA (Network Communications Control Facility/
Network Problem Determination Application), DSX
(Distributed Systems Executive), and HCF (Host
Command Facility). The System/36 communicates
with NCCF/NPDA using the pu-sscp flow and with
DSX and HCF using LU o0 flows. Prior to APPN, the
intermediate-level system had to be a pu-Type 2.0
(physical unit) subordinate node connected to a Sys-
tem/370 either directly or through 37X5 communi-
cation controllers. With APPN, the small system can
be part of a network composed entirely of APPN
nodes, with one of them providing access into a
Subarea sNA network for purposes of accessing
CandSM applications on a System/370.
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Personal Services/36 provides SNADS support for
document transfer and electronic mail using LU 6.2
basic conversations. The same is true for the 5250
Display Station Pass-Through, which allows a user

One of the most significant
additional System/36
communication features is DDM.

to log on at one System/36, pass through to another,
and then log on to the second system. Once again,
the availability of APPN provides these functions
through the support of a flexible multihop network
topology.

One of the most significant of these additional Sys-
tem/36 communication features is bpM.* For pres-
ent purposes it is sufficient to summarize its function
by noting that DDM makes it possibie for programs
on one system to use standard disk data management
routines that normally access local files to access
instead files on other System/36s and System/38s
and also on System/370s running CICS/0S/vS. Pro-
grams running on other systems such as the I1BM PC,
another System/36, or a System/38 can access data
on the System/36. DDM uses the LU 6.2 basic conver-
sation over its sessions.

Before APPN became available, bDM allowed only a
primitive, manually controlled, and modest per-
formance form of networking through the Network
Resource Directory (NRD) of each DDM instance. A
user, knowing that a desired file was at Node C in a
daisy chain of nodes A-B-C, could, by sending a
request to B and pretending that the file was thought
to be at B, count on B’s finding that the file was
really at C and sending the request to C. With APPN,
the request goes directly to C, and does so automat-
ically, without requiring the manual predefinition of
the NRDs to tell them about C and the route to reach
1t.

Analysis of user requirements

By 1982, the 1BM experience with intermediate sys-
tems and their communication needs had convinced
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many people that the ability to connect such systems
into a network of peers with one another and with
larger systems was becoming urgent. In a study done
that year, peer networking was identified as one of
ten technology areas requiring the most serious at-
tention. Work was started to clarify such a require-
ment more exactly. The two phases of this process
were to make a user requirements study and then a
design requirements study, the latter to act as a
definitional bridge between the customer’s view of
various network functions and the designer’s view.

In the user requirements work a task force examined
such existing material as GUIDE and SHARE reports;
1t solicited requirement items from dozens of inter-
ested 1BM groups and made a priority ordering of the
responses; it commissioned three studies by outside
consultants; in the end, it developed a coherent
picture of the user’s needs. From the half-dozen or
so different independent sources of input, both inside
and outside 1BM, the highest priority requirements
turned out to be the following interrelated set:

e Easy to use, change, manage, and grow—With
small and intermediate systems, the system oper-
ators and the end users tend to be the same people,
usually having neither training nor interest in the
communication functions. In such circumstances
it is imperative to hide the system details from the
user, even at the expense of internal complexity.
The problem is made more difficult by the fact
that in the small and intermediate business ma-
chine environment, changes are much more fre-
quent than in the large mainframe network envi-
ronment, there being a higher frequency of power
on/off cycles, logon/logoff cycles, reconfigura-
tions, moves, and so forth.

e Peer decentralized network control—A peer-to-
peer dynamic (no coordinated network-wide sys-
tem definition) style of network control was per-
ceived to be important, because, among other
things, it gave to each machine user his or her own
control over the machine’s membership in the
network, without requiring recourse to one or
more sources of authority and information. This
peer requirement is partly a reflection of the way
intermediate and small systems are often used in
organizations. Large information processing hosts
are usually the responsibility of information cen-
ters or headquarters operations, whereas small
machines are usually found at the department or
subdepartment level. Placing the source of control
within the node whose resources are being con-
trolled rather than at some distant node was per-
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ceived to offer increased autonomy, speed, and
reliability, the last of these by avoiding the “few
points of failure” situation.

~ Any topology—The freedom to configure any to-
pology easily, rather than being restricted to a star,
a bus, a hierarchy, or some other pattern, was
perceived to offer cost, performance, and ease-of-
use advantages.

