Local-area distributed
systems

Advances in computing and networking have led to the
use of local-area distributed systems. The following are
example configurations: workstations and file servers,
multiple computers that present the image of a single
computer, and heterogeneous workstations and main-
frames that cooperate loosely. The paper focuses on
the system software. It first discusses the forces lead-
ing to distributed systems and the obstacles to realiz-
ing the full value of the systems. Discussed also are
common current uses of local-area distributed sys-
tems. Concepts and models are introduced. Require-
ments for user and program interfaces and for admin-
istration are presented, as well as major design attri-
butes and design issues. Systems that represent the
main approaches are described.

dvances in computing and networking have led

to the use of local-area distributed systems. This
overview treats the value, function, attributes, and
design of these systemns. It aims at providing a basic
understanding as a first step for those who use,
deploy. or build distributed systems. It assumes no
specialized knowledge of networks or operating sys-
tems.

A local-area distributed system is a collection of
computers in a limited area (such as a building or
campus), connected by a high-speed local area net-
work (LAN). This paper uses the term node for a
computer in such a system. Thus a node can be
anything from a pC to a large mainframe. Some
examples of local-area distributed system configura-
tions are the following: workstations and file servers
on a LAN, collections of computers that present the
image of a single computer, and heterogeneous work-

IBM SYSTEMS JOURNAL, VOL 28. NO 2, 1989

by R. C. Summers

stations and mainframes that cooperate loosely."2
LANs differ from wide-area networks (WANs) in their
greater speed and capacity and their lower cost, and
in their being controlled by the organizations that
use them. These differences all encourage network
use. WANs and multiprocessor systems are not dis-
cussed in this paper. Rather, this paper focuses on
local-area system software.

Discussed first are the forces leading to distributed
systems, the obstacles to realizing their full value,
and the common current uses. The next section
introduces concepts and models for describing dis-
tributed systems. This is followed by a discussion of
the features that are needed. The last two sections
present design attributes and issues, and examples of
systems that represent the main approaches.

Forces, obstacles, and uses

The growing use of distributed systems reflects both
organizational and technical forces. Distributed sys-
tems come about through the acts of distributing
centralized systems or connecting formerly separate
systems, and through choosing distributed structures
for new systems. One impetus for distribution is the
need for computing power, as applications multiply

© Copyright 1989 by International Business Machines Corporation.
Copying in printed form for private use is permitted without
payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright
notice are included on the first page. The title and abstract, but no
other portions, of this paper may be copied or distributed royalty
free without further permission by computer-based and other
information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

sumvers 227

and become more demanding. Consider, for exam-
ple, a centralized system that is used for orders,
personnel, and computer program development. As

A force leading to interconnection
is the benefit of a larger user
community.

demand grows, a separate computing system is de-
voted to each of these functions, yet the functions
continue to share data and other resources. Each
system can be managed by the department respon-
sible for the application. Security is enhanced, be-
cause each system is used only by people who need
its functions. The hardware of each node can be
selected for its appropriateness to the application.

Alternatively, the nodes of a distributed system can
all perform the same functions, in which case the
availability of the total complex is increased. If one
node should fail, the others can take over its work.
Such a distributed system can grow incrementally
through the addition of new nodes.

A force leading to interconnection is the benefit of a
larger user community, giving greater value to the
sharing of data and applications and to communi-
cation through mail and messages. Also, distribution
of software to the nodes becomes much simpler.

Local-area distributed systems allow specialized
hardware or software of one node to be used from
another node. For example, one node may have a
high-speed graphics printer and another node a da-
tabase management system. That hardware and soft-
ware may be essential to other nodes, but used by
them less frequently. Thus it is possible for the
hardware and software to be shared. Such sharing is
especially important for workstations, because their
local function is more limited. Sharing allows more
reliable and more cost-effective devices to be used
for file storage. Price and performance considerations
lead to systems in which microcomputers assume
much of the computing load.

2928 suMMERS

The potential of local-area distributed systems has
not yet been fully realized. Centralized systems rep-
resent many years of experience, and the art of
designing and managing them is highly developed.
Distributed systems lack a comparably mature cul-
ture for their use and management. The software
technology is still in its early stages. The potential
security advantages are accompanied by new security
exposures. Auditing becomes more complex as sys-
tems proliferate and disperse. Applications estab-
lished in a centralized environment are not always
easily transformed into distributed applications, and
new distributed applications have been difficult to
develop.

Distributed systems are most often used in univer-
sities and other campus-like clusterings of users.
They usually develop from the bottom up, with
departments or groups creating their own LAN sys-
tems that later join a giobal system connected by a
backbone LAN. Small businesses use workstations on
LANs. Engineering and research groups use LANs of
high-performance workstations. The most common
functions are file sharing, printing, messages, mail,
document distribution, and remote task execution,
though far more is possible.

Concepts and models

A system is said to present a single-system image if
it behaves like a single computer, with the user
essentially unaware what node is doing what func-
tion. One system structure that presents a single-
system image is the distributed operating system
(Dos).3 A Dos distributes the basic operating system
objects—files, processes or tasks, queues, and, per-
haps, segments of memory. (A process is sometimes
defined as an execution of a program, sometimes as
a stream of activity.) A distributed file system (DFs)*
provides some of the features of a DOS and can
present a single file system image. A distributed
system can be built on a DFs model, with distrnibuted
files supporting all the other functions of the system.

In other systems, users may be quite aware of the
network and of where functions are carried out. This
is true for a nerwork operating system (NOS).5'6 An
NOs often involves heterogeneous hardware and op-
erating systems, whereas a DOS is limited to a single
operating system and often a single machine archi-
tecture. The NoOS preserves the varying system images
of its nodes. The pos and Nos typically differ in their
design as well as their image. The DOS usually
changes or replaces the kernel of an existing operat-

IBM SYSTEMS JOURNAL, VOL 28, NO 2, 1989

ing system, whereas the Nos adds a network com-
ponent at a fairly high level.

The client-server model applies to both pos and NoOs.
A client (software executing at one node) makes a
request for a service that is provided somewhere in
the system. The request is handled by a server, which
is software executing possibly at another node. (In
commercial LAN systems, server often refers to a
node specialized to provide a service.) In a DOs, each
node is capable of playing both the client and the
server roles. In other systems, some nodes lack the
server capability. Even where all nodes have the same
base capability, some nodes can be dedicated to
specific functions. The client-server model is the
basis for resource-sharing syslems,7_9 which are sys-
tems that emphasize the sharing of computing re-
sources or services (as opposed to files or devices). A
task is performed at a node that is specialized to
handle the task or that has spare capacity.

In recent years, the object-oriented model has become
increasingly important for system design. In such a
model, every system object has a type that defines a
set of operations to create and manipulate objects of
that type. The implementation of an object is hidden
from its users, who see only the type definition. This
approach is fitting for distributed systems, where it
1s especially appropriate to hide how an object is
implemented—perhaps on another computer of a
different architecture. The client-server model sup-
ports the object model, in the sense that an object
can be encapsulated by a set of servers. The object
model can unify the views of users, programs, and
system designers. This unification is rare, however,
because most systems must support pre-existing user
and program views.

