
VM/XA storage
management

The VMjXA System Product manages the vast amounts
of real and expanded storage available on the new
Enterprise Systems Architecturejd'lO" processors for
both guest use and support of internal operating sys-
tem functions. The management algorithms are exam-
ined, and the rationale for their selection is presented.

T(he new Enterprise Systems Architecturej370"
ESA/~~O'") processors provide a user with un-

precedented amounts of real and expanded storage.
The exploitation of this storage by the Virtual
MachinejExtended Architecture System Product'"
(VM/XA spTM) is unique as, indeed, is its role as a
control program.

VM/XA SP manages the resources of a Systemj370
Extended Architecture (370-XA) system or ~ S ~ / 3 7 0
system to create multiple virtual machines, each
capable of running an operating system such as
Virtual Storage Extended (VSE), Conversational
Monitor System (CMS), or Multiple Virtual Stor-
agejEnterprise Systems Architecture (MVSIESA").
Each virtual machine may be viewed as an instance
of a complete processor complex with features, facil-
ities, and resources as rich or even richer than the
native complex being managed by VM/XA SP.

VM/XA SP is designed to exploit many of the extended
addressing capabilities introduced with 370-XA.
This exploitation allows operating systems such as
MVS/ESA to utilize the full architectural capabilities
when running in a virtual machine environment.
VM/XA SP also uses many of the 370-XA addressing
capabilities to support control program functions
and to provide special facilities for CMS virtual ma-

by G. 0. Blandy
S. R. Newson

chines such as the yinidisk caching feature discussed
in a related paper in this issue. Here we focus on
the exploitation of very large real, virtual, and ex-
panded storage by VMJXA SP and describe in detail
the mechanisms and algorithms employed to support
these capabilities efficiently.

The two main sections that follow explore two broad
categories of VMJXA storage management. The first
section describes how VM/XA SP uses the native stor-
age hierarchy of real, expanded, and auxiliary storage
to create large virtual machine storages and provide
for the use of dedicated expanded storage by a virtual
machine. The second section concentrates on the
use of virtual and real storage by VM/XA SP for its
own internal storage requirements.

Virtual machine storage support

Each virtual machine is the functional equivalent of
a real processor complex. VM/XA uses the techniques
of time-sharing, partitioning, and dedication to man-
age native resources in such a way that virtual ma-
chines appear to have their own CPU(S), vectors, real
storage, expanded storage, I/O devices, etc. A com-
bination of hardware facilities, software constructs,
and system resources enable VM/XA to manage vir-
tual images of real and expanded storage.

Copyright 1989 by International Business Machines Corporation.
Copying in printed form for private use is permitted without
payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright
notice are included on the first page. The title and abstract, but no
other portions, of this paper may be copied or distributed royalty
free without further permission by computer-based and other
information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

IBM SYSTEMS JOURNAL VOL 28, NO 1, 1489 BLANDY AND NEWSON 175

Virtual machine real storage. Running on a large
ESA/WO complex such as an IBM 3090S, vM/xA can
support as many as several thousand virtual ma-
chines whose combined ‘‘real’’ storage sizes can be
orders of magnitude greater than the real storage
capacity of the native processor. At the same time,
special preferred virtual machines with fixed real
storage can approach native performance.

System/370 Extended Architecture introduced a sig-
nificant hardware feature used to maintain virtual
machines. The interpretive-execution facility, which
has been described by Gum,’ provides a means for
establishing a virtual machine environment and con-
trolling the execution of programs running in that
environment. To invoke the facility, VM/XA executes
the Start Interpretive Execution (SIE) instruction,
specifying, as an operand, a control block known as
the state description. The state description defines
the architecture, facilities, and state of the machine
to be interpreted. The execution of the SIE instruction
causes the CPU to enter interpretive execution mode
and to execute instructions under control of the state
description.

The interpreted virtual machine is known as a guest,
whereas the real processor on which VMIXA is run-
ning is known as the host. The terms guest and host
are also applied to the programs running in the
respective machines. For the purposes of this paper
the term host real storage identifies physical storage
belonging to the native complex. Host virtual storage
identifies storage defined by VMIxA-maintained page
and segment tables. The term guest real storage refers
to the storage which the guest perceives to be the
physical storage belonging to its processor complex.

Interpretive-execution mode, also known as emula-
tion mode, is capable of handling many but not all
of the architectural requirements of a virtual ma-
chine. When a situation is encountered that cannot
be handled in emulation mode, the CPU will return
control to the host program (VMIXA SP), providing
required status information in either the state de-
scription or prefix page fields.

There are two methods of defining guest real storage
when operating in interpretive-execution mode. In
the preferred storage mode, a contiguous partition
of host main storage is reserved to represent guest
real storage. This storage is fixed so that no paging is
performed by the host. However, the preferred stor-
age mode may be used for only a small number of
guests, and the size of preferred virtual machines is

176 BLANDY AND NEWSON

J

I IBM SYSTEMS JOURNAL VOL 28, NO 1, 1989

limited to the amount of real storage available minus
the amount required by VM/XA and other preferred
guests.

In pageable mode, guest real storage is represented
by the host virtual storage. VM/XA maintains a sepa-

