Designing
SAA applications
and user interfaces

This paper describes a framework for developing appli-
cations that conform to Systems Application Architec-
ture (SAA). The paper shows a high-level approach to
creating a design; it gives examples of early modeling
work with the user interface; and it appraises SAA
through the eyes of several system designers. The usa-
bility of user interfaces has been evaluated through the
modeling of office tasks. That experience is described,
showing the influence of the SAA Common User Ac-
cess (CUA) on the model and the influence of the
model on CUA. Discussed is a design for distributed
applications that fit within the SAA framework and the
influence of SAA on the design of integrated distrib-
uted applications.

e consider in this paper first the creation of a

major SAA application by a team of designers.
We also consider how that team designs and evolves
a user interface that serves each unique user yet
conforms to the principles of Common User Access
(cua). The goals of our team and those of our
customers were the same, as follows: Our customers
are requesting

s Broad functionality across personal, office, enter-
prise, and industry-oriented user tasks

s Applications with easy-to-learn, easy-to-use char-
acteristics

s Applications that coexist with their existing prod-
ucts

s Applications that share data

The design team, in addition to meeting these re-
quirements, must design a homogeneous, usable ap-
plication, as it would be perceived by a user. We also
must build a set of cooperative-processing applica-
tions and services, as they would be perceived by a

IBM SYSTEMS JOURNAL, VOL 27, NO 3, 1988

by W. P. Dunfee
J. D. McGehe
R. C. Rauf
K. O. Shipp

system designer who is using saA services where
available. We worked with four SAA environments—
MVS, VM, 0s/400™, and 0s/2™—to design a set of
replaceable, extensible applications and services, as
they would be perceived by a systems integrator.

This paper describes a framework designed to meet
these goals. It discusses some of the criteria one can
use to determine whether an application conforms
to SAA principles, and it explores ways to organize
applications to address today’s environment. It de-
scribes a high-level design—a structure into which
to drop applications. We also show user-interface
examples from early modeling work that we studied
to make design trade-offs. The model illustrates some
of the alternatives designers can consider in building
a user interface. Finally, the paper describes some
benefits of saA and explores potential SAA extensions
to be studied further. We discuss some of our expe-
riences and assess the role saA is playing in achieving
our design goals.

The designer’s framework

Our first design focus was to meet customer require-
ments for ease of learning and use, which we did by
concentrating on a user interface. We asked the
design group to create a user interface through which
it would be obvious how to complete most tasks.

© Copyright 1988 by International Business Machines Corporation.
Copying in printed form for private use is permitted without
payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright
notice are included on the first page. The title and abstract, but no
other portions, of this paper may be copied or distributed royalty
free without further permission by computer-based and other
information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

DUNFEE ET AL. 325

We surmised that we could design access to each
function in such a way that executives, secretaries,
and technical professionals could obtain their work
result with no errors. To them the tasks would be
straightforward. We also believed that if typical com-
mon functions were consistent across applications

Another design focus was on using
the evolving common
communication services of SAA.

and across systems, the user would acquire skill
within one application or on one system and would
usually be able to transfer that skill to other appli-
cations and systems.

The methodology the group used was to develop a
model and then measure user time on each task, the
number of user errors, and user satisfaction with the
model. Through iteration, the group produced a set
of design principles that contributed to the original
definitions of sAA Common User Access (CUA). We
describe some of those principles later in this paper.

Our second design focus was on using the evolving
SAA Common Programming Interface (cp1). Al-
though as designers we were familiar with one or
more of the systems environments that ultimately
became SAA environments, we had little initial
knowledge of the proposed sAA cpI services. Over
time, we created a design structure that used the cp1
services. The structure we chose allowed for replace-
able, extensible components, and thus it allowed us
to accommodate minor differences in CPI services as
they were staged across SAA environments. This work
continues to the present, as our detailed design
makes effective use of the available services.

Another design focus was on using the evolving
common communication services of saa.! Applica-
tion designers should use precursor components to
the announced SAA components when they expect
the communications requirements of an application
to change or when they know of a need for future

326 ounree €T AL

communication functions. A reasonable approach is
to select system components that offer Advanced
Program-to-Program Communication (APPC) func-
tions so that applications contain a migratable, con-
nectable interface. By using APPC, the program de-
veloper can move one end of the conversation to the
cp1 for communications and still maintain connec-
tivity.

Our final design focus was to organize the internal
design process so that development could be man-
aged successfully. Because of the size and complexity
of some SAA projects, managers may need to group
functions into packages their development teams can
control. As an example for this article, we have
grouped office functions into three major applica-
tions—Personal Services, Decision Support, and Ed-
iting—and three majar services—Library, Directory,
and Distribution of Mail. (See Figure 1.) If required,
the development of one or more applications or
services could be dispersed geographically. However,
the user must be able to go effortlessly to any func-
tion in such a way that our packaging is not apparent.

A reader may wonder whether the physical bound-
aries of a distributed design can be invisible when
viewed from the end-user interface of an application.
By grouping related functions, we must ask our
designers and developers to focus on presenting the
application functions to the end user as homogene-
ous functions rather than as a set of individual
components. However, there are still boundaries,
and we have had to develop tools (both for program-
ming and for process) to ensure that developers write
functions with consistent interaction styles and ter-
minologies.

The concepts of SAA encourage us to use time-tested
packaging guidelines? whereby environment-specific
logic is isolated from an application’s processing
logic. Each application or service contains related
functions. Each function segment depends only on
the final state of another function. Each function is
unique. If a function is needed by more than one
application, it is packaged as a common tool for all
applications. For example, we believe developers
must use common functions for creating windows,
action bars, and messages so that users see the same
objects, take the same actions, and get the same
results across applications.

Using the SAA Common Programming Interface

(CPI). sAA governs software interfaces, conventions,
and protocols for application development and pro-

IBM SYSTEMS JOURNAL, VOL 27, NO 3, 1988

Figure1 Functions divided by management areas

i

USER INTERFACE

<z

PERSONAL DECISION
SERVICES SUPPORT

EDITORS

OTHER
APPLICATIONS

APPLICATION INTERFACES

AN AN AN

SERVICES INTERFACE

LIBRARY

DISTRIBUTION

DIRECTORY

SAA

RELATIONAL SERVICES LANGUAGES
DATABASES

SYSTEMS CONTROL

IBM SYSTEMS JOURNAL, VOL 27, NO 3, 1988 DUNFEE ET AL 327

Figure2 General software structure

APPLICATIONS

QUERY/
REPORT .
WRITER

DATABASE

COMMUNICATIONS
COESS MANAGEMENT

A .
MANAGEMENT

| DATA/STORAGE
| MANAGEMENT

| SECURITY

vides consistent, durable interfaces in 1BM and other
software products as a means of achieving increased
programmer and end-user productivity, enhanced
ease of use through consistency across applications,
improved communications capability and usability
for enterprise-wide solutions, and increased return
on a customer’s information systems investment
through a more effective utilization of programmer
resources and user experience.’