Models of communication architectures are also val-
uable for understanding distributed systems. The 0s1
Reference Model'® was not originally intended to
apply within systems, where a system was defined as
one or more autonomous computers. As LANs be-
came more prevalent, however, 0sI standards work
was applied to the nodes of local systems. 0st, mean-
ing Open Systems Interconnection, emphasizes the
fact that the interfaces are in the public domain. The
0s1 model specifies layers, where each layer provides
services to the layer above, and each layer adds value
to the layers below. The lower layers are closer to
the physical media, and the higher layers are closer
to the application. The seven osi layers are described
elsewhere.'' The functions discussed in this paper
are primarily at layers 5 and 6, the session and

IBM SYSTEMS JOURNAL, VOL 28, NO 2, 1989

presentation layers. These layers are supported by
layer 3, the network layer, and layer 4, the transport
layerl.2 SNA similarly provides a layered architec-
ture.

For a homogeneous DOS, layering is not needed and
may be ineflicient, and the pos can be viewed as a
single system of an 0sI network. For a heterogeneous
NoOS, however, and for the individual computers that
are potential nodes of various distributed systems,

-

Ideally, the user should see no
difference between local and
remote function.

there are benefits from following a standard
model.'""* The design and business advantages of
layering may outweigh its cost, which is becoming
relatively smaller. Even personal computers can now
support SNA and OSI protocols.

Requirements

User interface. As the scope of a user’s work extends
beyond the local computer to a distributed system,
new and somewhat conflicting needs arise. This is
especially true for heterogeneous systems. Ideally,
the user should see no difference between local and
remote function and should be able to use a familiar
or preferred mode of interaction. From a user’s point
of view, local means the user’s node, and remote
means any other node. From an observer’s point of
view, all nodes are local. Systems of heterogeneous
nodes require the interposition of a user interface
management system that masks inessential differ-
ences, a difficult problem that is not solved by cur-
rent systems. One approach is to use a workstation
as a front end to all services, with workstation soft-
ware masking some of the heterogeneity.

A major benefit of a distributed system is the user’s
greater ability to carry out concurrent activities,
some of which are supported by remote nodes. A
display interface with multiple windows allows the

summers 220

user to monitor the progress of all these activities.
With the X Window System,'’ which originated to
meet the needs of network environments, an appli-
cation can use windows on any display in the net-
work and in a network-transparent way. X is built
on the client-server model, the client being the ap-
plication and the server controlling the display. Since
multiple clients can have connections to a server at
once, X supports the requirement for monitoring
concurrent network-wide activities.

Program interface. Distribution imposes two new
kinds of requirements. In the first instance, conven-
tional and pre-existing programs must run properly
and must be able to take advantage of distributed
resources. For example, these programs must be able
to share files on a file server without any changes to
the programs. In the second instance, programs writ-
ten for a distributed environment must be able to
request services of other nodes, offer services to other
nodes, or simply communicate with programs at
other nodes.

In one approach to this, an operating system call
(such as file 1/0) 1s intercepted and transformed by
programs called stub routines into a request on an-
other node. The transformation may use informa-
tion supplied in a prior command, such as the infor-
mation necessary to map a disk drive to a remote
directory. The generated request may itself be con-
sidered a program in a network control language.'
Another approach is a system interface that can be
invoked from various programming languages. This
approach is used in the 1BM Advanced Program-to-
Program Communication (APPC), which provides
verbs such as SEND__DATA and RECEIVE__AND__WAIT.
Some systems conveniently generate such calls from
multiple languages by means of stub generators,”_lg
The third approach is a programming language or
language extensions designed specifically for distrib-
uted programming. Building distributed applications
is difficult, and an appropriate language can help. A
language also serves as a conceptual framework for
the distributed system.zo_24 One of the most fully
developed languages is Argus, an object-oriented
language for distributed programming. Argus re-
sources are encapsulated in guardians, which are
abstract data types that expose the operations avail-
able on those resources. One guardian may use an-
other’s operations by means of remote calls, without
regard for location.

Management. Controlling a distributed system is not
in principle different from controlling a centralized

230 sumvers

one that supports varied work and many users. In
both structures it is useful to distribute control to
the people who own data, applications, and comput-
ing resources. A distributed system, even if com-
posed entirely of personal computers, must be man-
aged—a function called network management. Some
of this management”‘25 has to do with the physical
network—keeping track of the hardware configura-
tion, detecting and correcting faults, monitoring per-
formance, and providing data that can be used in
planning for expansion. LAN hardware typically pro-
vides features to collect the needed data. At the

Most applications assume a model
of local sequential execution,
and distributed systems preserve
that model to varying degrees.

higher systems management level, different features
are needed. System software must control access to
services and data. The software must identify users
and authenticate service requests. It must perform
accounting and ensure that software at different
nodes is compatible. Also, the systems management
software must maintain performance through func-
tions such as load balancing and the migration of
services and data between machines.

Attributes of distributed systems

Transparency. A highly desirable attribute is location
transparency, which is a system view that eliminates
program and user concern with where resources are
and even whether they are in one or many locations.
Transparency is important for three reasons. It re-
duces the complexity of applications, ideally making
them as simple to build as applications for central-
ized systems. Also, transparency allows applications
to move easily between centralized and distributed
environments. Further, transparency allows re-
sources and applications to move from node to node
without changing the behavior of the applications.
Most applications assume a model of local sequential
execution, and distributed systems preserve that

IBM SYSTEMS JOURNAL, VOL 28, NO 2, 1989

model to varying degrees. For transparency to be
maintained, locations should not appear in pro-
grams. Assume for example, that the global name of
a file starts with its node name. If the node name
appears in a program, moving the file invalidates the

The need is for a more structured
form of communication and for
addressing by function, rather than
by process identifier.

program. If the meaning of a name depends on the
node that uses the name, a program cannot execute
at different nodes. Although complete transparency
is a goal, systems that provide less than complete
transparency can nevertheless be quite powerful.

Mechanisms for distribution. The methods used for
distributing the activity of a system are extremely
important, because they determine not only the ef-
ficiency and reliability of the system but also its
convenience for users and application developers.

A method that is well-developed in centralized sys-
tems is interprocess communication (IPC) in which
one process communicates with another by sending
it a message that specifies the identity of the intended
recipient. It seems natural to extend 1IPC so that the
communicating processes can be at different nodes.
This method has the advantage of compatibility with
the centralized environment, but it also has weak-
nesses. It is difficult to write and debug distributed
programs that use messages, without any higher-level
structure. Also, it is inappropriate for one process to
know the identity of another when the processes are
distributed over a possibly heterogeneous network.
The need is for a more structured form of commu-
nication and for addressing by function, rather than
by process identifier.

