The Cross System
Product application
generator: An evolution

An application generator is a generalized application
development tool with which professional program-
mers develop applications using a fourth-generation
language. This paper describes the requirements that
led to the Cross System Product application generator,
and how the product progressed from a single-environ-
ment product to the current multienvironment product.
Also described are how the Cross System Product fits
within Systems Application Architecture and how that
may affect the future of the Cross System Product.

In the 1970s, the growth in demand for interactive
applications was at a rate never before seen in the
industry. Technology had made interactive system
hardware available at a price that justified the cost
of interactive applications. Interactive systems pre-
sented major new challenges within a data processing
industry that had already matured significantly.

Interactive system control programs, such as the
Customer Information Control System (cics) and
the Time Sharing Option (150), that are used to
support interactive applications were offered to end
users for the first time. However, these system con-
trol programs still mapped the functions of the in-
put/output of applications to specific devices, as had
always been done in batch programming. It had not
yet been recognized that providing an interface to a
person through an interactive terminal was more
complex than reading from or writing to a tape or
disk. The system control program interface was not

384 +avnes, DEWELL, AND HERMAN

by W. K. Haynes
M. E. Dewell
P. J. Herman

simplified to the point where a programmer could
produce interactive applications on a productive ba-
sis. The demand for interactive applications contin-
ued to outstrip system control program productivity
improvements.

The introduction of interactive programming tools
increased the development productivity of interac-
tive system control programs. But even with these
introductions, productivity fell short of the interac-
tive applications demand.

Experience with interactive system control programs
showed that the majority of interactive application
functions could be categorized into a set of general-
ized functions (e.g., read or write to a file or database,
or display information on a screen). If each general-
ized function could be specified with only minor
differences, the majority of interactive applications
could be produced with very high productivity. This
approach became known as an “application genera-
tor.” Early generators had a built-in model of the
general types of interactive application functions.
Customization of the function and flow could be

© Copyright 1988 by International Business Machines Corporation.
Copying in printed form for private use is permitted without
payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright
notice are included on the first page. The title and abstract, but no
other portions, of this paper may be copied or distributed royalty
free without further permission by computer-based and other
information-service sysiems. Permission to republish any other
portion of this paper must be obtained from the Editor.

IBM SYSTEMS JOURNAL, VOL 27, NO 3, 1988




accomplished to a small degree with little time and
education. The length of time devoted to design
activities for generated applications was shortened
because the basic design architecture was fixed by
the built-in generalized functions of the generator.
The time for coding and debugging activities was
also shortened because generated function was
reused by the generator, rather than rewritten for
each application by the application developer.

The early application generators were aimed at the
challenge of the still-growing interactive application
backlog. Some generators were introduced with great
expectations, but their success was limited for the
following two reasons:

e The generators were too rigid in their underlying
architecture. The generators had a built-in con-
cept, or model, of the application logic that could
not be changed except for a few variations. There-
fore, the applications developed using the genera-
tor had to be designed around the architecture of
the generator.

¢ The architecture of the generator had to be under-
stood completely by the designer in order to be
well exploited. Although little or no education
about the generator was required by the coder, the
designer required significant education to under-
stand the generator before design activities could
begin. Because of overwhelming problems being
faced by the data processing community, few were
willing to take the time to re-educate their design-
ers in the use of an unproven concept.

In 1978, Data Management System/Distributed
Processing Programming Executive (DMS/DPPX), the
forerunner of Cross System Product, was developed
to fit a niche that had not yet been addressed by any
other product. That niche was dealt with by design-
ing the product to retain the advantages of an appli-
cation generator and to remove the two major weak-
nesses cited above in the following ways:

¢ The rigid application structure of a generator was
relaxed enough to allow changes, if desired. The
framework provided could be utilized for maxi-
mum productivity, or changed by the designer.
Less education was required because conventional
designs could be used while the generator method
was learned.

e The functions of the generator were available to
the developer through a menu-driven specification
interface which assisted the developer in imple-
menting the design. The generator language con-

IBM SYSTEMS JOURNAL, VOL 27, NO 3, 1988

tained both nonprocedural functions integrated
with the application structure and procedural
functions similar to the high-level programming
languages with which all developers were familiar.