VM/XA maintains a separate
address space for each pageable

virtual machine.

~~~~ 

rate address  space  for  each  pageable virtual machine 
using the segment  table and page table structures of 
the dynamic address translation (DAT) facility. 

The advantage of  pageable mode is that all of  guest 
real  storage  need not be  resident in host  real  storage. 
To operate efficiently,  a  guest  need  only  have  access 
to that subset of storage that the guest  program is 
currently referencing. The remainder of guest  real 
storage  may  reside on expanded storage or a direct- 
access  storage  device (DASD). The page table entries 
for nonresident pages  will  be marked invalid, and 
any attempt by the guest to reference  these entries 
will result in a  host page fault. Emulation mode will 
be  exited and control will  be returned to the host  via 
a  program interrupt. Once the page is brought into 
host  real  storage, the execution of the virtual ma- 
chine can be resumed. A  pageable-mode  guest  with 
dedicated expanded storage is shown in Figure 1. 

In addition to the control structures defined by ar- 
chitecture (segment  tables, page tables, state descrip- 
tions), an additional set  of control program  fields are 
required  for the maintenance of  guest  storage.  Two 
control blocks,  each  residing in a 4K frame of host 
storage, are of special  interest: 

1. The Virtual Machine  Description Block (VMDBK) 
is the primary control block  used to define and 
control the virtual machine. The VMDBK contains 
both information required by the hardware (the 
state description is imbedded in the VMDBK) and 
information used  solely  by the control program 
for virtual machine maintenance. A section of 

178 BLANDY AND NEWSON 

this control block  is  dedicated to the management 
of guest  real  storage. This section contains statis- 
tical information and pointers to the various  lists 
and structures required to represent  guest  real 
storage.  Also  within this section  are  a number of 
software  “locks” that are used to serialize  access 
to these  lists and structures. 

2. The Paging  Management Block (PGMBK) defines 
a single  segment of guest  real  storage.  Like the 
VMDBK, it contains both information used by 
hardware (the page table is imbedded in the 
PGMBK) and information used  solely by the con- 
trol program. The PGMBK contains information 
pertaining to the location of nonresident pages 
(i.e.,  expanded  storage and auxiliary  storage  lo- 
cations), the guest’s  view  of the storage keys, and 
various status indicators. 

The segment  table  created by the control program 
(CP) for the guest  real  storage must be  page-aligned 
for architectural reasons.  However, many virtual 
m a c p ,  such as those that run applications under 
CMS (Conversational Monitor System) require only 
a few megabytes  of  guest  real  storage. For these 
machines, it would  be  highly  wasteful to allocate  a 
full  page  for  each  segment  table  when  only  a few 
words are required. To prevent  such  waste, the 
VM/XA design  allows the segment table to take two 
forms. In one case the segment table is  packaged as 
part of the VMDBK. This combination will support 
virtual machines with  storage up  to 32 megabytes. 
For virtual machines that require larger  storage,  a 
separate,  page-aligned  segment table is provided. 

Very  large virtual machine storages  may  be  defined, 
but in a  given  session, the guest  program  may  refer- 
ence  only  a fraction of this storage. To achieve 
efficiencies in real and auxiliary  storage  usage, VM/XA 
dynamically  allocates PGMBKS only  when  a  segment 
is referenced. Within each  segment,  auxiliary pages 
and real  frames are required only  as  each page is 
referenced. 

The two  storage  modes  provided by the interpretive- 
execution  facility  allow installations to run a few 
high-performance  preferred  guests and numerous 
pageable  guests.  Although the preferred mode of 
storage,  which uses host  real  storage to represent 
guest  real  storage,  necessarily limits guest  real  storage 
to a size smaller than the native complex, the page- 
able mode, which  uses virtual storage to represent 
guest  real  storage,  has no such limitation. Pageable 
virtual machine storage  differs from native real  ma- 
chine storage in only  two  significant ways: 

IBM  SYSTEMS  JOURNAL VOC 28, NO 1. 1989 



Because the entire storage  hierarchy  (real, ex- 
panded, and DASD) may  be  used,  access to a 
storage location may  be  delayed until the refer- 
enced page  is made resident in real  processor 
storage. 
It may  be  larger than the amount of storage 
available to the real  processor. 

Management of host  real  storage  to  support  guest 
real  storage. A subset of  guest  real  storage  must  be 
resident in host  real  storage to allow a virtual ma- 
chine to execute.  This  subset  must include those 
instructions of the guest  program that are currently 
executing and any data referenced  as operands of 
those instructions. Because the real  storage of pre- 
ferred-mode  guests is  always  host-resident, VM/XA is 
relieved of the task of managing this storage.  How- 
ever,  for  pageable-mode  guests, it is the responsibility 
of VM/XA to assign host real  storage  frames  as  re- 
quired. 

Host  real  storage  frames are either permanently as- 
signed or  are available  for dynamic allocation. 
Frames permanently assigned include those contain- 
ing the resident portion of the CP nucleus and those 
dedicated to any preferred  virtual  machines. The 
remainder is  available  for dynamic allocation and is 
managed by the VM/XA real  storage  manager (RSM) 
to maintain virtual address spaces and free  storage. 

Each 4K frame of  host  real  storage  is  represented  by 
a four-word (1 6-byte) frame table entry (FRMTE). The 
first  two  words  are  used to chain the FRMTES on 
various  lists  using  forward and backward  linkages. 
The remaining fields are used to describe the status 
of the frame and to point to the page table entry for 
those frames that make up the resident portion of a 
virtual  storage  address  space.  Figure 2 illustrates the 
FRMTE in the storage control block structure. 

The “available list” is the heart of the real  storage 
manager and consists of a queue of FRMTES repre- 
senting frames that are  immediately  available  for 
allocation. For smooth system operation, RSM must 
ensure that there is  always an adequate supply of 
available  frames.  Initially,  all nonpermanent frames 
are placed on the available  list. 

When a pageable virtual machine first  logs on  to the 
VM/XA system,  the  guest  real  storage  is  logically 
“empty” (all  binary  zeros), and no real  storage  frames 
are required to represent  guest  storage. As the virtual 
machine initiates its operation, it will reference pages 
within its real  storage.  Each initial reference will 

IBM  SYSTEMS  JOURNAL VOL 28. NO 1, 1989 

cause a page fault that will  be  processed  by the VM/XA 
control program. A real frame will  be obtained from 
the available  list, its address will  be stored in the page 
table entry (as required by hardware), and the FRMTE 
representing that frame will  be added to the queue 
of FRMTES anchored in the VMDBK representing that 
virtual machine. For a guest  real  page  which  has 
never  been  referenced  before (a first-time page fault), 
CP will merely  allocate a frame and clear it  to binary 
zeros. Guest execution will  be resumed. This opera- 
tion will continue for one or more guest virtual 
machines until the supply of frames on the available 
list  falls  below a predetermined level.  At that point 
frames must be “stolen” from another (or perhaps 
the same) virtual address  space to replenish the avail- 
able  list  supply. The page table entries for the stolen 
pages are marked invalid, and the contents of the 
frames are paged out  to expanded or auxiliary stor- 
age. 

When a guest  references a page that had previously 
been  paged out, a page fault will occur. A frame will 
still  be  needed  from the available  list, but instead of 
clearing it to binary  zeros, the page  will  be brought 
in from its assigned  auxiliary  storage location. The 
external storage location may be an expanded storage 
block, a DASD page, or in some  special  cases, another 
real  storage page. Once the page fault is  satisfied, the 
guest  is  eligible to resume normal operation. 

The selection of the right  pages to “steal” from  guests 
is  crucial. Unfortunately, this selection can only  be 
a best  guess in any operating system. VM/XA employs 
a method of trying to determine the least  recently 
used  pages and selecting them to be made available. 
In order to determine which  pages a guest machine 