A widely-used method for more structured commu-
nication extends the familiar concept of the proce-
dure call. A remote procedure call (Rpc)**® behaves
very much like a procedure call in a programming

IBM SYSTEMS JOURNAL, VOL 28, NO 2, 1989

language. Parameters are passed by value, and return
parameters are available when the call completes. In
terms of the client-server model, the procedure being
called is a service that may be either local or remote.’
The caller is the client and the handler of the call is
the server. (Note that remote calls can be supported
locally also.) RPC has the advantage of simplicity and
familiarity, but may be inefficient when the caller
needs no results or acknowledgement. Another dis-
advantage is that Rpc does not fully exploit the
parallelism of a distributed system. The client is
blocked (i.e., cannot execute) until the call com-
pletes. For this reason, some systems provide an
asynchronous RPC. After making the call the client
continues to execute and checks for completion at a
later time. With this form, a process can be a client
for multiple requests at once. In some systems, a
service request sets up a virtual circuit that connects
the client and server, and further messages can be
exchanged using that circuit. A still more structured
form of service request is a distributed transaction,
which is discussed later in this section. Security
features may be associated with a service request.

Once a service request mechanism is in place, it can
be used for traditional operating system services, as
well as for those service requests that are unique to
a distributed environment. Printing, for example,
becomes a service. A name service looks up objects
including services and finds their locations and pos-
sibly other attributes. Other services provide file
transfer, remote file access, and remote execution.
Although motivated by distribution, this structuring
of the operating system into services is valuable in
its own right, contributing to a clean modular struc-
ture.

Systems vary a great deal in the way they implement
distribution. Locus,” for example, intercepts file 1/0
calls and other operating system calls and invokes
tailored high-performance communication proto-
cols. In NOs, the communication component typi-
cally resides at a higher level and has a layered form.
Low-level tailored mechanisms perform better, but
limit portability. Many systems use standard proto-
cols, such as TCP/IP,28 which provide error checking,
flow control, and other services. TCP/IP was devel-
oped for networks of hosts, but it is now well within
the capabilities of workstations. The trend for work-
stations is to place the communication function in
network interface units with their own processors
and memory. The issue of special-purpose versus
general-gpurpose transport protocols is discussed else-
where.”

summers 231

A distributed system requires special operating sys-
tem support, including lightweight processes for sys-
tem work. These are processes that can be created,
dispatched, and destroyed quickly, whose use of
memory is efficient, and whose IPC is fast. Such
processes usually share an address space and are
often queue-driven. Many systems assign each serv-
ice request to a lightweight process that is either
created on demand or assigned from a pre-existing
pool corresponding to a service. The system must
have efficient interrupt handling (because the com-
pletion of requests occurs asynchronously) and must
have efficient storage management for buffering of
messages. A time-out facility is needed to detect the
failure of a service request.

Naming. Users and programs need to refer to the
objects of a distributed system (users, workstations,
services, . . .) SO as to preserve location transparency.
This means using a name that will not change when
the object moves. Some component must then map
names into locations. This component is called a
name service or directory service.*>*' The name serv-
ice may be provided by one node or by each node
for the objects that it owns. For greater availability,
the directory used by the name service may be rep-
licated at some or all nodes. The name service may
also determine what objects satisfy the user’s needs.
For example, the user may need a printing service
that accepts PostScript® format for desktop publish-
ing. The name service must then associate objects
with their names and their attributes. One essential
attribute is location. Examples of other attributes for
a print service are the formats it accepts and its
speed. Required for a compute service are its archi-
tecture, memory size, and special coprocessors. By
analogy with telephone directories, the finding of the
attributes given the name is a white-pages service.
The finding of the object given some attributes is a
yellow-pages service. As systems grow and intercon-
nect, users need the yellow-pages function to take
full advantage of the resources of the distributed
system.

A name may be absolute, i.e., having the same
interpretation wherever it is used, or a name may be
relative to the node that is using it, or even to some
context within that node. Absolute names have the
advantage that they can be passed around and have
the same meaning wherever they are used. Absolute
names must be unique, and one way to assure
uniqueness is for a centralized name service to gen-
erate them when objects are created. An alternative
is a hierarchically-structured name space, with part

232 summers

of a name identifying a node (which defeats trans-
parency). Relative names must be interpreted within
the appropriate context. An example occurs in LAN
file systems. To refer to a remote directory the client
uses a name that is mapped at the client node—
using the local context—into the name offered by
the server. For example, a server offers a directory
under the name MEMOS, and a PC DOS user specifies
that drive L refers to MEMOS.

When the naming systems of the nodes are different,
a global scheme is used. When local-area systems are
enlarged or interconnected, uniqueness must be en-
sured in the larger context. A promising solution is
to retain the name services of the nodes or LANs and
to bridge them by a global naming service. Naming
requirements are complex, and many problems re-
main unsolved.

Homogeneity and heterogeneity. The original plans
for a distributed system known as Andrew at the
Carnegie-Mellon University “... assumed there
would be nothing else on campus except Andrew.
This model ideal was comparable to building an
expressway across Wyoming, working with virgin
territory, when in fact we were talking about running
one¢ through something like Chicag.o.”32 Heteroge-
neity is as common in organizations as in big cities,
because local decisions are made autonomously.
Clearly, the more alike the nodes, the simpler it is to
build a workable system; but techniques for dealing
with heterogeneity are being developed. Heteroge-
neity occurs at various levels: LAN hardware, com-
munication protocols, machine architecture, oper-
ating system, and application interface. Both os1 and
SNA address heterogeneity at the communication
level, and osI standards organizations are addressing
heterogeneity at higher levels. 1BM’s Systems Appli-
cation Architecture (SAA)33 aims at consistent user
and programming interfaces and communications,
across heterogeneous architectures and operating
systems.

File sharing illustrates many of the problems intro-
duced by heterogeneity. Different character sets are
used. Files are organized either as sequences of bytes
or as sequences of records. Directories are flat or
hierarchical. Integers have different lengths, and
floating point representations differ. A system that
provides remote task execution must also cope with
differences in instruction set and configuration. Fi-
nally, the Nos itself must be portable across the
different architectures or must exist in different ver-
sions. Problems of heterogeneity are discussed more
fully elsewhere.

IBM SYSTEMS JOURNAL, VOL 28, NO 2, 1989

Concurrency control and reliability. Even a central-
ized system must control concurrent access to shared
data, to ensure that each operation is carried out
properly and that integrity of data is maintained.
Distributed systems are not different in principle,
but concurrency control is far more difficult. Con-
currency control is discussed along with reliability,”
because the techniques used must consider both
objectives.

The most common approach to providing reliability
is through redundancy. Centralized systems are in-
creasingly redundant, but a distributed structure is a
natural framework for redundancy. File service can

File replication is ideally
transparent to users and to
components outside the file system.

be provided by multiple nodes, and a file can be
replicated at each of the nodes. This replication both
protects the file against loss and increases its availa-
bility for access. At a lower level, replication of
storage can be used to build an abstraction called
stable storage.36 Other services, or generalized proc-
essing power, can also be provided at multiple nodes.
A system can go still further and replicate processes.
Every process can have a backup process at a differ-
ent node that receives the same messages and per-
forms the same processing. If one process fails, the
other can continue. In an object-oriented system, it
is objects that are replicated. Systems that continue
operating correctly even though some components
fail are called fault tolerant or highly available.”
Replicating data and processes introduces new over-
head, because the nodes involved must coordinate
their activity. Some systems (Argus, for example)
allow an application developer to specify which ob-
jects are resilient to failures. Replication—especially
of heavily-shared system data, such as directories—
can improve performance. File replication is ideally
transparent to users and to components outside the
file system. The system must ensure that a request
receives the latest version and must keep the copies
consistent, even if failures occur.