~ Broad flexibility of physical-level attachments—
Users wanted to be able to make connections
easily between nodes using a choice of leased lines,
dial-up facilities, and packet-switched services for
wide-area connections, and local-area network
(LAN) connections for short distances.

~ Interworking with subarea sNA—Of all the kinds
of networks to which a pure APPN network must
connect, from the beginning it was perceived that
the installed base of SNA networks was by far the
most important. With over 15000 sNA networks
installed at the time of the requirements work
(today over 23000), it was clear that a seamless
connection between a pure APPN backbone and a
backbone network of SNA subareas was indispen-
sable. Moreover, it was perceived that users would
want to use the 1BM Token Ring network for
physical-level function and Lu 6.2 for upper-level
function.

~ Simplicity and low cost—Customers wanted the
solution to be easy to understand and, particularly
important at the low end, to require very little in
the way of main memory requirements or CPU
cycles consumed in performing communication
services.

~ Continuous operation—The need for continuous
nonstop operation of the network connection was
expressed as an emerging requirement, just as it
has long been important for networks based en-
tirely on mainframes. It was anticipated that en-
terprises would increasingly commit their entire
business to networks of small and intermediate
systems.

This set of requirements was analyzed in early 1983
in a design requirements study which translated these
needs into grossly defined features of the design,
some of which were to be implemented in all nodes
of either the end or network node class (the base),
and others which were to remain optional feature
sets (the towers). A decision was made to have the
end nodes identical with the pu-Type 2.1 node,
which had already been implemented in System/36,
System/38, Displaywriter, 5520 Administrative Sys-
tem, and Scanmaster for point-to-point communi-
cation, and to design the network nodes to be a set
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of functions added to the pu-Type 2.1. In this way,
customers would not need to change either the hard-
ware or software of their existing end nodes in order
for them to be APPN end nodes, and would need to
make only modest changes for them to be network
nodes.

A task force under D. P. Pozefsky then proceeded
with the first phases of defining the protocols and
formats required. As this definition work proceeded
under the leadership of A. E. Baratz, J. P. Gray, and
D. P. Pozefsky, it built particularly on the 1BM Re-

Some ideas that seemed to work
well in earlier networks were
incorporated in APPN.

search Division results on routing (e.g., Reference
8), distributed algorithms (e.g., Reference 9), and
directory function, which had been in progress since
1979."° In late 1984, even as APPN was being defined,
a joint 1BM Yorktown-Rochester effort was begun,
led by A. E. Baratz, and this became the System/36
Advanced Peer-to-Peer Networking product.

Lessons from the history of computer networks

In designing APPN, some ideas that seemed to work
well in earlier networks were incorporated, with suit-
able changes. In other cases, it was felt that none of
the existing designs provided the basis for a proper
solution and that new inventions had to be made in
order to satisfy the user requirements presented in
the preceding section. In this section we highlight a
few of the features of preexisting networks that ap-
peared to provide the sort of function that good
networks of small systems should have.

ARPANET. Perhaps the most striking feature of
ARPANET is the total decentralization of control. In
the original ARPANET, nodes (Interface Message
Processors) could enter and leave the network at will
and a “hot potato” routing algorithm on individual
packets would see that they somehow reached the
destination, even if sometimes duplicated or out of
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order. Later, the routing algorithm was changed to
make this process more exact by supplying each node
with a “topology database” that captured the node
and link connectivity map of the network.!' In spite
of the lack of integrity and performance character-
istics sufficient for a commercial environment, the
obvious ease of use and availability advantages pro-
vided by ARPANET’s dynamic reconfigurability and
its proven ability to let each node know the entire
topology were important things to know when the
APPN design began to take shape.

DECNET. Like the original ARPANET, the Digital
Network Architecture,'? which provides the basis of
DECNET products, is based on the use of connection-
less flows (datagrams) rather than virtual circuits. In
order to meet the requirements, APPN avoided the
use of a datagram base because of concerns that the
performance consequences of end-to-end error and
resequencing control would be unacceptable. There
was also concern that a network that did not keep
track of the physical path by which packets pro-
gressed through the network would be one on which
it would be difficult to implement completely eftec-
tive problem determination and other network man-
agement function. The routing of successive packets
is not constrained, and in fact the method of conges-
tion control used is to throw away overflow packets
(an artifice regarded as insufficiently robust for the
APPN environment). The layering of the function in
DECNET is much cleaner than that in ARPANET, and
a good user interface is provided. One of the key
features of DECNET has been that communication
function is always part of an application processor,
so that separate communication front-end machines
are not required (e.g., interface processors in ARPA-
NET or communication controllers in subarea SNA).
The fact that there is therefore only one hierarchical
level (apart from a lower level represented by at-
tached devices) allows a high degree of topological
freedom.

