Enabling the user interface

Presenting a consistent interface to the user is one of
the objectives of Systems Application Architecture
(SAA). The development of SAA applications is simpli-
fied by providing enabling interfaces which help an
application developer support the SAA user interface.
Rather than providing a single-level enabling interface,
SAA offers a spectrum of levels spread over two inter-
faces: the SAA Presentation Interface and the SAA
Dialog Interface. This gives the application developer
the freedom to choose the appropriate level of inter-
face for the application.

nabling the Systems Application Architecture

(saA) user interface for an application can be
looked at from two viewpoints—that of the user,
who determines the requirements, and that of the
developer, who must satisfy them. This paper de-
scribes user requirements and the enabling interfaces
that assist the application developer to satisfy these
requirements.

The user view

The work of a user who interacts with multiple
applications can be greatly simplified if the user
interface across these applications is consistent.
Every application must follow a set of rules, Com-
mon User Access, to achieve this consistency. To
make it easier to develop applications which appear
consistent to the user, the Common Programming
Interfaces of sAA include interfaces which enable the
user interface. Three different aspects of consistency
across all applications in the interfaces are important
to the user: semantic consistency, syntactic consis-
tency, and physical consistency.! Semantic consis-
tency refers to the meaning of the elements that
make up the interface—for example, the result of
invoking a particular command. Syntactic consis-
tency refers t0 words used for commands and the
sequence of the appearance of the elements compris-
ing the interface, such as the particular word used to

306 u-m

by S. Uhlir

invoke a function. Physical consistency refers to the
hardware and how it is used, e.g., what key is pressed
for a particular command. The following subsections
discuss each of these aspects in more detail.

Semantic consistency. To achieve semantic consis-
tency, all aspects of the objects which are visible to
the user, and the actions which can be performed on
these objects, must be consistent. For example, an
object that is a table of data contains elements called
rows. Rows can be added to and removed from tables.
An object that is a file of characters contains elements
called /ines of text. A user who has learned about
adding and removing rows from a table will expect
to be able to do the same to files. Semantic consis-
tency allows a user to develop strategies for accom-
plishing tasks in one application and then apply the
same strategies to other applications. This transfer
of strategies makes the applications easier to use
because the user already knows some of what can
and cannot be done before using the application.

Syntactic consistency. Transferring a strategy from
one application to another is simplified by syntactic
consistency. To achieve syntactic consistency, the
same terms should be used to express the same
meaning (for example, the command “insert,” which
is used to add a new piece, should be consistent).
Syntactic consistency allows a user to develop strat-
egies in terms of the common terms that can be
directly applied to each application. Without syntac-
tic consistency, a user may develop strategies using

© Copyright 1988 by International Business Machines Corporation.
Copying in printed form for private use is permitted without
payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright
notice are included on the first page. The title and abstract, but no
other portions, of this paper may be copied or distributed royalty
free without further permission by computer-based and other
information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

IBM SYSTEMS JOURNAL, VOL 27, NO 3, 1988

common concepts but may have to use different
commands for similar strategies in different appli-
cations.

Physical consistency. Physical consistency is also

important in simplifying the use of multiple appli-
cations. To achieve physical consistency, the same

Two distinct interfaces are provided
by SAA to enable the user
interface: the dialog interface and
the presentation interface.

sequence of interactions should be used to request
the same function (for example, to perform the “add
a new piece” function, the user positions the cursor
at the insertion point, presses function key F10 to
switch to the action bar, presses the tab key to move
to the “insert” selection, and then presses the enter
key).

Because the user may utilize the functions of multi-
ple applications, consistency in all of these aspects is
important both within and across applications. Se-
mantic consistency allows the user to develop strat-
egies that are independent of the application bound-
aries. Syntactic consistency lets the user know what
terms are to be used for commands, and physical
consistency lets the user know how to use a com-
mand to request the desired action.