is  referencing, the hardware  reference and change 
indicators are  used. VM/XA periodically  executes a 
reorder function which  uses the RRBE instruction to 
detect  referenced frames and reset  reference bits so 
that subsequent references  may  be  placed. 

The purpose of the reorder function is  two-fold.  First, 
it identifies  unreferenced  pages to the RSM “steal” 
task.  Second, it provides the number of referenced 
pages so that the working  set size (wss) of the virtual 
machine may  be determined. wss provides an indi- 
cation of the number of resident  pages the virtual 
machine will require to  run efficiently in the future. 
This information is vital to the VM/XA scheduler in 
managing  storage-constrained environments. 

The reorder function is  performed on a guest-by- 
guest  basis.  When the dispatcher determines that a 

EILANDY AND NEWSON 179 



Figure 2 VMlXA SP storage control block structure 

180 BLANDY AND NEWSON IBM  SYSTEMS JWRNAL VOL 2 8 ,  NO 1. 1964 



guest  has  executed  for  a  sufficient amount of time, a 
reorder function is performed for that guest. This 
time is not fixed but is  controlled by a  feedback 
mechanism that allows  a  reasonable amount of time 
for the guest to reference enough pages to constitute 
a  working  set.  Many virtual machines have  a  set of 
pages that are always  referenced, such as in the 
guest’s resident  nucleus, and a  set of pages that vary 
in their reference pattern. This varying  reference 
pattern is  entirely dependent upon the nature of the 
guest transactions and cannot be  predicted. 

The reorder function changes the order of the queue 
of FRMTES that represents the host-resident  frames 
currently assigned to  that guest. This list  may contain 
one or more sections  from  previous reorder func- 
tions and a  set of  newly referenced  frames. The 
output from the reorder function is a  list of FRMTES 
consisting of a  section  representing the frames that 
have  been  referenced  over the interval and another 
section  representing  unreferenced  frames. 

The RSM function in VM/XA responds to various 
requests from within the system  for  real  storage 
frames.  These  requests  are  satisfied by removing  a 
FRMTE from the top of the available  list and returning 
the address to the caller. If the number of FRMTES 
remaining on the available queue falls  below  a  pre- 
determined low threshold,  a  task  is initiated to re- 
plenish the available  list by “stealing”  frames  as- 
signed to virtual address  spaces. 

The steal  task examines the guests that own  frames 
and takes appropriate pages to satisfy the storage 
demand. The storage demand is  considered  satisfied 
and the steal  task terminates when the number of 
frames on the available  list  reaches  a  high  threshold. 
(Both the high and low thresholds fluctuate to ac- 
commodate varying  levels  of  system  storage de- 
mand.) While the steal  task  is running, requests  for 
frames continue to be  accepted by RSM. Frames are 
given out from the available  list until there are no 
frames  available. At this point the requesting func- 
tion must be deferred. The steal  task will  satisfy the 
deferred  requests  as pages become  available. 

The selection of a  guest from whom  pages  will  be 
stolen  is  described in detail in the VM/XA publica- 
tions. Briefly, the steal  task will  select  guests  for 
whom the reorder function has  been  recently  per- 
formed. “Dormant” guests (those that have not re- 
cently competed for CPU resources) tend to be visited 
more frequently than those that are  active. 

IBM SYSTEMS JOURNAL VOC 28. NO 1, 1989 

Once selected, if a gue‘st is determined to be  “long- 
term dormant”  (dormant for  some  system-deter- 
mined period of time, typically  over 30 seconds), all 
of its frames will  be stolen. For all other guests, only 
the unreferenced  pages will  be taken. For active 
guests, this process tends to “weed out” pages that 
are no longer part of that guest’s active  working  set. 
For the short-term dormant guest, it preserves an 
“interactive buffer” of recently  referenced  frames. 
The assumption is that at least  some, if not all, of 
these  frames will be required again  when the guest 
next  becomes  active. 

If, after  visiting  all  recently  reordered  guests,  enough 
unreferenced  pages cannot be found (an unusual 
case), a  second  pass of the steal  task  is initiated. In 
this case no pages are protected, and any frame will 
be  used to satisfy the storage demand. 

Pages are also added to the available  list  when CMS 
returns real  storage pages upon completion of certain 
functions. The CMS component is aware that it is 
running in a  pageable virtual machine environment, 
and when it  no longFr requires the contents of certain 
frames, it indicates to the control program that a 
range of  pages  should  be  released. CP removes the 
frames in this storage  range from guest  ownership 
and places them on the available  list.  Additionally, 
CP will  release any expanded and auxiliary  storage 
associated  with the specified  range. 

There are some subtle interactions between RSM and 
the system  scheduler to avoid  severe over-commit- 
ment of real  storage. The speed  of the paging  subsys- 
tem  has  a  lot to  do with the ability of the system to 
respond to heavy  storage demands. The relationship 
between the reorder function, the steal task, and the 
system  scheduler  is crucial to achieve  a  good  system 
balance of execution, storage demand, and respon- 
siveness. 

Use of expanded  storage by VM/X$. The expanded 
storage  facility  described by Tucker provides  for the 
fast synchronous movement of 4K blocks  of data 
between  real and expanded storage. VM/XA supports 
expanded  storage  for direct use  by guests and for its 
own  storage and data management needs. 

vM/xA allows  expanded  storage to be  divided into 
multiple partitions. Each partition may  be  dedicated 
to a virtual machine to be  used  by its guest operating 
system. To the guest, the partition appears to be an 
entire expanded storage  facility  having  all  of the 
capabilities that are included in the architecture. The 

BLANDY AND NEWSON 181 



interpretive-execution  facility  provides a special 
mode of operation for  preferred  guests that permits 
direct access to expanded storage. For guests  which 
do not use this mode, attempts to access  dedicated 
expanded  storage will result in an exit  from emula- 
tion mode so that the host can simulate the requested 
function. 

For its own  purposes, VM/XA exploits expanded stor- 
age for traditional paging and, in a very unique 
fashion, to place in a cachft 4K data blocks  read and 
written by CMS. Bozman  discusses the minidisk- 
cache  capability in detail. We  now  discuss the design 
for support of guest  real  storage. 

The VM/XA design treats expanded  storage  as an 
extension of real  storage. As such, a page  is in either 
real  storage  or  expanded  storage,  never both. Because 
of this treatment, VM/XA is able to use the page table 
entry (PTE) to hold the expanded storage  block num- 
ber  when the contents of that guest  real  page  reside 
in expanded  storage. The 370-XA architecture pro- 
vides  for a full-word PTE which  is  large  enough to 
hold the largest  possible expanded storage  block 
number. 

Obviously, if a PTE contains an expanded  storage 
block number, the PTE cannot also be valid  for 
translation. For this reason, the invalid bit is  always 
placed on in the PTE when it is occupied by a block 
number. The value of the corresponding bit  for the 
block number is  placed in an auxiliary control word 
in the PGMBK associated  with the PTE along  with 
other flags indicating the status of the page. The 
VM/XA design  allows  for four possible states in the 
PTE: 

1. Real-frame-address  all  zero  with  invalid  bit on. 
The page has never  been  referenced, or  the page 
is  paged-out to a single DASD page location. 

2. Real-frame-address nonzero with  invalid  bit off. 
The page is  valid and may  be used to translate a 
guest  real  address to a host  real  address. 

3.  Expanded-storage-block-number  with  invalid  bit 
on. The page has  been  paged-out to expanded 
storage. 

4. Block-paging-index  with invalid bit on. The page 
has  been  paged-out to DASD along  with a set of 
other related pages in the same segment. The 
block  paging function of VM/XA moves a group of 
related pages to DASD during migration and will 
retrieve the entire set of pages  when any one page 
is  referenced, thus reducing  overhead in the pag- 
ing  manager. 

182 BLANDY AND NEWSON 

Before the actual page-in and page-out function used 
to move data between  real and expanded storage is 
discussed, it is important to understand the alloca- 
