VM/XA storage
management

The VM/XA System Product manages the vast amounts
of real and expanded storage available on the new
Enterprise Systems Architecture/370™ processors for
both guest use and support of internal operating sys-
tem functions. The management algorithms are exam-
ined, and the rationale for their selection is presented.

he new Enterprise Systems Architecture/370™

(ESA/370™) processors provide a user with un-
precedented amounts of real and expanded storage.
The exploitation of this storage by the Virtual
Machine/Extended Architecture System Product™
(vM/xA SP™) is unique as, indeed, is its role as a
control program.

VM/XA SP manages the resources of a System/370
Extended Architecture (370-XA) system or ESA/370
system to create multiple virtual machines, each
capable of running an operating system such as
Virtual Storage Extended (vsg), Conversational
Monitor System (cMs), or Multiple Virtual Stor-
age/Enterprise Systems Architecture (MVS/ESA™).
Each virtual machine may be viewed as an instance
of a complete processor complex with features, facil-
ities, and resources as rich or even richer than the
native complex being managed by VM/XA SP.

VM/XA SP is designed to exploit many of the extended
addressing capabilities introduced with 370-XA.
This exploitation allows operating systems such as
MVS/ESA to utilize the full architectural capabilities
when running in a virtual machine environment.
VM/XA SP also uses many of the 370-XA addressing
capabilities to support control program functions
and to provide special facilities for cMs virtual ma-
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chines such as the minidisk caching feature discussed
in a related paperl in this issue. Here we focus on
the exploitation of very large real, virtual, and ex-
panded storage by vM/Xa SP and describe in detail
the mechanisms and algorithms employed to support
these capabilities efficiently.

The two main sections that follow explore two broad
categories of VM/XA storage management. The first
section describes how VM/XA SP uses the native stor-
age hierarchy of real, expanded, and auxiliary storage
to create large virtual machine storages and provide
for the use of dedicated expanded storage by a virtual
machine. The second section concentrates on the
use of virtual and real storage by vM/xA sp for its
own internal storage requirements.

Virtual machine storage support

Each virtual machine is the functional equivalent of
a real processor complex. VM/XA uses the techniques
of time-sharing, partitioning, and dedication to man-
age native resources in such a way that virtual ma-
chines appear to have their own CPU(s), vectors, real
storage, expanded storage, 1/0 devices, etc. A com-
bination of hardware facilities, software constructs,
and system resources enable VM/XA to manage vir-
tual images of real and expanded storage.

@ Copyright 1989 by International Business Machines Corporation.
Copying in printed form for private use is permitted without
payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright
notice are included on the first page. The title and abstract, but no
other portions, of this paper may be copied or distributed royalty
free without further permission by computer-based and other
information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.
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Virtual machine real storage. Running on a large
ESA/370 complex such as an 1BM 3090S, VM/XA can
support as many as several thousand virtual ma-
chines whose combined “real” storage sizes can be
orders of magnitude greater than the real storage
capacity of the native processor. At the same time,
special preferred virtual machines with fixed real
storage can approach native performance.

System/370 Extended Architecture introduced a sig-
nificant hardware feature used to maintain virtual
machines. The interpretive-execution facility, which
has been described by Gum,’ provides a means for
establishing a virtual machine environment and con-
trolling the execution of programs running in that
environment. To invoke the facility, vM/XA executes
the Start Interpretive Execution (SIE) instruction,
specifying, as an operand, a control block known as
the state description. The state description defines
the architecture, facilities, and state of the machine
to be interpreted. The execution of the SIE instruction
causes the CPU to enter interpretive execution mode
and to execute instructions under control of the state
description.

The interpreted virtual machine is known as a guest,
whereas the real processor on which vM/XA is run-
ning is known as the host. The terms gues! and host
are also applied to the programs running in the
respective machines. For the purposes of this paper
the term host real storage identifies physical storage
belonging to the native complex. Host virtual storage
identifies storage defined by vM/xa-maintained page
and segment tables. The term guest real storage refers
to the storage which the guest perceives to be the
physical storage belonging to its processor complex.

Interpretive-execution mode, also known as emula-
tion mode, is capable of handling many but not all
of the architectural requirements of a virtual ma-
chine. When a situation is encountered that cannot
be handled in emulation mode, the cpU will return
control to the host program (vM/XA SP), providing
required status information in either the state de-
scription or prefix page fields.

There are two methods of defining guest real storage
when operating in interpretive-execution mode. In
the preferred storage mode, a contiguous partition
of host main storage is reserved to represent guest
real storage. This storage is fixed so that no paging is
performed by the host. However, the preferred stor-
age mode may be used for only a small number’ of
guests, and the size of preferred virtual machines is

Pageable-mode guest with dedicated expanded storage
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limited to the amount of real storage available minus
the amount required by vM/xa and other preferred
guests.

In pageable mode, guest real storage is represented
by the host virtual storage. vM/XA maintains a sepa-

VM/XA maintains a separate
address space for each pageable
virtual machine.

rate address space for each pageable virtual machine
using the segment table and page table structures of
the dynamic address translation (DAT) facility.

The advantage of pageable mode is that all of guest
real storage need not be resident in host real storage.
To operate efficiently, a guest need only have access
to that subset of storage that the guest program is
currently referencing. The remainder of guest real
storage may reside on expanded storage or a direct-
access storage device (DASD). The page table entries
for nonresident pages will be marked invalid, and
any attempt by the guest to reference these entries
will result in a host page fault. Emulation mode will
be exited and control will be returned to the host via
a program interrupt. Once the page is brought into
host real storage, the execution of the virtual ma-
chine can be resumed. A pageable-mode guest with
dedicated expanded storage is shown in Figure 1.