The generator gave the interactive application devel-
oper the flexibility of combining fixed application
structures with minimal procedural logic to imple-
ment general end-user requirements, or combining
fixed application structures with more complex pro-
cedural logic to implement more complex end-user
requirements. In both cases, application develop-
ment productivity was maximized.

Cross System Product

In order to significantly increase the productivity of
the developer, application generators had to improve
the programmer environment. Cross System Product
did so by automating major time-consuming activi-
ties of interactive application programmers. Follow-
ing are key programmer objectives for the product:

e Perform all development tasks on an interactive
display terminal

» Check the validity of syntax and semantics at entry
time

» Exploit reusable application modules

Encourage documentation for all program defini-

tions

Test interactively, with trace

Provide on-line help

Use generic terminology

Provide a dictionary-like source library

Provide a modular application structure

Development methodology. The initial design of the
Cross System Product encouraged modular pro-
gramming, module reuse, function point design, sin-
gle-process entry and exit, and structured program-
ming. The basic premise was to have the developer
think of his application in terms of data and the
processes to be performed on those data. The defi-
nitions were to be high-level nonprocedural specifi-
cations, called process options, for data access and
data editing. Procedural logic definition was pro-
vided to specify the conditions for and sequence of
execution of the processes. The high-level process
and data specification resulted in increased produc-
tivity and reduced skill-level requirements.

Comprehensive development environment. A prime
goal was to provide a comprehensive development
environment that addressed the application phases

HAYNES, DEWELL, AND HERMAN 385




of definition, test, generation, and maintenance as
defined below.

e Definition—Definition included data, screen for-
mats, report formats, and logic. A specific meth-
odology for defining programs was built into the
interactive program development facility. This
methodology supported the design of applications
that used many current state-of-the-art program-
ming design techniques. Checking of interactive
syntax and semantics at the time of source entry
was provided, which improved application devel-
oper productivity by providing immediate feed-
back on inconsistencies within the application
under development. An interactive screen design
and definition facility (painter) with a wysSIwYyG
(what you see is what you get) approach was also
provided.

e Test—Test included interactive testing and debug-
ging of source code that did not require compila-
tion or generation, and also included tracing of
process, logic execution, and data modification.
Trace output routing supported both terminal and
file destinations.

e Generation—Application generation was per-
formed after an application had been developed
and tested. Application generation bound the gen-
erated form of an application to a specific system
environment.

e Maintenance—The comprehensive development
environment needed a common active dictionary
or definition repository for the data, screen for-
mats, report formats, and logic definitions. The
initial release of the Cross System Product on the
1BM 8100 System Distributed Processing Program-
ming Executive (DPPX) used the Dppx Display
Presentation Services for dialog management and
library services. The library services provided a
means for sharing Cross System Product applica-
tion data and function definitions among devel-
opers.

Portability. An evolving goal is to make applications
portable between environments. Portability had not
been achieved by most high-level languages. COBOL,
for example, was available in multiple environments,
but coBOL source code was not considered suffi-
ciently portable at the time that Cross System Prod-
uct was initially released.

A significant number of 1BM installations had a dis-
tributed data processing environment with hardware
consisting of large, medium, and small systems.
Within this environment there was a need to provide

386 HAYNES, DEWELL, AND HERMAN

an application development tool that presented a
common development methodology across the dif-
ferent hardware and operating system architectures.
Portability was required to eliminate the need for

An evolving goal is to make
applications portable between
environments.

redesigning or recoding the same application for
different systems. Cross System Product provided
that tool.

The initial release of the Cross System Product,
developed for the 1BM 8100 system, which was a new
small distributed system at the time, was an ideal
environment in which to introduce this new appli-
cation development tool.

Because of the original design of the Cross System
Product, its success on the 8100 system, and the lack
of a similar product in the System/370 environment,
Cross System Product was developed for Customer
Information Control System/Virtual Storage
(cics/vs), then for Multiple Virtual Storage/Time
Sharing Option (Mvs/Tso) and Virtual Ma-
chine/System Product Conversational Monitor Sys-
tem (vM/sP cMs) in 1982. The Cross System Product
was unique in its capability to move an application
definition from system to system without change.
Only functions that could be made compatible in all
supported environments would be added to the gen-
erator. Exceptions would be made only for major
strategic items. An example of an exception was the
addition of support for 1BM’s hierarchical databases,
Information Management System/Database
(ms/pB) and Disk Operating System/Data Lan-
guage/One (DOs/DL/1).