tion mechanism. VM/XA uses  several control blocks 
to manage the allocation of expanded  storage. For 
each  megabyte of expanded storage, there is a table 
entry that indicates if the megabyte  section  is  avail- 
able to the hardware  configuration, and if so, whether 

A very dense bit  map  is  used for 
expanded  storage block  allocation. 

it is attached to a virtual machine or is available  for 
CP use. Additionally, the entry identifies a bit map 
for allocation of individual blocks  within the section. 
This bit map exists  even  for  megabyte  sections that 
are not used  by CP, since if expanded  storage is 
detached  from a virtual machine, CP will use it for 
its own functions. 

A very dense bit map is  used for  expanded  storage 
block allocation to allow  for the possibility  of  sup- 
porting extremely  large  expanded  storage  configura- 
tions. The architectural limit for an expanded  storage 
configuration is 16 384 gigabytes.  Allowing for one 
bit per  block,  slightly more than 5 12 megabytes of 
real  storage  would  be required to represent the allo- 
cation control block structure in VM/XA. More  real- 
istically, a I-gigabyte  expanded  storage  would require 
16K (four pages)  of bit maps.  Allocation and deal- 
location of an expanded  storage  block  involves  set- 
ting and resetting the appropriate bit in the allocation 
array and translating bit displacements into ex- 
panded  storage  block numbers. 

To speed up allocation and deallocation of expanded 
storage, VM/XA caches expanded storage  block num- 
bers in a 500-entry  push-down  stack.  Initially the 
stack  is empty and allocation of blocks is done from 
the bit-map array described  earlier.  When a block  is 
deallocated, the block number is  placed into the next 
entry in the stack if the stack is not full.  When a 
block  is to be  allocated, the stack  is examined. If it 
is not empty, the block number from the current 
entry is removed, and the stack pointer is adjusted 

IBM SYSTEMS JOURNAL VOL 8 ,  NO 1. 1989 



to the next entry. Blocks in the stack are considered 
deallocated  even  though their corresponding bit in 
the allocation array remains marked as  allocated. 

Real  storage pages are paged-out to expanded  storage 
by the real  storage  manager  steal-task function de- 
scribed  earlier.  When the steal  task  selects a guest 
page, it requests an expanded  storage  block number. 
If one is returned, the real  storage page  is paged-out 
to the expanded  storage  block, and the real frame is 
immediately  placed on the available  list.  Each page 
that is paged-out to expanded storage  is time- 
stamped with the current time in seconds.  This time 
stamp is in an auxiliary field in the PGMBK associated 
with the PTE. The migration function, described later, 
uses the time stamp to determine which  blocks are 
good candidates to be moved to DASD. 

Because the PTE now contains an expanded  storage 
block number, the real frame address of the page is 
no longer  available. Should the guest happen to 
immediately  reference the page again, a page fault 
would occur, requiring resolution to another real 
storage frame. There is no notion of a real  storage 
frame being  reclaimed if a guest  references it while 
it still happens to be  physically  resident. The cost of 
such a reclamation capability,  although  used in the 
past  with DASD devices,  is not justified with expanded 
Storage.  Even  with DASD paging, little need  seems to 
exist  for reclamation if  pages are read as a group. 

Once a real  storage page  is  placed in expanded 
storage by the steal task, it can be  paged-in  by the 
real  storage allocation function. If a guest  references 
a nonresident page, emulation mode terminates with 
a host  page  fault. A test is made to determine if the 
fault is due to  an invalid PTE occupied by an ex- 
panded  storage block number. If so, a real  storage 
frame is  allocated  from a processor  local queue of 
available  frames, and the expanded storage  block is 
paged-in and then deallocated. The PTE is made valid 
with the real  storage  address, and virtual machine 
execution is resumed by reexecuting the SIE instruc- 
tion. The synchronous nature of the PGIN instruction 
allows this path to be  extremely short, isolated, and 
exempt from normal CP dispatching. The same op- 
timized path is used to satisfy  page  faults  resulting 
from  first-time page  references. Here no PGIN is 
required, and the frame is  merely  cleared to binary 
zeros. 

The processor  local queue of available  frames is  used 
to avoid  lock contention on the global  available 

IBM SYSTEMS JOURNAL VOL 28, NO 1, 1989 

queue. The processor  local  available  list  is primed 
with entries before running the guest virtual ma- 
chine. Priming permits several  page  faults to occur 
that can be  satisfied  from expanded storage as expe- 
ditiously  as  possible.  Tests  performed  using CMS in- 
tensive environments on a 3090E  processor  show 
that VM/XA is  able to sustain an aggregate  expanded 
storage  block  transfer rate of over  1000  blocks  per 
second  per  processor. One measurement with 5000 
guests on a 3090  Model  600E  with 256  megabytes 
of  real  storage and 5 12  megabytes of expanded stor- 
age  showed a continuous paging  rate to expanded 
storage of 4200  blocks  per  second.  Peak  paging  rates 
of  over  20 000 blocks  per  second  have  been  observed 
in a live production environment running on a 3090 
Model  300E. 

Even  though very large  expanded  storage  configura- 
tions are possible, there are still many environments 
where the expanded storage  becomes  fully  allocated. 
Full allocation can be  caused by the occupancy of 
guest  real  storage  pages and/or blocks containing 
buffers from the minidisk  cache function. To main- 
tain effective  paging  capacity within the expanded 
storage configuration, blocks are migrated to DASD. 

The migration function is initiated when a request 
is  made  for an expanded storage  block and the 
allocation routine determines that the number of 
available  blocks  has  fallen below a system-defined 
low threshold. A migration  task is initiated some- 
what  like the real  storage  steal  task. The real  storage 
steal  task  has a set of frames (FRMTES) that can be 
examined to determine which ones to make avail- 
able. No such  list  exists  for the expanded  storage 
block  allocation. To have  such a list  would  increase 
the real  storage required for allocation control 
blocks,  making it far more difficult to support very 
large  expanded  storages. Instead, the expanded stor- 
age migration function examines the PGMBKS of 
guests that have pages allocated to expanded  storage 
and selects candidates for  migration to DASD. 

The migration function examines all  guests in a 
round-robin fashion. Each invocation of the migra- 
tor starts from the last  guest examined. For guests 
with  pages in expanded  storage,  each PGMBK is  ex- 
amined. The PGMBK contains a summary count of 
the number of blocks  allocated within the segment 
and the age (from the time stamp) of the oldest 
block. If the PGMBK has no blocks, the next page 
table is examined. This routine continues until all 
page tables  for the guest  have  been examined. 

BLANDY AND NEWSON 183 



The migrator uses  a  target  age to determine whether 
to select  a  block. The target age  is  usually the average 
age  of  ,all expanded storage  blocks  used  for  host 
paging.  If  a  block  is found that is  older than the 
target age, it is selected  for deallocation from ex- 
panded storage.  Because of locality of reference, 
more than one block  will  usually  be  selected within 
each  segment, thus allowing the migrator to package 
multiple guest  pages  together in a  set to be written 
to DASD. Later, if any page in this paging  block  set 
is  referenced by a  guest, the entire set  will  be brought 
into real  storage $-om DASD. Studies, including those 
by Kienzle et al., indicate that the reference patterns 
of CMS guests tend to be  clustered  (by  guest  real 
address) and  that the page rereference rates across 
transactions are high. The migration  selection  proc- 
ess exploits this situation by forming sets of  pages on 
the basis of their guest  real  storage  addresses. 

Since it is not possible to perform 110 operations 
directly from expanded storage to DASD, the migrator 
maintains a number of real  storage  buffers  for  each 
DASD paging  device  available. This number varies 
with  system load and expanded storage  use. Pages to 
be  migrated are paged-in to the real  storage  buffer 
and immediately  deallocated.  When all buffers are 
full or an entire guest  has  been  processed, the paging 
110 manager is  invoked.  While that 110 operation is 