This and other papers in this issue show that an
application developer can use common services
across the saA environments. Thus, the application
developer can write logic once, for example, to cre-
ate, store, update, print, mail, and receive an object
using similar steps (with similar results) and use that
logic across all SAA environments.

328 DUNFEE ET AL.

Because the Mvs, vM, 0s/400, and 0S/2 operating
systems provide the components of an SAA base—
programming languages, enabling services, and com-
munication services—application developers can of-
fer applications with comparable appearance, oper-
ation, and results across SAA environments, using
the same application logic. Thus it is to our advan-
tage to use SAA services whenever they are available.
Figure 2 shows this relationship between applications
and the system services they use. The application
layer uses the services provided by all other SAA
layers. Consistent services across SAA environments
allow us to offer consistent applications across envi-
ronments.

Using the SAA Common User Access (CUA). We
began our design under the assumption that the user
interface at the workstation must look the same and
work the same across all SAA environments. One
methodology that we used to achieve this needed
consistency was to conform to CUA rules, which
specify the basic interaction techniques for user in-
terfaces.

Although rules are effective for achieving consistent
terminology and visual fidelity, they cannot over-
come inconsistencies in user process (the sequence
of user actions needed to achieve results) across the
system environments. In general, these inconsisten-
cies are caused by the following:

e Computer process differences (the internal logic
structure of application and operating-system soft-
ware)

* Hardware features (keyboard versus mouse, color
versus monochrome, and screen and printer res-
olution)

An $aA goal is to remove process inconsistencies in
common function. While work is underway to
achieve this goal, we expect to minimize inconsis-
tencies in our applications through the use of cur-
rently defined common languages (in our case, the
C and RExX cpl), common database access, and
common communications access across the SAA en-
vironments.

An SAA application. An application is an SAA appli-
cation when it

¢ Conforms to CUA

¢ Uses applicable saA interfaces and protocols
¢ Uses relational database

¢ Runs in applicable SAA environments

IBM SYSTEMS JOURNAL, VOL 27, NO 3, 1988

An sAA application is encouraged to

» Exploit cooperative processing principles

e Use programmable workstation to provide the
user interface

e Share function and data with related saa applica-
tions

When an application designer encounters a condi-
tion where an exception to these rules seems appro-
priate, the designer should be able to justify the
exception on technical or business grounds. For ex-
ample, a designer might want to substitute other
code to perform a function provided by a Cp1 service.
Some factors the designer should understand are the
expected life of the function, the number of saa
environments involved, the potential cost (both im-
mediate and long-term as the SAA environments
evolve), and the implications for factors such as
performance and security.

Because our goal is to build one application solution
across four SAA environments, we prefer to avoid
capabilities that are unique to a given environment.
On the other hand, unique capabilities also have
worked to our advantage. We use all of the extensive
user interface capability of the intelligent worksta-
tion—some of which is above the sAA presentation
interface base—to offer a user an effective interface
for high-performance access to application functions.
We also use the security features of the Resource
Access Control Facility (RACF) in the MvS and VM
environments, and comparable features in the 08/400.
Few of these features are currently available in the
08/2 environment.

We plan to convert to new SAA services when they
become available. In a few areas where critical func-
tions are missing, we are writing temporary fillers,
always trying to design the functions in such a way
that they can fit within the SaA interface at a later
time. Such efforts are used to provide important
feedback which influences the evolution of saA. They
ensure that additional functionality is evaluated for
inclusion in SAA as new requirements are identified.

Design concepts within the SAA framework

Designing for portability. New technology and
changes in the business process can quickly make
software obsolete. To help protect the customer’s
and our software investment, we are making every
effort to design common services that are portable.
An application or service is said to be portable when
one can move it to a new environment with a
minimum of time and expense without compromis-

IBM SYSTEMS JOURNAL, VOL 27, NO 3, 1988

ing its function. We encourage developers of com-
mon services to use only the set of services in the
SAA CPI so as to have maximum code portability.

Designing for cooperative processing. Cooperative
processing applications are those for which portions
of the application or its services are executed in more
than one processor. The designer’s objective should
be to use each processor for the operation it performs
best. The workstation can be used for the highly
interactive end-user functions, and the host (or a
server on a local area network) can be used to handle
shared data.

To meet the criteria for a cooperative processing
application, we created the model in Figure 3. The
application is built in two processors. The one entry
point to the application is through the Application
Programming Interface (aP1), which is shown shaded
in the figure. The application logic determines what
the end user or the caller wants to do and builds a
complete request. If information is missing, the
dialog logic presents screens to the end user to gather
that information. In our model, the workstation
contains all the dialog logic; no interactive services
are allowed at the host. The application logic then
passes the complete request to the requester, which
manages the conversation with either a local service
or a host service. When the conversation is complete,
the results are returned to the application logic.

Public services, which also have an AP1, are shared
services and are called up by the application as
needed. A library and a directory are examples of
public services. Public services, in principle, can be
installed in the workstation, if they are used by only
one end user. In our model, they must be installed
in a host (or in a server on a local area network)
when they are shared across multiple end users.

A private interface is allowed between a requester
and a service. Other applications can use the private
service by entering through the application’s API, but
they are prohibited from having direct use of that
service. By packaging function as a public or private
service, the application designer frequently improves
the application’s portability, cooperative-processing,
and extensibility characteristics.