In addition to the control structures defined by ar-
chitecture (segment tables, page tables, state descrip-
tions), an additional set of control program fields are
required for the maintenance of guest storage. Two
control blocks, each residing in a 4K frame of host
storage, are of special interest:

1. The Virtual Machine Description Block (VMDBK)
is the primary control block used to define and
control the virtual machine. The VMDBK contains
both information required by the hardware (the
state description is imbedded in the vMDBK) and
information used solely by the control program
for virtual machine maintenance. A section of
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this control block is dedicated to the management
of guest real storage. This section contains statis-
tical information and pointers to the various lists
and structures required to represent guest real
storage. Also within this section are a number of
software “locks” that are used to serialize access
to these lists and structures.

2. The Paging Management Block (PGMBK) defines
a single segment of guest real storage. Like the
VMDBK, it contains both information used by
hardware (the page table is imbedded in the
pPGMBK) and information used solely by the con-
trol program. The PGMBK contains information
pertaining to the location of nonresident pages
(i.e., expanded storage and auxiliary storage lo-
cations), the guest’s view of the storage keys, and
various status indicators.

The segment table created by the control program
(cp) for the guest real storage must be page-aligned
for architectural reasons. However, many virtual
machines, such as those that run applications under
cMms® (Conversational Monitor System) require only
a few megabytes of guest real storage. For these
machines, it would be highly wasteful to allocate a
full page for each segment table when only a few
words are required. To prevent such waste, the
vM/XA design allows the segment table to take two
forms. In one case the segment table is packaged as
part of the vMDBK. This combination will support
virtual machines with storage up to 32 megabytes.
For virtual machines that require larger storage, a
separate, page-aligned segment table is provided.

Very large virtual machine storages may be defined,
but in a given session, the guest program may refer-
ence only a fraction of this storage. To achieve
efficiencies in real and auxiliary storage usage, VM/XA
dynamically allocates PGMBKs only when a segment
is referenced. Within each segment, auxiliary pages
and real frames are required only as each page is
referenced.

The two storage modes provided by the interpretive-
execution facility allow installations to run a few
high-performance preferred guests and numerous
pageable guests. Although the preferred mode of
storage, which uses host real storage to represent
guest real storage, necessarily limits guest real storage
to a size smaller than the native complex, the page-
able mode, which uses virtual storage to represent
guest real storage, has no such limitation. Pageable
virtual machine storage differs from native real ma-
chine storage in only two significant ways:
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1. Because the entire storage hierarchy (real, ex-
panded, and DASD) may be used, access to a
storage location may be delayed until the refer-
enced page is made resident in real processor
storage.

2. It may be larger than the amount of storage
available to the real processor.

Management of host real storage to support guest
real storage. A subset of guest real storage must be
resident in host real storage to allow a virtual ma-
chine to execute. This subset must include those
instructions of the guest program that are currently
executing and any data referenced as operands of
those instructions. Because the real storage of pre-
ferred-mode guests is always host-resident, vM/XA is
relieved of the task of managing this storage. How-
ever, for pageable-mode guests, it is the responsibility
of vM/xA to assign host real storage frames as re-
quired.

Host real storage frames are either permanently as-
signed or are available for dynamic allocation.
Frames permanently assigned include those contain-
ing the resident portion of the CP nucleus and those
dedicated to any preferred virtual machines. The
remainder is available for dynamic allocation and is
managed by the vM/XA real storage manager (RSM)
to maintain virtual address spaces and free storage.

Each 4K frame of host real storage is represented by
a four-word (16-byte) frame table entry (FRMTE). The
first two words are used to chain the FRMTEs on
various lists using forward and backward linkages.
The remaining fields are used to describe the status
of the frame and to point to the page table entry for
those frames that make up the resident portion of a
virtual storage address space. Figure 2 illustrates the
FRMTE in the storage control block structure.

The “available list” is the heart of the real storage
manager and consists of a queue of FRMTEs repre-
senting frames that are immediately available for
allocation. For smooth system operation, RSM must
ensure that there is always an adequate supply of
available frames. Initially, all nonpermanent frames
are placed on the available list.

When a pageable virtual machine first logs on to the
VM/XA system, the guest real storage is logically
“empty” (all binary zeros), and no real storage frames
are required to represent guest storage. As the virtual
machine initiates its operation, it will reference pages
within its real storage. Each initial reference will
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cause a page fault that will be processed by the vM/XA
control program. A real frame will be obtained from
the available list, its address will be stored in the page
table entry (as required by hardware), and the FRMTE
representing that frame will be added to the queue
of FRMTEs anchored in the VMDBK representing that
virtual machine. For a guest real page which has
never been referenced before (a first-time page fault),
cp will merely allocate a frame and clear it to binary
zeros. Guest execution will be resumed. This opera-
tion will continue for one or more guest virtual
machines until the supply of frames on the available
list falls below a predetermined level. At that point
frames must be “stolen” from another (or perhaps
the same) virtual address space to replenish the avail-
able list supply. The page table entries for the stolen
pages are marked invalid, and the contents of the
frames are paged out to expanded or auxiliary stor-
age.

When a guest references a page that had previously
been paged out, a page fault will occur. A frame will
still be needed from the available list, but instead of
clearing it to binary zeros, the page will be brought
in from its assigned auxiliary storage location. The
external storage location may be an expanded storage
block, a DASD page, or in some special cases, another
real storage page. Once the page fault is satisfied, the
guest is eligible to resume normal operation.

The selection of the right pages to “steal” from guests
is crucial. Unfortunately, this selection can only be
a best guess in any operating system. VM/XA employs
a method of trying to determine the least recently
used pages and selecting them to be made available.
In order to determine which pages a guest machine
is referencing, the hardware reference and change
indicators are used. VM/XA periodically executes a
reorder function which uses the RRBE instruction to
detect referenced frames and reset reference bits so
that subsequent references may be placed.

The purpose of the reorder function is two-fold. First,
it identifies unreferenced pages to the RsM “steal”
task. Second, it provides the number of referenced
pages so that the working set size (wss) of the virtual
machine may be determined. wss provides an indi-
cation of the number of resident pages the virtual
machine will require to run efficiently in the future.
This information is vital to the vM/xa scheduler in
managing storage-constrained environments.

