
Designing
SAA applications
and user interfaces

by W. P. Dunfee
J. D. McGehe
R. C. Rauf
K. 0. Shipp

This paper describes a framework for developing appli-
cations that conform to Systems Application Architec-
ture (SAA). The paper shows a high-level approach to
creating a design; it gives examples of early modeling
work with the user interface; and it appraises SAA
through the eyes of several system designers. The usa-
bility of user interfaces has been evaluated through the
modeling of office tasks. That experience is described,
showing the influence of the SAA Common User Ac-
cess (CUA) on the model and the influence of the
model on CUA. Discussed is a design for distributed
applications that fit within the SAA framework and the
influence of SAA on the design of integrated distrib-
uted applications.

W e consider in this paper first the creation of a
major SAA application by a team of designers.

We also consider how that team designs and evolves
a user interface that serves each unique user yet
conforms to the principles of Common User Access
(CUA). The goals of our team and those of our
customers were the same, as follows: Our customers
are requesting

Broad functionality across personal, office, enter-

Applications with easy-to-learn, easy-to-use char-

Applications that coexist with their existing prod-

Applications that share data

The design team, in addition to meeting these re-
quirements, must design a homogeneous, usable ap-
plication, as it would be perceived by a user. We also
must build a set of cooperative-processing applica-
tions and services, as they would be perceived by a

prise, and industry-oriented user tasks

acteristics

ucts

system designer who is using SAA services where
available. We worked with four SAA environments-
MVS, VM, os/40OTH, and os/2"-to design a set of
replaceable, extensible applications and services, as
they would be perceived by a systems integrator.

This paper describes a framework designed to meet
these goals. It discusses some of the criteria one can
use to determine whether an application conforms
to SAA principles, and it explores ways to organize
applications to address today's environment. It de-
scribes a high-level design-a structure into which
to drop applications. We also show user-interface
examples from early modeling work that we studied
to make design trade-offs. The model illustrates some
of the alternatives designers can consider in building
a user interface. Finally, the paper describes some
benefits of SAA and explores potential SAA extensions
to be studied further. We discuss some of our expe-
riences and assess the role SAA is playing in achieving
our design goals.

The designer's framework

Our first design focus was to meet customer require-
ments for ease of learning and use, which we did by
concentrating on a user interface. We asked the
design group to create a user interface through which
it would be obvious how to complete most tasks.

@ Copyright 1988 by International Business Machines Corporation.
Copying in printed form for private use is permitted without
payment of royalty provided that (I) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright
notice are included on the first page. The title and abstract, but no
other portions, of this paper may be copied or distributed royalty
free without further permission by computer-based and other
information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

IBM SYSTEMS JOURNAL, VOL 27, NO 3. 1988

We surmised that we could design access to each
function in such a way that executives, secretaries,
and technical professionals could obtain their work
result with no errors. To them the tasks would be
straightforward. We also believed that if typical com-
mon functions were consistent across applications

Another design focus was on using
the evolving common

communication services of SAA.

and across systems, the user would acquire skill
within one application or on one system and would
usually be able to transfer that skill to other appli-
cations and systems.

The methodology the group used was to develop a
model and then measure user time on each task, the
number of user errors, and user satisfaction with the
model. Through iteration, the group produced a set
of design principles that contributed to the original
definitions of SAA Common User Access (CUA). We
describe some of those principles later in this paper.

Our second design focus was on using the evolving
SAA Common Programming Interface (CPI). Al-
though as designers we were familiar with one or
more of the systems environments that ultimately
became SAA environments, we had little initial
knowledge of the proposed SAA CPI services. Over
time, we created a design structure that used the CPI
services. The structure we chose allowed for replace-
able, extensible components, and thus it allowed us
to accommodate minor differences in CPI services as
they were staged across SAA environments. This work
continues to the present, as our detailed design
makes effective use of the available services.

Another design focus was on using the evolving
common communication services of SAA.' Applica-
tion designers should use precursor components to
the announced SAA components when they expect
the communications requirements of an application
to change or when they know of a need for future

326 DUNFEE ET AL.

communication functions. A reasonable approach is
to select system components that offer Advanced
Program-to-Program Communication (APPC) func-
tions so that applications contain a migratable, con-
nectable interface. By using APPC, the program de-
veloper can move one end of the conversation to the
CPI for communications and still maintain connec-
tivity.

Our final design focus was to organize the internal
design process so that development could be man-
aged successfully. Because of the size and complexity
of some SAA projects, managers may need to group
functions into packages their development teams can
control. As an example for this article, we have
grouped office functions into three major applica-
tions-Personal Services, Decision Support, and Ed-
iting-and three major services-Library, Directory,
and Distribution of Mail. (See Figure 1.) If required,
the development of one or more applications or
services could be dispersed geographically. However,
the user must be able to go effortlessly to any func-
tion in such a way that our packaging is not apparent.

A reader may wonder whether the physical bound-
aries of a distributed design can be invisible when
viewed from the end-user interface of an application.
By grouping related functions, we must ask our
designers and developers to focus on presenting the
application functions to the end user as homogene-
ous functions rather than as a set of individual
components. However, there are still boundaries,
and we have had to develop tools (both for program-
ming and for process) to ensure that developers write
functions with consistent interaction styles and ter-
minologies.

The concepts of SAA encourage us to use time-tested
packaging guidelines* whereby environment-specific
logic is isolated from an application's processing
logic. Each application or service contains related
functions. Each function segment depends only on
the final state of another function. Each function is
unique. If a function is needed by more than one
application, it is packaged as a common tool for all
applications. For example, we believe developers
must use common functions for creating windows,
action bars, and messages so that users see the same
objects, take the same actions, and get the same
results across applications.

