SAA distributed processing

Discussed are motivations for distributed versus cen-
tralized data processing, the relative advantages of
each, and the trade-offs involved as they relate to
Systems Application Architecture (SAA). Presented is a
taxonomy of the various approaches to designing ap-
plications to operate in a distributed manner. SAA sup-
port for these modes is described. The management of
an enterprise-wide network of systems is discussed.

AA will provide important new capabilities for

distributed data processing, which is defined as
the implementation of a related set of programs and
data across two or more data processing centers or
nodes. Generally, each of these data processing nodes
is fully capable of storing data, executing application
programs, and interfacing with user workstations. As
we shall show, distributed processing provides new
degrees of freedom for the designer of application
programs. This flexibility allows for additional trade-
offs to be made to optimize performance and cost as
well as to satisfy organizational goals and other data
processing requirements. The functionality of saa
and its program and data portability characteristics
all contribute to being able to capitalize on these
new degrees of freedom.

This paper is organized into four major sections. The
first describes the motivations for distributed versus
centralized data processing. The relative advantages
of each and the trade-offs are described. The second
section presents a taxonomy of the various ap-
proaches to designing applications to operate in a
distributed manner. In the third section, the under-
lying SAA support for these modes is described. Fi-
nally, the facilities needed to manage a widely dis-
persed enterprise-wide network of systems are dis-
cussed. The broad conclusion of this paper is that

370 scHerr

by A. L. Scherr

distributed processing provides valuable additional
degrees of freedom for the designer of application
systems. On the other hand, it also can add to the
complexity of these systems. The intention of dis-
tributed processing support in SAA is to maximize
the utility of this additional flexibility and minimize
the additional complexities seen by the end users,
the system and application programmers, the net-
work designers, and the operational and administra-
tive staff.

Distributed versus centralized processing trade-
offs

Perhaps the most pervasive motivations for distrib-
uted processing derive from geographical considera-
tions. The fact that data processing users are geo-
graphically dispersed introduces the need to make
trade-offs between communication costs and com-
puting costs. This computing versus communication
cost trade-off can occur at two levels: the economic
cost for the hardware and software facilities, and the
delays incurred for the communication.

In the 1960s, this trade-off was virtually always made
in the direction of centralizing computing to achieve
economy of scale. Because computers were relatively
expensive, the communication costs necessary to
provide users access to the centralized equipment
were considered to be a reasonable price to pay for
the advantages of such centralization.

© Copyright 1988 by International Business Machines Corporation.
Copying in printed form for private use is permitted without
payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright
notice are included on the first page. The title and abstract, but no
other portions, of this paper may be copied or distributed royalty
free without further permission by computer-based and other
information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

IBM SYSTEMS JOURNAL, VOL 27, NO 3, 1988

Although it is difficult to predict relative cost and
price trends in these areas, the additional delays
associated with communications—both in the com-
munication facilities themselves and in the various
data processing elements needed to send and receive
messages—are significant factors that can be pre-

For simple applications,
the price/performance of small
machines can be significantly better
than that of larger machines.

dicted and dealt with. Thus, for example, placing
computing capability close to the end users to avoid
communications delays is clearly a way of providing
better responsiveness for highly interactive applica-
tions.

Another source for distributed processing is the
building of bridges between two or more existing
applications and their data, where these applications
run on geographically or architecturally disjoint
equipment. A common example of this might be the
result of a merger of two companies where, for
instance, a consolidated personnel application is cre-
ated.

The desire to exploit special characteristics of partic-
ular data processing hardware is another motivator.
For instance, for relatively simple applications, the
price/performance of small machines can be signifi-
cantly better than that of larger, more complex ma-
chines. Therefore, it is possible to see cases where
applications that have been implemented across a
network of small machines achieve outstanding
price/performance, even though the application
structure might have been simpler on a large, cen-
tralized machine. Another argument often seen in
this area is the relative simplicity of smaller ma-
chines. Whereas this may be true only in the eye of
the beholder and may be a difference that is dimin-
ishing, software for smaller machines is usually held
to be easier to use and less complex to maintain than
that which supports large systems. Finally, there are

IBM SYSTEMS JOURNAL, VOL 27, NO 3, 1988

unique functions associated with different proces-
sors—such as special floating-point hardware, array
processors, or the highly interactive capability of
personal computers—that may be required by par-
ticular applications. Therefore, the execution of such
applications must occur on particular hardware. This
then can result in the kind of multinode program
execution that is associated with distributed process-
ing.