progressing, the migrator continues to fill any re- 
maining buffers. 

As paging 110 operations complete, control returns 
to the migrator. The 110 buffers are now reused  for 
the continuing migration operation. While the mi- 
gration function is running, expanded  storage  blocks 
continue to be  allocated. The migration will com- 
plete  only  when the number of available  blocks 
reaches the high threshold that was determined when 
migration was invoked. 

Once migration  completes, the low threshold is ad- 
justed on the basis  of allocation activity. If the num- 
ber of blocks  available  has  fallen  perilously  low, the 
threshold is  raised.  If  several  successful migrations 
have occurred and the number of available  blocks 
has  been sustained at  an acceptable  level, the thresh- 
old  is  lowered. Note that this feedback mechanism 
results in a quick response to surges in expanded 
storage demand but a cautious response to dwindling 
demand. 

The time it takes to make  expanded  storage  blocks 
available  is  directly  related to the number and speed 
of the DASDS. Under normal operation, given  average 

184 BLANDY AND NEWSON 

paging  block  sets  of 9 to 12 pages and a  mix  of 
blocked and nonblocked  paging, an IBM 3380 DASD 
can reasonably support around 130 pages  per  second. 
During the bursts of 110 activity  created by migration, 

VM/XA maintains  its  own 
2-gigabyte  virtual  address  space 

to  hold  routines  and  data. 

the same  device  can support upwards of 300 pages 
per  second. The increase in capacity is  possible  be- 
cause almost all of the 110 activity  is  blocked, and 
rotational and seek delays are minimized by  using  a 
DASD allocation scheme (moving wave) that tends to 
select  pages  from adjacent tracks. 

Another function of the migrator is to move  ex- 
panded storage  blocks to DASD when some part of 
expanded  storage is attached to a virtual machine. 
In this case the target  is not age but expanded  storage 
block numbers. All blocks within the target attached 
range are migrated  before the expanded storage is 
given to the virtual machine. The attached expanded 
storage is also  cleared to binary  zeros  for  security. 
Attaching 256 megabytes  of  expanded  storage to a 
virtual machine takes about one minute to migrate 
and clear the area. 

The design  of VM/XA for the exploitation of expanded 
storage  allows very  large expanded storages to be 
supported with minimal real  storage  resources. The 
reuse  of the page table entries to hold expanded 
storage  block numbers, the employment of dense 
allocation bit  maps, and the migration scanning 
design  allow VM/XA SP to efficiently support processor 
complexes  with expanded storage that is much larger 
than real  storage. 

Internal  storage  management 

In addition to the management of  guest  real  storage, 
VM/XA must manage its own virtual and real  storage 
for internal use. This storage is used  for the control 
blocks, data structures, and modules required to 

IBM SYSTEMS JOURNAL VOL 28, NO 1. 1969 



support potentially  vast populations of virtual ma- 
chines. 

The VM/XA system  virtual address space. VMIXA 
maintains its own  2-gigabyte virtual address  space to 
hold routines and data. As with  pageable-mode 
guests,  only  a portion of this address  space  has to be 
resident in real  storage  when the control program is 
executing.  This  allows certain routines and data to 
be maintained in expanded  storage or on DASD when 
they are not actively  being  executed or referenced. 

VM operating systems  such as VM/SP and Virtual 
Machine/High Performance Option (VM/HPO) do not 
use dynamic address translation (DAT) when the 
control program (CP) itself is running. Even  though 
the interpretive-execution  facility permits DAT usage 
for the host program, the VM/XA control program 
also runs with DAT off. The transition from the DAT- 
off state to DAT-on  is accomplished automatically by 
the SIE instruction when the state description speci- 
fies  pageable  mode. In fact,  two  levels of address 
translation are provided so that guest  programs 
themselves  may run DAT-on. The interpretive-exe- 
cution facility  restores the DAT-off state when return- 
ing control to the host. 

Despite the fact that the VMIXA control program runs 
in nontranslate mode, there is  still  a  need  for portions 
of the CP nucleus to be nonresident to limit host  real 
storage requirements. Examples include infrequently 
run routines and storage  used to support spooling 
and the system  directory. 

To satisfy  these CP nonresident storage requirements, 
a SYSTEM virtual storage  address  space  is  imple- 
mented in VM/XA. Even though DAT is not used to 
reference this virtual storage, VMIXA uses the same 
segment and page table structure required by DAT. 
This address  space is a  full 2048 megabytes, requiring 
a  segment  table  two pages in size. The page tables to 
address this large SYSTEM virtual storage area are 
built dynamically on the basis  of  reference. The 
resident and pageable portion of the CP nucleus 
(about 2 megabytes) are mapped to the equivalent 
SYSTEM virtual storage area. Most VM/XA systems will 
start at page  zero, but if the installation has  reserved 
a fixed area for  preferred virtual machines, the map- 
ping to SYSTEM virtual storage starts beyond that 
area. 

Because DAT is not used, vM/xA must perform its 
own translation. The Load  Real  Address instruction 
can be used  for this translation, but more commonly 

IBM SYSTEMS  SOWINAL  VOL 28. NO 1, 1989 

VM/XA does  a complete “software” translation. This 
process  involves  using bits 1-1 1 (the segment index) 
of the target virtual address to index into the system 
segment  table to locate the appropriate page table. 
Then bits 12-  19  (page index)  are  used to index into 
that page table to locate the page table entry. If the 
page is not resident, the corresponding fields in the 
PGMBK are interrogated to determine what action is 
appropriate (e.g., PGIN from expanded  storage). 

The module linkage mechanisms in VM/XA permit 
calling to nonresident modules.  Calling  is  accom- 
plished by establishing an address marker that de- 
fines  the extent of the resident  nucleus.  Calls to 
modules whose address  is  higher than the marker 
are nonresident. The linkage mechanism calls the 
page manager  requesting that the SYSTEM virtual 
address  be  made  resident. The real  storage  manager 
returns the resident  real  address of the page, and the 
linkage  mechanism then completes its processing. A 
pageable module is  never  called without assuming 
that a  loss  of control (to  do the paging 110 operations) 
is  possible. The pageable module performs its own 
base  register  relocation and cannot itself contain 
address constants that reference locations within the 
module. The module must also  be  less than or equal 
to a page. It may  call upon other modules (resident 
or pageable) without fear that the module itself  will 
disappear. The pageable module is locked into host 
real  storage until a return is made from the module. 
The VM/XA linkage mechanisms can thus efficiently 
support a  complex  resident and nonresident module 
linkage  mechanism  even in a  multiprocessor  envi- 
ronment using the SYSTEM virtual storage construct. 

The use  of this SYSTEM virtual storage  for  spool 
buffers and other data follows  a similar construct. 
The difference  is that this storage  is  dynamically 
allocated  from the “unused” storage area of the 
SYSTEM virtual storage. An allocation module locates 
the “next” SYSTEM virtual storage page that is  avail- 
able. It is marked as  allocated, and the SYSTEM virtual 
address  is returned to the caller.  When  a module 
needs to address such storage, it calls the real  storage 
manager,  passing it the SYSTEM virtual address. RSM 
will ensure that the page is  resident (performing page 
fault  processing  as required) and will return the host 
real  address of the page. 

As previously stated, the system  address  space  is 
defined by the same structures as those used  for the 
address  spaces of pageable-mode  guests,  providing 
both a  realized and a potential advantage. The real- 
ized  advantage  is that the reorder and steal functions 

BLANDY  AND  NEWSON 185 



of the real  storage manager can be (and are) used to 
“police” the system  address  space. The potential 
advantage  is that future releases of VM/XA could be 
made to  run DAT-on without requiring changes to 
the system  address  space. At that time, the E S A / ~ ~ O  

Free  storage  is  used for the  host 
control  blocks  and  data  required 
to  maintain  the  virtual  machine 

environments. 

architecture could be  exploited to maintain multiple 
system virtual address  spaces,  all  easily  addressable 