Using the SAA Common Programming Interface
(CPI). SAA governs software interfaces, conventions,
and protocols for application development and pro-

BM SYSTEMS JOURNAL. VOL 27. NO 3, 1988

Figure 1 Functions divided by management areas

I I I I USER INTERFACE I
lllt"

APPLICATION INTERFACES

1 I I

I I I I I
SERVICES INTERFACE "1 DIRECTORY

SAA

RELATIONAL SERVICES
DATABASES

LANGUAGES

SYSTEMS CONTROL

WNFEE ET AL. 327 IBM SYSTEMS JOURNAL, VOL 27, NO 3. 1988

Figure 2 General software structure

1 APPLlCATtONS

vides consistent, durable interfaces in IBM and other
software products as a means of achieving increased
programmer and end-user productivity, enhanced
ease of use through consistency across applications,
improved communications capability and usability
for enterprise-wide solutions, and increased return
on a customer’s information systems investment
through a more effective utilization of programmer
resources and user e~perience.~

This and other papers in this issue show that an
application developer can use common services
across the SAA environments. Thus, the application
developer can write logic once, for example, to cre-
ate, store, update, print, mail, and receive an object
using similar steps (with similar results) and use that
logic across all SAA environments.

328 DUNFEE ET AL

Because the MVS, VM, os/400, and oS/2 operating
systems provide the components of an SAA base-
programming languages, enabling services, and com-
munication services-application developers can of-
fer applications with comparable appearance, oper-
ation, and results across SAA environments, using
the same application logic. Thus it is to our advan-
tage to use SAA services whenever they are available.
Figure 2 shows this relationship between applications
and the system services they use. The application
layer uses the services provided by all other SAA
layers. Consistent services across SAA environments
allow us to offer consistent applications across envi-
ronments.

Using the SAA Common User Access (CUA). We
began our design under the assumption that the user
interface at the workstation must look the same and
work the same across all SAA environments. One
methodology that we used to achieve this needed
consistency was to conform to CUA rules, which
specify the basic interaction techniques for user in-
terfaces.

Although rules are effective for achieving consistent
terminology and visual fidelity, they cannot over-
come inconsistencies in user process (the sequence
of user actions needed to achieve results) across the
system environments. In general, these inconsisten-
cies are caused by the following:

Computer process differences (the internal logic
structure of application and operating-system soft-
ware)
Hardware features (keyboard versus mouse, color
versus monochrome, and screen and printer res-
olution)

An SAA goal is to remove process inconsistencies in
common function. While work is underway to
achieve this goal, we expect to minimize inconsis-
tencies in our applications through the use of cur-
rently defined common languages (in our case, the
C and REXX CPI), common database access, and
common communications access across the SAA en-
vironments.

An SAA application. An application is an SAA appli-
cation when it

Conforms to CUA
Uses applicable SAA interfaces and protocols
Uses relational database
Runs in applicable SAA environments

IBM SYSTEMS JOURNAL, VOL 27. NO 3. 1988

An SAA application is encouraged to

Exploit cooperative processing principles
Use programmable workstation to provide the

Share function and data with related SAA applica-
user interface

tions

When an application designer encounters a condi-
tion where an exception to these rules seems appro-
priate, the designer should be able to justify the
exception on technical or business grounds. For ex-
ample, a designer might want to substitute other
code to perform a function provided by a CPI service.
Some factors the designer should understand are the
expected life of the function, the number of SAA
environments involved, the potential cost (both im-
mediate and long-term as the SAA environments
evolve), and the implications for factors such as
performance and security.

Because our goal is to build one application solution
across four SAA environments, we prefer to avoid
capabilities that are unique to a given environment.
On the other hand, unique capabilities also have
worked to our advantage. We use all of the extensive
user interface capability of the intelligent worksta-
tion-some of which is above the SAA presentation
interface base-to offer a user an effective interface
for high-performance access to application functions.
We also use the security features of the Resource
Access Control Facility (RACF) in the MVS and VM
environments, and comparable features in the os/400.
Few of these features are currently available in the
os/z environment.

We plan to convert to new SAA services when they
become available. In a few areas where critical func-
tions are missing, we are writing temporary fillers,
always trying to design the functions in such a way
that they can fit within the SAA interface at a later
time. Such efforts are used to provide important
feedback which influences the evolution of SAA. They
ensure that additional functionality is evaluated for
inclusion in SAA as new requirements are identified.

Design concepts within the SAA framework

Designing for portability. New technology and
changes in the business process can quickly make
software obsolete. To help protect the customer’s
and our software investment, we are making every
effort to design common services that are portable.
An application or service is said to be portable when
one can move it to a new environment with a
minimum of time and expense without compromis-

IBM SYSTEMS JOURNAL. VC4 27, NO 3, 19%

ing its function. We encourage developers of com-
mon services to use only the set of services in the
SAA CPI so as to have maximum code portability.

Designing for cooperative processing. Cooperative
processing applications are those for which portions
of the application or its services are executed in more
than one processor. The designer’s objective should
be to use each processor for the operation it performs
best. The workstation can be used for the highly
interactive end-user functions, and the host (or a
server on a local area network) can be used to handle
shared data.

To meet the criteria for a cooperative processing
application, we created the model in Figure 3. The
application is built in two processors. The one entry
point to the application is through the Application
Programming Interface (API), which is shown shaded
in the figure. The application logic determines what
the end user or the caller wants to do and builds a
complete request. If information is missing, the
dialog logic presents screens to the end user to gather
that information. In our model, the workstation
contains all the dialog logic; no interactive services
are allowed at the host. The application logic then
passes the complete request to the requester, which
manages the conversation with either a local service
or a host service. When the conversation is complete,
the results are returned to the application logic.

Public services, which also have an API, are shared
services and are called up by the application as
needed. A library and a directory are examples of
public services. Public services, in principle, can be
installed in the workstation, if they are used by only
one end user. In our model, they must be installed
in a host (or in a server on a local area network)
when they are shared across multiple end users.

A private interface is allowed between a requester
and a service. Other applications can use the private
service by entering through the application’s API, but
they are prohibited from having direct use of that
service. By packaging function as a public or private
service, the application designer frequently improves
the application’s portability, cooperative-processing,
and extensibility characteristics.