The reorder function is performed on a guest-by-
guest basis. When the dispatcher determines that a
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Figure 2 VM/XA SP storage control block structure
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guest has executed for a sufficient amount of time, a
reorder function is performed for that guest. This
time is not fixed but is controlled by a feedback
mechanism that allows a reasonable amount of time
for the guest to reference enough pages to constitute
a working set. Many virtual machines have a set of
pages that are always referenced, such as in the
guest’s resident nucleus, and a set of pages that vary
in their reference pattern. This varying reference
pattern is entirely dependent upon the nature of the
guest transactions and cannot be predicted.

The reorder function changes the order of the queue
of FRMTEs that represents the host-resident frames
currently assigned to that guest. This list may contain
one or more sections from previous reorder func-
tions and a set of newly referenced frames. The
output from the reorder function is a list of FRMTEs
consisting of a section representing the frames that
have been referenced over the interval and another
section representing unreferenced frames.

The rsM function in vM/XA responds to various
requests from within the system for real storage
frames. These requests are satisfied by removing a
FRMTE from the top of the available list and returning
the address to the caller. If the number of FRMTEs
remaining on the available queue falls below a pre-
determined low threshold, a task is initiated to re-
plenish the available list by “stealing” frames as-
signed to virtual address spaces.

The steal task examines the guests that own frames
and takes appropriate pages to satisfy the storage
demand. The storage demand is considered satisfied
and the steal task terminates when the number of
frames on the available list reaches a high threshold.
(Both the high and low thresholds fluctuate to ac-
commodate varying levels of system storage de-
mand.) While the steal task is running, requests for
frames continue to be accepted by RsM. Frames are
given out from the available list until there are no
frames available. At this point the requesting func-
tion must be deferred. The steal task will satisfy the
deferred requests as pages become available.

The selection of a guest from whom pages will be
stolen is described in detail in the vM/XA publica-
tions. Briefly, the steal task will select guests for
whom the reorder function has been recently per-
formed. “Dormant” guests (those that have not re-
cently competed for CPU resources) tend to be visited
more frequently than those that are active.
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Once selected, if a guest is determined to be “long-
term dormant” (dormant for some system-deter-
mined period of time, typically over 30 seconds), all
of its frames will be stolen. For all other guests, only
the unreferenced pages will be taken. For active
guests, this process tends to “weed out” pages that
are no longer part of that guest’s active working set.
For the short-term dormant guest, it preserves an
“interactive buffer” of recently referenced frames.
The assumption is that at least some, if not all, of
these frames will be required again when the guest
next becomes active.

If, after visiting all recently reordered guests, enough
unreferenced pages cannot be found (an unusual
case), a second pass of the steal task is initiated. In
this case no pages are protected, and any frame will
be used to satisfy the storage demand.

Pages are also added to the available list when cMs
returns real storage pages upon completion of certain
functions. The cMs component is aware that it is
running in a pageable virtual machine environment,
and when it no longer requires the contents of certain
frames, it indicates’ to the control program that a
range of pages should be released. cP removes the
frames in this storage range from guest ownership
and places them on the available list. Additionally,
cP will release any expanded and auxiliary storage
associated with the specified range.

There are some subtle interactions between RSM and
the system scheduler to avoid severe over-commit-
ment of real storage. The speed of the paging subsys-
tem has a lot to do with the ability of the system to
respond to heavy storage demands. The relationship
between the reorder function, the steal task, and the
system scheduler is crucial to achieve a good system
balance of execution, storage demand, and respon-
siveness.

Use of expanded storage by VM/XA. The expanded
storage facility described by Tucker® provides for the
fast synchronous movement of 4K blocks of data
between real and expanded storage. VM/XA supports
expanded storage for direct use by guests and for its
own storage and data management needs.

vM/XA allows expanded storage to be divided into
multiple partitions. Each partition may be dedicated
to a virtual machine to be used by its guest operating
system. To the guest, the partition appears to be an
entire expanded storage facility having all of the
capabilities that are included in the architecture. The
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interpretive-execution facility provides a special
mode of operation for preferred guests that permits
direct access to expanded storage. For guests which
do not use this mode, attempts to access dedicated
expanded storage will result in an exit from emula-
tion mode so that the host can simulate the requested
function.

For its own purposes, vM/XA exploits expanded stor-
age for traditional paging and, in a very unique
fashion, to place in a cache 4K data blocks read and
written by cMs. Bozman' discusses the minidisk-
cache capability in detail. We now discuss the design
for support of guest real storage.

The vM/xa design treats expanded storage as an
extension of real storage. As such, a page is in either
real storage or expanded storage, never both. Because
of this treatment, vM/XA is able to use the page table
entry (PTE) to hold the expanded storage block num-
ber when the contents of that guest real page reside
in expanded storage. The 370-XA architecture pro-
vides for a full-word PTE which is large enough to
hold the largest possible expanded storage block
number.

Obviously, if a PTE contains an expanded storage
block number, the PTE cannot also be valid for
translation. For this reason, the invalid bit is always
placed on in the PTE when it is occupied by a block
number. The value of the corresponding bit for the
block number is placed in an auxiliary control word
in the PGMBK associated with the PTE along with
other flags indicating the status of the page. The
vM/XA design allows for four possible states in the
PTE:

1. Real-frame-address all zero with invalid bit on.
The page has never been referenced, or the page
is paged-out to a single DASD page location.

2. Real-frame-address nonzero with invalid bit off.
The page is valid and may be used to translate a
guest real address 10 a host real address.

3. Expanded-storage-block-number with invalid bit
on. The page has been paged-out to expanded
storage.

4. Block-paging-index with invalid bit on. The page
has been paged-out to DASD along with a set of
other related pages in the same segment. The
block paging function of vM/XA moves a group of
related pages to DASD during migration and will
retrieve the entire set of pages when any one page
is referenced, thus reducing overhead in the pag-
ing manager.