Tymnet. Tymnet introduced’? a particularly efficient
method of handling packet routing within an inter-
mediate node. Instead of requiring each node to
resolve the address of the final target node into a
choice of which outgoing link the packet should go
to, Tymnet assigns a number to each virtual circuit
on a link and sets in place a simple lookup table in
each node that resolves the number into the correct
outgoing link (and possibly a new value of the num-
ber). The same idea is used in x.25. Tymnet also
introduced the idea of controlling packet flow sepa-
rately within each virtual circuit on each link.

420 oreen ET AL

SNA. sNA had the most important influence on the
design of APPN, not only because of the strong re-
quirement to be able to interconnect APPN networks
to SNA networks, but because certain features of sNA
were felt to provide particularly valuable compo-
nents of the solution. The fact that SNA provides
integrity checks at various layer levels (DLC, explicit
and virtual routes, sessions and APPC conversations)
appeared to serve the availability requirements better
than, for example, using connectionless lower-layer
flows and providing integrity checking at a higher
level (by time-consuming retransmission from the
source node). To this end, latching the physical route
in place, a feature of SNA explicit routes, is considered
indispensable. The availability of Advanced Pro-
gram-to-Program Communication (session type LU
6.2)'* seemed to provide, in the form of APPC “con-
versations,” an extremely flexible and robust way of
supporting the user’s applications and the network’s
control point-to-control point communication func-
tions. The “negotiable BIND” option in SNA, where
both partners engage in a peer dialogue before the
session is set up, provides a facility for two LUs to go
into session with each other without requiring a
master/slave relationship between the two. Finally,
a great deal of value was given to the notion of “class
of service,” in which a source program is able to
specify what sort of path properties are needed to
best do the work of the session with the target
program.

Overview of the APPN design

To provide a tutorial background for the companion
to this paper, we now review at an intermediate level
of detail the five phases of the operation of APPN
listed in the introduction. The discussion here is
essentially the same as that given in Reference 4, but
somewhat less detailed.

Connectivity services. Consider again the network in
Figure 1. In each of the four network nodes and the
two end nodes there exists a Control Point (cp),
which is responsible for coordinating the first four
phases that were listed in the first section of this
paper as collectively making up “network control.”
Imagine that an LU in EN;, named BOB wants a
session with an LU named TOM, whose location (un-
known to BOB) is in EN,, and issues a logon request
for a session with him. Also assume for illustration
that we are dealing with a dial-up situation in which
NN, is not yet even connected into the preexisting
network consisting of NNs 2, 3, and 4. (The operator
of NN, has already entered the telephone numbers
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Figure2 APPN Connectivity Services makes the new node a part of the globally known network topology

TOPOLOGY DATABASE

Bg H

required for the two physical connections at node
configuration time.) When the control point of NN,
analyzes the logon request to TOM coming from BOB,
1t searches for TOM among the local resources and,
not finding it, knows it must go to the network to
find ToM. NN, dials NN,, and when the physical
connection has been completed, a data link level XiD
(Exchange Identification Information) exchange
takes place during which enough information is ex-
changed for a successful activation of the data link
connection to follow. The two control points then
g0 into LU 6.2 sessions with each other by the ex-
change of BIND and RSP(BIND), whereupon the two
CPs exchange information about themselves and syn-
chronize their topology databases. It is at this stage
that the new NN, learns the topology of the entire
network, and NN, (and the others) readjust their
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topology databases to include the new NN,. This is
repeated with the NN;-to-NN; connection. Figure 2
shows the situation at the end of the connectivity
phase.

Topology update information flows over the cp-cp
sessions in the form of topology database update
messages (TDUs), not only when NN, enters the
network for the first time, but also whenever any
significant topology change occurs anywhere in the
network, e.g., whenever a link or a node is added or
deleted, purposely or by failure. TDUs emanate from
the adjacent NNs, fan out throughout the network,
and are processed in the nodes through which they
pass. As described in Reference 4, the processing
algorithms are designed to work without allowing
temporary inconsistencies in the topology databases
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Figure3 Directory Services locates the remote target resource

LOCAL DIRECTORY
BOB ENjy
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FRED NN

CACHE DIRECTORY
BILL NNy
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1 BILL NNy
. .