Designing for extensibility. One of our design goals
is to build replaceable, extensible applications so as
to integrate IBM software products with other IBM
and customer-developed products. This goal can be
achieved in part by building on a common base. In
years past, this base was either provided by an op-
erating system environment (VMICMS, for example)

Figure 3 Cooperative processing concepts in which an application is divided between two processors

-

APPLICATION

FOR AN
APPLICATION
FUNCTION

APPLI- PRESEN-
CATION TATION/
LOGIC DIALOG

PRESENTATION
"""

"""

USER REQUEST I

I REQUEST
I e REMOTE

SCREEN

I
COMMUNICATIONS I

330 DUNFEE ET AL. IBM SYSTEMS XWRNAL, VOL 27. NO 3, 1988


~~~ ~ ~~~~~~~ ~ ~~ 

Figure 4 Simplified shared-services structure 
~~ ~ 

or by building an extension on  the system environ- 
ment (PROFS'", for example), or both. All of  today's 
bases provide similar functions in dissimilar ways. 

To meet our extensibility requirements, a common 
set of functions must be provided by SAA. It must be 
identical in all SAA environments; it must let the user 
select the applications to be used;  it must let the user 
start, stop, or switch to  any selected application; and 
it must let the user  easily  replace one application 
with another. 

We found that these extensibility requirements were 
met by announced function within os/2 Extended 
Edition, and  other SAA environments  are preparing 
to offer complementary f ~ n c t i o n . ~  In effect,  users 
would decide what applications and tools they wish 
to use, and  then they  would  use os/2 tools to help 
them build their lists of selected applications. 

Because  of the strengths of os/2 (its user interface 
function, a multitasking SAA environment, connec- 

tivity to all other SAA environments, extensibility, 
and tools that help the user), we have chosen the 
os/2 environment as our programmable workstation 
environment. We are designing applications to  run 
in the workstation, and designing shared services to 
run in the attached host. Thus SAA applications can 
coexist  with  existing applications when both use 
common services. To ensure coexistence  with cur- 
rent products, we allow the shared services to be used 
by those products. (See Figure 4.) Thus,  anyone who 
uses an IBM 3 179 display to obtain currently available 
application functions can access the same shared 
services as someone who  uses a workstation. 

The principles discussed in this section form the 
basis of our design.  In the next section, we show 
examples of  how our design  reflects these principles, 
and discuss the evolution of CUA and  our end-user 
interface. We also show a model of an application 
program which  uses the SAA CPIS. Finally, we explore 
the influences of SAA on  our future. 

IEM SYSTEMS JOURNAL, VOL 27, NO 3. 1988 



User’s view of SAA 

The objective of the user  interface  design  is to present 
application functions to the user  as  homogeneous 
functions rather than as a set of unique components. 
The Common User Access (CUA) of SAA provides the 
initial concepts for  developing  user  interfaces  with 
these  characteristics. In this section, we show  how 

Our  goal  is  to  design  the  user 
interface  early  and  let  it  influence 

the  design of the  application. 

individual elements of CUA are combined by the 
application designer to meet the user’s requirements 
for function and usability. 

Methodology  for  understanding the user’s  view. It is 
generally  accepted that an error in a software product 
is  less  expensive to change  earlier rather than later 
in the development cycle.5 Correcting a usability 
problem in the design  of the user  interface  is no 
exception. Frequent diagnostic  usability  testing is 
important to the success  of  new applications; the 
usability  test  lets us evaluate how  well  we are doing 
in meeting our measurable  objectives. 

Software  usability  engineering  has not evolved to the 
point where we have algorithms that predict  least 
time on task, fewest  user  errors, and greatest  user 
satisfaction. As a result,  user  interface  design  is iter- 
ative. Through iteration, we can successively hone 
our design until we meet or exceed our objectives.6 

The output of the user  interface  design  work  is the 
input  to the development of a model that simulates 
the user interface and the user-machine interaction. 
From our modeling  experience, we are writing a set 
of user interface principles and guidelines.  These 
guidelines  form the base  for  defining the applicable 
terminology, the way the application actions should 
be grouped, and the objects  (for  example,  inbasket 
and calendar) available at the workstation. 

Our goal  is to design the user interface early and let 
it influence the design  of the application, not vice 

332 DUNFEE ET AL. 

versa,  as  frequently happens. Expectedly, our mod- 
eling and usability  testing  influenced both our design 
and the CUA guidelines. We have made changes to 
the basic layout, the interaction style, and the user 
interface components on the basis  of  those  results. 

The model we  used to evaluate the user  interface 
was a representation of  office function but was not a 
prototype, in that it performed no useful  work. In- 
stead, we used “canned” scenarios, so that users did 
not select functions that had no code behind them. 
Even  with  these limitations, we found the model 
valuable  as an early  design tool, because it gave us 
the appearance and operation of the future functions. 

We  used the model to provide  feedback on both the 
function and the user  interface,  as  shown in Figure 
5. Customers and developers gave us  valuable  sub- 
jective  evaluations. The testing of data from  usability 
tests permitted an objective evaluation of the inter- 
face. 

The results of each evaluation were  used to update 
the design of the applications, and the model was 
retested. If the test  results  showed that the design 
met or exceeded our measurable  objectives, we 
“closed that section of the design.  Of  course, no 
design  is  ever  closed  because it passes its modeling 
tests. The design continues to evolve until the last 
function is added and the usability  acceptance  test  is 
completed  for the entire application (or set of appli- 
cations). 

We find it difficult to describe  which  change we made 
to improve or meet any specific  usability require- 
ment. Most  decisions  involve  trade-offs, but diag- 
nostic  testing  allows us to achieve a balance. Our 
examples in the following  sections illustrate these 
trade-offs,  because  they  are taken from  some of the 
actual modeling  work.  They do not represent a final 
product, but show an interim step in the iterative 
process we used to explore  issues.  They  have  survived 