by the host program. In the future, specific  types of 
system data might be isolated into different  address 
spaces to improve overall  system  reliability,  availa- 
bility, and serviceability (RAS). 

VM/XA free-storage  manager. Free  storage  is  used 
for the host control blocks and data required to 
maintain the virtual machine environments. The 
allocation and deallocation of such  storage can occur 
at tremendously high rates and must  be  performed 
efficiently to allow optimal system  performance. The 
VM/XA design  of  free  storage has been dramatically 
changed  from prior VM systems in order to meet the 
requirements of IBM’S largest  processors. 

Earlier  versions of VM required that a fixed  region  of 
real  storage  be  set  aside  for the allocation of  free 
storage. The size  of the storage was  generally deter- 
mined at the time the system  was generated, and 
although the free  storage  region could be  extended 
dynamically, it could not be done without paying a 
performance penalty.  Margolin et al.9  show that very 
early on, VM implementers realized that managing 
this storage  as a single chain of  various-sized  ele- 
ments required excessive CPU time for  searching and 
merging. Subpool techniques were introduced that 
provided separate queues for elements of  specific 
sizes. All elements continued to be  originally  allo- 
cated from the global  free-storage chain. However, 
for elements of appropriate size,  deallocation  would 
return the element not to the global queue but rather 
to a subpool queue which contained elements only 

186 BLANDY AND NEWSON 

of that size. A subsequent request  for the same-sized 
element  would be  satisfied  from that subpool. 

Bozman et a1.I’ provide an excellent review  of tech- 
niques employed  in  early  releases of VM and of those 
that were introduced in VM/HPO Release 2. These 
techniques greatly improved CPU efficiency but did 
not address the problem of  free  storage  extension, 
nor did they  completely eliminate the need to search 
a single chained list  of  elements. This continued to 
be required  when: 

Subpools were depleted 
Requests were made for nonsubpool sizes 
Subpool elements were periodically returned to 
the global queue (“garbage collection”) 
Elements  allocated  from  extended  free  storage 
were returned 

When  designing a free-storage manager for VMIXA 
SP, it was hoped that the shortcomings of previous 
designs  could  be  overcome. Thus the following  de- 
sign  goals  were  established: 

1. The installation should not be required to predict 
the amount of  free  storage the system  would  need. 

2. The management of blocks that are frequently 
allocated and quickly  released should be  opti- 
mized in terms of CPU efficiency and provide 
acceptable  storage utilization. 

3. The management of blocks that are infrequently 
allocated and held  for  long  periods  of time should 
be optimized in terms of storage utilization and 
provide  acceptable CPU efficiency. 

4. The management techniques should be  consistent 
as the amount of  free  storage  required expands 
and contracts. 

5 .  Debugging aids and integrity  checking should be 
provided. 

The result must be a robust, multiprocessor  design 
with linear load-dependent performance character- 
istics. The free-storage  manager must work well in 
all supported VM/XA environments and processors. 
As the speed, number of processors, and  amount of 
free  storage  required  increases, the CPU time neces- 
sary to manage  free  storage must increase  linearly 
rather than exponentially. This increase can only be 
accomplished by employing techniques that limit 
the number of  free-storage elements visited  for  each 
free-storage  request. 

The final  design chosen, after several  design and 
performance prototypes, had the following  features: 

IBM SYSTEMS JOURNAL VOL 28, NO 1,  1989 



1. No system generation of storage is required. All 
free-storage  frames  are  dynamically obtained. 

2. All short-term storage  requests are managed  as 
subpools. 

3. All long-term  storage  requests are managed  as 
simple chains associated  with particular virtual 
machines or with the system as a  whole. 

4. The amount of storage  available  for both short- 
term and long-term  allocation  dynamically  ex- 
pands and contracts with no change in the man- 
agement techniques employed. 

5.  All control blocks  have an identifier  as well as 
1 information about which function obtained and 

1 

released the storage. 

No static free-storage region. Previous VM releases 
required that a  single  large contiguous piece  of  real 
storage  be  reserved  for  free-storage  allocation. The 
size  reserved  was either specified  when the system 
was generated or defaulted to a fixed fraction of 
available  real  storage.  Although the free-storage area 
could dynamically extend, such extensions invaria- 
bly  led to degraded  system  performance. To avoid 
such degradation, installations defined  free-storage 
areas that were  large  enough to meet  peek  system 
demands. However,  because this storage could not 
be  used  for other purposes, this approach had its 
own  negative impact on off-peak performance. 

I 

The new VMIXA design  allocates  all  free  storage  dy- 
namically. There is no requirement for the installa- 
tion to guess  how much is needed. 

Subpool processing. All storage  needed  for short- 
term requests  is  managed in subpools.  A short-term 
request is  generally  a  request that is not part of a 
virtual machine configuration description nor part 
of any system-managed function that may  exist  be- 
tween  guest  sessions such as control blocks used for 
I/O operations. Short-term blocks  may  survive  as  long 
as  several  seconds or even minutes, but the actuarial 
tables reveal that the average  life  expectancy of these 
blocks  is  measured in milliseconds. 

The sizes  chosen  for the subpools were derived  after 
performing  several  system measurements which  re- 
vealed the sizes of the most  frequently  requested 
control blocks. The design  could  have  chosen one 
subpool for  every  possible  valid  request, but this was 
considered  wasteful, particularly with the larger 
block  sizes. 

IBM SYSTEMS JOURNAL  VOL 28, NO 1. 1989 

A valid  free-storage  request  can  be from 1 to 509 
double words.  With three double words added for 
control block  identification and debugging, the ac- 
tual size required is 4 to 5 12 double words (one 
page).  All requests are rounded up  to the next  sub- 
pool  size that will  satisfy the request. The following 
subpool  sizes and groupings were chosen: 

1. 4 to 16 double words in 1 double-word  incre- 

2.  18 to 64 double words  in  2  double-word  incre- 

3. 68 to 128 double words  in  4  double-word incre- 

4.  144 to 256 double words in 16 double-word in- 

5. 257 to 5 12 double words  as 5 12 double words- 

ment-  13  subpools 

ments-24 subpools 

ments- 16 subpools 

crements-8 subpools 

1 subpool 

The subpool sizes  are not mixed  within  a  free-storage 
frame.  When  a  request  for  a certain size  is  made, the 
subpool anchor is examined. If there are no blocks 
of the requested  size  available,  a new frame is ob- 
tained from the available  list and is  divided into 
storage  blocks of the requested size.  Any remainder 
is  discarded. The entire chain of blocks is then placed 
on the subpool, allowing the initial request to be 
satisfied. This action has the advantage of “priming” 
the subpools so that subsequent requests can be 
immediately  satisfied  from the subpool. 

The subpool blocks are chained in a LIFO (last-in- 
first-out) order. When  a subpool block  is returned, it 
is  placed at the start of the chain and will  be the next 
one allocated. This placement provides  for  cache 
efficiencies,  making it more likely that a  processor 
can reallocate  a  block that has not yet  been  discarded 
from its cache. 

With the exception  of  the  4 to 16 double-word 
subpool  sizes, internal fragmentation is  possible  be- 
cause of rounding to the next  higher subpool size. 
The potential for fragmentation is  greatest  for  re- 
quests larger than 256 double words  where  a  full 
frame is  used to satisfy the request. Use  of a  full 
frame may appear to be  very  wasteful, but because 
these  requests  are short-term, the block is  likely to 
be returned in milliseconds. Also, the grouping and 
rounding were chosen so that the most frequently 
allocated control blocks are from the smaller  sizes 
where there is little or no fragmentation. Very  large 
blocks are infrequently allocated. 

This design  largely  avoids  external fragmentation. 
Such fragmentation occurs only when  a  4K frame 

BLANDY AND NEWSON 187 



cannot be  evenly  divided into equal-sized  elements, 