The requirement to achieve high availability for end
users often leads to some form of distributed proc-
essing. For example, by partitioning the workload
across the branch offices of a business and using an
individual system in each branch, the scope of any
given failure can often be limited to a single branch.
Thus the overall availability seen by the end users
may be better than a configuration in which every
branch is served through a communications network
by a single, centralized system. Often this approach
is augmented by using both branch office systems
and a centralized system accessed through a network.
In this way, a failure of the communication lines or
the central system can be counteracted by having
the front-end system assume some level of the appli-
cation function. On the other hand, a local system
that fails can be bypassed and its functions per-
formed by the central system. Ultimately, the ability
to configure front-end/back-end and/or horizontal
partitions of the workload in these ways and actually
achieve higher availability with reasonable perform-
ance is a strong function of the geographical organi-
zation of the enterprise, as well as the particular
nature of the applications being implemented.

The State of California is an example in which the
geography is ideal for this type of split, because the
major population centers, San Francisco and Los
Angeles, are separated by a large zone with relatively
low population density. Figure 1 shows how a credit
authorization might be implemented on two nodes.
It is relatively easy to balance the load between the
two nodes, and the probability of communications
between them is quite low. In contrast, in a single-
center geographical region such as the New York
metropolitan area, this approach would not be prac-
tical. This example also demonstrates another char-
acteristic of distributed processing: The feasibility of
an application configuration is often a function of
special-case situations.

A related reason for distributed processing is to
achieve higher levels of physical security. Large en-
terprises will often set up two or more data centers

scHerr 371

Figure1 Partitioned credit authorization system

SAN FRANCISCO

@ TERMINAL

7 TELECOMMUNICATIONS
LINK

LOW-POPULATION-
DENSITY ZONE

NORTH
SYSTEM

RECORDS
FOR

NORTHERN
ACCOUNTS

as a way of protecting against natural disasters, power
failures, sabotage, etc. Whereas the capacity created
may be more than is needed for normal operations,
the excess usually is not as much as double the base
requirement. By identifying critical applications and
providing redundant capacity for them alone, sav-
ings can be realized. All other applications would
then be split between the two or more data centers.
Achieving this type of physical security thus requires
distributed data processing facilities as a means for
exploiting the additional capacity as well as for mak-
ing backup data available in the event of an emer-
gency.

The next motivation is the real and/or perceived
limitations of capacity in the data processing com-
plex of an organization. The capacity needed for
many applications is a function of an enterprise’s
volume of business. In some cases, the upper capac-
ity limit of the largest available centralized data
processing system is insufficient. Then, in order to

372 screrr

accommodate increased business volumes, the ap-
plications must be split so that two or more systems
can be used to share the load.

A similar situation occurs when the size of the or-
ganization providing data processing facilities within
an enterprise is seen to have passed the point of
diminishing returns with respect to its efficiency and
effectiveness. There have been cases where a new
organization with its own data processing installa-
tions has been created because management declined
to add additional workload to an existing organiza-
tion. In this case it was management’s judgment that
the existing organization would be unable to effec-
tively manage the additional complexity and work-
load. Thus, data processing operations have often
become decentralized as a way of creating a more
manageable operation.

We have just presented one example of the many
possible scenarios leading to the decentralization of

IBM SYSTEMS JOURNAL, VOL 27, NO 3, 1988

data processing, The management style and philos-
ophy of a corporation in its approach to organizing
the relationship of data processing management and
line management have sometimes led to having line
management directly control the data processing
necessary for their operation. In some organizations,
departments have acquired their own computing
resources outside the normal data processing estab-
lishment. In these cases, the arrangement of the
various systems in the network usually takes on the
form of the organization. Another related organiza-
tional consideration is historical; because of events
such as mergers and acquisitions, different styles of
applications, different operating systems, and differ-
ent hardware architectures must be interconnected.
In all these cases, the need to tie together separate
application programs and data leads to distributed
processing.