several  usability  tests, but they will have to pass many 
more tests  as functions are added to the product. 

Ease of learning. The first  design  objective, that is, 
making the application easy to learn, requires that 
the user’s next step be  obvious. A user  should  be 
able to use the function without reading publications 
and without extensive training. For example, our 
model evaluators ranged  from  experienced to first- 
time computer users.  They  were  given  less than 30 
minutes of instruction before starting the usability 
test of the model. All instruction was on navigation, 

IBM SYSTEMS JOURNAL,  VOL 27, NO 3, 1988 



Figure 5 A methodology for managing end-user interfaces 

I 

TECHNOLOGY 

INTERFACE 
DESIGN 

L 

IBM  SYSTEMS JOURNAL, VOL 27, NO 3, 1988  DUNFEE  ET  AL. 333 



Figure 6 Major application function panels 

Use t and 4 to choose and press 

Mail Documents 
I 

~ 

Fi le  Cabinets Address Book Calendars 
1 

Telephone Spreadsheet Data Tables Business Graphics 

Reports 
U 

Project Management 

334 DUNFEE ET AL. BM SYSTEMS JOURNAL, VOC 27. NO 3, 1988 



such  as the use  of the keyboard to get from one 
function to another, so that use  of the hardware  did 
not significantly  affect our results. 

The ease-of-learning requirement has  been  addressed 
in  several  ways. One of our approaches was to take 
advantage of CUA’S object-action  interface  style; that 
involved  having new  office applications reflect  access 
to functions by representing them as  easily under- 
stood objects and related  actions. A user’s initial 
recognition of a function (i.e., selecting an object 
and taking an action on the object)  seems  related to 
his or her  ability to correlate the object and action 
to a familiar  event,  from  past  experience  with the 
function or a similar function. Figure 6 (top) shows 
a panel used to select major application functions. 
The items in the list  represent easily  recognizable 
office objects rather than abstract functions. This 
approach can  also be extended into other interface 
styles,  such  as the use  of icons in place  of  text,  as 
shown in Figure 6 (bottom). Figures 6 through 13 
are an artist’s simulation of selected  screens  from the 
model and not an exact representation of CUA. 

We concluded  from the results of our user  interface 
testing that those who  clearly understood the objects 
and actions made fewer errors. The designer’s  chal- 
lenge is to find  those terms and icons that are obvious 
for the largest number of users. We also  discovered 
that users  migrated well from text to icons,  as  long 
as we  used the same underlying  objects and actions. 

We  also  tried to solve a problem that confronts 
today’s  designers, the number of  user  choices to show 
on a panel. The following are the guidelines we used 

Make  all function accessible. 
Offer consistency  across many application func- 

Avoid  filling the screen  with actions or informa- 

Make the interface  extensible without major 

tions. 

tion that might  cover the user’s data. 

change. 

The problem can be  seen in the mail function. When 
working  with an incoming  mail item, a user may 
want to take any one of a large number of  possible 
actions on one item or a collection of items. These 
actions might include viewing an item, its history, 
or its status; copying an item or all items; adding 
reminders;  deleting  items;  or  searching  for a partic- 
ular item. Several approaches are used in current 
products to address  these  types of requirements. 

IBM SYSTEMS JOURNAL, VOL 27, NO 3. 1988 

One historical approach is to perform the selection 
by using function keys, as shown in Figure 7. The 
steps  followed  might  be  first to select  mail (Fl), then 
select the first  mail  item (Fl), and then the send 
function (F7). At each step a new menu is  displayed 

Effective  use of the  action bar 
makes  the  system  easier  to  learn. 

on which to make the next  selection. In this ap- 
proach, the function keys represent  different  func- 
tions, as the user  moves  from panel to panel, and 
the number of panels  needed to accomplish the task 
is greater than with other approaches. 

Another approach is to show  all the actions to the 
user at one time. However, too many choices can 
make the panel  unusable  (for  example, the Forward 
function in Figure 8 is  difficult to find). Also, in this 
approach, additional space  is  needed on the panel 
when a new function is added. 

We found that the CUA approach-using the action 
bar-improves  usability.  User actions are grouped 
by category. In Figure 9, the user  selects the View 
category to see the valid actions related to that cate- 
gory. If the user  selects the Send  category, the View 
actions disappear and the Send actions appear. This 
creates an interaction style that is consistent, extend- 
able, and easy to learn. 

In joint work  with the CUA area, we found that 
effective  use  of the action bar is one of the best 
approaches to making the system  easier to learn. 
This conclusion  agrees  with the results of  user inter- 
face  activities at Xerox’s  Palo  Alto  Research Center 
(PARC) and the interface of the Apple0  Macintosh’”.’ 
Developing the data, however,  allowed us to extend 
our exploration to the interface questions which are 
discussed later. 

We believe that a consistent placement of actions on 
the action bar  across  families of applications speeds 
ease  of  use.  At a minimum, it improves the percep- 

WNFEE ET AL. 335 



Figure 7 Selection  using  function  keys, a traditional  technique 

tion of usability. The action bar  creates a consistent 
means  for  users to see the actions  they  can  perform, 
and our test  users  noted  consistent  placement  of 
actions  as one reason  for their opinion that the 
functions were integrated. 

To minimize the need  for a new or infrequent user 
to read a manual, we used the CUA message  area to 
display instructions on  what to do next.  Obviously, 
extensive instructions become  “busy” and take too 
much  panel  space.  However, we found that short 
phrases on a single line (i.e.,  prompts) are quite 
helpful. As the user  completes  each  step, the prompt 
changes. This technique allow  most  users  with  little 
or no familiarity  with the function to use the appli- 
cation productively. 

Occasionally, the user  needs  more  help and selects 
Help on the action  bar. The data derived  from 
usability  testing and customer feedback about early 
versions  of the model  indicated that our best  profes- 

V i e w  inbasket f o r  F.W.Walsh 

Sender Description Type 

F2 G . M a r s h a l l l l I ) e n t s  
FL A.Frampton APEX Contract Doc 

Doc 
F3  A.Framptonl1 F1 View ,-anWer 

3 J.Allen I /  ;: II F2 Reply I” F 1  Forward 

F5 Find F4 Exit 
F6 Sort F5 Help 
F? Send 
F8 Print 
F9 Save 
FlOExit 