Designing for extensibility. One of our design goals
is to build replaceable, extensible applications so as
to integrate IBM software products with other 1BM
and customer-developed products. This goal can be
achieved in part by building on a common base. In
years past, this base was either provided by an op-
erating system environment (vM/CMs, for example)

DUNFEE €T AL 320

Figure3 Cooperative processing concepts in which an application is divided between two processors

PROGRAM REQUEST
FOR AN

APPLICATION
FUNCTION

USER REQUEST
FOR AN

APPLICATION
FUNCTION

APPLI- PRESEN- |

0sr2
PRESENTATION
LOGIC

CATION TATION/ —_ -
LoGic DIALOG
LoGIC [e o
REQUEST

LOGIC

SCREEN

REMOTE | [LocAL

I P

0872 SERVICE
COMMUNICATIONS
SERVICE

N

HOST
COMMUNICATIONS
SERVICE

APPLICATION
LOGIC

REQUEST
LoGIC

REMOTE | [LocAL
SERVICE
PROGRAMMING
INTESF%(;‘:E
AP! OR CPi
i
ON SERVICE

330 ounree ET AL IBM SYSTEMS JOURNAL, VOL 27, NO 3, 1988

Figure4 Simplified shared-services structure

PC/DOS
WORKSTATION

EXISTING
USER
INTERFACE

HOST

SHARED
PUBLIC
SERVICES

EXISTING
APPLICATION

LOCAL
SERVICES

0S8/2 WORKSTATION

SAA
APPLICATION

CUA USER
INTERFACE

or by building an extension on the system environ-
ment (PROFS™, for example), or both. All of today’s
bases provide similar functions in dissimilar ways.

To meet our extensibility requirements, a common
set of functions must be provided by sAA. It must be
identical in all SAA environments; it must let the user
select the applications to be used; it must let the user
start, stop, or switch to any selected application; and
it must let the user easily replace one application
with another.

We found that these extensibility requirements were
met by announced function within 0s/2 Extended
Edition, and other SAA environments are preparing
to offer complementary function.* In effect, users
would decide what applications and tools they wish
to use, and then they would use 0s/2 tools to help
them build their lists of selected applications.

Because of the strengths of 0s/2 (its user interface
function, a multitasking SAA environment, connec-

IBM SYSTEMS JOURNAL, VOL 27, NO 3, 1988

tivity to all other SAA environments, extensibility,
and tools that help the user), we have chosen the
08/2 environment as our programmable workstation
environment. We are designing applications to run
in the workstation, and designing shared services to
run in the attached host. Thus sAA applications can
coexist with existing applications when both use
common services. To ensure coexistence with cur-
rent products, we allow the shared services to be used
by those products. (See Figure 4.) Thus, anyone who
uses an IBM 3179 display to obtain currently available
application functions can access the same shared
services as someone who uses a workstation.

The principles discussed in this section form the
basis of our design. In the next section, we show
examples of how our design reflects these principles,
and discuss the evolution of cua and our end-user
interface. We also show a model of an application
program which uses the saA cpis. Finally, we explore
the influences of SAA on our future.

DUNFEE ET AL. 331

User’s view of SAA

The objective of the user interface design is to present
application functions to the user as homogeneous
functions rather than as a set of unique components.
The Common User Access (CUA) of SAA provides the
initial concepts for developing user interfaces with
these characteristics. In this section, we show how

Our goal is to design the user
interface early and let it influence
the design of the application.

individual elements of CUA are combined by the
application designer to meet the user’s requirements
for function and usability.

Methodology for understanding the user’s view. It is
generally accepted that an error in a software product
is less expensive to change earlier rather than later
in the development cycle.” Correcting a usability
problem in the design of the user interface is no
exception. Frequent diagnostic usability testing is
important to the success of new applications; the
usability test lets us evaluate how well we are doing
in meeting our measurable objectives.

Software usability engineering has not evolved to the
point where we have algorithms that predict least
time on task, fewest user errors, and greatest user
satisfaction. As a result, user interface design is iter-
ative. Through iteration, we can successively hone
our design until we meet or exceed our objectives.®

The output of the user interface design work is the
input to the development of a model that simulates
the user interface and the user-machine interaction.
From our modeling experience, we are writing a set
of user interface principles and guidelines. These
guidelines form the base for defining the applicable
terminology, the way the application actions should
be grouped, and the objects (for example, inbasket
and calendar) available at the workstation.

Our goal is to design the user interface early and let
it influence the design of the application, not vice

332 ounree eT AL

versa, as frequently happens. Expectedly, our mod-
eling and usability testing influenced both our design
and the cua guidelines. We have made changes to
the basic layout, the interaction style, and the user
interface components on the basis of those results.

The model we used to evaluate the user interface
was a representation of office function but was not a
prototype, in that it performed no useful work. In-
stead, we used “canned” scenarios, so that users did
not select functions that had no code behind them.
Even with these limitations, we found the model
valuable as an early design tool, because it gave us
the appearance and operation of the future functions.

We used the model to provide feedback on both the
function and the user interface, as shown in Figure
5. Customers and developers gave us valuable sub-
jective evaluations. The testing of data from usability
tests permitted an objective evaluation of the inter-
face.

The results of each evaluation were used to update
the design of the applications, and the model was
retested. If the test results showed that the design
met or exceeded our measurable objectives, we
“closed” that section of the design. Of course, no
design is ever closed because it passes its modeling
tests. The design continues to evolve until the last
function is added and the usability acceptance test is
completed for the entire application (or set of appli-
cations).

We find it difficult to describe which change we made
to improve or meet any specific usability require-
ment. Most decisions involve trade-offs, but diag-
nostic testing allows us to achieve a balance. Our
examples in the following sections illustrate these
trade-offs, because they are taken from some of the
actual modeling work. They do not represent a final
product, but show an interim step in the iterative
process we used to explore issues. They have survived
several usability tests, but they will have to pass many
more tests as functions are added to the product.

Ease of learning. The first design objective, that is,
making the application easy to learn, requires that
the user’s next step be obvious. A user should be
able to use the function without reading publications
and without extensive training. For example, our
model evaluators ranged from experienced to first-
time computer users. They were given less than 30
minutes of instruction before starting the usability
test of the model. All instruction was on navigation,

IBM SYSTEMS JOURNAL, VOL 27, NO 3, 1988

Figure 5 A methodology for managing end-user interfaces

1BM USERS

TECHNOLOGY

JJ

°)

REQUIREMENTS

COMMON
USER
ACCESS

USER
INTERFACE
DESIGN

USABILITY
TEST

FUNCTIONAL

DESIGN

IBM SYSTEMS JOURNAL, VOL 27, NO 3, 1988

DUNFEE ET AL. 333

Figure 6 Major application function panels

G

Use t and § to choose and press <l

Mail

Documents

File Cabinets
Address Book
Calendars
Telephone
Spreadsheet

Data Tables
Business Graphics
Reports

Project Management

= START

Use t and } to choose and press «J

4

Mail Documents File Cabinets Address Book Calendars

I

/ dam \

Telephone Spreadsheet Data Tables Business Graphics

'_.¥ P
yean '\./'

Reports Project Management

334 ouneee ET AL IBM SYSTEMS JOURNAL, VOL 27, NO 3, 1988

such as the use of the keyboard to get from one
function to another, so that use of the hardware did
not significantly affect our results.