The application developer view

The application developer is responsible for imple-
menting the consistency required by the user. This
task is simplified to the extent that the enabling
interfaces can be used to provide consistency. At the
same time, the application developer’s control and
creativity are reduced to the extent that the enabling
interfaces take responsibility for some of the consis-
tency.

Rather than locking all programmers into a single

level of support, Systems Application Architecture
provides different levels of support to enable the user

IBM SYSTEMS JOURNAL, VOL 27, NO 3, 1988

interface. These levels allow the application devel-
oper to choose the appropriate balance between im-
plementation effort and control.

Two distinct interfaces are provided by SAA to enable
the user interface: the dialog interface? and the pre-
sentation interface.®> The dialog interface provides
more consistency with less programmer effort,
whereas the presentation interface allows the pro-
grammer more control.

The dialog interface and the presentation interface
both provide a spectrum of services which allow a
programmer to adjust the trade-off between consis-
tency and control. Each interface can be divided into
two sublevels, providing four logical levels of inter-
face; these are discussed in the following sections.

Presentation interface device independence. The
level of interface which allows the application pro-
grammer the greatest control, and requires the great-
est effort to achieve consistency, is the portion of the
presentation interface which provides device inde-
pendence only. This interface level supports a small
amount of physical consistency by mapping the ap-
plication’s logical device requests into the capabilities
of a particular display (for example, the physical
realization of a selection device can be a mouse-
driven pointer on some devices and a keyboard-
driven cursor on others).

A basic element of the user interface which is defined
by Common User Access is the window. A user
interacts with an application through rectangular
windows on the screen. Multiple windows can ap-
pear on the screen at the same time; one window
may overlap another, obscuring the overlapped por-
tion of the window underneath. The presentation
interface assists the application in supporting this
style of user interface by directly supporting overlap-
ping windows.

Two kinds of windows can be created by an appli-
cation: main windows and child windows. A main
window is positioned relative to the desk top, which
is represented by the display screen. Operations on
one main window, such as moving it, do not affect
other main windows. A child window is positioned
relative to another window, its parent. Moving and
sizing operations on a parent window affect its chil-
dren.

Within implementation limits, an application can
have as many main windows and as many child

wir 307

Figure1 Local hierarchy of nested windows

DESK TOP WINDOW

MAIN WINDOW A

CHILD WINDOW Aa CHILD WINDOW Ab

CHILD WINDOW Aa1

MAIN WINDOW B

CHILD WINDOW Ba CHILD WINDOW Bb

windows as it requires, nested to any depth. For
example, if the logical relationship of a collection of
windows is nested as shown in Figure 1, the display
will appear as in Figure 2.

An application creates both main and child windows
with the create window function. A main window is
created by specifying the desk top as its parent; a
child window is created by specifying another win-
dow as its parent.

Every window has associated with it a routine known
as a window procedure that processes events related
to that window. A window procedure may satisfy
the processing requirements of more than one win-
dow. Windows with the same window procedure
belong to a window class. When a window is created,
the window procedure is indirectly specified by nam-
ing the class to which the window belongs.

An application supports the interactions defined by
Common User Access by providing appropriate win-
dow procedures. A window procedure is invoked by
the presentation manager when an event associated
with the window it supports is detected. Information
about the event is passed to the window procedure
in the form of a message (a typical message indicates
which key on the keyboard has been pressed). The
application’s window procedure contains the logic
that reacts to the event, so the window procedure
must be written to react as specified by Common
User Access.

308 uwr

An application becomes, in effect, a set of window
procedures which react to user input. The style of
programming for such an application is different
from that used for an application which controls the
input allowed from the user. This reacting style of
programming makes it easier to implement applica-
tions which conform to Common User Access. If
application designers begin to think in terms of
windows reacting to user input, their designs will be
more consistent across systems.

Most of the physical consistency and all of the syn-
tactic and semantic consistency is left to the appli-
cation. This level of interface is appropriate for a
highly interactive application (for example, an ap-
plication used to compose free-format pictures). The
user interacts with the graphical image on the screen
which is translated by the application.