182 BLANDY AND NEWSON

Before the actual page-in and page-out function used
to move data between real and expanded storage is
discussed, it is important to understand the alloca-
tion mechanism. VM/XA uses several control blocks
to manage the allocation of expanded storage. For
each megabyte of expanded storage, there is a table
entry that indicates if the megabyte section is avail-
able to the hardware configuration, and if so, whether

A very dense bit map is used for
expanded storage block allocation.

it is attached to a virtual machine or is available for
cP use. Additionally, the entry identifies a bit map
for allocation of individual blocks within the section.
This bit map exists even for megabyte sections that
are not used by cp, since if expanded storage is
detached from a virtual machine, cr will use it for
its own functions.

A very dense bit map is used for expanded storage
block allocation to allow for the possibility of sup-
porting extremely large expanded storage configura-
tions. The architectural limit for an expanded storage
configuration is 16 384 gigabytes. Allowing for one
bit per block, slightly more than 512 megabytes of
real storage would be required to represent the allo-
cation control block structure in VM/XA. More real-
istically, a 1-gigabyte expanded storage would require
16K (four pages) of bit maps. Allocation and deal-
location of an expanded storage block involves set-
ting and resetting the appropriate bit in the allocation
array and translating bit displacements into ex-
panded storage block numbers.

To speed up allocation and deallocation of expanded
storage, VM/XA caches expanded storage block num-
bers in a 500-entry push-down stack. Initially the
stack is empty and allocation of blocks is done from
the bit-map array described earlier. When a block is
deallocated, the block number is placed into the next
entry in the stack if the stack is not full. When a
block is to be allocated, the stack is examined. If it
is not empty, the block number from the cutrent
entry is removed, and the stack pointer is adjusted
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to the next entry. Blocks in the stack are considered
deallocated even though their corresponding bit in
the allocation array remains marked as allocated.

Real storage pages are paged-out to expanded storage
by the real storage manager steal-task function de-
scribed earlier. When the steal task selects a guest
page, it requests an expanded storage block number.
If one is returned, the real storage page is paged-out
to the expanded storage block, and the real frame is
immediately placed on the available list. Each page
that is paged-out to expanded storage is time-
stamped with the current time in seconds. This time
stamp is in an auxiliary field in the PGMBK associated
with the PTE. The migration function, described later,
uses the time stamp to determine which blocks are
good candidates to be moved to DASD.

Because the PTE now contains an expanded storage
block number, the real frame address of the page is
no longer available. Should the guest happen to
immediately reference the page again, a page fault
would occur, requiring resolution to another real
storage frame. There is no notion of a real storage
frame being reclaimed if a guest references it while
it still happens to be physically resident. The cost of
such a reclamation capability, although used in the
past with DASD devices, is not justified with expanded
storage. Even with DASD paging, little need seems to
exist for reclamation if pages are read as a group.

Once a real storage page is placed in expanded
storage by the steal task, it can be paged-in by the
real storage allocation function. If a guest references
a nonresident page, emulation mode terminates with
a host page fault. A test is made to determine if the
fault is due to an invalid PTE occupied by an ex-
panded storage block number. If so, a real storage
frame is allocated from a processor local queue of
available frames, and the expanded storage block is
paged-in and then deallocated. The PTE is made valid
with the real storage address, and virtual machine
execution is resumed by reexecuting the SIE instruc-
tion. The synchronous nature of the PGIN instruction
allows this path to be extremely short, isolated, and
exempt from normal cp dispatching. The same op-
timized path is used to satisfy page faults resulting
from first-time page references. Here no PGIN is
required, and the frame is merely cleared to binary
Zeros.

The processor local queue of available frames is used
to avoid lock contention on the global available
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queue. The processor local available list is primed
with entries before running the guest virtual ma-
chine. Priming permits several page faults to occur
that can be satisfied from expanded storage as expe-
ditiously as possible. Tests performed using CMS in-
tensive environments on a 3090E processor show
that vMm/XA is able to sustain an aggregate expanded
storage block transfer rate of over 1000 blocks per
second per processor. One measurement with 5000
guests on a 3090 Model 600E with 256 megabytes
of real storage and 512 megabytes of expanded stor-
age showed a continuous paging rate to expanded
storage of 4200 blocks per second. Peak paging rates
of over 20 000 blocks per second have been observed
in a live production environment running on a 3090
Model 300E.

Even though very large expanded storage configura-
tions are possible, there are still many environments
where the expanded storage becomes fully allocated.
Full allocation can be caused by the occupancy of
guest real storage pages and/or blocks containing
buffers from the minidisk cache function. To main-
tain effective paging capacity within the expanded
storage configuration, blocks are migrated to DASD.

The migration function is initiated when a request
is made for an expanded storage block and the
allocation routine determines that the number of
available blocks has fallen below a system-defined
low threshold. A migration task is initiated some-
what like the real storage steal task. The real storage
steal task has a set of frames (FRMTEs) that can be
examined to determine which ones to make avail-
able. No such list exists for the expanded storage
block allocation. To have such a list would increase
the real storage required for allocation control
blocks, making it far more difficult to support very
large expanded storages. Instead, the expanded stor-
age migration function examines the PGMBKs of
guests that have pages allocated to expanded storage
and selects candidates for migration to DASD.