FllHelp 

sional judgments on wording  were  frequently  wrong. 
Thus, we worked  closely  with information devel- 
opers so that text on the message line would  lead 
into the detailed  help  logic  for the model. We con- 
cluded that information developers and early  testers 
should  help  us  select and test the prompts and the 
help  panels. 

Ease of use. To make the user  interface  friendly, we 
studied the following  choices: 

Simplifying the interface  for  all functions 
Allowing the interface to be  tailored to individual 

Ensuring that skills  learned in one application  can 
choices and skill  levels 

be  applied  when  using another application 

Simplicity. Many  applications  provide functions 
with so much  capability that users  can  become  lost 
in selections,  parameters, and options.  Consider,  for 
example, an office  systems  electronic  filing function. 

336 DUNFEE ET AL. IBM SYSTEMS JWRNAL. VOL 27, NO 3, 1988 



Such a function may provide capabilities for search- 
ing office correspondence and  computer files, and 
may do it more efficiently than a manual filing 
system. The  menu for searching for correspondence 
might be long and complex, but it typically contains 
only a few critical questions: 

What is the subject? 
Who is the  author? 

Questions such as the following are often repetitive 
or of little interest to a particular user: 

What folder do you want to look in? 
What file cabinet do you want to search? 
What language are you  using? 

The design we propose is to show only frequently 
changed parameters on  the first panel seen by the 
user.  In the search example in Figure  10,  seven 
parameters are shown, and two (Folder and File 
Cabinet) are prefilled. The prefilled parameters, as 
well as other preferences such as choice of  language, 
have been set previously by the user or installation. 

For most operations, the prefilled entries do not need 
to be changed, and  the user need consider only values 
for the blank fields. 

When a change to  an option is required, the user 
needs a predictable technique used consistently 
across  all applications to display and change the 
preset defaults. Our model used the F9 function key. 
When the user presses the F9  key in Figure 10, a 
window containing preset  values  is  displayed.  (See 
Figure 1 1.) A change to  any preset value is a tem- 
porary change for this execution of the Search. Oth- 
erwise, the user could use the Save function shown 
in the action bar and make a permanent change to 
the defaults. 

The CUA List function is another memory-aid tech- 
nique that reduces the need to remember and enter 
information. The List capability allows the user to 
display the potential inputs for a parameter on a 
parameter-entry panel. The user may want to change 
the folder to be searched but may not know the valid 
folders that could be searched. In our model, if the 
F4=List key  is  pressed  with the cursor in  the Search- 

Figure 8 Selection by showing  every choice, a difficult-to-use  technique 

1. View item 2 .  View his tory   3 .  V i e w  s ta tus   4 .  Copy item 
5. Copy a l l  6. Add reminder 7 .  Delete 8.  Find  9.  Search 
f i l e s  10.  Sort  sender 1 1 .  Sort  date  12.  Sort  subject 
13. Forward 14.  Reply  15. Send note  16.  Print item 
17.  Print a l l  18. Save  19. Exit 20. Help 

V i e w  inbasket  for F.W.Walsh 

Sender  Description Type Date 

0 1A.Frampton APEX Contract Doc  11-20-871 
0 G.Marshal1 Request f o r  Documents Doc 11-20-87 
0 A.Frampton Financial  Contracts Folder 11-20-87 
0 J.Allen Department Meeting Meeting 11-20-87 
0 J.Smith Action  Items Folder  11.20.87 

Action ==> 

IBM SYSTEMS JOURNAL, VOC 27. NO 3. 1988 WNFEE ET AL. 337 



Figure 9 User actions grouped  by  category 

)I View inbasket  for F.W.Walsh 

Type Date 

n APEX Contract Doc 11-20-87 

in-Folder field, a list of folders that are valid entries 
in the field is  displayed in a pop-up  window,  as 
shown in Figure 12 (top). The user can then select 
the desired  folder,  such  as APEX Contracts, and the 
data are copied automatically to the parameter entry 
field  when the pop-up  window  is  exited  (see bottom 
of Figure 12). 

Tailoring. The features that make an application 
usable to one user can make the same application 
seem  difficult to other users.  Personal  preferences, 
job assignments, and skill  levels are some of the 
factors that affect a user’s productivity with a given 
application. Most  user-interface components should 
be  changeable by the user or installation, including 
color combinations, the words used on panels, and 
the language. 

One of the main considerations is  how to adapt the 
user  interface to the skill  level  of the user. As users 
gain  experience  with an application, they  require less 
prompting and help to complete their work. As they 
become  proficient,  users  want  faster ways to execute 
a task, and they do not require the step-by-step 
approach provided by menus. The goal is to deliver 
a smooth progression  of techniques to match the 
increasing  skill levels  of  users, not separate interfaces. 
Application  developers  should  consider the new or 
novice  user, the experienced  user, and the expert 
user  as  they  design the user  interfaces. 

One of the items discussed  earlier, the message line, 
is intended to address the needs of the novice  user. 
In many cases, this information becomes  unneces- 
sary to a user  who  is  experienced in the application 

338 WNFEE ET AL. IBM SYSTEMS JOURNAL, VOL 27, NO 3, 1% 



the function area. 

Another option-the CUA command line-can  be 
turned on by experienced  users  as  they  become 
expert in the use of the system. Our model contains 
a command line to give the expert  user the ability to 
bypass the menus and go directly to a function. Users 
are exposed to command usage  by  seeing the com- 
mand (or accelerator function) next to the selections 
they  make while completing a task. 

The command line can be  used to enter commands 
in several  ways. One way  is to enter an action (or 
abbreviation of an action) and the object on which 
to perform the action. For example, the user can 
print the  first item in a list  by entering the command 
PRINT 1, or can print the first three items by entering 
PRINT 1,2,3. All commands take the user  directly to 
the function, bypassing both the action bar at the 
top of the screen and any intervening panels. 

measured as “consistent” only  after a satisfactory 
answer to the following questions: Consistent with 
respect to what  feature?  How do those features relate 
to overall  system goals? 

We  used  several  tests  when evaluating the model for 
consistency. We looked for a positive  transfer of user 
knowledge as the user  moves among applications 
and environments. We tested  for  terminology,  style, 