Presentation interface controls and templates. The
next level of interface allows an application to dele-
gate more responsibility to the presentation interface
through the use of controls and templates. A control
is a logical description of the information which the
application needs from the user and the style of
interaction which should be used (for example, the
user can choose from a set of mutually exclusive
options by pushing a radio button).

A template is a collection of related controls which

are presented to the user together. Controls can be
combined to create a panel to present to a user in a

IBM SYSTEMS JOURNAL, VOL 27, NO 3, 1988

Figure2 Appearance of nested windows on the screen

MAIN WINDOW A

MAIN WINDOW B

WINDOW Ab

WINDOW Aa

NDOW Aat

window. Some types of panels are common across
many applications—for example, panels for selecting
choices. Common User Access defines some stan-
dard panel types, which are composed of fundamen-
tal elements such as panel titles and scrolling infor-
mation. The presentation interface supports controls
(Table 1) which make it easier for an application to
support the standard panels defined by Common
User Access.

An application can build a panel by combining the
appropriate controls. This approach allows an appli-
cation to control the contents of the panel at run
time while still taking advantage of the Common
User Access conformance supported by the controls.

A template can be created to combine a set of
controls in a predefined fashion, and an application
can build a panel using such a template without
having to consider the layout of every control in the
panel. This approach reduces the complexity of the
application, as it deals with a single template rather
than multiple controls. Of course, the application
loses some flexibility when this is done.

IBM SYSTEMS JOURNAL, VOL 27, NO 3, 1988

Table 1 Presentation interface controls

Button Control Presents a fixed set of choices from which
the user can select. The control has options
to support single-choice and multiple-
choice selection fields.

Edit Control Presents a single-line text-input field

Static Control Presents constant information

List Control Presents a scrollable list of items

Menu Control Presents action bar choices or puli-down
menus

Scroll Control Presents scroll bars which allow the user to
request scrolling of the screen contents and
associated area

Size Control Presents a window border which allows the
window size to be changed
Title Control Presents a window title

Certain combinations of controls are common to
many types of Common User Access panels. The
presentation interface provides a create standard

vir 309

Figure 3 A standard window

TITLE BAR
ACTION BAR

PANEL BODY AREA

FUNCTION KEY AREA

- 0 BAR

HE SIZE WINDOW BOX

8 = THE SYSTEM MENU WINDOW BOX

M = THE MAXIMIZE WINDOW BOX

N = THE MINIMIZE WINDOW BOX

g = ¥HE SLIDER BOX IN THE SCROLL BAR

PANEL BODY AREA = THE PART THAT CONTAINS
THE INFORMATION TO BE
DISPLAYED IN THE WINDOW

FUNCTION KEY AREA = THE FUNCTION KEYS
CURRENTLY ASSIGNED

window command which automatically generates the
controls for a window with the structure shown in
Figure 3.

An application can fill in the panel body area with
application-specific information. The presentation
interface provides the physical consistency within a
control, such as the way a set of buttons are displayed
and how they are activated. The application is re-
sponsible for the labels on the buttons and for the
action taken when a button is activated. Thus, the
application is responsible for syntactic and semantic
consistency.

This level of interface is appropriate for an applica-
tion which is still very visually oriented but has more
structure than an application for creating free-format
pictures. The main part of a business graphics appli-
cation is an example of this type of application. The

310 vwwr

output of a business graphics application is a picture
determined by the data being presented and the
options that have been selected. Controls and tem-
plates can be used to collect values for the options
to be used in drawing the data, such as the type of
graph to produce.

The example of a business graphics application also
shows why the presentation interface provides a spec-
trum of interfaces rather than discrete levels. Much
of the input to a business graphics application in-
volves specifying values for predefined options, but
there is a need to interact directly with the image to
position chart annotations. The application can use
the range of support provided by the presentation
interface to handle both types of interactions.