The migration function examines all guests in a
round-robin fashion. Each invocation of the migra-
tor starts from the last guest examined. For guests
with pages in expanded storage, each PGMBK is €x-
amined. The PGMBK contains a summary count of
the number of blocks allocated within the segment
and the age (from the time stamp) of the oldest
block. If the PGMBK has no blocks, the next page
table is examined. This routine continues until all
page tables for the guest have been examined.
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The migrator uses a target age to determine whether
to select a block. The target age is usually the average
age of 7all expanded storage blocks used for host
paging.” If a block is found that is older than the
target age, it is selected for deallocation from ex-
panded storage. Because of locality of reference,
more than one block will usually be selected within
each segment, thus allowing the migrator to package
multiple guest pages together in a set to be written
to DASD. Later, if any page in this paging block set
is referenced by a guest, the entire set will be brought
into real storage from DAsD. Studies, including those
by Kienzle et al.,’ indicate that the reference patterns
of cMs guests tend to be clustered (by guest real
address) and that the page rereference rates across
transactions are high. The migration selection proc-
ess exploits this situation by forming sets of pages on
the basis of their guest real storage addresses.

Since it is not possible to perform 1/0 operations
directly from expanded storage to DASD, the migrator
maintains a number of real storage buffers for each
DASD paging device available. This number varies
with system load and expanded storage use. Pages to
be migrated are paged-in to the real storage buffer
and immediately deallocated. When all buffers are
full or an entire guest has been processed, the paging
1/0 manager is invoked. While that 1/0 operation is
progressing, the migrator continues to fill any re-
maining buffers.

As paging 1/0 operations complete, control returns
to the migrator. The 1/0 buffers are now reused for
the continuing migration operation. While the mi-
gration function is running, expanded storage blocks
continue to be allocated. The migration will com-
plete only when the number of available blocks
reaches the high threshold that was determined when
migration was invoked.

Once migration completes, the low threshold is ad-
justed on the basis of allocation activity. If the num-
ber of blocks available has fallen perilously low, the
threshold is raised. If several successful migrations
have occurred and the number of available blocks
has been sustained at an acceptable level, the thresh-
old is lowered. Note that this feedback mechanism
results in a quick response to surges in expanded
storage demand but a cautious response to dwindling
demand.

The time it takes to make expanded storage blocks
available is directly related to the number and speed
of the DAsDs. Under normal operation, given average
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paging block sets of 9 to 12 pages and a mix of
blocked and nonblocked paging, an 1BM 3380 DASD
can reasonably support around 130 pages per second.
During the bursts of 1/0 activity created by migration,

VM/XA maintains its own
2-gigabyte virtual address space
to hold routines and data.

the same device can support upwards of 300 pages
per second. The increase in capacity is possible be-
cause almost all of the 1/0 activity is blocked, and
rotational and seek delays are minimized by using a
DASD allocation scheme (moving wave) that tends to
select pages from adjacent tracks.

Another function of the migrator is to move ex-
panded storage blocks to DASD when some part of
expanded storage is attached to a virtual machine.
In this case the target is not age but expanded storage
block numbers. All blocks within the target attached
range are migrated before the expanded storage is
given to the virtual machine. The attached expanded
storage is also cleared to binary zeros for security.
Attaching 256 megabytes of expanded storage to a
virtual machine takes about one minute to migrate
and clear the area.

The design of vM/xAa for the exploitation of expanded
storage allows very large expanded storages to be
supported with minimal real storage resources. The
reuse of the page table entries to hold expanded
storage block numbers, the employment of dense
allocation bit maps, and the migration scanning
design allow vM/XA sP to efficiently support processor
complexes with expanded storage that is much larger
than real storage.

Internal storage management

In addition to the management of guest real storage,
VM/XA must manage its own virtual and real storage
for internal use. This storage is used for the control
blocks, data structures, and modules required to
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support potentially vast populations of virtual ma-
chines.

The VM/XA system virtual address space. VM/XA
maintains its own 2-gigabyte virtual address space to
hold routines and data. As with pageable-mode
guests, only a portion of this address space has to be
resident in real storage when the control program is
executing. This allows certain routines and data to
be maintained in expanded storage or on DASD when
they are not actively being executed or referenced.

VM operating systems such as vM/sp and Virtual
Machine/High Performance Option (vM/HPO) do not
use dynamic address translation (DAT) when the
control program (cp) itself is running. Even though
the interpretive-execution facility permits DAT usage
for the host program, the VM/XA control program
also runs with DAT off. The transition from the DAT-
off state to DAT-on is accomplished automatically by
the SIE instruction when the state description speci-
fies pageable mode. In fact, two levels of address
translation are provided so that guest programs
themselves may run DAT-on. The interpretive-exe-
cution facility restores the pAT-off state when return-
ing control to the host.

Despite the fact that the vM/XA control program runs
in nontranslate mode, there is still a need for portions
of the cp nucleus to be nonresident to limit host real
storage requirements. Examples include infrequently
run routines and storage used to support spooling
and the system directory.

To satisfy these CP nonresident storage requirements,
a SYSTEM virtual storage address space is imple-
mented in vM/XA. Even though DAT is not used to
reference this virtual storage, VM/XA uses the same
segment and page table structure required by DAT.
This address space is a full 2048 megabytes, requiring
a segment table two pages in size. The page tables to
address this large SYSTEM virtual storage area are
built dynamically on the basis of reference. The
resident and pageable portion of the cP nucleus
(about 2 megabytes) are mapped to the equivalent
SYSTEM virtual storage area. Most vM/XA systems will
start at page zero, but if the installation has reserved
a fixed area for preferred virtual machines, the map-
ping to SYSTEM virtual storage starts beyond that
area.

Because DAT is not used, vM/XA must perform its

own translation. The Load Real Address instruction
can be used for this translation, but more commonly

BM SYSTEMS JOURNAL VOL 28, NO 1, 1989

VM/XA does a complete “software” translation. This
process involves using bits 1-11 (the segment index)
of the target virtual address to index into the system
segment table to locate the appropriate page table.
Then bits 1219 (page index) are used to index into
that page table to locate the page table entry. If the
page is not resident, the corresponding fields in the
PGMBK are interrogated to determine what action is
appropriate (e.g., PGIN from expanded storage).