and procedural  exactness both within a function and 
across  all functions of the model. We looked  for 
examples of ambiguity,  where the same term or 
process  was  used in different functions; we compared 
the two  usages to understand the similarities and 
differences.  Finally, we looked at how the user’s 
perception  of  these functions changed  as the user 
became more experienced. 

Many of our insights  helped  refine the CUA rules, 
which  define the design elements of a user  interface. 

Figure 10 Search example 

IBM SYSTEMS JOURNAL, VOL 27, NO 3. 1983 WNFEE Er AL. 339 



~ ~ 

Figure 11 Preset  values  for  Search  example 

Exit Help 11 Save Exit Helo I 

Search for: Search: I AI 
Subject.. .... 
Author... . . . .  
Document..... 
Folder....... 
KeYWords'Text Folder.. ...... [I Work in  Process I I 

Date Range.. .. 
Documents..... 
Folders . . . . . . .  

Search in: 

Search in: 
Fi le  Cabinet.. u Personnel 

Folder.. . . . . .  
F i l e  Cabinet. 

Search Controls: 

However, it is the application designer  who must 
assess those elements and select the proper combi- 
nations. 

Some office applications, such  as electronic mail, 
require a critical  mass of  users  who must be  using 
the application before it becomes effective as a means 
of communicating in an organization.  Such  persons 
tell us that they want a positive  transfer of learning. 
When  they  travel,  they  want the application to have 
the same appearance and operating characteristics as 
it did at home. When  they  change jobs or move from 
area to area, they  want training on new equipment 
or applications to be minimal. 

The objective of both CUA and our model is to ensure 
that transfer  between  devices  is  easy, but equipment 
differences  keep them from  being  identical. 

Figure 13 shows the model's  workstation  Inbasket 
compared with its fixed-function terminal equiva- 
lent. The function is  presented in similar forms, and 
the terminology is identical. The use of the action 
bar and the  pulldown  for  Send operate similarly. To 

move  forward or backward in the list of mail items, 
the users  press F7 or F8. The workstation  user can 
use the mouse or space bar to make a selection, but 
both users can cursor through the list to make a 
selection.  When additional capabilities are available 
on the workstation,  they are usually  allowed. 

Above  all, we want to ensure that the use  of a 
function is predictable  across applications. A design 
that takes advantage of the state-of-the-art features 
of a workstation  differs  from the design  for a fixed- 
function terminal. These differences  can be allowed 
when  users are not expected to move  between  work- 
station and terminal. However,  they should not be 
allowed to diverge to such a point that they  become 
unpredictable to the user.  Some  of the areas we  feel 
important are the following: 

Terminology  used  for  objects and actions 
Categories of  actions-how  they  will be ordered 
in the action bar  as well as  what actions are 
grouped under each  category 
Similarity of look, feel, and results of the same 
action in different applications running on the 
same workstation 

340 DUNFEE ET AL ISM SYSTEMS X K I R N A L ,  VOL 27, NO 3, 1988 





Figure 13 Comparison of programmable workstation and a fixed-function  terminal  equivalent 

View inbasket 
1 .Forward 

Sender 

A.Frampton Financial CII 
J.Allen Department  Meeting 

' ' 
Doc 11 11-20-87 

u J.Smith Action  Items  Folder 11-20-87 
0 T-Edwards Contract Requirements  Doc 11-20-87 
0 A-FramDton APEX  Contract  Preliminarv  Doc 11-20-87 

/I Date 

- > A.Frampton APEX  Contr  F12=Quit 
- G.Marshal1 Request  for 11-20-87 
- A.Frampton Financial C 11-20-87 
- J.Allen Department  Meeting  Meeting 11-20-87 
- J.Smith Action  Items  Folder 11-20-87 
- T.Edwards Contract Requirements  Doc 11-20-87 

i 11-20-87 

- A.Frampton APEX  Contract  Preliminary  Doc 11-20-87 

Enter  Fl=Help  F3mCancel  F7mPgUp  F8nPgDn  FlOmActions  FlPlQuit 

. 

IBM SYSTEMS  JOURNAL. VOL 27, NO 3, 198B 



We have just discussed our view  of integration with 
respect to appearance. We now present our view of 
integration with  respect to application logic.  We 
approach this discussion by assuming that program- 
mable workstations are attached to any SAA host. 

Applications that are integrated have  several com- 
mon characteristics. They appear “seamless” to  end 
users;  they share or exchange data;  and they  offer 
most, if not all, of their functions as callable services. 
From a user’s  perspective, once one application has 
been given information, the user  who entered the 
information should never have  to re-enter that in- 
formation elsewhere. For example, if a user creates 
a meeting notice, the information supplied can be 
used to  update  the user’s calendar as well as  to notify 
each meeting participant; when the participant re- 
ceives the notice and  commits  to  attend  the meeting, 
the participant’s calendar is also automatically up- 
dated. 

Applications can share data through several tech- 
niques, such as common  data blocks, common  van- 
ables, and parameter passing. Another technique of 
data exchange in os/2 is the clipboard, a service of 
the os/2 presentation interface. Thus, when a user 
wishes to move an object from one application to 
another,  the user can select the object in one appli- 
cation, move it to a “clipboard,” and  then move it 
to  the next application. This is a standard technique 
used today by Microsoft@  Windows,  Apple Macin- 
tosh, and others. 

We  believe SAA enhances today’s clipboard tech- 
niques by allowing SAA applications to offer  users 
data-sharing advantages over other applications. SAA, 
by standardizing the object architectures, enables 
applications that support the clipboard to pass an 
object that can be  widely  used. It is even  possible to 
design applications to work together so that  the 
clipboard is unnecessary. 

Beyond these data-exchange methods, we are inves- 
tigating how data, if changed in one application, are 
automatically reflected in the results of another ap- 
plication. For example, when a user changes data  in 
a spreadsheet window, a chart in a business-graphics 
window  is automatically redrawn on the basis of the 
new data. 

Our proposed mechanism for providing callable ap- 
plication function was shown in Figure 3. Each 
application has a public Application Programming 
Interface (API) that  other applications may use. As 

IBM SYSTEMS JOURNAL, VOL 27, NO 3. 1988 

an example, a mail application might provide a 
callable interface to send an object to a user in  the 
network. The developer of a word processor appli- 
cation might then provide a Send function on its 

We  want  to  select  designs 
that allow  us to  write  code  once 

and use it anywhere. 