The ease-of-learning requirement has been addressed
in several ways. One of our approaches was to take
advantage of CUA’s object-action interface style; that
involved having new office applications reflect access
to functions by representing them as easily under-
stood objects and related actions. A user’s initial
recognition of a function (i.e., selecting an object
and taking an action on the object) seems related to
his or her ability to correlate the object and action
to a familiar event, from past experience with the
function or a similar function. Figure 6 (top) shows
a panel used to select major application functions.
The items in the list represent easily recognizable
office objects rather than abstract functions. This
approach can also be extended into other interface
styles, such as the use of icons in place of text, as
shown in Figure 6 (bottom). Figures 6 through 13
are an artist’s simulation of selected screens from the
model and not an exact representation of CUA.

We concluded from the results of our user interface
testing that those who clearly understood the objects
and actions made fewer errors. The designer’s chal-
lenge is to find those terms and icons that are obvious
for the largest number of users. We also discovered
that users migrated well from text to icons, as long
as we used the same underlying objects and actions.

We also tried to solve a problem that confronts
today’s designers, the number of user choices to show
on a panel. The following are the guidelines we used:

% Make all function accessible.

% Offer consistency across many application func-
tions.

% Avoid filling the screen with actions or informa-
tion that might cover the user’s data.

% Make the interface extensible without major
change.

The problem can be seen in the mail function. When
working with an incoming mail item, a user may
want to take any one of a large number of possible
actions on one item or a collection of items. These
actions might include viewing an item, its history,
or its status; copying an item or all items; adding
reminders; deleting items; or searching for a partic-
ular item. Several approaches are used in current
products to address these types of requirements.

IBM SYSTEMS JOURNAL, VOL. 27, NO 3, 1988

One historical approach is to perform the selection
by using function keys, as shown in Figure 7. The
steps followed might be first to select mail (F1), then
select the first mail item (F1), and then the send
function (F7). At each step a new menu is displayed

Effective use of the action bar
makes the system easier to leam.

on which to make the next selection. In this ap-
proach, the function keys represent different func-
tions, as the user moves from panel to panel, and
the number of panels needed to accomplish the task
is greater than with other approaches.

Another approach is to show all the actions to the
user at one time. However, too many choices can
make the panel unusable (for example, the Forward
function in Figure 8 is difficult to find). Also, in this
approach, additional space is needed on the panel
when a new function is added.

We found that the CUA approach—using the action
bar—improves usability. User actions are grouped
by category. In Figure 9, the user selects the View
category to see the valid actions related to that cate-
gory. If the user selects the Send category, the View
actions disappear and the Send actions appear. This
creates an interaction style that is consistent, extend-
able, and easy to learn.

In joint work with the cuA area, we found that
effective use of the action bar is one of the best
approaches to making the system easier to learn.
This conclusion agrees with the results of user inter-
face activities at Xerox’s Palo Alto Research Center
(PARC) and the interface of the Apple® Macintosh™.’
Developing the data, however, allowed us to extend
our exploration to the interface questions which are
discussed later,

We believe that a consistent placement of actions on
the action bar across families of applications speeds
ease of use. At a minimum, it improves the percep-

DUNFEE ET AL 335

Figure 7 Selection using function keys, a traditional technique

Use t and } to choose and press «J

Fl Mail
F2 Documents
F3 File Cabinets

‘ F4 Address Book

tion of usability. The action bar creates a consistent
means for users to see the actions they can perform,
and our test users noted consistent placement of
actions as one reason for their opinion that the
functions were integrated.

To minimize the need for a new or infrequent user
to read a manual, we used the CUA message area to
display instructions on what to do next. Obviously,
extensive instructions become “busy” and take too
much panel space. However, we found that short
phrases on a single line (i.e., prompts) are quite
helpful. As the user completes each step, the prompt
changes. This technique allow most users with little
or no familiarity with the function to use the appli-
cation productively.

Occasionally, the user needs more help and selects
Help on the action bar. The data derived from
usability testing and customer feedback about early
versions of the model indicated that our best profes-

336 ouneee ET AL

Sender Description Type
Fl A.Frampton APEX Contract Doc
F2 G.Marshall ”ents Doc
F3 A.Frampton Fl View to Ealder.
F4 J.Allen F2 Copy Fl Forward
// F3 Add F2 Reply

F4 Delete F3 Send Note

F5 Find F4 Exit

F6 Sort F5 Help

F7 Send

F8 Print

F9 Save

FlO0Exit

FllHelp

View inbasket for F.W.Walsh

sional judgments on wording were frequently wrong.
Thus, we worked closely with information devel-
opers so that text on the message line would lead
into the detailed help logic for the model. We con-
cluded that information developers and early testers
should help us select and test the prompts and the
help panels.

Ease of use. To make the user interface friendly, we
studied the following choices:

« Simplifying the interface for all functions

« Allowing the interface to be tailored to individual
choices and skill levels

« Ensuring that skills learned in one application can
be applied when using another application

Simplicity. Many applications provide functions
with so much capability that users can become lost
in selections, parameters, and options. Consider, for
example, an office systems electronic filing function.

IBM SYSTEMS JOURNAL, VOL 27, NO 3, 1988

Such a function may provide capabilities for search-
ing office correspondence and computer files, and
may do it more efficiently than a manual filing
system. The menu for searching for correspondence
might be long and complex, but it typically contains
only a few critical questions:

s What is the subject?
s Who is the author?

Questions such as the following are often repetitive
or of little interest to a particular user:

+ What folder do you want to look in?
s What file cabinet do you want to search?
s What language are you using?

The design we propose is to show only frequently
changed parameters on the first panel seen by the
user. In the search example in Figure 10, seven
parameters are shown, and two (Folder and File
Cabinet) are prefilled. The prefilled parameters, as
well as other preferences such as choice of language,
have been set previously by the user or installation.

For most operations, the prefilled entries do not need
to be changed, and the user need consider only values
for the blank fields.