and the remainder is discarded. The subpool sizes 
were  selected to minimize the amount of such  waste. 

A greater  problem is that a  request  for  a specific- 
sized  element can only  be  satisfied from its corre- 
sponding subpool. If that subpool is empty, a frame 
will  be taken from the available  list  even though 

All storage  needed  for  short-term 
requests is managed in subpools. 

there may  be  enough  storage on other subpool 
queues to satisfy the request. To minimize this prob- 
lem the subpools are periodically  culled, and empty 
frames are returned to the available  list. 

Since the subpool sizes are used for frequently re- 
quested free-storage  blocks, the design  needed  a  low- 
level locking structure to allow  for  a  high  degree  of 
concurrent access from multiple processors.  Locking 
is  controlled at the subpool level so that multiple 
processors  may  have concurrent access to different 
subpools.  Observations of the subpool locks show 
very  low contention because of simultaneous re- 
quests for the same size. 

Long-term storage management. Long-term  storage 
is  used for control blocks that form part of a virtual 
machine definition or part of  system data control. 
The former persist  for the duration of the defined 
virtual machine (for  example,  from LOGON to LOG- 
OFF of a CMS guest). The latter may  persist from one 
VM/XA initial program  load (IPL) to another (for 
example,  a PROFS note, in  the form of a  spool file, 
will  usually  exist until read by the addressee). 

Storage  requests that are  expected to be used  for an 
extended  period of time are not managed  as  sub- 
pools. The primary requirement for  long-term stor- 
age is  efficient  storage utilization. Since the requests 
are infrequent, CPU efficiency  is only of secondary 
importance. 

188 BLANDY AND NEWSON 

The VMDBK is  used by several control program and 
hardware functions, including the SIE instruction and 
dynamic address translation. About  half of the full 
4K frame allocated  for the VMDBK is  undefined. This 
area  is used as  a “private” free-storage area to satisfy 
requests  for  long-term  storage that are directly asso- 
ciated  with the guest.  However, this private area is 
rarely  large  enough to hold all of the control blocks 
required  for  a  typical virtual machine, and so the 
area  needs to be  extensible. 

If a control block cannot be obtained from the 
private area, a  global chain of guest  free  storage  is 
examined to satisfy the request. A two-level structure 
is  used. The first  level  is  a chain of frame table entries 
(FRMTES) which  represent  frames  allocated  for  long- 
term requests. Within each  frame, anchored in the 
FRMTE, is  a chain of available  storage  blocks. The 
available  storage  blocks  within  a frame are sorted by 
size-smallest at the front and largest at the end. 
Initially  a frame will contain one available  block that 
is 5 12 double words  long. The FRMTE also contains 
the size  of the largest  block in the frame. 

A request  for  long-term  storage  is  satisfied  using  a 
two-level  first-fit  algorithm.  First, FRMTES are exam- 
ined (starting at the global-chain anchor) until one 
is found containing a  block  large enough to satisfy 
the request. Then the storage chain in that frame is 
examined until the first  suitable element is found. 

Once a  suitable  piece of storage  has  been found, it is 
unchained from the other blocks in the frame. If it 
is an exact match, it is  allocated to the caller.  If it is 
larger than requested, it is  divided into the size 
requested and a remainder. The remainder is  re- 
chained into the available  blocks in the frame sorted 
by  size.  An exception to this rule  is  applied to avoid 
excessive fragmentation. If the remaining piece  is 
smaller than a  “useful” size  (less than eight double 
words), the large  piece  is not divided. The next larger 
block on the chain is examined. This next  block  may 
be  divided into two  pieces,  leaving an acceptable 
size. If it is the last  block in the frame, it will  be 
divided  regardless  of the size  of the remainder. 

As pieces are given out from the frame, counters are 
maintained in the FRMTE showing  how many double 
words remain in the frame. Once this number falls 
below a  useful  level, the FRMTE is removed from the 
high-level chain to avoid  excessive chaining through 
FRMTES, which do not have  a  size that can satisfy  a 
request. 

IBM SYSTEMS JOURNAL VOL 28, NO 1,  1989 



This method of examining the FRMTE for  a  requested 
size is  used in the FRMTE that describes the VMDBK 
as well. Once this VMDBK frame is  fully  allocated, 
the global queue is  examined.  An alternative method 
was investigated.  Since  long-term  guest control 
blocks are returned when the virtual machine is 
deleted, it made sense to keep  guest  requests separate 
rather than have  a  global queue for  all  guests. Thus 
each  guest  would  have its own chain of FRMTES with 
available  storage queued in each  frame, guaranteeing 
that all  frames  would  be returned at guest LOGOFF. 
However, it implied that, on average,  half  of  a frame 
of  storage  would  be  available and unused  for  each 
virtual machine. On benchmark systems of 5000 
guests, this method consumed almost 10 megabytes 
of resident  real  storage;  therefore this alternative was 
discarded. 

System  long-term  storage  is  managed  identically to 
guest  long-term  storage  except that  no VMDBK is 
used. A two-level chain of FRMTES is handled exactly 
as described  above. 

Since the request rate for long-term  storage  is much 
lower than it is  for short-term requests,  a  single  global 
lock  for the allocation of  guest  storage  is  used. There 
is  a  separate  lock  for the system-managed  long-term 
storage queue. Performance measurements have 
shown that the spin time on these  locks is  negligible, 
indicating little or no contention. 

As with the subpool storage method, the queue of 
available  storage  is  initially empty. If the queue is 
empty or if no FRMTE has  a  piece  large  enough to 
satisfy  a  request,  a  new frame is obtained from the 
real  storage  manager. This frame is  initialized to a 
single  available  piece, and the FRMTE is  placed on 
the appropriate global queue. 

Returning any long-term  storage to the chain in- 
volves  special  processing to limit the amount of 
fragmentation and to keep the storage utilization at 
a  high  level.  When  long-term  storage  is returned, the 
FRMTE containing the piece  is  derived  from the block 
address. The returned element is then merged  with 
any adjacent unallocated elements in the same 
frame. The resulting  piece will be sorted in the chain 
of  blocks in the frame. If all  storage  has  been  re- 
turned, the frame is immediately returned to the 
available  list. 

Other free-storage  systems in VM and in other oper- 
ating systems  have  used or still  use  merging  tech- 
niques to manage  large  strings of storage. As proces- 

BM SYSTEMS JOURNAL VOL 28, NO 1, 1989 

sor  speeds and storage  sizes  increase, both the rate 
of  free-storage  requests and the number of elements 
examined to satisfy  each  request  increase,  leading to 
exponential increases in system  overhead. In the 
VM/XA design,  merging  is limited to the available 
string of blocks  within one frame. It effectively limits 
the amount of storage that needs to be examined to 
complete a  merge operation. VM/XA does not use 
control blocks  larger than a  page, and no control 
block  crosses  a  page boundary. These  control-block 
limits make merging  strings of available  storage an 
effective nonsubpool storage management method. 

Dynamic free-storage size. The previous  sections 
showed that all  frames  used  for  free  storage are 
obtained dynamically from the system  available 
frame queue. It is done for short-term subpool stor- 
age frames and for  long-term nonsubpool storage 
frames. One of the design  interfaces  for the free- 
storage manager specifies that a function may  call 
for  a  block of storage and be assured that a  block 
will  be returned without deferring the requesting 
task. This specification permits tasks to use  proces- 
sor-specific  storage (rather than task-specific  storage) 
with the assurance that such  storage cannot be de- 
stroyed by an intervening task. To allow  this, the 
free-storage  manager must be  able to obtain a  real 
frame without the necessity of deferring the reques- 
tor. 

To obtain a  frame, the free-storage manager exam- 
ines the available  list. If a frame is available, it is 
removed and used to satisfy the request. If no frame 
is  immediately  available, the steal  task must be run- 
ning on another processor to replenish the available 