BM SYSTEMS JOURNAL, VOL 28, NO 2, 1989

The concept of a transaction is useful to understand-
ing concurrency and reliability requirements. -
The essence of a transaction is that it is atomic: either
all its operations complete satisfactorily, or the effect
is as though the transaction never started. Once the
transaction commits, its updates can be assumed to
be valid and actions complete. The transaction con-
cept originated for database systems but is increas-
ingly applied to file systems. Some applications for
which distributed systems are used (in banking, for
example) depend on transactions. A large system
supports many transactions at once, and different
transactions use and modify the same data. Opera-
tions from different transactions are interleaved in
time, and operations of one transaction are carried
out at different nodes. Despite the complexity, it
must appear as though the transactions were exe-
cuted in some order, without interleaving. This de-
mands specialized support.“’

An important concurrency control technique, used
with or without transactions, is locking. When ap-
plications are moved from separate workstations to
a LAN, locking becomes necessary and must be pro-
vided automatically. Locking must be coordinated
in a distributed system. In rocus, for example, the
node where the file is stored gives out locking tokens
to other nodes. Another technique is optimistic con-
currency control, where transactions are allowed to
run without locking until they commit. At that time,
a test is made to ensure that the committed trans-
actions have executed in a serializable way. The
optimism here is the belief that most transactions do
not update the same data, and thus locking would
generally be wasted. Transaction recovery is sup-
ported by logging: logs must be kept at all the nodes
involved in a distributed transaction. Transaction-
commit often uses a two-phase commit protocol, in
which one node, acting as coordinator, directs all the
nodes to prepare to commit and then, after confir-
mation from all nodes, directs them to commit.

In a distributed system, deadlock can occur not only
because files or other resources are locked, but also
because of communication. Node 1 may be waiting
for a message from node 2, which is waiting for a
message from node 3, which is waiting for a message
from node 1. Deadlock detection is more complex
in a distributed system, and many systems use the
simpler technique of time-outs. In a time-out, if some
event (typically a message receipt) does not occur
within a specified time limit, the related service
request or transaction is discarded. Time-outs have
the advantage of responding to any kind of failure
at another node.

sumvers 233

Security. Distributed systems introduce new security
problems.**™"’ Much attention has been given to
network security, including LAN security, but rela-
tively little to the overall system security. Any system
must protect the confidentiality of its users’ infor-
mation and provide access control, that is, the system
must ensure that resources are used only by those
who are authorized to use them and that the re-
sources are used in authorized ways. In order to do

The eavesdropping problem can be
solved by encrypting all LAN
transmissions.

this a system must provide secure communication,
ways of authenticating users and service requests,
and control of access to services and data. It must
back up these facilities with a protected audit trail.

A LAN presents several communication security
problems. Data on the LAN are available to every
network interface unit (N1U). A well-behaved NIU
looks only at the data addressed to its node, but a
serious intruder can tap into the LAN or capture a
node, especially if the node is a personal computer.
The intruder can then eavesdrop on any data on the
LAN. The intruder can go further and insert phony
messages onto the LAN, such as messages that purport
to originate at another NI1U. The intruder can also
delete, modify, or replay legitimate messages. The
combination of these passive and active attacks can
gain the intruder unauthorized access to resources.
Deletion of messages can result in denial of service
to authorized users. The eavesdropping problem can
be solved by encrypting all LAN transmissions, and
digital signatures can be used to authenticate mes-
sages, that is, to determine if a received message is
in fact identical to the one sent by the sender.®®
Message identifiers such as time stamps or sequence
numbers can be used to prevent or detect replay.

Access control can be modeled as an access matrix
where the columns represent resources or objects
and the rows represent users. The entries in element

234 suvvers

i, j of the matrix then represent the access authority
user 7 has to object j. Examples of access authorities
are read, update, and control. Some systems do not
follow this model, but instead rely on resource pass-
words.

Two ways to implement the access matrix model are
access lists and capabilities. An access list is associ-
ated with an object and lists all the users who have
access authority for that object, along with their
specific authorization. It is often kept at the node
where the object resides. A capability is a token or
ticket that is passed by a user when requesting access
to an object. A service request must contain either
the user’s identity or the capability and must be
secure from modification. Access control can be
enforced at the node of the object, either by general
mechanisms of the node or by the server for that
object. Alternatively, a trusted service at a secure
node can be involved, as with the Kerberos system,49
developed for the miT Project Athena. Using encryp-
tion-based protocols, Kerberos authenticates users,
and it authenticates clients and servers to one an-
other.

Example systems

This section presents systems that have been chosen
as examples of different approaches to local-area
distributed systems. The systems are discussed in
relation to the issues presented in the two preceding
sections.

Distributed file systems. A DFs is crucial for net-
works of workstations, and it can also play a major
role in configurations of larger computers. Various
configurations are possible. There are those in which
any node can offer files for use by other nodes. In
other cases, all shared files reside at file servers, which
may use specialized hardware or operating systems,
or which may be specialized in function only. A
mainframe can act as a file server. In a workstation
environment, file servers provide availability and
trustworthiness. They can use faster and more cost-
effective storage, provide automatic backup and re-
covery, and allow users to move from workstation
to workstation. In short, they provide many of the
advantages of a centralized system. A DFs typically
aims at some level of transparency—at a minimum,
supporting existing programs that were not written
for a distributed system. Remote file access can
perform as well as or better than local access, if the
file server has faster storage media than the local
node.

IBM SYSTEMS JOURNAL, VOL 28, NO 2, 1989

Most DFss are extensions of either the uUNIx® file
system or a personal computer file system. This
section describes some UNIX-based systems.

We begin with the widely used NFs™"' of Sun
Microsystems, Inc. NFs is designed for portability to
machines other than Sun’s workstations and to op-
erating systems other than UNIX. Its protocols, which
are public, have been implemented by many ven-
dors. NFS provides transparency and largely preserves
the semantics of the UNIX file system. UNIX uses tree-
structured directories, and a MOUNT command at-
taches a directory at any point in the currently active
tree. With NFS, a MOUNT command can also attach
remote files. Any subdirectory of a server node can
be mounted.

Two related issues in the implementation of a DFS
are whether a virtual circuit is used and whether state
information™ is kept at the server. An approach
without states is simpler, but potentially less efficient.
NFS uses an RPC protocol without virtual circuits that
can be supported by different transport mechanisms.
The server does not keep track of past requests. This
greatly simplifies crash recovery—none is required
at the server, and the client simply retries. In order
to preserve UNIX semantics, file changes must be
made on the disk for each write operation, which is
a possible source of inefficiency.

The rEs™ system of AT&T, Inc. has similar functions,
but a quite different design. Any node may be client,
server, or both. A server explicitly offers a subtree,
under a symbolic name, and the client mounts the
directory using that name. A distributed name server
keeps track of all currently offered subtrees and their
nodes. The client and server communicate through
a virtual circuit between two nodes. The circuit is
held as long as there are any mounts and is used for
all requests between those nodes. The server main-
tains directory state information in cases where it
can expect another access from the client to the same
file (as in OPEN). Since directory state information is
maintained, a recovery mechanism must be pro-
vided.