When a change to an option is required, the user
needs a predictable technique used consistently
across all applications to display and change the
preset defaults. Our model used the F9 function key.
When the user presses the F9 key in Figure 10, a
window containing preset values is displayed. (See
Figure 11.) A change to any preset value is a tem-
porary change for this execution of the Search. Oth-
erwise, the user could use the Save function shown
in the action bar and make a permanent change to
the defaults.

The cua List function is another memory-aid tech-
nique that reduces the need to remember and enter
information. The List capability allows the user to
display the potential inputs for a parameter on a
parameter-entry panel. The user may want to change
the folder to be searched but may not know the valid
folders that could be searched. In our model, if the
F4=List key is pressed with the cursor in the Search-

Figure 8 Selection by showing every choice, a difficult-to-use technique

=]

— L TG

1. View item 2. View history 3. View status 4. Copy item
5. Copy all 6. Add reminder 7. Delete 8. Find 9. Search
files 10. Sort sender 1ll. Sort date 12. Sort subject

13. Forward l4. Reply 15. Send note 16. Print item

17. Print all 18. Save 19. Exit 20. Help

Sender

View inbasket for F.W.Walsh

Description Type Date

[][Kjframpton APEX Contract Doc

11-20-87)

J.Allen
J.Smith

G.Marshall Request for Documents Doc
A.Frampton Financial Contracts
Department Meeting
Action Items

11-20-87
Folder 11-20-87
Meeting 11-20-87
Folder 11.20.87

Action ==>

IBM SYSTEMS JOURNAL, VOL 27. NO 3, 1988

ouNFee ET AL. 337

Figure 9 User actions grouped by category

View Copy Add Delete Find Sort Send Print Save Exit Help

Sender

View inbasket for F.W.Walsh

Description

Type Date

A.Frampton APEX Contract

opy Add Delete Find Sort Send Print Save Exit Help

Doc 11-20-87

MATL a

l1.1tem
2.History
3.Status

View inbasket for F.W.Walsh

Description Date

Type

11-20-87

Doc

in-Folder field, a list of folders that are valid entries
in the field is displayed in a pop-up window, as
shown in Figure 12 (top). The user can then select
the desired folder, such as APEX Contracts, and the
data are copied automatically to the parameter entry
field when the pop-up window is exited (see bottom
of Figure 12).

Tailoring. The features that make an application
usable to one user can make the same application
seem difficult to other users. Personal preferences,
job assignments, and skill levels are some of the
factors that affect a user’s productivity with a given
application. Most user-interface components should
be changeable by the user or installation, including
color combinations, the words used on panels, and
the language.

338 ounree ET AL

n APEX Contract

MAIL

View Copy Add Delete Find Sort{:fii¢ Print

View inb
1.Forward
Sender Descri|| 2.Reply
3.Note
M[A.Frampton APEX C

G.Marshall Request for Documents

One of the main considerations is how to adapt the
user interface to the skill level of the user. As users
gain experience with an application, they require less
prompting and help to complete their work. As they
become proficient, users want faster ways to execute
a task, and they do not require the step-by-step
approach provided by menus. The goal is to deliver
a smooth progression of techniques to match the
increasing skill levels of users, not separate interfaces.
Application developers should consider the new or
novice user, the experienced user, and the expert
user as they design the user interfaces.

One of the items discussed earlier, the message line,
is intended to address the needs of the novice user.
In many cases, this information becomes unneces-
sary to a user who is experienced in the application

IBM SYSTEMS JOURNAL, VOL 27, NO 3, 1988

functions. Users should be given the choice of re-
questing or suppressing both the help function and
the function area.

Another option—the cua command line—can be
turned on by experienced users as they become
expert in the use of the system. Qur model contains
a command line to give the expert user the ability to
bypass the menus and go directly to a function. Users
are exposed to command usage by seeing the com-
mand (or accelerator function) next to the selections
they make while completing a task.

The command line can be used to enter commands
in several ways. One way is to enter an action (or
abbreviation of an action) and the object on which
to perform the action. For example, the user can
print the first item in a list by entering the command
PRINT 1, or can print the first three items by entering
PRINT 1,2,3. All commands take the user directly to
the function, bypassing both the action bar at the
top of the screen and any intervening panels.

Consistency. As stated earlier, applications must be
consistent, but an object, action, or panel can be
measured as “consistent” only after a satisfactory
answer to the following questions: Consistent with
respect to what feature? How do those features relate
to overall system goals?

We used several tests when evaluating the model for
consistency. We looked for a positive transfer of user
knowledge as the user moves among applications
and environments. We tested for terminology, style,
and procedural exactness both within a function and
across all functions of the model. We looked for
examples of ambiguity, where the same term or
process was used in different functions; we compared
the two usages to understand the similarities and
differences. Finally, we looked at how the user’s
perception of these functions changed as the user
became more experienced.

Many of our insights helped refine the cuA rules,
which define the design elements of a user interface.

Figure 10 Search example

Gd

Exit Help

File Cabinet

Type information and press «f

Search

Search for:

Subjecteeesas

AuthOoreeessess

Documenteees.

Folder...eeee

Keywords/Text

Search in:

Foldersesseas

Work in Process

File Cabinet.

Personnel

IBM SYSTEMS JOURNAL, VOL 27, NO 3, 1988

(Fi=Help) (F3=Quit) (F4=List) (F9=Defaults)

ounree eT AL 339

Figure11 Preset values for Search example

L (e File Cabinet

Exit Help Save Exit Help

Search Defaults

Type information Type information and press<d

Search for:
Subjecteccoss
AuthOoresessse
Documentesess
Foldercesssees
Keywords/Text

Search:
Date Range.e.. 1/1/80
Documents..... |[|Yes
Foldersesse... [|Yes

Search in:
Foldereseecseass
File Cabinet..

Work in Process
Personnel

Search in:
Foldereesosee

File Cabinet. Search Controls:

Check Spelling []Yes

Use Synonyms.. |[|Yes ||
Dictionaries.. US English

(Fl=Help) (F3=Quit) (F4=List) (F9=Defaults)

move forward or backward in the list of mail items,
the users press F7 or F8. The workstation user can
use the mouse or space bar to make a selection, but
both users can cursor through the list to make a
selection. When additional capabilities are available

However, it is the application designer who must
assess those elements and select the proper combi-
nations.