Dialog manager panel layout. The next level of in-
terface allows an application to delegate the layout

IBM SYSTEMS JOURNAL, VOL 27, NO 3, 1988

of its panels to the dialog interface. The application
determines the variable information which is pre-
sented to the user and the sequence of panels to
present. The dialog interface controls how the panel
appears on the screen and how the user interacts
with the panel.

All physical consistency is provided by the dialog
interface. All syntactic consistency which is defined
in Common User Access to be standard across all
applications is provided by the dialog interface. Se-
mantic consistency for a small number of functions
that apply to all applications is also provided by the
dialog interface. (For example, the keys help com-
mand displays a list of the keys used by the program
and their functions. The processing of this request is
transparent to the application.) The application is
responsible for the application-specific syntactic con-
sistency and semantic consistency.

This level of interface provides and enforces much
of the Common User Access conformance. It is
appropriate for an application such as data entry,
which has a fixed set of panels to present in a
sequence determined by application processing of
the user’s input.

The panels to be presented to the user can be deter-
mined in advance. The user must complete the input
to a panel before the application can respond, be-
cause the next panel to be presented depends on the
values entered by the user. For example, the appli-
cation may present one panel when the user attempts
to insert a record with a unique key value and a
different panel when the user inserts a record with a
key value that matches an existing record.

An application which uses the dialog interface spec-
ifies only the name of the panel to be displayed. The
dialog interface determines what is to be presented
on the basis of the definition of the named panel.
Since the panel definition is outside the application,
it can be changed without changing the application.

The panel language allows the application developer
to specify the logical contents of a panel. For exam-
ple, an application which offers the user a choice
from a set of mutually exclusive options would use
the panel language to define a single selection field.
The choices are described as part of the definition of
the selection field. The dialog manager determines
how the choices are presented to the user and how
the user makes a selection. The current definition of
Common User Access results in a set of radio buttons

IBM SYSTEMS JOURNAL, VOL 27, NO 3, 1988

being presented to the user. As Common User Access
evolves, this mapping may be changed.

The panel language allows field validation rules to
be specified. For example, a field may require nu-
meric values within a specified range. Another field
may require the input to match a specified pattern
(e.g., a social security number must have three digits,
a dash, two digits, a dash, and then four digits).

When the validation rules are defined in the panel,
the user can be prompted for correct input by the
dialog manager. Since the prompting and error re-
sponses conform to Common User Access, the ap-
plication developer does not have to provide this
code. The result is an application that is highly
interactive, with no need to implement the details of
the interactions in the application.

The panel language permits definition of fields
through which arrays of information are presented.
If the area within the window is sufficient, the entire
array is presented. If the area is insufficient, the dialog
manager automatically introduces scrolling controls.

In all of these examples, significant programming
effort is moved from the application to the dialog
manager. The panel language is used to specify the
application’s logical requirements. The dialog man-
ager maps these requests according to Common User
Access to take best advantage of the specific display
device which is used. The result is a highly interactive
application with much of the interaction delegated
to the dialog manager.

Dialog manager panel navigation. The final level of
interface adds navigation independence. The appli-
cation determines what variable information is to be
presented to the user. The dialog interface deter-
mines how the panels appear on the screen, how the
user interacts with the panels, and the sequence of
panels presented to the user.

This level of interface is appropriate for an applica-
tion with a fixed set of panels presented in a sequence
which can be predetermined. An application which
leads a user through a set of steps to perform a
complex task is an example of this type of applica-
tion. An application which requires more input pa-
rameters than will fit on a single panel can also take
advantage of this level of interface. All of the input
parameters are collected before the application be-
gins its main processing, even though multiple panels
must be displayed.

uvir 311

There is one type of panel navigation which Com-
mon User Access requires that an application sup-
port—this is the navigation to help information.