~~~~~ ~~ ~ 

action bar. When the user selects Send, the word
processor might have been designed to perform one
of the following actions:

1. Call the mail application, passing no data, thus
requiring the user to identify what to mail and
where to send it.

2. Collect all the needed mailing information from
the user, then call the mail application with a
complete request.

3. Call the mail application, passing information as
to where the object can be found, and let the user
identify where to send it.

Option 1 violates our principle of not asking the user
to re-enter information the application already
knows, but it may have to be used for applications
that are unable to share data. Option 2 makes the
word processor application duplicate code that is
required in the mail application, but this option is
viable if the developer has a reason for not allowing
the user to see mail application panels or to change
mail options. Option 3 appears to provide the most
function and application integration with the least
logic and the least user entry of data. Of course, no
one option is right for every situation.

As the word processor uses the mail function, so the
mail function may use the directory function, if the
addressee is not in the form of a system address. For
example, if the mail request is to “send x to y,” then
the mail function must call the directory function,
requesting “provide system address for y.” Each ap-
plication is added to our design in this manner.

Portable applications. We want to select designs that
allow us to write code once and use it anywhere. The

DUNFEE ET AL. 343

model shown in Figure 3 allows us to separate the
common service code from user workstation inter-
face code, thus improving the probability that service
code can be reused at a tolerable cost.

Also, we want to write application logic for the
workstation and recompile it on the host to perform
those same functions. In designing the application,
however, an equally important goal is to produce
the best possible user interface for workstation users.
Although the user interface code would be difficult
to reuse, we can reuse those parts of the application
that perform the data-handling functions, provided
they are designed to be independent of the user
interface functions.

We expect to code the services in the host, assuming
that they will execute in all SAA environments. Where
practical, we have designed each service so that one
part has all the functions that are common across
SAA environments (the kernel) and the other part has
the environment-unique functions (the shell). Nearly
all service logic is in the kernels, including data
management. Resource management and system-
unique services are in the shells. On average, we
suspect that the kernels will contain 50 percent or
more of the service’s code. This percentage should
approach 80 to 90 percent as SAA matures.’

Cooperative processing. Our cooperative processing
strategy is to place function in the processor that
handles it best. These “what’s-best’’ decisions are the
results of many “what’s-available’’ questions, and
the solutions chosen must be reviewed continuously.
One of the final tests must be an affirmative answer
to the question: Does the user consider the perform-
ance to be acceptable?

As we evolved our design we were always conscious
of this evolution, and we strove to segment the
applications and services so that all major parts of
the services could be run on workstations, on a host
from a fixed-function terminal, or on a host from a
workstation. At present, the long-term implications
of this generality are not well understood.

Those functions that are shared by users are being
placed in the host, but as recovery, security, access
control, and availability concerns are addressed in
the workstation, designers can consider the placing
of shared function in os/2 servers.’

System connectivity. Previously we said that the logic
used to process user requests (the application logic)

344 WNFEE ET AL.

should be independent of the logic used to present
panels to the user (the dialog logic). The application
logic also should be independent of the logical and
physical links used to connect processors (the con-
nectivity logic).

The connectivity logic in our design is managed by
the service requester, as shown in Figure 3. If the
service is remote (i.e., in another processor), the
requester uses os/2 communication logic to handle
the peer-to-peer communications. Thus, as common
communications support becomes available in each

All office workers need
access to information

that is shared among them.

SAA environment, we have only to convert the one
requestor-as opposed to each application-from
today’s Advanced Program-to-Program Communi-
cation (APPC) interface to the communications inter-
face of the CPI.

The physical links can be any link technology sup-
ported by the product providing the APPC interface
for an environment, but the parallel sessions func-
tion is required for satisfactory performance. We
expect to use SAA Common Communications Sup-
port, as it becomes available, because it offers a more
comprehensive solution than our requester logic.

Local-remote transparency. Cooperative processing
applications that support the distribution of data are
frequently complex applications in heterogeneous
networks. Much of this complexity can be hidden
from the application programmer by services that
provide local-remote transparency so that the appli-
cation programmer is not necessarily aware of
whether the data being used are local or remote,
whether the service being called is local or remote,
or what connectivity path is being used.

Our requester makes the location of the service
transparent to the requesting application. However,

BM SYSTEMS JOURNAL, VOL 27, NO 3, 1988

there may be cases, such as performance, where the
application chooses to be aware of whether the ser-
vice is local or remote. The application logic con-
verses with services using a begin-conversation, mid-
dle-of-conversation, end-of-conversation technique.
The begin function returns a signal to the application
when the conversation is remote.

Our interfaces today provide a specialized solution
in that they support the types of data objects and
services we require for our set of applications, not
the general set needed across all SAA environments.
But the data streams are architected, thus allowing
us to interchange data in heterogeneous networks
with end-to-end fidelity.

Access to public services. All office workers need
access to information that is shared among them.
The programmer can package this information in a
data store organized into objects, information about
objects (attributes of the objects), and collections of
objects (lists or groups of objects). However, the user
sees this information through a construct, such as a
directory, that contains the names of people and
their telephone numbers, or a library that contains
folders and documents.

Our model contained examples from three of these
public services-a directory, a library, and mail dis-
tribution. (See Figure 1 .) Another example of a data-
store service is a calendar that can be used to manage
personal events, shared events (such as conference
rooms), and time-initiated events (such as overnight
printer runs for low-priority documents).

Office workers also need access to tools shared
among them, which the system designer can package
as public services. One example is a service that
allows users to share a printer. The application pro-
grammer must know how to begin and end a con-
versation with a shared service, but need not be
aware of the location of the service when writing the
application logic. This approach obligates the system
designer to provide an administrative function that
defines and maintains the electronic address of the
services. When a service cannot handle a request, we
allow it to send the request to a second service.
Although, to be precise, that is a new conversation,
from the user’s point of view it is a repackaging of
the original request.

Public services are excellent vehicles in which current
products may coexist with SAA products. Consider
the following two choices: We can leave the user

IBM SYSTEMS JOURNAL. VOL 27. NO 3, 1988

interface unchanged and allow access to the new
services, or we can update the product throughout,
providing both access to the new services and a new
interface that conforms to CUA. The interfaces of the
public services appear to be good candidates for

~~

Public services are excellent
vehicles in which

current products may coexist
with SAA products.

study as interface extensions to the SAA CPI. One
aspect of such a study would be to determine whether
such a public service had wide usage potential such
that it could be considered as a building block by
the development community.