Some office applications, such as electronic mail,

require a critical mass of users who must be using
the application before it becomes effective as a means
of communicating in an organization. Such persons
tell us that they want a positive transfer of learning.
When they travel, they want the application to have
the same appearance and operating characteristics as
it did at home. When they change jobs or move from
area to area, they want training on new equipment
or applications to be minimal.

The objective of both cuA and our model is to ensure
that transfer between devices is easy, but equipment
differences keep them from being identical.

Figure 13 shows the model’s workstation Inbasket
compared with its fixed-function terminal equiva-
lent. The function is presented in similar forms, and
the terminology is identical. The use of the action
bar and the pulldown for Send operate similarly. To

340 ounree ET AL

on the workstation, they are usually allowed.

Above all, we want to ensure that the use of a
function is predictable across applications. A design
that takes advantage of the state-of-the-art features
of a workstation differs from the design for a fixed-
function terminal. These differences can be allowed
when users are not expected to move between work-
station and terminal. However, they should not be
allowed to diverge to such a point that they become
unpredictable to the user. Some of the areas we feel
important are the following:

e Terminology used for objects and actions

e Categories of actions—how they will be ordered
in the action bar as well as what actions are
grouped under each category

e Similarity of look, feel, and results of the same
action in different applications running on the
same workstation

1BM SYSTEMS JOURNAL, VOL 27, NO 3, 1988

Figure 12 Valid folders for Search in Folder function

Exit Help

File

Cabinet

Sort Exit Help

Type information and press el

Search| Personnel File Cabinet '

Search for:

Folders

Subjecteesess

[APEX Contracts]

AuthOTeeseses

Work in Process

Documenteeess

Financial Contracts

Foldereecesees

Department Meetings

Keywords/Text

Action Items

Search in:
Foldercecsces
File Cabinet.

Personnel

Mail

Le

T

(Fl=Help) (F3=Quit) (F4=List) (FI=Defaults)

I~ o
Search in:

Foldereeesoss

[APEX Contracts

]Personnel

File Cabinet.

(Fl=Help) (F3=Quit) (Fé=List) (F9=Defaults)

We believe we have achieved similarity in “looks”
in our model, and we have defined similar interac-
tion styles for similarity of “feel” between worksta-
tions and fixed-function terminals. In the following
section, we describe some of the activities that help
achieve similarity of “results.”

SAA and the application developer’s view

From vyesterday’s stand-alone products we have
evolved to today’s integrated applications, and we

IBM SYSTEMS JOURNAL, VOL 27, NO 3, 1988

are now designing the cooperative-processing appli-
cations to meet a user’s enterprise-wide require-
ments.? In this section, we identify the key steps in
this evolution.

Application integration. In our vision of integrated
applications, a user is not necessarily aware of mov-
ing from one application to another when multiple
applications are needed to accomplish the user’s task
at hand. To the user, the applications have the same
appearance and operation.

punree ET AL 341

Figure 13 Comparison of programmable workstation and a fixed-function terminal equivalent

. PROGHAMMABLE
| WORKSTATION

342 ounree ET AL

View Copy Add Delete Find Sort

Print Save Exit Help

View inbasket

Sender

Description

l.Forward Ctrl+F

Z.Reply Ctrl+R

fA.Frampton

Ej
U
U

APEX Contra

3.Note

G.Marshall

«Edwards
.Frampton

Request for
Financial C

(E12=Quit)

Ctrl+N

Doc

Date

11-20-87
11-20-87
11-20-87

Department Meeting

Action Items

Contract Requirements
APEX Contract Preliminary Doc

Meeting 11-20-87

Folder

Doc

11-20-87
11-20-87
11-20-87

View Copy Add Delete Find Sort Send Print Save Exit Help

View inbasket

Sender

Description

A.Frampton
G.Marshall
A.Frampton
Je.Allen
J.Smith
T.Edwards
A.Frampton

APEX Contra
Request for
Financial (|

_ l.Forward

I 2.Reply
_ 3.Note

F12=Quit

Date

11-20-87
11-20-87
11-20-87

Department Meeting

Action Items
Contract Req

uirements

Meet

Folder

Doc

APEX Contract Preliminary Doc

ing 11-20-87
11-20-87
11~20-87
11-20-87

Enter Fl=Help F3=Cancel F7=PgUp F8=PgDn F10=Actions F12=Quit

IBM SYSTEMS JOURNAL, VOL 27, NO 3, 1988

We have just discussed our view of integration with
respect to appearance. We now present our view of
integration with respect to application logic. We
approach this discussion by assuming that program-
mable workstations are attached to any SAA host.

Applications that are integrated have several com-
mon characteristics. They appear “seamless” to end
users; they share or exchange data; and they offer
most, if not all, of their functions as callable services.
From a user’s perspective, once one application has
been given information, the user who entered the
information should never have to re-enter that in-
formation elsewhere. For example, if a user creates
a meeting notice, the information supplied can be
used to update the user’s calendar as well as to notify
each meeting participant; when the participant re-
ceives the notice and commiits to attend the meeting,
the participant’s calendar is also automatically up-
dated.

Applications can share data through several tech-
niques, such as common data blocks, common vari-
ables, and parameter passing. Another technique of
data exchange in 0s/2 is the clipboard, a service of
the 0S/2 presentation interface. Thus, when a user
wishes to move an object from one application to
another, the user can select the object in one appli-
cation, move it to a “clipboard,” and then move it
to the next application. This is a standard technique
used today by Microsoft® Windows, Apple Macin-
tosh, and others.

We believe SAA enhances today’s clipboard tech-
niques by allowing saa applications to offer users
data-sharing advantages over other applications. SAA,
by standardizing the object architectures, enables
applications that support the clipboard to pass an
object that can be widely used. It is even possible to
design applications to work together so that the
clipboard is unnecessary.

Beyond these data-exchange methods, we are inves-
tigating how data, if changed in one application, are
automatically reflected in the results of another ap-
plication. For example, when a user changes data in
a spreadsheet window, a chart in a business-graphics
window is automatically redrawn on the basis of the
new data.