When a user is not sure what to do, Common User

Access specifies a number of levels of help informa-
tion which should be available. The panel language

When a user is not sure what to do,
Common User Access
specifies a number
of levels of help information.

allows help information to be associated with specific
fields, panels, or an entire application. The dialog
manager directs the navigation to the appropriate
help information and the navigation within a set of
help panels.

An application becomes essentially a set of panels
which collect user input and a set of application-
specific processing routines. The dialog manager is
used to connect these pieces together. This is similar
to the presentation interface concept, where the ap-
plication is a set of window procedures which react
to user input. However, where a presentation inter-
face window is a blank slate which the application
must fill in, a set of panels is predefined for a partic-
ular application, and no application code is required
to tailor their appearance further.

All physical consistency is provided by the dialog
interface. All syntactic consistency defined in Com-
mon User Access to be standard across all applica-
tions is also provided by the dialog interface, as well
as all semantic consistency related to panel naviga-
tion. The ability to move forward and backward
through a sequence of panels and the state of infor-
mation on the panels are also supported by the dialog
interface. The application is responsible for applica-
tion-specific syntactic and semantic consistency.

The panel definition language allows navigation to
be developed independently of application logic. The

312 ue

application names the first panel to be used, and the
dialog interface uses the panel definitions to deter-
mine what panels should be presented and when to
return to the application. The panel definitions can
be changed to modify the navigation without chang-
ing the application.

An action field is used to define the navigation
performed by the dialog manager. The action is
based on the user’s input, and can be the display of
another panel or the invocation of a command or
program. As long as the action is the display of
another panel, the dialog manager remains in con-
trol. The invocation of a command or program is
used at a point where application-specific processing
is required.

Portable applications. To provide portability of ap-

" plications across SAA environments, the same layers

of interface must be supported in each environment.
Differences in presentation capability across environ-
ments have required careful design of the interfaces,
particularly the lowest-level presentation interface.

The personal computer allows for high interactivity,
in which an application can react to each keystroke.
A remote display connected to a host system cannot
support this type of interactivity, but the presenta-
tion interface must be the same across this range of
displays. For this reason, the presentation interface
provides input to the application as a series of mes-
sages representing events. A portable application
must be written with the understanding that some
events can never occur on some devices (for exam-
ple, the individual keystrokes will not occur on a
remote display, but the “Enter” event which submits
a pull-down window or an entire panel to the pro-
gram for processing occurs in all environments). By
reacting to the events presented to it, the application
can run unchanged across the range of environ-
ments.

The levels of presentation interface and dialog inter-
face allow an application developer to decide how
much of the user interface consistency will be pro-
vided by the application and how much will be
provided by the enabling interfaces. The lower-level
interfaces give the application developer more con-
trol and require more implementation effort; they
also require more care when a portable application
is being developed.

Possible extensions. The higher-level interfaces de-
crease the application implementation effort and

BM SYSTEMS JOURNAL, VOL 27, NO 3, 1988

make it possible for an application to take advantage
of new user interface techniques without change to
the application. For example, a set of pushbuttons
implemented by the application as a set of mouse-
selectable images using the lowest-level presentation
interface may look exactly the same today as a set of
pushbuttons implemented using the presentation in-
terface pushbutton control. In the future, the pre-
sentation interface can be extended to support voice
input to push a button without changing the appli-
cation. The pushbuttons implemented by the appli-

The Presentation Manager
in 0S/2 supports application
management functions which are
extensions to the SAA
presentation interface.

cation would not take advantage of voice input until
the application was modified. The higher the level of
interface used by an application, the more changes
can be accommodated without changing the appli-
cation.

Over time, the common programming interface can
be extended to move more functions outside the
application. Even with the highest level of the dialog
interface today, most of the semantic consistency is
the responsibility of the application. It is possible to
standardize more of the operations on objects and
decrease the amount of function that must exist in
each application.

One example of this can be seen if an application is
considered to be an object with which the user works.
A user may need more than one application to
complete a job. These applications may run on more
than one system. There are operations on applica-
tions which are needed to accomplish this—in par-
ticular, the user must be able to start applications,
switch between applications, and stop applications.