list. Rather than waiting  for  steal to complete, the 
free-storage manager itself examines the FRMTES rep- 
resenting the dynamic paging area, looking  for an 
unchanged,  unfixed  frame. If such a frame is located, 
it is removed  from the owner’s queue (the page table 
entry is  invalidated), and the frame is returned for 
free-storage  use. 

If no such frame can be  located, the free-storage 
manager  uses  a  reserved  frame.  Each  processor in 
the VM/XA configuration  reserves  two  frames at ini- 
tialization for  free-storage  use.  When  a  reserved 
frame is used, the steal  task will ensure that the next 
frame made available to the system  will  be  used to 
replenish the reserved frame pool. The system  will 
not dispatch virtual machines but only handle sys- 
tem-scheduled  work until the reserved frame pool  is 
replenished. This limits the demands on free  storage 
during this critical  phase. If all  reserved  free-storage 

BLANOY AND NEWSON 189 



frames  from the pool  are  used and another request 
for  storage  is  received, the system  is abnormally 
terminated. Such terminations are rare and often 
caused  by other failures that have  essentially cur- 
tailed  system operation. 

When  a  free-storage frame becomes unused, it is  a 
candidate to be returned to the available  list. The 
return is made immediately for  long-term  storage 
frames since these requests are infrequent, and  the 
chances of needing the frame again are low. For 
subpool storage  a  delay factor is introduced. Frames 
used in subpool storage  are time-stamped. Periodi- 
cally the system  will examine these  frames, and if 
the frame remains unused and has  been  for at least 
15 seconds, it is returned to the available  list. This 
timed delay  for subpool frames  is  used  because there 
is a  higher  probability that these frequently requested 
sizes  may  be  needed  within  a short time span. 

VM/XA free-storage management is  designed to sup- 
port very  large numbers of  guests,  exploiting IBM’S 
largest  processors, such as the 3090  Model 600ES. 
Such support is accomplished by  using subpool and 
nonsubpool storage management techniques that 
provide  for  efficient CPU and storage utilization. 
Observations  have  shown that the time spent man- 
aging  free  storage  grows  linearly  with the system 
load.  Peaks of 2000 requests per processor  per  second 
have  been  observed without adverse effects. Storage 
utilization efficiency (amount in use compared to 
amount allocated)  generally  has  been in the range of 
85 to 90 percent  for both types of storage. 

Summary 

This paper  has demonstrated how VM/XA SP is  capa- 
ble  of supporting the System/370  Extended  Archi- 
tecture to its full potential, particularly in the area 
of virtual and real  storage  addressing and the exploi- 
tation of expanded  storage.  While VM/XA SP fully 
supports the use of the E S A / ~ ~ O  addressing extensions 
for  guest  use  (i.e.,  for MVSIESA), there  is currently no 
direct exploitation of this feature  for  host control 
program  purposes.  However,  the structure of the 
system  lends  itself to that possibility in future re- 
leases.  Use  of the E S A / ~ ~ O  addressing  extensions by 
VM/XA could  lead to further advances in the support 
of  large numbers of users, particularly in areas where 
massive amounts of data are to be  accessed and 
shared among users. The ability to use ~ ~ ~ 1 3 7 0  to 
reduce the cross-user data transfer protocols pres- 
ently  used could lead to significant performance 
improvements in these  areas. 

190 BLANDY  AND  NEWSON 

Enterprise Systems Architecture/370, ESA/370, Virtual Machine/ 
Extended Architecture System Product, VM/XA  SP, and 
MVS/ESA are trademarks of International Business Machines 
Corporation. 

Cited  references  and  notes 

1. G. P. Bozman, “VM/XA SP2 minidisk cache,” IBM Systems 
Journal 28, No. 1, 165-174 (1989, this issue). 

2.  P. H. Gum, “System/370 Extended  Architecture:  Facilities for 
virtual machines,” IBM Journal of Research and Development 
27, No. 6,530-544 (November 1983). 

3. Machines with the Processor  Resource/Systems  Manager“ 
(PR/SM”) feature can support up to six  preferred  guests, 
whereas machines without this feature are limited to a single 
preferred  guest.  (Processor  Resource/Systems  Manager and 
PR/SM are trademarks of International Business Machines 
Corporation.) 

4. IBM Virtual MachinelExtended Architecture System Product 
General Information, GC23-0362, IBM Corporation; available 
through IBM branch offices. 

5. The DIAGNOSE instruction, which  otherwise has no meaning 
in a virtual machine environment, is  used to request  host 
services in much the same way as a Supervisor  Call  (SVC) 
instruction is  used  for other operating systems. 

6. S. G. Tucker, “The IBM 3090  system:  An  overview,” IBM 
Systems Journal 25, No. 1,4- 19 (1 986). 

7. If the migrator finds that it is  selecting an insufficient number 
of  blocks per guest, it can adjust this target and thereby  select 
“younger” expanded storage  blocks. 

8.  M. G. Kienzle, J. A. Garay, and W. H.  Tetzlaff,  “Analysis  of 
page-reference  strings  of an interactive system,” IBM Journal 
ofResearch  and Development 32, No. 4,  523-535 (July 1988). 

9. B. H. Margolin, R. P. Parmlee, and M.  Schatzoff,  “Analysis 
of  free-storage algorithms,” IBM Systems Journal 10, No. 4, 

10. G.  Bozman, W. Buco, T. P.  Daly, and W. H.  Tetzlaff,  ”Analy- 
sis  of  free-storage  algorithms-revisited,” IBM Systems Jour- 
nal 23, No. 1, 44-64 (1984). 

283-304 (1971). 

General  references 

IBM Virtual MachinelExtended Architecture System Product CP 
Diagnosis Reference, LY27-8054-0, IBM Corporation; available 
through IBM branch offices. 
IBM System(370 Extended Architecture Interpretive Execution, 
SA22-7095-1,  IBM Corporation; available through IBM branch 
offices. 
IBM Enterprise Systems Architecture/370 Principles of Operation, 
SA22-7200-0, IBM Corporation; available through IBM branch 
offices. 

Geot 0. Blandy IBM Data  Systems Division, P.O. Box 100, 
Kingston, New York 12401. Mr. Blandy  is a senior programmer in 
the Advanced  Technology department of the VM products orga- 
nization in Kingston. He joined IBM in 1982, after several  years 
as an MVS and VM systems programmer at Aetna Life and 
Casualty Company in Hartford, CT. He graduated from Wesleyan 
University in 1973  with a B.A. degree in psychology. He has 
concentrated on large VM system performance since joining IBM 
and is  responsible for a number of modifications to VM/SP HPO 
and VM/XA. Among  these are Active Wait, introduced in VM/SP 
HPO 3.4,  for  which  he  received the first  software patent issued to 

IBM SYSTEMS JOURNAL VOL 28, NO 1, 1989 



IBM Kingston. In 1985  he  received an Outstanding Technical 
Achievement  award for work done to improve the performance of 
HPO on dyadic processors. Mr. Blandy participated in the design 
and development of expanded storage and block  paging support 
in  VM/XA SF 2; minidisk-caching, virtual directory support, and 
"steal  task" improvements in VM/XA SP 2; and architectural 
enhancements to the interpretive-execution facility. 

S. Richard Newson IBM Data Systems Division, P.O. Box 100, 
Kingston, New York 12401. Mr. Newson  is a senior programmer 
in the Advanced  Technology department of the VM products 
organization in Kingston, currently on assignment to IBM Swit- 
zerland  where  he  is supporting the supercomputing effort at 
CERN. He joined IBM Canada as a systems  engineer in 1962 after 
graduation from the University of Alberta (Canada) with a B.Sc. 
degree  in  electrical  engineering.  He participated in the develop- 
ment and early support of TSS/360 and the installation of CP- 
67/CMS, then joined the IBM Cambridge Scientific Center in 
1969 to work on the development of  CP-67.  In  1970  he  was 
appointed development manager for the first  version  of the control 
program in VM/370. His  focus on VM continued during the 
1970s,  with assignments in VM advanced technology, marketing 
support for  VM/CMS in Brussels,  Belgium, and design and devel- 
opment ofthe first  VM/XA product. In 1983 Mr. Newson  received 
an Invention Achievement  Award in recognition  of a patent filing 
for Multi System Mapping. This technology  was later incorporated 
in the PR/SM feature of the IBM 3090 processors.  After a staff 
appointment to the VM director, he  rejoined the Advanced Tech- 
nology department in 1985,  where  he participated in the design 
and development of expanded storage and block  paging support 
in VM/XA SF 2; and minidisk-caching, virtual directory support, 
and "steal task" improvements in VM/XA SP 2. 

Reprint Order No. G321-5354. 

IEM SYSTEMS  JOURNAL VOL 28. NO 1. 1989 BLANDY  AND  NEWSON 191 