Portability was accomplished by providing a gener-
alized application specification language, interpre-
tive execution, and a common interface to environ-
ment-unique system services. The two-part structure
of the Cross System Product, Application Develop-

IBM SYSTEMS JOURNAL, VOL 27, NO 3, 1988




ment and Application Execution, allowed an appli-
cation to be created on one system (where the appli-
cation development functions were installed) and
easily run on another system (where the application
execution functions were installed). Application De-
velopment generated an application from an appli-
cation source that was relatively independent of op-
erating system and hardware considerations. When
a generated application was used, Application Exe-
cution provided the system implementation and au-
tomatically adapted the execution to the specific
production environment.

Common User Access. The user interface was de-
signed to be system-independent. Therefore, as new
environments were added, the user interface re-
mained the same. Because the application specifica-
tion language was the same regardless of environ-

Cross System Product
provided three ways to edit
user-entered data.

ment, it was also completely portable. Common
terminology was used for functions that existed on
multiple systems but were provided by different fa-
cilities.

The implementation of the common user interface
required a screen display and dialog manager. Cross
System Product implemented both of these functions
by using the Display Presentation Services taken
from the 1BM 8100 system. Because of the use of a
common interface to environment-unique system
services, it required minimal effort to move, or
“port” the Cross System Product screen display and
dialog manager to new environments. It also pro-
vided consistency in implementation that could not
have been achieved using existing facilities in target
environments.

The application development facilities provided a
menu-prompt interface for application specification,
an on-line tutorial, and a help facility. Defaults were
provided for most application specifications, such as

1BM SYSTEMS JOURNAL, VOL 27, NO 3, 1988

database access that allowed the developer to use
databases without having to be an expert.

Novice/expert interface. A customer review of the
preliminary design for DL/1 support indicated a need
to support both the novice and the expert developer.
The novice developer needed to be able to define
DL/1 database applications without having to under-
stand DL/1. The experienced DL/1 database applica-
tion developer needed both the productivity advan-
tages of the Cross System Product and the ability to
utilize the full power of the DL/1 database. The
resulting design set the direction for the Cross System
Product database support that followed. In that
methodology,

1. The developer (or database administrator) defines
a data structure.

2. The developer. specifies a function (in Cross Sys-
tem Product terminology, a process option) to
access the data structure.

3. A default database call statement model for the
function is provided by the generator. (The de-
faults typically satisfy 80 percent of the database
input/output requirements of the application.)

4. The developer views and (optionally) modifies
the default database call. The inexperienced de-
veloper uses the defaults to learn how calls are
defined. The experienced developer modifies the
statement when specialized functions are re-
quired.

This methodology allows the structure of the data-
base application to be under the control of the ap-
plication programmer. The novice is productive
more quickly, and the experienced developer manip-
ulates the database in a way that is directly related
to his previous experience with other high-level lan-
guages.

As stated earlier, most early application generator
implementations were based on fixed application
models. Limited procedural logic and editing, devel-
oped in a language external to the application gen-
erator, could be performed only at generator-identi-
fied user exits. The exit routines were mainly used
for editing user-entered data and reporting errors
back to the user.

It was important that the Cross System Product
implementation be more flexible than its predeces-
sor. In order to give the user greater flexibility, Cross
System Product provided three ways to edit user-
entered data:

HAYNES, DEWELL, AND HERMAN 387




¢ Nonprocedural specification of standard edits

e An exit capability that could be implemented
using the Cross System Product procedural logic
statements for each input variable

¢ A call-level interface, invokable anywhere

Cross System Product provided an application pro-
gram call and transfer function to high-level language
programs. The call was provided with a common
syntax that was independent of the language of the
called program. This interface allowed applications
to exploit system functions not supported by the
generator. In providing this interface, the Cross Sys-
tem Product application retained its portability and
environment-independent characteristics.

The present version of the Cross System Product,
Version 3, includes a number of enhancements that
complement the strong base of Cross System Product
functions. As can be seen in the following para-
graphs, many of those enhancements tie the Cross
System Product to direct exploitation of other Sys-
tems Application Architecture (SAA) components.