Systems Application Architecture provides the inter-
faces that are needed to take advantage of the one

IBM SYSTEMS JOURNAL, VOL 27, NO 3, 1988

SAA environment which does have application man-
agement functions—Operating System/2™.

The Presentation Manager in 0s/2™ supports appli-
cation management functions which are extensions
to the Systems Application Architecture presentation
interface. Applications written in any of the SAA
environments can take advantage of these applica-
tion management functions by using the saa com-
munications interface to connect to an 0s/2 worksta-
tion.

An application written in this cooperative fashion
has its user interface running on the 0s/2 worksta-
tion. The remainder of the processing takes place on
the host system.

With this approach a user has a consistent view of
application invocation. The Application Manager in
0s/2 presents the user with choices of applications,
and the user is not aware of which applications run
locally and which run on any of the remote hosts to
which the user is connected.

When a cooperative application is started, it estab-
lishes a communication session with the appropriate
host. The user is not aware of the steps involved in
performing authorization and initialization of the
host portion of the application. The work to accom-
plish this is contained within the application.

A cooperative application can take advantage of the
interactive capabilities of the workstation; in fact,
the user interface can look the same as the user
interface of a local application. This provides con-
sistency for the user regardless of the system on
which the processing occurs.

Over time it is possible to extend the Systems Appli-
cation Architecture Common Program Interface
(cpI) to decrease the implementation effort required
for such a cooperative application. For example,
services could be provided to set up the environment
for host code automatically.

As with any higher-level interface, this would also
decrease the flexibility of the application. Systems
Application Architecture has started with the most
general functions and can be extended over time
with more specific functions as the need develops.

Summary

The user requires semantic consistency, syntactic
consistency, and physical consistency across all ap-

uir 313

plications. Every application must follow a set of
rules, Common User Access, to achieve this consis-
tency. To the extent that enabling interfaces are
provided to support and enforce this consistency, the
application developer’s job is simplified.

Systems Application Architecture provides two dis-
tinct interfaces to enable the user interface: the dialog
interface and the presentation interface. Each of
these interfaces comprises a spectrum of services that
allow the programmer to adjust the trade-off between
consistency and control. The higher the level of
interface used by an application, the more changes
can be accommodated without changing the appli-
cation. The lower the level of interface used by an
application, the more control it has over its appear-
ance. The presentation interface and the dialog in-
terface work together in an application to provide
the full spectrum of user interface enabling,

The application developer benefits from the in-
creased productivity and consistency of the higher-
level interface, and is free to choose the level of
interface that is appropriate at each point in the
application.

Operating System/2 and OS/2 are trademarks of International
Business Machines Corporation.

Cited references

1. Systems Application Architecture Common User Access: Panel
Design and User Interaction, SC26-4351, IBM Corporation;
available through IBM branch offices.

2. Systems Application Architecture Common Programming In-
terface Dialog Reference, SC26-4356, IBM Corporation; avail-
able through IBM branch offices.

3. Systems Application Architecture Common Programming In-
terface Presentation Reference, SC26-4359-0, IBM Corporation;
available through IBM branch offices.

Steven A. Uhlir IBM General Products Division, 555 Bailey Ave-
nue, San Jose, California 95141. Mr. Uhlir received his B.S. in
physics and M.S. in computer science from Stanford University,
both in 1977. He joined Bell Labs in 1977 as a software developer
on a microprocessor-based PBX project at Holmdel, New Jersey.
Mr. Uhlir joined IBM in 1978 at Santa Teresa, California, and has
worked on a number of database-related projects. His most recent
assignment has been a technical staff position with the business
professional products manager responsible for improving interac-
tion of products to satisfy users’ needs.

Reprint Order No. G321-5327.

314 uwr IBM SYSTEMS JOURNAL, VOL 27, NO 3, 1988