Our proposed mechanism for providing callable ap-
plication function was shown in Figure 3. Each
application has a public Application Programming
Interface (API) that other applications may use. As

IBM SYSTEMS JOURNAL, VOL 27, NO 3, 1988

an example, a mail application might provide a
callable interface to send an object to a user in the
network. The developer of a word processor appli-
cation might then provide a Send function on its

We want to select designs
that allow us to write code once
and use it anywhere.

action bar. When the user selects Send, the word
processor might have been designed to perform one
of the following actions:

1. Call the mail application, passing no data, thus
requiring the user to identify what to mail and
where to send it.

2. Collect all the needed mailing information from
the user, then call the mail application with a
complete request.

. Call the mail application, passing information as
to where the object can be found, and let the user
identify where to send it.

w

Option 1 violates our principle of not asking the user
to re-enter information the application already
knows, but it may have to be used for applications
that are unable to share data. Option 2 makes the
word processor application duplicate code that is
required in the mail application, but this option is
viable if the developer has a reason for not allowing
the user to see mail application panels or to change
mail options. Option 3 appears to provide the most
function and application integration with the least
logic and the least user entry of data. Of course, no
one option is right for every situation.

As the word processor uses the mail function, so the
mail function may use the directory function, if the
addressee 1s not in the form of a system address. For
example, if the mail request is to “send x to y,” then
the mail function must call the directory function,
requesting “provide system address for y.” Each ap-
plication is added to our design in this manner.

Portable applications. We want to select designs that
allow us to write code once and use it anywhere. The

DUNFEE ET AL. 343

model shown in Figure 3 allows us to separate the
common service code from user workstation inter-
face code, thus improving the probability that service
code can be reused at a tolerable cost.

Also, we want to write application logic for the
workstation and recompile it on the host to perform
those same functions. In designing the application,
however, an equally important goal is to produce
the best possible user interface for workstation users.
Although the user interface code would be difficult
to reuse, we can reuse those parts of the application
that perform the data-handling functions, provided
they are designed to be independent of the user
interface functions.

We expect to code the services in the host, assuming
that they will execute in all SAA environments. Where
practical, we have designed each service so that one
part has all the functions that are common across
SAA environments (the kernel) and the other part has
the environment-unique functions (the shell). Nearly
all service logic is in the kernels, including data
management. Resource management and system-
unique services are in the shells. On average, we
suspect that the kernels will contain 50 percent or
more of the service’s code. This percentage should
approach 80 to 90 percent as SAA matures.’

Cooperative processing. Our cooperative processing
strategy is to place function in the processor that
handles it best. These “what’s-best” decisions are the
results of many “what’s-available” questions, and
the solutions chosen must be reviewed continuously.
One of the final tests must be an affirmative answer
to the question: Does the user consider the perform-
ance to be acceptable?

As we evolved our design we were always conscious
of this evolution, and we strove to segment the
applications and services so that all major parts of
the services could be run on workstations, on a host
from a fixed-function terminal, or on a host from a
workstation. At present, the long-term implications
of this generality are not well understood.

Those functions that are shared by users are being
placed in the host, but as recovery, security, access
control, and availability concerns are addressed in
the workstation, designers can consider the placing
of shared function in 0s/2 servers.?

System connectivity. Previously we said that the logic
used to process user requests (the application logic)

344 ouneee T AL

should be independent of the logic used to present
panels to the user (the dialog logic). The application
logic also should be independent of the logical and
physical links used to connect processors (the con-
nectivity logic).

The connectivity logic in our design is managed by
the service requester, as shown in Figure 3. If the
service is remote (i.e., in another processor), the
requester uses 0s/2 communication logic to handle
the peer-to-peer communications. Thus, as common
communications support becomes available in each

All office workers need
access to information
that is shared among them.

SAA environment, we have only to convert the one
requestor—as opposed to each application—from
today’s Advanced Program-to-Program Communi-
cation (APPC) interface to the communications inter-
face of the cpI.

The physical links can be any link technology sup-
ported by the product providing the ApPC interface
for an environment, but the parallel sessions func-
tion is required for satisfactory performance. We
expect to use SAA Common Communications Sup-
port, as it becomes available, because it offers a more
comprehensive solution than our requester logic.

Local~-remote transparency. Cooperative processing
applications that support the distribution of data are
frequently complex applications in heterogeneous
networks, Much of this complexity can be hidden
from the application programmer by services that
provide local-remote transparency so that the appli-
cation programmer is not necessarily aware of
whether the data being used are local or remote,
whether the service being called is local or remote,
or what connectivity path is being used.

Our requester makes the location of the service
transparent to the requesting application. However,

IBM SYSTEMS JOURNAL, VOL 27, NO 3, 1988

there may be cases, such as performance, where the
application chooses to be aware of whether the ser-
vice is local or remote. The application logic con-
verses with services using a begin-conversation, mid-
dle-of-conversation, end-of-conversation technique.
The begin function returns a signal to the application
when the conversation is remote.

Our interfaces today provide a specialized solution
in that they support the types of data objects and
services we require for our set of applications, not
the general set needed across all SAA environments.
But the data streams are architected, thus allowing
us to interchange data in heterogeneous networks
with end-to-end fidelity.

Access to public services. All office workers need
access to information that is shared among them.
The programmer can package this information in a
data store organized into objects, information about
objects (attributes of the objects), and collections of
objects (lists or groups of objects). However, the user
sees this information through a construct, such as a
directory, that contains the names of people and
their telephone numbers, or a library that contains
folders and documents.

Our model contained examples from three of these
public services—a directory, a library, and mail dis-
tribution. (See Figure 1.) Another example of a data-
store service is a calendar that can be used to manage
personal events, shared events (such as conference
rooms), and time-initiated events (such as overnight
printer runs for low-priority documents).

Office workers also need access to tools shared
among them, which the system designer can package
as public services. One example is a service that
allows users to share a printer. The application pro-
grammer must know how to begin and end a con-
versation with a shared service, but need not be
aware of the location of the service when writing the
application logic. This approach obligates the system
designer to provide an administrative function that
defines and maintains the electronic address of the
services. When a service cannot handle a request, we
allow it to send the request to a second service.
Although, to be precise, that is a new conversation,
from the user’s point of view it is a repackaging of
the original request.

Public services are excellent vehicles in which current
products may coexist with saa products. Consider
the following two choices: We can leave the user

IBM SYSTEMS JOURNAL, VOL 27, NO 3, 1988

interface unchanged and allow access to the new
services, or we can update the product throughout,
providing both access to the new services and a new
interface that conforms to cUA. The interfaces of the
public services appear to be good candidates for

Public services are excellent
vehicles in which
current products may coexist
with SAA products.

study as interface extensions to the SAA CPL. One
aspect of such a study would be to determine whether
such a public service had wide usage potential such
that it could be considered as a building block by
the development community.