There are considerations to counter each of the
points that have just been made; however, these
counterarguments can be interpreted only in the
context of the perception and judgment of the people
making the decisions. In most cases, there really are
two sides to the story, and, depending on the exact
situation, one factor may be judged more important
than the other. Thus, economies of scale in both
hardware and organization have been used for years
to justify centralized data processing. These argu-
ments are still valid and will remain so until either
the hardware capacity or the organization size
reaches a point of diminishing returns. To add to
the complexity, many of the cost factors may be
intangible or may involve long-term versus short-
term considerations.

The single point of control that is available in a
centralized data processing system for operations,
security, systems programming, and applications
programming is an advantage that is hard to argue
with. Most companies that do distributed processing
generally continue to require some degree of cen-
tralized capability in these areas.

Another advantage of centralized processing is that
it inherently has fewer degrees of freedom and is
therefore simpler, because where there are fewer
decisions to make, there are fewer decisions to un-
make. For instance, it is unnecessary to choose where
to place applications and their data. In the distrib-
uted case, data and applications are placed in a
network as a consequence of the motivations de-
scribed earlier. The values of the parameters will
change over time as a result of adding new applica-

IBM SYSTEMS JOURNAL, VOL 27, NO 3, 1988

Table 1 Motivations for distributed processing

Geography
Computing versus communications trade-off between costs
and delays
Responsiveness of the user interface
Bridges between existing applications
Characteristics of processors
Exploiting price and performance differences
Simplicity of small machines
Unique function
Higher system availability for end users
Scope of failures limited by partitioning the workload
Impact of failures reduced by redundancy in the front end
and the back end
Physical security
Protection against natural disasters, power failures, sabo-
tage, etc.
Security provisions
Single-system capacity limitations
Single computer with adequate capacity not available
Operational complexity of large centralized system
Cost of migration to larger system and/or new operating
systems
Organizational considerations
Size of centralized data processing organization
Management style and philosophy
Historical growth
Mergers and acquisitions

Table 2 Motivations for centralized processing

Economies of scale
Hardware
Organization
Single point of control
Operations
Security
Systems and applications programming
Simplicity
Fewer decisions to make and unmake
Tuning
Shared-data applications
Only feasible solution when data must be current and fre-
quently updated
Acessibility
Systems, data, and programs all equally accessible from
anywhere in the network

tions, changing usage patterns, inaccurate predic-
tions, changes in philosophy, and so on. At this
point, the network may need to be restructured and
rebalanced, resulting in applications and/or data
having to be moved to new nodes. In the past, this
has required reprogramming and/or data conver-
sion. With the realization of sAA, the cost of changing
the location of data and programs will be signifi-
cantly less, and tuning of this type will be more
practical.

scHerr 373

Figure2 Variety of distributed processing configurations

LOW-SHARING, LARGE ORGANIZATION HIGH-SHARING, LARGE ORGANIZATION

PPPEG

LARGE

N

CENTRAL DP COMPLEX

{]
T

COMMUNICATION COMMUNICATION
PROCESSOR PROCESSOR

ORGANIZATION SIZE

HIGH-SHARING, SMALL ORGANIZATION

SERVER
T

J SMALL DP CENTER

LAN
)
I
=
w

Low HIGH

< DEGREE OF DATA SHARING
E »
e
NONPROGRAMMABLE WORKSTATION (WS) INTELLIGENT WORKSTATION (IWS)

374 screrm IBM SYSTEMS JOURNAL, VOL 27, NO 3, 1988

Finally, because centralized systems are equally ac-
cessible to all users, the centralized system is often
the only feasible way to implement applications that
are broadly used. Widespread usage of a shared
database with frequent updates where the data must
be kept current demands a single centrally available
copy of each data element. Multiple copies of the
data in cases like this are usually impractical.

Tables 1 and 2 summarize the factors described. In
real situations, these motivations are traded off
against one another and it is rare indeed to see a
large enterprise doing its data processing in a single
organization and in a single complex. The most
typical configurations seen involve the interconnec-
tion of not only peer systems but also small, inter-
mediate, and large systems in the same complex.
Figure 2 shows four possible variations of the essen-
tially infinite combinations available as a function
of the degrees to which data sharing is done and the
size of the organization. Where data sharing is less
prevalent, smaller, more dispersed systems are prac-
tical. Thus, for small organizations with little data
sharing, a local area network connecting personal
computer workstations is sufficient.