Relational database support. Relational database
support allows Cross System Product applications to
access relational databases via Structured Query
Language (sQL). The support provides two powerful
levels of interface:

¢ A novice interface for the untrained sQL user
e An expert interface for the trained sQL user

Cross System Product/Application Development
generates default SQL statements, permitting the nov-
ice user to access the relational database with mini-
mal knowledge of Structured Query Language/Data
System (SQL/DS) or Database 2 (DB2). Another new
process option allows the trained relational database
developer to code multirow insert, delete, and update
statements or data definition statements not directly
supported by the common set of process options.

Source interface utility. The source interface utility
support allows a user to import file definitions from
alternative file sources. This capability relieves the
customer of the error-prone redefinition of data. The
alternative file sources supported include

* COBOL data structures, COBOL being one of the SAA
languages

¢ DL/1 Program Specification Block definitions, DL/1
being an environment-unique product supported
as a tower of function upon SAA

388 Havnes, DEWELL, AND HERMAN

MYVS/XA support. Support of Multiple Virtual Stor-
age/Extended Architecture (MvS/xA) permits Cross
System Product/Application Development and
Cross System Product/Application Execution to ex-
ploit the 31-bit addressing mode (above the 16M-
byte boundary) in MvS/XA systems. Virtual storage
utilization in the large MvS/XA environment is en-
hanced.

Development library concatenation. This support
permits each developer to access up to six Cross
System Product/Application Development libraries.
Developers can share information that is common
for multiple applications, yet have their own individ-
ual library for development and testing of their own
applications. Each developer may set the order in
which the libraries should be searched for a devel-
opment object.

The fourth-generation language environment has
been driven by one main theme—productivity. Be-
hind this theme there are numerous issues: How can
software solutions be delivered to the end user more
quickly, more efficiently, and with fewer develop-
ment and maintenance costs? How can the ease of
use be enhanced, thereby increasing end-user pro-
ductivity? How can the latest technology be inte-
grated into the application development process? In
order to understand how these and other issues relate
to the Cross System Product future, we will identify
a number of technology areas that influence Cross
System Product direction, followed by a description
of how these technology areas may fit with the future
of the Cross System Product.!

Computer-Aided Software Engineering (CASE)
technology. The collection of integrated develop-
ment tools that shorten the software development
life cycle constitutes CASE technology. CASE technol-
ogy parallels SAA concepts very closely, because both
define end-user common programming interfaces
that work together in an integrated programming
environment. The Cross System Product already
contains many of the SAA attributes, in that its de-
velopment tools are built as separate components
that are integrated into a unified development envi-
ronment. Cross System Product should continue to
build upon this architecture, so that when enhanced
tools and enhanced environment-unique system
functions are made available, they can easily be
integrated into the Cross System Product environ-
ment.

Intelligent workstation. End-user productivity has
increased with the introduction of the personal com-

IBM SYSTEMS JOURNAL, VOL. 27, NO 3, 1988




puter. The reason for this increase is that host com-
puting capabilities, often available only in the infor-
mation systems organization, are now available to
the end user. As the functional capabilities of the
personal computer increase, particularly in new tech-
nology areas such as networking, distributed proc-
essing, and graphics, opportunities for greater end-
user productivity may be realized with exploitation
of these technologies. For example, Cross System
Product could support implementation methodol-
ogies that allow end-user function and data to be
distributed among host and intelligent workstation
computers. The user should be able to determine the
best location of his or her function and data, and
what data should be transmitted between the host
and intelligent workstation.

Application models. The development and use of
application models is not new. For many years,
developers have used models, often called skeletons,
to develop new application functions. Cross System
Product could automate the use of models by
prompting the user for the function to be performed,
and present the user with a potential list of applica-
tion models that could be modified to the end user’s
new needs. When the new function is completed, it
would then become an additional application model
for future end-user application requirements.

Abstracted application specification. One of the char-
acteristics of a procedural language is that the user
must specify 2ow an application performs a function.
The end user’s real objectives are what an application
does. Greater development productivity is gained
when the developer specifies application function
without concern about the details of the implemen-
tation. This abstracted application specification also
provides greater implementation independence.