The moduie linkage mechanisms in VM/XA permit
calling to nonresident modules. Calling is accom-
plished by establishing an address marker that de-
fines the extent of the resident nucleus. Calls to
modules whose address is higher than the marker
are nonresident. The linkage mechanism calls the
page manager requesting that the SYSTEM virtual
address be made resident. The real storage manager
returns the resident real address of the page, and the
linkage mechanism then completes its processing. A
pageable module is never called without assuming
that a loss of control (to do the paging 1/0 operations)
is possible. The pageable module performs its own
base register relocation and cannot itself contain
address constants that reference locations within the
module. The module must also be less than or equal
to a page. It may call upon other modules (resident
or pageable) without fear that the module itself will
disappear. The pageable module is locked into host
real storage until a return is made from the module.
The vm/xA linkage mechanisms can thus efficiently
support a complex resident and nonresident module
linkage mechanism even in a multiprocessor envi-
ronment using the SYSTEM virtual storage construct.

The use of this SYSTEM virtual storage for spool
buffers and other data follows a similar construct.
The difference is that this storage is dynamically
allocated from the “unused” storage area of the
SYSTEM virtual storage. An allocation module locates
the “next” SYSTEM virtual storage page that is avail-
able. It is marked as allocated, and the SYSTEM virtual
address is returned to the caller. When a module
needs to address such storage, it calls the real storage
manager, passing it the SYSTEM virtual address. RSM
will ensure that the page is resident (performing page
fault processing as required) and will return the host
real address of the page.

As previously stated, the system address space is
defined by the same structures as those used for the
address spaces of pageable-mode guests, providing
both a realized and a potential advantage. The real-
ized advantage is that the reorder and steal functions

BLANDY AND NEWSON {85




of the real storage manager can be (and are) used to
“police” the system address space. The potential
advantage is that future releases of vM/xA could be
made to run DAT-on without requiring changes 1o
the system address space. At that time, the ESA/370

Free storage is used for the host
control blocks and data required
to maintain the virtual machine
environments.

architecture could be exploited to maintain multiple
system virtual address spaces, all easily addressable
by the host program. In the future, specific types of
system data might be isolated into different address
spaces to improve overall system reliability, availa-
bility, and serviceability (RAS).

VM/XA free-storage manager. Free storage is used
for the host control blocks and data required to
maintain the virtual machine environments. The
allocation and deallocation of such storage can occur
at tremendously high rates and must be performed
efficiently to allow optimal system performance. The
vM/XA design of free storage has been dramatically
changed from prior vM systems in order to meet the
requirements of IBM’s largest processors.

Earlier versions of vM required that a fixed region of
real storage be set aside for the allocation of free
storage. The size of the storage was generally deter-
mined at the time the system was generated, and
although the free storage region could be extended
dynamically, it could not be done without paying a
performance penalty. Margolin et al.’ show that very
early on, vM implementers realized that managing
this storage as a single chain of various-sized ele-
ments required excessive CPU time for searching and
merging. Subpool techniques were introduced that
provided separate queues for elements of specific
sizes. All elements continued to be originally allo-
cated from the global free-storage chain. However,
for elements of appropriate size, deallocation would
return the element not to the global queue but rather
to a subpool queue which contained elements only
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of that size. A subsequent request for the same-sized
element would be satisfied from that subpool.

Bozman et al.”’ provide an excellent review of tech-
niques employed in early releases of vM and of those
that were introduced in vM/HPO Release 2. These
techniques greatly improved cpu efficiency but did
not address the problem of free storage extension,
nor did they completely eliminate the need to search
a single chained list of elements. This continued to
be required when:

» Subpools were depleted

e Requests were made for nonsubpool sizes

* Subpool elements were periodically returned to
the global queue (“garbage collection™)

¢ Elements allocated from extended free storage
were returned

When designing a free-storage manager for vMm/xA
sp, it was hoped that the shortcomings of previous
designs could be overcome. Thus the following de-
sign goals were established:

1. The installation should not be required to predict
the amount of free storage the system would need.

2. The management of blocks that are frequently
allocated and quickly released should be opti-
mized in terms of cpu efficiency and provide
acceptable storage utilization.

3. The management of blocks that are infrequently
allocated and held for long periods of time should
be optimized in terms of storage utilization and
provide acceptable cpru efficiency.

4. The management techniques should be consistent
as the amount of free storage required expands
and contracts.

5. Debugging aids and integrity checking should be
provided.

The result must be a robust, multiprocessor design
with linear load-dependent performance character-
istics. The free-storage manager must work well in
all supported vM/xA environments and processors.
As the speed, number of processors, and amount of
free storage required increases, the CPU time neces-
sary to manage free storage must increase linearly
rather than exponentially. This increase can only be
accomplished by employing techniques that limit
the number of free-storage elements visited for each
free-storage request.

The final design chosen, after several design and
performance prototypes, had the following features:
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1. No system generation of storage is required. All
free-storage frames are dynamically obtained.

2. All short-term storage requests are managed as
subpools.

3. All long-term storage requests are managed as
simple chains associated with particular virtual
machines or with the system as a whole.

4. The amount of storage available for both short-
term and long-term allocation dynamically ex-
pands and contracts with no change in the man-
agement techniques employed.

5. All control blocks have an identifier as well as
information about which function obtained and
released the storage.

No static free-storage region. Previous vM releases
required that a single large contiguous piece of real
storage be reserved for free-storage allocation. The
size reserved was either specified when the system
was generated or defaulted to a fixed fraction of
available real storage. Although the free-storage area
could dynamically extend, such extensions invaria-
bly led to degraded system performance. To avoid
such degradation, installations defined free-storage
areas that were large enough to meet peek system
demands. However, because this storage could not
be used for other purposes, this approach had its
own negative impact on off-peak performance.

The new vM/xA design allocates all free storage dy-
namically. There is no requirement for the installa-
tion to guess how much is needed.