L] L]
TOM ENj

to have any effect, without sensitivity to any chance
pattern of failure and then recovery of a link or node,
and without requiring safe storage (e.g, on disk).
Note that this decentralized way of generating the
topology information that each NN will need later
for routing eliminates any operator intervention for
routing table entry, and in fact allows not only the
user, but also network node operators (if any) to be
oblivious to the network topology altogether. It also
avoids any dependence on one or a few points of
failure; if there is any connectivity left in a damaged
network, connectivity services will find it and make
a “road map” of it.

Directory services. The cP of NN, is now in a
position to act on the logon request from BOB. As
already mentioned, it scans its local directory (Figure
3) to see if BOB is in NN, or in any of its subordinate
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ENs, and then looks to its cache directory, its “little
black book” of frequently called other parties. If it
had scored a hit in the local directory, the search
would have been over. Whenever the cp of NN, does
not score a hit either locally or in the cache, it
initiates a distributed search, resulting, in our ex-
ample, in the discovery that TOM is at NN,. If it had
discovered ToM listed in the cache, it would have
performed a directed search, a “probe” of NN, spe-
cifically, in order to find out if TOM was still there.

The distributed search algorithm does not need to
use the topology information. Each NN sends a
search message to each of its adjacent network nodes
and waits for a reply from each. The algorithm in
each node works in such a way that if TOM is any-
where in the network, he will be found, in spite of
arbitrary patterns of link and node failure and recov-
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ery, and with an overhead of no more than two
messages per link.’

Route selection services. Once it has been deter-
mined that TOM is at NN,, the topology database can
be used, together with information provided by BoB
concerning what properties of the route are impor-
tant to him, to determine the preferred route through
the network from NN, to NN,. Which physical route
to choose depends on which “class of service” (cos)
was specified indirectly in BOB’s original BIND mes-
sage to NN,. If the session is to be an interactive one,
the route must have the fastest possible response
time, even if at the expense of some bandwidth,
whereas for batch file transfers or remote job entry
the converse is true, and perhaps a different physical
route is better. And there are other examples, such

as a “security” cos which dictates use only of en-
crypted links on all hops making up the route.

Route finding consists of two stages (in addition to
the preceding topology database part of connectivity
services). The first phase is the preparation of a rooted
tree database (Figure 4) which captures in each NN
all the preferred paths to each other NN, one rooted
tree for each cos, as shown in the figure. The rooted
tree is computed in every network node every time
a change in topology and a subsequent LOGON re-
quest make it necessary. The calculation uses the
link characteristics as broadcast in the topology data-
base update messages.

Each rooted tree database is created by running any
one of several well-known shortest-path algorithms

Figure4 Route Selection Services provides good paths to each network node

ROOTED TREE DATABASE
BATCH INTERACTIVE
NP, NN
NNo
| NNz
NNg PN
I NN3 NN4
NNg
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(see Reference 4), where “shortest” does not neces-
sarily mean “physically shortest” but having the
smallest algebraic sum of link properties of the links
(hops) making up the route. For example, for the
interactive cos, each link property would simply be
its delay (perhaps with a small weight given to cost
to prevent selecting excessively high-speed and ex-
pensive lines).

The second phase consists of simply accessing the
rooted tree database and building a Route Selection
Control Vector (RSCV) to be appended as part of the
BIND so that the BIND will thread its way to the right
destination over the right route, in this case NN..
The Rscv is simply an ordered list of the nodes and
links to be traversed, in the case of our example

NN, - LK, - NN, - LK3 - NN; - LK,; - NN,

Note again that no function in a remote (e.g., cen-
tralized) control node needs to be accessed and that
no operator functions, such as loading of routing
tables, are required; the process is unseen by the user
and any operator.

Session bind. After the route selection control vector
has been appended to the BIND, the latter is sent
from NN; to NN, (via NNs 2 and 3). This causes
two things to happen.

First, when the BIND arrives at the LU called ToMm, a
negotiation of properties the session is to have takes
place, and if an agreement is reached, TOM sends
back to BOB an RSP(BIND) message. Note that this is
accomplished entirely between BoB and TOM, with-
out recourse to some central control point to preside
over the process.