Distributed application design

In order to fully explore the facilities of saa for
Distributed Processing, this section discusses the gen-
eral question of application design in a distributed
environment. Perhaps the simplest way to look at
the question is to consider the fact that in most cases
the network of systems already exists; the question
can then be asked: Where should the data and the
associated application programs be placed in this
network? In other cases, the data are already present,
and the question becomes one of where to put the
new application program. In either case, the simpli-
fied program-data structure shown in Figure 3 con-
tains adequate information to allow most of the
points and trade-offs to be discussed.

Figure 3 shows simplified application flow starting
with the user at a workstation going through a Dialog
Manager/Presentation Manager (DM/PM) facility that
has access to stored descriptions of display panels,
menus, help information, input forms with field
definitions, and so forth. Next is the application
program itself, which in turn goes to the database
manager, SQL and/or flat file support, which finally

Figure 3 Distributed processing

DISTRIBUTION POINTS

1 (2] ©

v v v

v v v

CURRENT DISTRIBUTED APPLICATION DISTRIBUTED PHYSICAL LOCAL
HARDWARE PRESENTATION TO APPLICATION DATA ACCESS FILE SERVER PROCESSING
FILL-N-THE- MANAGEMENT
BLANKS USER DATA RECORD
INTERFACE PROGRAM

INTERFACE

1BM SYSTEMS JOURNAL, VOL 27, NO 3, 1988

scHerr 375

connects to physical data storage media. For the
purposes of simplicity, assume that all 1/0 devices
are either for data storage (e.g., archival tape) and
appear on the right, or are “source/sink” devices
(e.g., printers) and appear on the left.

There are several points along this flow at which a
network could be inserted. The question then be-

A full-screen, fill-in-the blanks
user interface has been successful
for a vast number of applications.

comes: Where in this flow can a communications
network be inserted, and what are the consequences?

All the modes of distributed processing will be de-
rived this way. The first point of distribution (Figure
3, distribution point 1), between the user’s worksta-
tion (e.g., keyboard and display) and the DMm/PM
layer, is the classic distribution point for mainframe-
interactive (MF1) display terminals. This interface, as
embodied in the M 3270 and 5250 display prod-
ucts, has been engineered so that the required com-
munication bandwidth and interrupt rates are as low
as possible. Intelligence in either the display head or
the controller immediately behind it provides for the
ability to do simple editing of input, cursor move-
ment, field definition, and so forth, so that it is
possible for the user to enter a full screen of data
before an interrupt and transmission to the upstream
DpM/PM and application program is necessary. This
style of interface is characterized as a full-screen, fill-
in-the blanks user interface, and it has been success-
ful for a vast number of applications. This interface
is less suitable for operations that require subsecond
interactions with the user, such as graphic design
and what-you-see-is-what-you-get (WYSIWYG) text
editors. Although putting a network into this point
in the flow is normally not considered to be distrib-
uted processing, it is included as an example because
it is familiar and illustrates the trade-off considera-
tion.

Adding a network at distribution point 2, between
the application and the pm/PM facility, has a similar

376 screrr

result. The advantage of distributing at this point is
that the application program is unaffected and the
end user can be served with improved responsiveness
and usability because the DM/PM support is closer to
the workstation. The usual implementation of this
approach would be to locate the DM/PM program-
ming in an intelligent workstation. In a typical situ-
ation, the application program requests that the user
make a choice from a menu. The menu and its
associated help screens are contained on a disk at
the workstation, and the interactions leading to the
selection are performed in the workstation. Finally,
when the user makes a choice, it is transmitted across
the network and back to the remote application. In
this way, the user working with a remote host appli-
cation sees a degree of interactivity approaching that
of a local intelligent workstation application. As in
the previous distribution point, this distribution is
practical if the bandwidth and rate of interaction
with the application are relatively low. On the other
hand, if the application were a graphics design tool,
the interrupt rate and bandwidth required would
make this distribution point impractical. It must be
emphasized that these trade-offs are based on the
application interface, not the user interface. The user
interface to fill in a data form may be highly inter-
active at the keystroke level, whereas the application
program simply sees a record with data fields re-
turned after these interactions with the bM/PM com-
ponent are completed.