Other issues concern the amount or unit of data that
is transferred per request, whether there is caching
of data by the client, and the unit used for locking.
In rFs each file system call is passed to the server,
and no caching is done by the client; thus a record
is the typical unit of transfer. File and record locking
work in the remote case as well as the local case. A
potential problem for a DFs is time skew. The server

IBM SYSTEMS JOURNAL, VOL 28, NO 2, 1988

and client may not agree perfectly about the time of
day, causing problems for users and programs that
rely on the time a file was created or last modified.

Communication security is provided
by encryption-based authentication
and by the encryption of
communications.

RFS solves this problem by calculating the difference
between client and server views of time when a
virtual circuit is established. Any time-based infor-
mation is adjusted to compensate for this difference.
The Andrew™**” file system is part of a more general
facility for distributed personal computing that is
designed to support thousands of workstations. An-
drew utilizes file sharing as the supporting base for
most shared facilities. Other services are requested,
for example, by depositing a request file in an appro-
priate directory. Andrew assumes that client work-
stations have significant amounts of disk storage.
This allows Andrew to rely on client caching. An-
other requirement is that the file servers and com-
munication be considered secure, whereas the work-
stations and network are not. The file servers are
dedicated to that function and physical access to
them is controlled. Thus they are not threatened by
actions of either user programs or users. Communi-
cation security is provided by encryption-based au-
thentication and by the encryption of communica-
tions. These security features are part of Andrew’s
remote procedure call.

In contrast to NFS and RFS, where the client MOUNT
refers to a subtree offered by a specific node, Andrew
presents one global shared name space. From the
workstation viewpoint, the name space is divided
into local and shared portions. The unit of sharing
is a whole file, and whole files are cached on disk at
the workstation. This works because the working set
of files for a user is fairly small and because high-

summers 235

performance, high-capacity workstations are used.
Andrew and other Drss also gain performance
through caching in memory, which can be done at
both client and server nodes. A workstation process,
running on behalf of the file system, determines
whether a shared file request can be satisfied lo-
cally—that is, if there is a valid copy in the local
cache memory. If not, the file is fetched from the
server that is the custodian of that file. Each server
stores a subtree of the shared name space, and each
keeps a copy of a database that identifies the custo-
dian for each file. The request for a file can specify
callback, which causes the workstation to be notified
when the cached copy becomes invalid. When a
cached file is closed, the updated copy is transmitted
to the appropriate custodian. Authorization is des-
ignated by user or group for each directory and is
implemented by access lists in a protected database
replicated at each server. A server uses a pool of
lightweight processes, with each such process hand-
ling one RPC connection.

Andrew supports PCs running PC DOS by means of
PC servers that run on UNIX workstations. The pC
servers receive PC DOS file requests from client PCs
and transform them into UNIx file requests. Inas-
much as these servers have access to the global file
tree, their clients also have that access.

Other DFss are RT PC™ Distributed Services (which
also provides distributed message queues),56 Cedar,”’
and Sprite.”® 1BM’s Distributed Data Management
(ppm)* is an architecture for data sharing among
systems of heterogenous hardware and software.

Distributed operating systems. We have seen that
transparency is a powerful concept. Research on

transparency led to the Locus’ system. LOCUS is

primarily a DFS, but it also provides remote processes
and remote IPC. The nodes all run UNIX, but can use
different hardware. For Locus, as for Andrew, the
heart of the system is its file system. LOCUS supports
distributed, possibly replicated files. It provides con-
currency controls and atomic file update. The Trans-
parent Computing Facility of IBM’s AIX™ system in-
corporates technology similar to that of Locus.

Users and programs at all using sites—the LOCUS
term for nodes—see a single global tree of files. The
term filegroup is used for a self-contained subtree
mounted at some point in the global tree. Copies of
a file may exist at one or more storage sites (SSs).
One of these sites stores the primary copy of the
file—the copy guaranteed to be the latest version.
Another site, possibly different from the using and

236 summvers

storage sites, is the current synchronization site (CSS),
which is responsible for synchronization and also for
selecting the ss to be used when a file is opened for
use.

Corresponding to each filegroup are physical con-
tainers. A filegroup may be partially replicated in
containers at various sites. The primary copy of the
container is always complete. The system ensures
that the copies stay consistent and that a file request
is satisfied by the most recent version. The file system
implementation replicates its own data structures
with the same mechanisms.

The oPEN for a remote file is passed to the ¢ss, which
then selects the ss. The ¢ss identifies the latest version
and asks each potential ss whether it has that latest
version. The css then passes the OPEN to the proper
ss. In contrast to Andrew, Locus reads the file on
demand, one page at a time. All updates are atomic.
Closing a file commits the changes, and explicit calls
are also provided to commit changes and to discard
changes. The changes are first committed in the
primary copy. The ss notifies the ¢ss and all the
other sss, which then obtain the latest changes by
remote reading of the primary copy. Multiple UNIX
processes can use files concurrently. Even though
these processes can be at different sites, LOCUS be-
haves exactly like UNIX in this respect.

LOCUS supports the UNIX pipe facility for interprocess
communication. Because the behavior of pipes re-
sembles that of files, the mechanisms also are similar.

LOCUS remote tasking allows a user to run a program
anywhere in the network, if the user has the required
authorizations. A running process can move between
sites that have the same hardware architecture. Mes-
sages and signals can be sent to remote processes.
LOCUS supports the UNIX FORK to create a child
process with the same program as its parent, and
EXEC to replace the executing program. FORK can be
local or remote; EXEC can be used with dissimilar
sites and can cause the process to migrate to other
sites. One process can also signal another to migrate.
When a process is created or moves, a site must be
chosen for it. This choice is partly under application
control. A process can specify where its subprocesses
will execute, but this specification is not always
respected, because, for example, of hardware limi-
tations. The original site is responsible for keeping
track of where a process resides, so messages and
signals can be properly forwarded. A message for a
remote process goes to the original site, which either

IBM SYSTEMS JOURNAL, VOL 28, NO 2, 1989

forwards the message or notifies the sender of the
proper site to use. If the original site is not in the
network, another site assumes its role.

Unlike many other systems, LOCUS relies on proto-
cols that are tailored to the specific problem. For
example, there is a simple protocol for OPEN that
requires only four messages, after path name reso-
lution is complete. Overhead is reduced by doing the
simplest processing through interrupts and the rest
through lightweight server processes.

mos™ is a distributed system with a structure different

from that of Locus. The Mos kernel consists of an
upper kernel that is considered a logical extension of

A popular form of distributed
system is a collection of personal
computers in a LAN.

the user’s program, a lower kernel that implements
the local objects of a machine, and a /inker that
allows the upper kernel to use the lower kernel of
any machine. It is the linker that distinguishes local
from remote operations and that intervenes for op-
erations on network objects, whether local or remote.
The state of a process is completely independent of
the lower kernel state, which greatly simplifies proc-
ess migration. vaxclusters” uses a very high-speed
connection for processors that have their own mem-
ories and share disk storage. The system is controlled
by a vax/vMs distributed operating system. Research
efforts in distributed operating systems include
Accent,62 the V system,63 Emerald,“ Amoeba,” and
. " 42
QuickSilver.