Second, as the BIND made its way along the path, a
set of Session Connectors was put in place, as shown
in Figure 5. These are swap tables that map a 17-bit
number (“session identifier”) in the transmission
header (TH) of the incoming message into a similar
number in the TH of the outgoing message. The
incoming value to NN, of the session identifier was
picked at NN, as one that was not already in use on
that particular Link 1 (although it might have been
in use on another). As the BIND passes through NN,
the cp of NN, picks a 17-bit value not already in use
on its Link 8 to NNj and builds the session connec-
tor, and so forth for the other NNs farther down the
path. Once the session connectors have been latched
in place along the route, every succeeding packet in
that session is made to follow the same route by
simply giving it the right 17-bit session identifier at
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NN, and sending it out the correct Link 1. Note that
by using swappable session indicators instead of
network addresses one may have 17 bits worth of
addressability per link rather than per network, as
well as the benefit of reduced processing load that
the short header field and simple table lookup of
session connectors incurs. (Even though the session
indicator is therefore not an address in the usual

The APPN flow control is aimed
specifically at providing fairness and
guaranteed freedom from deadlock.

network-wide sense, it will occasionally be called by
that name in the paper accompanying this one,’ since
the particular FID-2 transmission header field used
for it originally served the function of addressing
spatially distinct entities.)

Data transport. Once the session has been set up
between LUs such as ToM and BOB, there are several
requirements on the flow of packets within the ses-
sion, of which the most important are efficiency,
fairness, and freedom from deadlock. Efficiency
means that the packets flowing in the session must
be delivered to their destination as rapidly as possible
by neither underutilizing the communication re-
sources, particularly buffers in the NNs, nor over-
driving them so that packets are lost and recovery
actions are required. Fairness means that if a bottle-
neck is caused by one particular session within a
class, the remedial measure of throttling back packet
flow is exerted against that session. Deadlock, a
condition that reduces the availability as well as the
ease of use of the network, is the situation where, for
some reason, a node cannot rid itself of an outgoing
packet until it receives on one of its links some other
packet, but this other packet will never be sent until
the first one is sent. An operator intervention is
required in most networks to undo this situation.

Two measures are used in APPN data transport to
deal with these problems. Segmenting/reassembly is
the breaking up of RUs (Request/Response Units
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Figure5 Session connectors and the flow of packets

from the higher layers) into smaller message seg-
ments so as to accommodate the buffer size of the
next node on the route, and then putting the RU
back together again at the final node. In APPN, seg-
menting can take place essentially only at the first
network node on the route. The second, flow control,
required considerable new thought.

The appN flow control is aimed specifically at pro-
viding fairness and guaranteed freedom from dead-
lock. Although it is also efficient, it is not quite as
efficient as would have been some alternatives that
allowed rare but possible deadlocks. The require-
ment for freedom from deadlock was considered
unavoidable in a network of small processors where
the operator is often the unskilled user. Instead of
controlling the flow on each session separately end
to end, or each hop separately for all sessions collec-
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tively, APPN controls flow on each hop of each ses-
sion. This maximizes fairness by throttling back on
that session and that hop within a session that caused
the problem.

Efficiency is maximized by basing the flow control
on being able to vary the size of a “window,” a
number of RUs (not the number of message segments)
that a sender on a link (hop) is allowed by the receiver
to send before asking for another window of Rus.
The procedure is illustrated in Figure 6.

Summary. Although it will be found on detailed
examination that APPN uses, and extends in many
cases, well-known algorithms or techniques, it has
proved not at all simple to adapt these ideas to the
small-system, high-ease-of-use environment. The ac-
companying paper’ shows how redesign and extrap-
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Figure6 Sample APPN flow control scenario
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olation of existing ideas and the invention of new
ones allowed these objectives to be achieved. APPN
is a good example of the use of internal sophistication
and complexity to achieve compactness and external
simplicity.

Concluding remarks

This paper has attempted to set the stage for the
paper by Sultan et al.’ which will discuss the experi-
ence gained in the System/36 implementation of
Advanced Peer-to-Peer Networking.

We have intended to portray in this paper the fact
that APPN was a synthesis arising from three sources:
(1) a study of expressed needs of customers, partic-
ularly those having the most sensitivity to what the
technological future might offer, (2) the state of the
computer network art, together with an identifica-
tion of the “choke points” at which further technical
innovation was required (especially in distributed
algorithms) in order to achieve the desired properties,
and (3) the whole twenty years of experience with
intermediate systems and the needs of their devel-
opers for expanded communication function.

We consider APPN to hold considerable promise for
a future involving great improvements in transmis-
sion technology, greater reliance of businesses on
nonstop network operation, and a broadening of
that portion of the work force that will be able to
use IBM’s networks with ease and assurance.
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