If an application is highly interactive, and at the
same time requires accessing of data that are remote
from the workstation, a straightforward way to
achieve good performance is to split the application
at some point so that the interactive part of the
program runs near the user and the data access part
of the application runs in the node with the data. It
obviously requires sophistication to structure the
application program in this way. Some luck is also
required, because not every program can be so split.
Usually, a “groove” in the application can be found
and the application broken at this point. The char-
acteristics of a groove are that once the program is
split at this point, the bandwidth and rate of com-
munication are low compared to those found in
other places considered for the split. Obviously, the
absolute rates must be low enough to allow for
acceptable response time and communications cost.

A simpler solution to this situation is to run the
application program in the node closest to the user
to achieve the interactivity required, but to access
the data record by record across the network. This

IBM SYSTEMS JOURNAL, VOL 27, NO 3, 1988

approach is practical only if the frequency of remote
data use is low. If a significant number of records
are accessed, the fact that each record accessed costs
a substantial number of additional computing cycles
and encounters significantly higher delays for
queuing on resources and for communication can
make the responsiveness of the application unac-
ceptable. Cases like this may require copying the
entire data file, copying the only portion that is
required for the application, or possibly an alterna-
tive application design.

For sAA, distribution points 2, 3, and 4 of Figure 3
represent the key choices available. Figure 4 shows a
different way to characterize each of the modes of
distributed data processing. Four modes are shown:

In a well-designed distributed
system, the local data processing
mode is usually prevalent.

Local data processing, distributed dialog man-
ager/presentation manager, distributed program-to-
program, and distributed data access. The first mode
of distributed processing is local processing, where
the application and data are in the same node, which
is either the user’s intelligent workstation itself or
the node closest to the user’s workstation. In a well-
designed distributed system, the local data processing
mode is usually prevalent, because it offers the best
performance and lowest cost. Another reason for
including it is to make the point that all of these
modes typically are intermixed in any realistic en-
vironment. SAA provides for this breadth of opera-
tion.

In the second mode, called distributed pm/pm, the
application program and data are in a node remote
from the user, and the dialog manager/presentation
manager (DM/PM) is in the intelligent workstation.
In addition to the functions previously discussed,
facilities in the workstation may be acting to route
communications on a long-term basis (i.e., a session

IBM SYSTEMS JOURNAL, VOL 27, NO 3, 1988

from log-on to log-off), or the duration may be for
the length of a transaction, where each transaction
is routed to a remote application or to a local trans-
action as a function of the transaction code or one
of its parameters.

The third mode is called distributed program-to-
program, and is used when either the data required
for the application are spread across two or more
nodes, or the application program is both highly
interactive and heavily uses remote data.

In the fourth mode, called distributed data access,
the application is remote from its data. Typically
this mode is used when most of the application data
are in the same node as the program and a smaller
amount of the data are remote. Distributed data
access may be the only solution when the highly
interactive application heavily uses remote data and
cannot be split as in the previous mode.

In any given application, the above modes could be
used in combination to handle operations in more
than two nodes. Figure S summarizes the decision
process for determining the structure of an applica-
tion program. The underlying assumption is that the
data are in one place. It is a straightforward extension
of the logic to handle multicite data.

General considerations for data and application
placement

sAaA provides facilities to support each of the modes
just described. Choosing the appropriate approach
requires an analysis of the usage and traffic in the
proposed system. Most systems grow and apply func-
tion and usage changes. saA’s inherent portability
structures for data and programs allow for more
feasible reconfiguration of these elements so as to
facilitate reoptimizing traffic patterns and respon-
siveness. As an example, consider a three-stage ap-
plication growth scenario in which the third stage
establishes a relationship between the first two. The
first stage is a horizontally distributed system to
support on-line bank tellers. The second stage in-
volves the use of a separate system to do credit card
authorization. The third stage is the connection of
the preceding two systems to accomplish electronic
funds transfer.