Concluding remarks

During our design, we found functions that were
needed by a single application or a group of closely
related applications, and we chose to define a private
interface for each of these functions. Although they
may be used frequently by our applications, they are
unlikely candidates for SAA CPIS because they are
specialized functions. We foresee application design-
ers encountering many situations where creating
common services makes sense. When designed prop-
erly, common services are portable and can be can-
didates for moving to other environments. Those
common services that have broad applicability may
become candidates for addition to the SAA CPI.

The SAA design criteria we have discussed in this
paper are neither new nor revolutionary. However,
these criteria do focus on ease of use, return on
investment, and flexibility. The ease of use empha-
sizes the personal comfort and general well-being of
the user. We believe this allows for higher productiv-
ity, and it should increase the user’s acceptance of
the system. As systems become more extensible,
applications become more extendable, and logic be-
comes easier to move between SAA environments.

We believe another step is being taken to make
software design and development more of a science
than an art.

Finally, added flexibility releases us from past design
constraints. Freedom from device differences, data-
base differences, and connectivity differences leads
our list of contributors to flexibility. We believe that
soon we will be able to distribute across SAA environ-
ments the design and production of application code.
This capability seems as desirable for programmers
who sit in adjacent offices as it is for departments
that are located in different countries.

As SAA matures applications and services that are
developed can be expected to execute without signif-
icant change in the future.

Acknowledgments

The authors wish to thank John Bennett and
Clarence McGee for their insights in usability engi-
neering and systems design. Skip McGaughey and
Dick Washington provided much of the model that
was used to make the usability evaluations.

Apple is a registered trademark of Apple Computer, Inc.
Macintosh is a trademark of MacIntosh Laboratories, Inc., licensed
to Apple Computer, Inc.
Microsoft is a trademark of Microsoft Corporation.
OS/40O,OS/2, and PROFS are trademarks of International Busi-
ness Machines Corporation.

Cited references

1. V. Ahuja, “Common Communications Support in Systems
Application Architecture,” IBM Systems Journal 27, No. 3,
264-280 (1988, this issue).

2. IBM SAA: Writing Applications, A Design Guide, IBM Corpo-
ration, SC26-4362; available through IBM branch offices.

3. E. F. Wheeler and A. G. Ganek, “Introduction to Systems
Application Architecture,” IBM Systems Journal 27, No. 3,
250-263 (1988, this issue).

4. S. Uhlir, “Enabling the user interface,” IBM Systems Journal
27, No. 3, 306-314 (1988, this issue).

5 . M. E. Fagan, “Design and code inspections to reduce errors in
program development,” IBM Systems Journal 15, No. 3, 182-
21 1 (1976). See also R. W. DePree, “The long and short of
schedules,” Datamation 30, 263-280 (December 1983).

6. J. L. Bennett, K. A. Butler, and J. Whiteside, Usability Engi-
neering, Tutorial No. 23, presented at CHI’88, Conference on
Human Factors in Computing Systems, Association for Com-
puting Machinery, Special Interest Group on Computer and
Human Interaction, Washington, X, May 16, 1988.

7. C. Clanton, “The future of metaphor in man-computer sys-
tems,” Byte 8, No. 12, 260-263 (December 1983). See also
B. F. Webster, “The Macintosh,” Byte 9, No. 8, 238-251
(August 1984).

8. A. L. Scherr, “SAA distributed processing,” IBMSystems Jour-
nal 27, No. 3, 370-383 (1988, this issue).

346 WNFEE ET AL.

General reference

Systems Application Architecture Common User Access Panel De-
sign and User Interaction, SC26-4351-0, IBM Corporation (De-
cember 1987); available through IBM branch offices.

William P. Dunfee IBM System Products Division, 44 South
Broadway, White Plains, New York 10601. Mr. Dunfee joined
IBM in 1963 as a junior programmer. He advanced through
technical and managerial positions in operating system design,
development, and testing, including MVT/360, SVS/370,
MVS/370, and DPPX/8 100, and was promoted to senior program-
mer in 1973. In 1980 he joined the communications systems
business staff organization, where he was responsible for providing
technical support for the executive management in the System
Communications Division (SCD). Mr. Dunfee assumed manage-
ment responsibility for JES2, JES3, and MVS/370 design and test
in 198 1; in 1982, these responsibilities were enlarged to include
design and development as well as testing of these programs. In
1983, Mr. Dunfee became the MVS design and performance
manager, and in 1985 he was promoted to manager of office
systems development, in which position he was responsible for
software (both operating systems and applications) and for the
IBM office-systems strategy. In 1987, he was appointed manager
of System Products Division system development software, where
he is now responsible for application-enabling software. Mr. Dun-
fee graduated from the University of Massachusetts, Amherst, in
1963 with a B.S. degree in mathematics.

J. David McGehe IBM Application Systems Division, Neighbor-
hood Road, Kingston, New York 12401. Mr. McGehe joined IBM
in 1967 at Kingston, New York. He is a systems planner who is
currently responsible for planning product implementations of
SAA. Before his current assignment, Mr. McGehe planned and
released products in the office-systems family. Prior to that, he had
worked on several enhancements to Systems Network Architecture
(SNA) and managed departments responsible for publications on
the IBM 3600 Finance System and the IBM 3790 Communications
System. Mr. McGehe received his B.S. degree in English from
Iowa State University, Ames, in 196 1.

Robert C. Rauf IBMApplication Systems Division, Regency Park,
Cary, North Carolina I751 1. Since joining IBM in 1964, Mr. Rauf
has had several technical programming design and development
assignments. He has also managed various groups involved in the
design and performance of large operating systems. For the past
several years, Mr. Rauf has managed areas of responsibility for the
design of office-systems products. Most recently, this work has
been related to the integration and usability of office systems.

IEM SYSTEMS JOURNAL, VOL 27. NO 3. 1988

Kenneth 0. Shipp IBM Application Systems Division, 220 Las
Colinas Boulevard, Irving, Texas 75039. Mr. Shipp joined IBM in
1974 as a programmer in Austin, Texas. In 1980 he was appointed
a first-line development manager on the IBM Displaywriter prod-
uct, and in 1983 he became application development manager for
the Displaywrite product. He is currently systems design manager
for the Application Systems Division in Irving, responsible for the
design of future office systems across all SAA environments.

Reprint Order No. G321-5329.

IBM SYSTEMS JOURNAL, VOL 27, NO 3, 1988