LAN operating systems for personal computers. A
popular form of distributed system is a collection of
personal computers in a LAN. A LAN operating sys-
tem typically is a limited NoS, based on an existing
0s, such as pC DOS. Most systems run on various
LANs. Low cost is important for both the NiU and
the software. Memory usage must be kept to a min-
imum, which leads to different software configura-

BM SYSTEMS JOURNAL, VOL 28, NO 2, 1989

tions for clients and servers. PC LAN systems origi-
nally provided simple disk servers, but evolved rap-
idly toward greater sophistication. Today these
systems all provide file, print, mail, and message
service. Others provide gateway service to other LANs,
to a minicomputer or mainframe, or to the telephone
network. Still others provide remote task execution
on another PC in the LAN. The approach and imple-
mentation vary considerably.

Our first example is the IBM PC LAN Program.66 Using
that program any PC can act as a server, offering file
or print service. A PC can be used locally, while
acting as a server. If the usage is moderate, the local
user may not experience any change in responsive-
ness. There is no centralized control, and users do
not log on to the network. A file server offers a
directory at any level in the hierarchy, assigning it a
name and optionally a password and specifying the
type of access allowed. To the client pc, the directory
appears as a remote disk drive. No name service is
provided. A user assigns a name to the local pc, and
the system checks for duplicate names. Security is
provided by passwords on offered directories. The
same directory can be offered under more than one
symbolic name, so that different users can be given
different access.

Novell NetWare® is designed quite differently.
NetWare uses dedicated file servers that run special
software aimed at good network performance. Al-
though the pos file interface is preserved for client
programs, a NetWare server uses its own data format
and access techniques, including caching of disk data
in the server memory. NetWare users must log on,
and resource authorizations are given to individual
users and to user groups.

RM’ is an experimental system for PC LAN resource
sharing,. It provides a general client-server framework
within which services are built as applications. Re-
mote execution is supported within that framework.
RM also provides a user interface for the concurrent
use of network services, and a programming interface
for distributed applications.

An introduction to the usgsand management of PC

LANs is found elsewhere,” as is a discussion of
: » ® 8

Microsoft’s® LAN Manager.

Heterogeneous systems. The Distributed Academic
Computing (DAC) system assumes heterogeneity of
hardware and operating system, while encompassing
mainframes, mini-computers, and workstations. Ex-

sumvers 937

isting applications and operating systems are sup-
ported. The goals of supporting both heterogeneity
and transparency lead to a complex but coherent
design. The system supports the use of distributed
objects in a location-transparent way. Each local
operating system is augmented with both a local
multitasking kernel and Nos kernel. The local kernel
has a different implementation for each local oper-
ating system, whereas the Nos kernel is highly port-
able. The Nos kernel provides a remote service call
(RSC) that extends RPC to provide asynchrony, access
control, and accounting. Other functions of the NOS
are built as system services that use kernel facilities.
A global transport system” provides communication
in a way that is independent of node architecture,
network, and network protocol. There is a re-
mote file access facility (RFA) for heterogeneous file
systems. This paper touched earlier on the problems
arising from heterogeneity of file systems. The ap-
proach taken in RFA is the definition of a homoge-
neous global file system and the building of bridges
between it and each local file system. RFA has client
and server components, each providing a bridge to
a local file system. The client RFA intercepts local
requests, transforms them into requests on the global
system, and sends them to a file server. The server
transforms the global request into a request on its
local file system. Thus the global file system does not
exist in storage, but only as an intermediate form
between bridges.

The Network Computer Architecture (NCA)19 devel-
oped by Apollo is aimed at making it easier to do
remote computation in a heterogeneous network.
NCA takes an object-oriented approach. A client pro-
gram uses RPC to avail itself of operations provided
by some object of the network. The architecture
includes a language for defining interfaces to objects.
A compiler for that language produces stub proce-
dures for both the client and server. These stubs
convert parameters and results to and from a com-
mon network data representation. NCA uses the bro-
ker concept. Brokers do the work that allows clients
and servers to cooperate. For example, brokers find
objects, establish secure communications, and en-
sure that software license requirements are met.

Concluding remarks

The motivations for local-area distributed systems
are strong and likely to become stronger. The hard-
ware technology is advancing at an astounding rate,
and the software technology is making good progress
in performance, network transparency, and reliabil-

238 summers

ity. Greater LAN speed and capacity will lead to more
applications that use image and voice. The great
progress occurring in WAN technology means that
WANs can soon support today’s LAN functions, such
as distributed file systems. The big challenges for the
near future are in managing such complex systems,
coping with heterogeneity, making applications eas-
ier to develop, and providing interfaces that allow
the user to enjoy the full value of the distributed
system.

Acknowledgments

The author is grateful to Hal Lorin, Patrick Smith,
Charles Sauer, Herrmann Schmutz, Kurt Geihs,
Richard Mosteller, Paula Newman, and Gene Tsu-
dik for their insightful comments, and to John Mar-
berg for his work in planning the paper. The support
of James Jordan and Peter Woon made it possible
to complete the effort.

PostScript is a registered trademark of Adobe Systems, Inc.

UNIX is developed and licensed by the American Telephone and
Telegraph Company, Inc., and is a registered trademark in the
U.S.A. and other countries.

NetWare is a registered trademark of Novell, Inc.
Microsoft is a registered trademark of Microsoft Corporation.
NFS is a trademark of Sun Microsystems, Inc.

RT PC and AIX are trademarks of International Business Ma-
chines Corporation.

Cited references

1. A. L. Scherr, “Structures for networks of systems,” IBM
Systems Journal 26, No. 1, 4-12 (1987).

2. H. Lorin, “Systems architecture in transition—An overview,”
IBM Systems Journal 25, Nos. 3/4, 256-273 (1986).

3. A. S. Tanenbaum and R. van Renesse, “Distributed operating
systems,” Computing Surveys 17, No. 4, 419-470 (December
1985).

4. J. H. Morris, M. Satyanarayanan, M. H. Conner, J. H. How-
ard, D. S. H. Rosenthal, and F. D. Smith, “Andrew: A distrib-
uted personal computing environment,” Communications of
the ACM 29, No. 3, 184-201 (March 1986).

5. K. Geihs, B. Schoner, U. Hollberg, H. Schmutz, and H. Eberle,
“An architecture for the cooperation of heterogeneous oper-
ating systems,” Report 43.8703 (1987); may be obtained from
the IBM European Networking Center, Tiergartenstrasse 15,
D-6900 Heidelberg, West Germany.

6. M. Seifert and H. Eberle, “Remote Service Call: A NOS kernel
and its protocols,” Proceedings of the Eighth ICCC, P. J.
Keuehn, Editor, North Holland, Amsterdam (1986).

7. R. C. Summers, “A resource sharing system for personal
computers in a LAN: Concepts, design, and experience,” -
IEEFE Transactions on Software Engineering SE-13, No. 2,
895-904 (August 1987). Reprinted in Tutorial: Local Network
Technology, W. Stallings, Editor, IEEE Computer Society
Press (1988), pp. 467-476.