Figure 6 shows the configuration for the on-line bank
teller application. The approach selected for this
implementation is a horizontal distribution, where
the terminals for branches are connected to a partic-

scHerr 377

Figure4 Ways of characterizing the modes of distributed data processing

’ APPLICATION

APPLICATION

DISTRIBUTED PROGRAM-TO- RAM

%_L APPLICATION
LOCAL

DISTRIBUTED DATA ACCESS

APPLICATION
REMOTE

APPLICATION

378 screrr M SYSTEMS JOURNAL, VOL 27, NO 3, 1988

Figure 5 Roadmap of the decision process for determining the structure of an application program

DISTRIBUTED DM/PM

RUN APPLICATION WITH DATA
DIALOG & * HOST-DISTRIBUTED DM
MANAGER ® INTELLIGENT WORKSTATION
APPLICATION? (IWS) —DM

DISTRIBUTED DM/PM

BUN APPL[GAT!QN Wﬂ'H .
! 'HDSTDBTRWTE&W S
W ~PM 2

R

. RUN APPLICATION WITH
PRIVATE DATA ON IWS
DATA?

* EXTRACT AND DOWNLOAD
CAN DATA >, * RUN APPLICATION AND DATA

ON WS
TRACTED? & UPLOAD RESULTS

RUN APPLICATION IN

HiGH | WS REMOTE DATA me&ss
ACCESS?

SPLIT APPLICATION

© DISPLAY ON IWS

® APPLICATION WITH
DATA ON HOST

IBM SYSTEMS JOURNAL, VOL 27, NO 3, 1988

scHerr 379

Figure 6 Configuration for the on-line bank teller system

DATA
FOR n
BRANCHES

—
MISSES

TERMINALS
FOR n
BRANCHES

ular machine that holds the data associated with the
accounts in those branches.

Generally, branch banking can be managed so that
branches are roughly the same size and have roughly
the same traffic. Therefore, all terminals can be made
to have very similar traffic patterns. This homoge-
neity, plus the fact that people tend to bank where
they have an account or in a branch that is nearby,
allows the communication overhead to be low
enough for the system to be viable. The probability
that a transaction requires access to data in another
node is the key parameter in the design. This prob-
ability is referred to later as the miss ratio. One of
the techniques used to minimize the miss ratio is to
place the data and terminals for a set of branches in
adjacent geographical areas in the same machine.

The second application to be implemented is the
authorization of credit. Assume that the same bank-
Ing establishment requires a system with terminals
in retail establishments to perform the credit author-
ization for its bank credit card. This application has
little homogeneity. There is a wide variance in traffic
among terminals, and there is a skewed distribution
of terminals on a geographical basis. Since these

380 screrr

characteristics do not lend themselves to a distrib-
uted implementation, assume that this application is
placed on a single-node system.

The third stage of growth of the example on-line
banking system is electronic funds transfer. When
customers make purchases in a retail store using the
second application system, the charges are reflected
against the customer’s checking account balance in
the first application system. This new application
obviously will place a significant additional load on
the combined system.

Probably the most attractive solution to the problem
of handling this additional load is to add more nodes
to the first application system and redistribute the
terminals and data so that each node handles fewer
branches than before. In this way, additional capacity
is made available to handle the new application.
Because each node has fewer branches, however, the
miss ratio increases, with a corresponding increase
in communication overhead. This increased over-
head adds to the load of the system, and still more
capacity is required. If more nodes were added to
solve this problem, the resulting increase in com-
munication overhead might totally offset the in-
creased capacity. In this way, the situation might
degenerate to the point where no number of nodes
would be able to handle the required load.

Another simple solution to the problem is to use
machines that have greater processing capacity in
each node. This alternative is sometimes not attrac-
tive because of the economics of replacing existing
equipment.

If neither faster equipment nor the simple extension
of the distribution techniques already used yields
viable configurations, the only other approach is to
redesign the system. This generally involves redistri-
bution of data and programs between nodes, includ-
ing the node for credit authorization, along with the
addition of equipment to augment capacity. In many
application-growth situations, this approach is the
only one that can be used.

The lesson to be learned from this example is simply
that growth of applications must be carefully planned
and managed. New applications typically create new
relationships among existing data and application
programs. As a result, the balance of the system
design, which is based upon having particular values
for certain interaction probabilities, may be upset,
and the system may have to be rebalanced.