Concluding remarks

During our design, we found functions that were
needed by a single application or a group of closely
related applications, and we chose to define a private
interface for each of these functions. Although they
may be used frequently by our applications, they are
unlikely candidates for saA CPIs because they are
specialized functions. We foresee application design-
ers encountering many situations where creating
common services makes sense. When designed prop-
erly, common services are portable and can be can-
didates for moving to other environments. Those
common services that have broad applicability may
become candidates for addition to the SAA CPI.

The saA design criteria we have discussed in this
paper are neither new nor revolutionary. However,
these criteria do focus on ease of use, return on
investment, and flexibility. The ease of use empha-
sizes the personal comfort and general well-being of
the user. We believe this allows for higher productiv-
ity, and it should increase the user’s acceptance of
the system. As systems become more extensible,
applications become more extendable, and logic be-
comes easier to move between SAA environments.

DUNFEE ET AL 345

We believe another step is being taken to make
software design and development more of a science
than an art.

Finally, added flexibility releases us from past design
constraints. Freedom from device differences, data-
base differences, and connectivity differences leads
our list of contributors to flexibility. We believe that
soon we will be able to distribute across SAA environ-
ments the design and production of application code.
This capability scems as desirable for programmers
who sit in adjacent offices as it is for departments
that are located in different countries.

As SAA matures applications and services that are
developed can be expected to execute without signif-
icant change in the future.

Acknowledgments

The authors wish to thank John Bennett and
Clarence McGee for their insights in usability engi-
neering and systems design. Skip McGaughey and
Dick Washington provided much of the model that
was used to make the usability evaluations.

Apple is a registered trademark of Apple Computer, Inc.

Macintosh is a trademark of Maclntosh Laboratories, Inc., licensed
to Apple Computer, Inc.

Microsoft is a trademark of Microsoft Corporation.

08/400, 0S/2, and PROFS are trademarks of International Busi-
ness Machines Corporation.

Cited references

1. V. Ahuja, “Common Communications Support in Systems
Application Architecture,” IBM Systems Journal 27, No. 3,
264-280 (1988, this issue).

2. IBM SAA: Writing Applications, A Design Guide, IBM Corpo-
ration, SC26-4362; available through IBM branch offices.

3. E. F. Wheeler and A. G. Ganek, “Introduction to Systems
Application Architecture,” IBM Systems Journal 27, No. 3,
250-263 (1988, this issue).

4. S. Uhlir, “Enabling the user interface,” IBM Systems Journal
27, No. 3, 306-314 (1988, this issue).

5. M. E. Fagan, “Design and code inspections to reduce errors in
program development,” IBM Systems Journal 15, No. 3, 182-
211 (1976). See also R. W. DePree, “The long and short of
schedules,” Datamation 30, 263-280 (December 1983).

6. J. L. Bennett, K. A. Butler, and J. Whiteside, Usability Engi-
neering, Tutorial No. 23, presented at CHI’'88, Conference on
Human Factors in Computing Systems, Association for Com-
puting Machinery, Special Interest Group on Computer and
Human Interaction, Washington, DC, May 16, 1988.

7. C. Clanton, “The future of metaphor in man-computer sys-
tems,” Byte 8, No. 12, 260-263 (December 1983). See also
B. F. Webster, “The Macintosh,” Byte 9, No. 8, 238-251
(August 1984).

8. A. L. Scherr, “SAA distributed processing,” IBM Systems Jour-
nal 27, No. 3, 370-383 (1988, this issue).

346 ounree eT AL

General reference

Systems Application Architecture Common User Access Panel De-
sign and User Interaction, SC26-4351-0, IBM Corporation (De-
cember 1987); available through IBM branch offices.

William P. Dunfee IBM System Products Division, 44 South
Broadway, White Plains, New York 10601. Mr. Dunfee joined
IBM in 1963 as a junior programmer. He advanced through
technical and managerial positions in operating system design,
development, and testing, including MVT/360, SVS/370,
MVS/370, and DPPX/8100, and was promoted to senior program-
mer in 1973. In 1980 he joined the communications systems
business staff organization, where he was responsible for providing
technical support for the executive management in the System
Communications Division (SCD). Mr. Dunfee assumed manage-
ment responsibility for JES2, JES3, and MVS/370 design and test
in 1981; in 1982, these responsibilities were enlarged to include
design and development as well as testing of these programs. In
1983, Mr. Dunfee became the MVS design and performance
manager, and in 1985 he was promoted to manager of office
systems development, in which position he was responsible for
software (both operating systems and applications) and for the
IBM office-systems strategy. In 1987, he was appointed manager
of System Products Division system development software, where
he is now responsible for application-enabling software. Mr. Dun-
fee graduated from the University of Massachusetts, Amherst, in
1963 with a B.S. degree in mathematics.

J. David McGehe IBM Application Systems Division, Neighbor-
hood Road, Kingston, New York 12401. Mr. McGehe joined IBM
in 1967 at Kingston, New York. He is a systems planner who is
currently responsible for planning product implementations of
SAA. Before his current assignment, Mr. McGehe planned and
released products in the office-systems family. Prior to that, he had
worked on several enhancements to Systems Network Architecture
(SNA) and managed departments responsible for publications on
the IBM 3600 Finance System and the 1BM 3790 Communications
System. Mr. McGehe received his B.S. degree in English from
Iowa State University, Ames, in 1961.

Robert C. Rauf IBM Application Systems Division, Regency Park,
Cary, North Carolina 17511. Since joining IBM in 1964, Mr. Rauf
has had several technical programming design and development
assignments. He has also managed various groups involved in the
design and performance of large operating systems. For the past
several years, Mr. Rauf has managed areas of responsibility for the
design of office-systems products. Most recently, this work has
been related to the integration and usability of office systems.

IBM SYSTEMS JOURNAL, VOL 27, NO 3, 1988

Kenneth O. Shipp /BM Application Systems Division, 220 Las
Colinas Boulevard, Irving, Texas 75039. Mr. Shipp joined IBM in
1974 as a programmer in Austin, Texas. In 1980 he was appointed
a first-line development manager on the IBM DisplayWriter prod-
uct, and in 1983 he became application development manager for
the DisplayWrite product. He is currently systems design manager
for the Application Systems Division in Irving, responsible for the
design of future office systems across all SAA environments.

Reprint Order No. G321-5329.

iBM SYSTEMS JOURNAL, VOL 27, NO 3, 1988

DUNFEE ET AL. 347