Implementation independence has been a corner-
stone of Cross System Product in areas such as screen
definition, screen data verification, and database ma-
nipulation. Implementation independence could be
enhanced with Cross System Product natural-lan-
guage constructs that abstract procedural function,
thereby reducing the amount and complexity of logic
required to develop applications. For example, a
statement such as “FOR EACH CUSTOMER WHOSE OR-
DER IS SHIPPED...” could result in files containing
CUSTOMER records being implicitly opened, records
read and selected based on ORDER having a value of
SHIPPED, and files closed without explicitly specifying
these procedural operations in the user program,

IBM SYSTEMS JOURNAL, VOL 27, NO 3, 1988

Artificial intelligence (AI). The emergence of non-
procedural, rules-driven technologies has made pos-
sible a new set of user applications that were never
before cost-effective when using traditional proce-
dural programming functions. Cross System Product
could integrate AI functions with its current set of
procedural functions in order to provide the end user
with an even greater set of potential implementation
functions. The developer could then address an even
greater spectrum of end-user applications by match-
ing his implementation needs with the more logical
implementation methodology, either a procedural
one or a nonprocedural rules-driven one.

Concluding remarks

As described in this paper, Cross System Product has
been a product of evolution. Because of the pioneer-
ing role of Cross System Product in developing Com-
mon User Access, Common Programming Interface,
and consistent applications across architectures, all
driven by the requirement for higher end-user pro-
ductivity, Cross System Product now plays a key role
as a leader and supporting product of Systems Ap-
plication Architecture.

Acknowledgments

The authors sincerely appreciate the efforts of their
knowledgeable peers in developing an understanda-
ble, consistent Cross System Product SAA paper. In
particular, we would like to recognize the efforts of
Hazel C. Bodner, Larry E. Clark, Pamela J. Clifton,
Paul R. Hoffman, Louis J. Mamo, Jerry E. McCall,
and Richard K. Runyan.

Note

1. Identification of technology areas, and how they might be
incorporated in future releases of the Cross System Product,
should not be considered to be a commitment to include such
technologies in the Cross System Product.

William K. Haynes IBM Programming Systems Development
Laboratory, 11000 Regency Parkway, Cary, North Carolina27511.
Mr. Haynes joined the IBM Field Engineering Division in 1968 as
a customer engineer in Dallas, Texas. From 1971 to 1976, he
served as a program support representative. In 1976, he transferred
to the General Systems Division, Rochester, Minnesota, where he
held various development, management, and staff positions for
the development of the initial System/38 operating system. In
1981 he transferred to Information Systems/Software Develop-
ment in Dallas, Texas, where he worked on a number of products,
including the Patient Care System/Application Development Sys-

HAYNES, DEWELL, AND HERMAN 389




tem application generator. In 1985, he transferred to his present
location to work on development solutions for intelligent worksta-
tions. Mr. Haynes has been working in the Application Generator
Products group since 1986.

M. Eugene Dewell /BM Programming Systems Development
Laboratory, 11000 Regency Parkway, Cary, North Carolina 27511.
Mr. Dewell joined IBM in 1967 in Indianapolis, Indiana, as a
systems engineer. After seven years in that capacity, he was trans-
ferred to software development at Research Triangle Park, North
Carolina, where he was a programmer for the EXTM product. He
was on the initial team that designed and developed the
DMS/DPPX application generator product, which was the fore-
runner of today’s Cross System Product application generator.

Paul J. Herman IBM Programming Systems Development Labo-
ratory, 11000 Regency Parkway, Cary, North Carolina 27511. Mr.
Herman joined IBM in 1965 and worked first in the Field Engi-
neering Division for eleven years, and then as a systems engineer
for four years. Starting his Cross System Product experience in
1980 with the forerunner product, DMS/DPCX, and continuing
to today, he has held development, testing, customer support, and
(most recently) performance-related roles. Cross System Product
was chosen to be the primary application generator for the devel-
opment of software for the 1988 Winter Olympics, during which
Mr. Herman provided on-site support.

Reprint Order No. G321-5333.

390 Havnes, DEWELL, AND HERMAN IBM SYSTEMS JOURNAL, VOL 27, NO 3, 1988