Subpool processing. All storage needed for short-
term requests is managed in subpools. A short-term
request is generally a request that is not part of a
virtual machine configuration description nor part
of any system-managed function that may exist be-
tween guest sessions such as control blocks used for
1/0 operations. Short-term blocks may survive as long
as several seconds or even minutes, but the actuarial
tables reveal that the average life expectancy of these
blocks is measured in milliseconds.

The sizes chosen for the subpools were derived after
performing several system measurements which re-
vealed the sizes of the most frequently requested
control blocks. The design could have chosen one
subpool for every possible valid request, but this was
considered wasteful, particularly with the larger
block sizes.
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A valid free-storage request can be from 1 to 509
double words. With three double words added for
control block identification and debugging, the ac-
tual size required is 4 to 512 double words (one
page). All requests are rounded up to the next sub-
pool size that will satisfy the request. The following
subpool sizes and groupings were chosen:

1. 4 to 16 double words in 1 double-word incre-
ment—13 subpools

2. 18 to 64 double words in 2 double-word incre-
ments—24 subpools

3. 68 to 128 double words in 4 double-word incre-
ments—16 subpools

4. 144 to 256 double words in 16 double-word in-
crements—§8 subpools

5. 257 to 512 double words as 512 double words—
1 subpool

The subpool sizes are not mixed within a free-storage
frame. When a request for a certain size is made, the
subpool anchor is examined. If there are no blocks
of the requested size available, a new frame is ob-
tained from the available list and is divided into
storage blocks of the requested size. Any remainder
is discarded. The entire chain of blocks is then placed
on the subpool, allowing the initial request to be
satisfied. This action has the advantage of “priming”
the subpools so that subsequent requests can be
immediately satisfied from the subpool.

The subpool blocks are chained in a LIFo (last-in-
first-out) order. When a subpool block is returned, it
is placed at the start of the chain and will be the next
one allocated. This placement provides for cache
efficiencies, making it more likely that a processor
can reallocate a block that has not yet been discarded
from its cache.

With the exception of the 4 to 16 double-word
subpool sizes, internal fragmentation is possible be-
cause of rounding to the next higher subpool size.
The potential for fragmentation is greatest for re-
quests larger than 256 double words where a full
frame is used to satisfy the request. Use of a full
frame may appear to be very wasteful, but because
these requests are short-term, the block is likely to
be returned in milliseconds. Also, the grouping and
rounding were chosen so that the most frequently
allocated control blocks are from the smaller sizes
where there is little or no fragmentation. Very large
blocks are infrequently allocated.

This design largely avoids external fragmentation.
Such fragmentation occurs only when a 4K frame
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cannot be evenly divided into equal-sized elements,
and the remainder is discarded. The subpool sizes
were selected to minimize the amount of such waste.

A greater problem is that a request for a specific-
sized element can only be satisfied from its corre-
sponding subpool. If that subpool is empty, a frame
will be taken from the available list even though

All storage needed for short-term
requests is managed in subpools.

there may be enough storage on other subpool
queues to satisfy the request. To minimize this prob-
lem the subpools are periodically culled, and empty
frames are returned to the available list.

Since the subpool sizes are used for frequently re-
quested free-storage blocks, the design needed a low-
level locking structure to allow for a high degree of
concurrent access from multiple processors. Locking
is controlled at the subpool level so that multiple
processors may have concurrent access to different
subpools. Observations of the subpool locks show
very low contention because of simultaneous re-
quests for the same size.

Long-term storage management. Long-term storage
is used for control blocks that form part of a virtual
machine definition or part of system data control.
The former persist for the duration of the defined
virtual machine (for example, from LOGON to LOG-
OFF of a cMs guest). The latter may persist from one
VM/XA initial program load (1pL) to another (for
example, a PROFS note, in the form of a spool file,
will usually exist until read by the addressee).

Storage requests that are expected to be used for an
extended period of time are not managed as sub-
pools. The primary requirement for long-term stor-
age is efficient storage utilization. Since the requests
are infrequent, cpu efficiency is only of secondary
importance.
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The vMDBK is used by several control program and
hardware functions, including the St instruction and
dynamic address translation. About half of the full
4K frame allocated for the vMDBK is undefined. This
area is used as a “private” free-storage area to satisfy
requests for long-term storage that are directly asso-
ciated with the guest. However, this private area is
rarely large enough to hold all of the control blocks
required for a typical virtual machine, and so the
area needs to be extensible.

If a control block cannot be obtained from the
private area, a global chain of guest free storage is
examined to satisfy the request. A two-level structure
is used. The first level is a chain of frame table entries
(FRMTEs) which represent frames allocated for long-
term requests. Within each frame, anchored in the
FRMTE, is a chain of available storage blocks. The
available storage blocks within a frame are sorted by
size—smallest at the front and largest at the end.
Initially a frame will contain one available block that
is 512 double words long. The FRMTE also contains
the size of the largest block in the frame.

A request for long-term storage is satisfied using a
two-level first-fit algorithm. First, FRMTEs are exam-
ined (starting at the global-chain anchor) until one
is found containing a block large enough to satisfy
the request. Then the storage chain in that frame is
examined until the first suitable element is found.

Once a suitable piece of storage has been found, it is
unchained from the other blocks in the frame. If it
is an exact match, it is allocated to the caller. If it is
larger than requested, it is divided into the size
requested and a remainder. The remainder is re-
chained into the available blocks in the frame sorted
by size. An exception to this rule is applied to avoid
excessive fragmentation. If the remaining piece is
smaller than a “useful” size (less than eight double
words), the large piece is not divided. The next larger
block on the chain is examined. This next block may
be divided into two pieces, leaving an acceptable
size. If it is the last block in the frame, it will be
divided regardless of the size of the remainder.