IBM SYSTEMS JOURNAL, VOL 27, NO 3, 1988

General considerations for data and program
placement

This section is a theoretical discussion of techniques
for determining the placement of data and applica-
tion programs in a network. It attempts to start with
first principles and to derive methods for achieving
optimization. Although this is not an optimization
process per se, it does illustrate the major steps that
must be taken to perform an optimization.

The first step is to determine the relationship be-
tween users and the applications programs they use.
Consider a matrix U [Equation (1)] with one row for

application j

U = Uy user 4

each user and one column for each application such
that an entry, Uy, shows the messages per second as
a consequence of user ’s usage of application j. The
entries in this matrix are the number of messages
going back and forth between applications and users
to accomplish the transactions. Next, a second ma-
trix D, as shown in Equation (2), is constructed, in

database k

-

application j (2)

which each row corresponds to an application pro-
gram and each column represents an individual data
base. The entries in D are derived from matrix U
and from knowledge of each program’s usage of data.
The entry Dj, gives the number of messages or ac-
cesses per unit time from application program j to

IBM SYSTEMS JOURNAL, VOL 27, NO 3, 1988

database k. For completeness, a third matrix showing
message traffic between application programs would
be added. It is omitted in this analysis for the sake
of brevity, but its addition is straightforward.

The next step is to introduce geographical consider-
ations into the analysis. Each user, database, and
application program is assigned a location, and the
rows and columns of U and D are sorted by location,
In some cases the data and/or applications are al-
ready located in the network, so that the assignment
is a given. In other cases, the assignment of location
for applications and data is a variable, and, for the
purposes of the rest of this discussion, we assume
that an arbitrary assignment is made. The next step
is to generate two more matrices, UL and Dy, that
show the message traffic by location from the users
and to the applications and from the applications to
the data. The consolidated location-to-location
traffic for both programs is given the sum of the two:
T = UL + DL.

The next step of the analysis is to generate cost data
showing the additional overhead in terms of response
time, cycles executed on the various processors, or
dollars for communication facilities for each of the
communication paths required to implement the
message traffic shown by Ti. Once this cost matrix,
C, is generated to show the location-to-location com-
munication costs, the specific communication cost
for this placement of programs and data can be
computed.

As this is done, several facts emerge. One is that
communication within a data processing node is
significantly more efficient and therefore cheaper
than communication from node to node. Second,
the traffic between applications and data is signifi-
cantly higher than the traffic between users and
applications. Third, the cost of communication be-
tween two processors in the same building or cam-
pus, because of the ability to use local-area network-
ing facilities, is significantly cheaper than commu-
nication between buildings or campuses requiring
wide-area networking facilities. All of these facts lead
to the following conclusions and rules of thumb
regarding placement of programs and data in a net-
work (discussed more fully in Reference 1). As a
general rule, users and the applications and data they
use should, whenever possible, be placed in the same
data processing node. This maximizes the amount
of communication on the main diagonal of the
matrix Ty. If some form of distribution is required,

screrr 381

generally keeping the programs in the same node as
the data they use results in the best performance.

Distributed application processing support

Clearly, each of the modes described has important
uses in various application situations.? saa will pro-
vide direct support for programming in each of the
modes described in this paper. Distributed bM/PM
will allow programs written to the saA Dialog Man-
agement Interface (D1) and Presentation Manage-
ment Interface (PI) to run anywhere in the network,
with the user seeing an interface and usability that
are independent of the actual placement of the ap-
plication program. Obviously, applications that op-
erate in this way must be able to function within the
restrictions of the dialog manager capabilities or use
the P1 in such a way so as to keep the node-to-node
communication frequency to a practical level.

An associated function mentioned earlier is the abil-
ity to invoke application programs on remote sys-
tems from the intelligent workstation. Such a facility
is called “application management.” Application-to-
application communications is provided directly by
the sAA communications common programming in-
terface. Additional extensions would include a lo-
cal/remote transparent procedure CALL that would
enable one program to CALL another without know-
ing its location. The CALL would be location-trans-
parent and appropriately efficient in the local case.
This facility would be extended for both synchronous
connections (i.e., CALL/RETURN) and asynchronous
connections.

Finally, saA will provide distributed data access to
flat files and relational data on a record-by-record
basis as well as a file transfer capability between
nodes that supports both full file transfer and the
extraction of data from larger files.