IBM SYSTEMS JOURNAL, VOL 28, NO 2, 1989

8

14.

15.

16.

20.

21.

22.

23.

24.

25.

26.

27

. A. Kessler, “OS/2 LAN Manager provides a platform for
server-based network applications,” Microsoft Systems Jour-
nal 3, No. 2, 29-38 (1988).

. S. A. Mamrak, D. W. Leinbaugh, and T. S. Berk, “Software
support for distributed resource sharing,” Computing Net-
works and ISDN Systems 9, 91-107 (1985).

. J. D. Day and H. Zimmermann, “The OS] Reference Model,”
Proceedings of the IEEE 71, No. 12, 1334-1340 (December
1983).

. J. R. Aschenbrenner, “Open Systems Interconnection,” IBM

Systems Journal 25, Nos. 3/4, 369-379 (1986).

. IBM Systems Journal (special issue: Systems Network Archi-
tecture) 22, No. 4, whole issue (1983).

. R. J. Sundstrom, J. B. Staton III, G. D. Schultz, M. L. Hess,

G. A. Deaton, Jr.,, L. J. Cole, and R. M. Amy, “SNA: Current

requirements and direction,” IBM Systems Journal 26, No. 1,

13-36 (1987).

F. M. Burg, C. T. Chen, and H. C. Folts, “Of local networks,

protocols, and the OSI reference model,” Data Communica-

tions 13, No. 11, 129-150 (November 1984).

R. W. Scheifler and J. Gettys, “The X Window System,” ACM

Transactions on Graphics 5, No. 4, 79-109 (April 1986).

J. R. Falcone, “A programmable interface language for het-

erogencous distributed systems,” ACM Transactions on Com-

puter Systems 5, 330-351 (November 1987).

. M. B. Jones, R. F. Rashid, and M. R. Thompson, “Match-
maker: An interface specification language for distributed
processing,” Conference Record of the 12th ACM Symposium
on the Principles of Programming Languages, 1985, pp. 225-
235; may be obtained from the Association for Computing
Machinery, 11 West 42 Street, New York, NY 10036.

. P. B. Gibbons, “A stub generator for multilanguage RPC in
heterogeneous environments,” IEEE Transactions on Sofi-
ware Engineering SE-13, No. 1, 77-87 (January 1987).

. T. H. Dineen, P. J. Leach, N. W. Mishkin, J. N. Pato, and G.

L. Wyant, “The network computing architecture and system:

An environment for developing distributed applications,” Pro-

ceedings, IEEE COMPCON Spring 88, 385-398 (March

1988); may be obtained from the IEEE Service Center, 445

Hoes Lane, P.O. Box 1331, Piscataway, NJ 08855.

A. Black, N. Hutchinson, E. Jul, H. Levy, and L. Carter,

“Distribution and abstract types in Emerald,” IEEE Trans-

actions on Software Engineering SE-13, No. 1, 65-76 (January

1987).

B. Liskov, M. Day, M. Herlihy, P. Johnson, G. Leavens, R.

Scheifler, and W. Weihl, Argus Reference Manual, MIT Lab-

oratory for Computer Science, PMG Memo 54 (March 1987).

B. Liskov, D. Curtis, P. Johnson, and R. Scheifler, “Imple-

mentation of Argus,” Proceedings, 11th ACM Symposium on

Operating System Principles, 115-126 (November 1987); may

be obtained from the Association for Computing Machinery,

11 West 42 Street, New York, NY 10036.

B. Liskov, “Distributed programming in Argus,” Communi-

cations of the ACM 31, No. 3, 300-312 (March 1988).

R. Strom and S. Yemini, The NIL Distributed Systems Pro-

gramming Language: A Status Report, Research Report RC-

10864, IBM T. J. Watson Research Center, P.O. Box 704,

Yorktown Heights, NY 10598 (December 1984).

D. Coffield and D. Hutchinson, “Making a case for local

network management,” New Communication Services: A

Challenge to Computer Technology, P. Kuhn, Editor, 451-

456 (1986).

A. D. Birrell and B. J. Nelson, “Implementing remote proce-

dure calls,” ACM Transactions on Computer Systems 2, No.

1, 39-59 (February 1984).

. G. J. Popek and B. J. Walker, Editors, The LOCUS Distrib-

IBM SYSTEMS JOURNAL, VOL 28, NO 2, 1989

28.

29.

30.

31

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

uted System Architecture, The MIT Press, Cambridge, MA
(1985).

A. Davidson, An Introduction to TCP/IP, Springer-Verlag,
New York (1988).

R. W. Watson and S. A. Mamrak, “Gaining efficiency in
transport services by appropriate design and implementation
choices,” ACM Transactions on Computer Systems S, No. 5,
97-120 (May 1987).

D. C. Oppen and Y. K. Dalal, “The Clearinghouse: A decen-
tralized agent for locating named objects in a distributed
environment,” ACM Transactions on Office Information Sys-
tems 1, No. 3, 230-253 (July 1983).

L. L. Peterson, “The Profile naming service,” ACM Transac-
tions on Computer Systems 6, No. 4, 341-364 (November
1988).

W.Y. Arms, quoted in Carnegie Mellon University: Reaching
for World Leadership in Educational Computing and Com-
munications, IBM Corporation Application Brief, GK21-0036
(October 1986); may be obtained through IBM branch offices.
E. F. Wheeler and A. G. Ganek, “Introduction to Systems
Application Architecture,” IBM Systems Journal 27, No. 3,
250-263 (1988).

G. J. Popek, “Heterogeneity,” The LOCUS Distributed Sys-
tem Architecture, The MIT Press, Cambridge, MA (1985), pp.
98-105.

A. S. Tanenbaum and R. van Renesse, “Reliability issues in
distributed operating systems,” Proceedings of the 6th Sym-
posium on Reliability in Distributed Software and Database
Systems, March 17-19, 1987 Williamsburg, VA, 3-11 (March
1987); may be obtained from the IEEE Service Center, 445
Hoes Lane, P.O. Box 1331, Piscataway, NJ 08855.

S. J. Mullender, “A distributed file service based on optimistic
concurrency control,” Proceedings, 10th ACM Symposium on
Operating System Principles, 51-62 (December 1985); may
be obtained from the Association for Computing Machinery,
11 West 42 Street, New York, NY 10036.

F. Cristian, “Issues in the design of highly available computing
systems,” IBM Research Report RJ5856 (October 1987); may
be obtained from the IBM Research Division, Almaden Re-
search Center, 650 Harry Road, San Jose, California 95120-
6099.

M. Herlihy, “Concurrency versus availability: Atomicity
mechanisms for replicated data,” ACM Transactions on Com-
puter Systems 5, 249-274 (August 1987).

B. J. Walker and S. H. Kiser, “The LOCUS distributed file
system,” The LOCUS Distributed System Architecture, The
MIT Press, Cambridge, MA (1985), pp. 29-72.

M. J. Weinstein, T. W. Page, Jr., B. K. Livezey, and G. J.
Popek, “Transactions and synchronization in a distributed
operating system,” Proceedings, 10th ACM Symposium on
Operating System Principles, 115-126 (December 1985); may
be obtained from the Association for Computing Machinery,
11 West 42 Street, New York, NY 10036.