As pieces are given out from the frame, counters are
maintained in the FRMTE showing how many double
words remain in the frame. Once this number falls
below a useful level, the FRMTE is removed from the
high-level chain to avoid excessive chaining through
FRMTEs, which do not have a size that can satisfy a
request.
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This method of examining the FRMTE for a requested
size is used in the FRMTE that describes the VMDBK
as well. Once this vMDBK frame is fully allocated,
the global queue is examined. An alternative method
was investigated. Since long-term guest control
blocks are returned when the virtual machine is
deleted, it made sense to keep guest requests separate
rather than have a global queue for all guests. Thus
each guest would have its own chain of FRMTEs with
available storage queued in each frame, guaranteeing
that all frames would be returned at guest LOGOFF.
However, it implied that, on average, half of a frame
of storage would be available and unused for each
virtual machine. On benchmark systems of 5000
guests, this method consumed almost 10 megabytes
of resident real storage; therefore this alternative was
discarded.

System long-term storage is managed identically to
guest long-term storage except that no VMDBK is
used. A two-level chain of FRMTEs is handled exactly
as described above.

Since the request rate for long-term storage is much
lower than it is for short-term requests, a single global
lock for the allocation of guest storage is used. There
is a separate lock for the system-managed long-term
storage queue. Performance measurements have
shown that the spin time on these locks is negligible,
indicating little or no contention.

As with the subpool storage method, the queue of
available storage is initially empty. If the queue is
empty or if no FRMTE has a piece large enough to
satisfy a request, a new frame is obtained from the
real storage manager. This frame is initialized to a
single available piece, and the FRMTE is placed on
the appropriate global queue.

Returning any long-term storage to the chain in-
volves special processing to limit the amount of
fragmentation and to keep the storage utilization at
a high level. When long-term storage is returned, the
FRMTE containing the piece is derived from the block
address. The returned element is then merged with
any adjacent unallocated elements in the same
frame. The resulting piece will be sorted in the chain
of blocks in the frame. If all storage has been re-
turned, the frame is immediately returned to the
available list.

Other free-storage systems in vM and in other oper-

ating systems have used or still use merging tech-
nigues to manage large strings of storage. As proces-
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sor speeds and storage sizes increase, both the rate
of free-storage requests and the number of elements
examined to satisfy each request increase, leading to
exponential increases in system overhead. In the
VM/XA design, merging is limited to the available
string of blocks within one frame. It effectively limits
the amount of storage that needs to be examined to
complete a merge operation. VM/XA does not use
control blocks larger than a page, and no control
block crosses a page boundary. These control-block
limits make merging strings of available storage an
effective nonsubpool storage management method.

Dynamic free-storage size. The previous sections
showed that all frames used for free storage are
obtained dynamically from the system available
frame queue. It is done for short-term subpool stor-
age frames and for long-term nonsubpool storage
frames. One of the design interfaces for the free-
storage manager specifies that a function may call
for a block of storage and be assured that a block
will be returned without deferring the requesting
task. This specification permits tasks to use proces-
sor-specific storage (rather than task-specific storage)
with the assurance that such storage cannot be de-
stroyed by an intervening task. To allow this, the
free-storage manager must be able to obtain a real
frame without the necessity of deferring the reques-
tor.

To obtain a frame, the free-storage manager exam-
ines the available list. If a frame is available, it is
removed and used to satisfy the request. If no frame
is immediately available, the steal task must be run-
ning on another processor to replenish the available
list. Rather than waiting for steal to complete, the
free-storage manager itself examines the FRMTEs rep-
resenting the dynamic paging area, looking for an
unchanged, unfixed frame. If such a frame is located,
it is removed from the owner’s queue (the page table
entry is invalidated), and the frame is returned for
free-storage use.

If no such frame can be located, the free-storage
manager uses a reserved frame. Each processor in
the vM/xA configuration reserves two frames at ini-
tialization for free-storage use. When a reserved
frame is used, the steal task will ensure that the next
frame made available to the system will be used to
replenish the reserved frame pool. The system will
not dispatch virtual machines but only handie sys-
tem-scheduled work until the reserved frame pool is
replenished. This limits the demands on free storage
during this critical phase. If all reserved free-storage
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frames from the pool are used and another request
for storage is received, the system is abnormally
terminated. Such terminations are rare and often
caused by other failures that have essentially cur-
tailed system operation.

When a free-storage frame becomes unused, it is a
candidate to be returned to the available list. The
return is made immediately for long-term storage
frames since these requests are infrequent, and the
chances of needing the frame again are low. For
subpool storage a delay factor is introduced. Frames
used in subpool storage are time-stamped. Periodi-
cally the system will examine these frames, and if
the frame remains unused and has been for at least
15 seconds, it is returned to the available list. This
timed delay for subpool frames is used because there
is a higher probability that these frequently requested
sizes may be needed within a short time span.

vM/xA free-storage management is designed to sup-
port very large numbers of guests, exploiting IBM’s
largest processors, such as the 3090 Model 600ES.
Such support is accomplished by using subpool and
nonsubpool storage management techniques that
provide for efficient cpPu and storage utilization.
Observations have shown that the time spent man-
aging free storage grows linearly with the system
load. Peaks of 2000 requests per processor per second
have been observed without adverse effects. Storage
utilization efficiency (amount in use compared to
amount allocated) generally has been in the range of
85 to 90 percent for both types of storage.

Summary

This paper has demonstrated how vM/XA SP is capa-
ble of supporting the System/370 Extended Archi-
tecture to its full potential, particularly in the area
of virtual and real storage addressing and the exploi-
tation of expanded storage. While vm/xa sP fully
supports the use of the ESA/370 addressing extensions
for guest use (i.e., for Mvs/ESA), there is currently no
direct exploitation of this feature for host control
program purposes. However, the structure of the
system lends itself to that possibility in future re-
leases. Use of the ESA/370 addressing extensions by
vM/xA could lead to further advances in the support
of large numbers of users, particularly in areas where
massive amounts of data are to be accessed and
shared among users. The ability to use ESA/370 to
reduce the cross-user data transfer protocols pres-
ently used could lead to significant performance
improvements in these areas.
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