Underlying these facilities must be a structure for
implementing security across the network and in the
workstation, a naming convention and directory
structure to locate data and programs in the network,
data transforms to handle the differing data represen-
tations of various high-level languages and systems,
and so forth.

Enterprise system management

So far, this paper has addressed questions involving
the structure and location of application programs
and data in the network. The use of multiple data

382 scremm

processing systems within an enterprise creates the
need for system management facilities designed for
a distributed environment. Although each node in
the network could be managed as a separate system,
most enterprises will want to manage the network of
systems as a single entity. There are several aspects,
each of which could be centralized or distributed
individually according to the requirements of the
enterprise. These are the following:

1. Administration of data, databases, security, user
authorization, accounting, etc.

2. Operation of individual systems and the network
itself

3. Systems programming, including the control and
distribution of fixes and new versions

4. Application programming, including the control
and distribution of fixes and new versions

5. Problem determination

6. Service of hardware, software, and communica-
tions

The underlying support for the above options are
the facilities already described for implementing dis-
tributed applications. Certain general tools to sup-
port centralization of system management are nec-
essary. The following are examples:

» A data distribution and collection facility that
would schedule and track the distribution of data
files to any or all nodes in a network. This tool
must also be capable of collecting data files from
the network.

» A common repository for configuration users in
profile, security, and addressing information that
provides uniform access to data on a network-
wide basis.

* A tool that allows operational personnel to mon-
itor and control multiple systems without having
to see the individual screens from each. Summa-
rized displays of the status of many systems are a
key part of this tool.

* “Programmed operator” support, wherein the
need for human intervention is avoided by pre-
programming decisions. The purpose is to achieve
unattended operation.

e Problem determination facilities allowing a re-
mote expert to monitor the usage of an end user
who is experiencing difficulty or to work directly
with a failing system.

Concluding remarks

The functions of saA, and in particular the inherent
enablement of data and program portability, provide

IBM SYSTEMS JOURNAL, VOL 27, NO 3, 1988

a new level of support for distributed data processing.
In the past, lower levels of functional support re-
quired substantially more application programming
to achieve the various modes for distribution. More-
over, when new applications appeared or usage pat-
terns changed, retuning the systems was a major
undertaking. SAA solves these problems, thereby
making the exploitation of distributed processing
techniques far easier and more practical.

Cited references

1. A. L. Scherr, “Structures for networks of systems,” IBM Sys-
tems Journal 26, No. 1, 4-12 (1987).

2. A. L. Scherr, “Distributed data processing,” IBM Systems
Journal 17, No. 4, 324-343 (1978).

General reference

A. L. Scherr, “Distributed data processing,” Proceedings of COMP-
CON '82, IEEE Computer Society, Los Angeles, CA, 1982, pp.
15-23.

Allan L. Scherr IBM Application Systems Division, 472 Wheelers
Farms Road, Milford, Connecticut 06460. Dr. Scherr is an IBM
Fellow and ASD Vice President of Development and Integration
responsible for leading the architecture for the application layer of
SAA. In addition, his organization produces products in the arti-
ficial intelligence field and a series of application programs inte-
grated into complete packages. Earlier in his career, Dr. Scherr
had directed several development organizations, including a new
midrange system, SNA communications programming, and the
distributed processing software for the IBM 8100 system. Dr.
Scherr was the originator of TSO and the overall project manager
for the first release of MVS, in 1974. He has also held key staff
positions, e.g., as a director on the Corporate Engineering, Pro-
gramming, and Technology staff and as a member of the Corporate
Technical Committee. Dr. Scherr joined IBM as a staff engineer
in Poughkeepsie, New York, after receiving his Ph.D. at the
Massachusetts Institute of Technology in 1965. He received the
B.S. and M.S. degrees in electrical engineering in 1962, also from
M.LT. While at M.L.T., Dr. Scherr did research on time-sharing
systems performance and user characteristics. His Ph.D. thesis,
comparing performance measurements and results from both sim-
ulation and analytic models for time-sharing systems, was the first
such study ever made and earned him the ACM Grace Murray
Hopper Award in 1975.

Reprint Order No. G321-5332.

IBM SYSTEMS JOURNAL, VOL 27, NO 3, 1988

scHErRR 383