B. M. Oki, B. H. Liskov, and R. W. Scheifler, “Reliable object
storage to support atomic actions,” Proceedings, 10th ACM
Symposium on Operating System Principles, 147-159 (De-
cember 1985); may be obtained from the Association for
Computing Machinery, 11 West 42 Street, New York, NY
10036.

R. Haskin, Y. Malachi, W. Sawdon, and G. Chan, “Recovery
management in QuickSilver,” ACM Transactions on Com-
puter Systems 6, No. 1, 82-108 (February 1988).

A. Z. Spector, D. Daniels, D. Duchamp, J. L. Eppinger, and
R. Pausch, “Distributed transactions for reliable systems,”
Proceedings, 10th ACM Symposium on Operating System

SUMMERS

239

44.

45.

46.

47.

48.

49.

50.

SI.

52.

53.

54.

56.

57.

58.

59.

60.

61.

62.

Principles, 127-146 (December 1985); may be obtained from
the Association for Computing Machinery, 11 West 42 Street,
New York, NY 10036.

V. L. Voydock and S. T. Kent, “Security in high-level network
protocols,” IEEE Communications Magazine 23, No. 7, 12—
24 (July 1985).

M. D. Abrams, “Observations on local area network security,”
Proceedings, Aerospace Computer Security Conference; Pro-
tecting Intellectual Property in Space, March 2, 1985, 77-82
(1985); may be obtained from the IEEE Service Center, 445
Hoes Lane, P.O. Box 1331, Piscataway, NJ 08855.

M. D. Abrams and H. J. Podell, Editors, Tutorial: Computer
and Network Security, IEEE Computer Society Press, Wash-
ington, DC (1987).

D. M. Nessett, “Factors affecting distributed system security,”
IEEE Transactions on Software Engineering SE-13, No. 2,
233-248 (February 1987).

R. R. Jueneman, S. M. Matyas, and C. H. Meyer, “Message
authentication,” IEEE Communications Magazine 23, No. 9,
29-40 (September 1985).

J. G. Steiner, C. Neuman, and J. I. Schiller, “Kerberos: An
authentication service for open network systems,” Proceed-
ings, USENIX Association Winter Conference, Dallas (Feb-
ruary 1988), pp. 191-202.

R. Sandberg, D. Goldberg, S. Kleiman, D. Walsh, and B.
Lyon, Design and Implementation of the Sun Network File
System, Sun Microsystems Report, Mountain View, CA
94042 (1986).

J. DeVries, “NFS—An approach to distributed file systems in
heterogeneous networks,” Digest of Papers—Eighth IFEE
Symposium on Mass Storage Systems, Tucson (May 1987),
pp. 77-80.

C. H. Sauer, D. W. Johnson, L. K. Loucks, A. A. Shaheen-
Gouda, and T. A. Smith, “Statelessness and statefulness in
distributed services,” 1988 Conference Proceedings, Uniforum,
Dallas (February 1988), pp. 145-155,

A. P. Rifkin, M. P. Forbes, R. L. Hamilton, M. Sabrio, S.
Shah, and K. Yueh, “RFS architectural overview,” Proceed-
ings, USENIX Conference, Atlanta, GA (1986), pp. 248-259.
J. H. Howard, “An overview of the Andrew file system,”
Proceedings, USENIX Association Winter Conference, Dallas

- (February 1988), pp. 25-30.
55.

J. H. Howard et al., “Scale and performance in a distributed
file system,” ACM Transactions on Computer Systems 6, No.
1, 51-81 (February 1988).

C. H. Sauer, D. W. Johnson, L. K. Loucks, A. A. Shaheen-
Gouda, and T. A. Smith, “RT PC Distributed Services over-
view,” Operating Systems Review 21, 18-29 (July 1987).

D. K. Gifford, R. M. Needham, and M. D. Schroeder, “The
Cedar file system,” Communications of the ACM 31, No. 3,
288-298 (March 1988).

M. N. Nelson, B. B. Welch, and J. K. Ousterhout, “Caching
in the Sprite network file system,” Communications of the
ACM 31, No. 3, 134-154 (March 1988).

R. A. Demers, “Distributed files for SAA,” IBM Systems
Journal 27, No. 3, 348-361 (1988).

A. Barak and A. Litman, “MOS: A multicomputer distributed
operating system,” Sofiware Practice and Experience 15, No.
8, 725-737 (August 1985).

N. P. Kronenberg, H. Levy, and W. D. Strecker “VAXclusters:
A closely-coupled distributed system,” ACM Transactions on
Computer Systems 4, No. 2, 130-146 (May 1986).

R. F. Rashid and G. G. Robertson, “Accent: A communica-
tion oriented network operating system kernel,” Proceedings,
8th ACM Symposium on Operating Systems Principles (De-
cember 1981), pp. 64-75.

240 sumvers

63

64.

66.

67.

68.

69.

70.

. D. R. Cheriton, “The V distributed system,” Communications
of the ACM 31, No. 3, 315-333 (March 1988).

E. Jul, H. Levy, N. Hutchinson, and A. Black, “Fine-grained
mobility in the Emerald System,” ACM Transactions on Com-
puter Systems 6, No. 1, 109~133 (February 1988).

. A. S. Tanenbaum, S. J. Mullender, and R. van Renesse,
“Using sparse capabilities in a distributed operating system,”
Proceedings, 6th International Conference on Distributed
Computing Systems (1986), pp. 558-563.

IBM PC Local Area Network Program User’s Guide, IBM
Corporation, Boca Raton, FL 88429-1328; the User’s Guide
84X0495 and program diskette 84X0519 may be obtained
through IBM branch offices.

S. S. King, “Novell advances,” PC Tech Journal 6, No. 6, 58—
72 (June 1988).

J. Barkley, Personal Computer Networks, Special Publication
500-140, National Bureau of Standards, Gaithersburg, MD
(July 1986).

M. Salmony, Experiences in the Design of a Transport System
for Heterogeneous Environments, IBM European Networking
Center Report 8601 (April 1986); may be obtained from the
IBM European Networking Center, Tiergartenstrasse 15,
D-6900 Heidelberg, West Germany.

U. Hollberg, H. Schmutz, and P. Silberbusch, “Remote File
Access: A distributed file system for heterogeneous networks,”
IBM European Networking Center Report 43.8611 (Novem-
ber 1986); may be obtained from the IBM European Net-
working Center, Tiergartenstrasse 15, D-6900 Heidelberg,
West Germany.

Rita C. Summers IBM Los Angeles Scientific Center, 11601
Wilshire Bivd., Los Angeles, California 90025. Ms. Summers is an

iB
IB

M senior technical staff member and project manager at the
M Los Angeles Scientific Center where her current work is in

knowledge systems, distributed systems, and computer security.
She has designed and implemented time-sharing and resource-
sharing systems. She received two IBM Outstanding Contribution
Awards for her work on virtual memory. She has published articles
on resource sharing, computer security, and database security, and
is co-author of a book on database security.

Reprint Order No. G321-5356.

IBM SYSTEMS JOURNAL, VOL 28, NO 2, 1989

