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Advances  in computing and networking have led to  the 
use of local-area distributed  systems.  The following are 
example configurations: workstations and file  servers, 
multiple computers that present the image of a single 
computer, and heterogeneous workstations and main- 
frames that cooperate loosely. The paper focuses on 
the system software. It  first  discusses the forces lead- 
ing to distributed  systems and the obstacles to realiz- 
ing the full  value  of the systems.  Discussed also are 
common current uses of local-area distributed sys- 
tems. Concepts and  models are introduced. Require- 
ments for  user  and program interfaces and for admin- 
istration are presented, as well as major design attri- 
butes and design issues.  Systems that represent the 
main approaches are described. 

A vances in computing and networking have led 
to  the use  of local-area distributed systems. This 

overview treats  the value, function,  attributes,  and 
design of these systems. It aims  at providing a basic 
understanding as a first step for those who use, 
deploy, or build distributed systems. It assumes no 
specialized knowledge of networks or operating sys- 
tems. 

A local-area distributed system is a collection of 
computers in a limited area (such as  a building or 
campus),  connected by a high-speed local area net- 
work (LAN). This paper uses the  term node for a 
computer in such a system. Thus a  node can be 
anything from a PC to a large mainframe.  Some 
examples of local-area distributed system configura- 
tions  are  the following: workstations  and file servers 
on a LAN, collections of computers  that present the 
image of a single computer, and heterogeneous work- 
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stations and mainframes  that  cooperate loosely.'.' 
LANS differ from wide-area networks (WANS) in  their 
greater speed and capacity and their lower cost, and 
in their being controlled by the  organizations  that 
use them. These differences all encourage network 
use. WANS and multiprocessor systems are  not dis- 
cussed in this paper. Rather,  this  paper focuses on 
local-area system software. 

Discussed first are  the forces leading to distributed 
systems, the obstacles to realizing their full value, 
and  the  common current uses. The next section 
introduces  concepts and models for describing dis- 
tributed systems. This is followed  by a discussion of 
the features that  are needed. The last two sections 
present design attributes and issues, and examples of 
systems that represent the  main  approaches. 

Forces,  obstacles, and uses 

The growing use  of distributed systems reflects both 
organizational and technical forces. Distributed sys- 
tems  come  about  through  the  acts of distributing 
centralized systems or connecting formerly separate 
systems, and through choosing distributed  structures 
for new systems. One  impetus for distribution is the 
need for computing power, as applications  multiply 
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and become more  demanding. Consider, for exam- 
ple, a centralized system that is  used for orders, 
personnel, and  computer program development. As 

A force  leading to  interconnection 
is  the  benefit of a  larger  user 

community. 

demand grows, a separate computing system is de- 
voted to each of these functions, yet the  functions 
continue to share data  and  other resources. Each 
system can be managed by the  department respon- 
sible for the  application. Security is enhanced, be- 
cause each system is used only by people who need 
its functions. The hardware of each node can be 
selected for its appropriateness to the  application. 

Alternatively, the nodes of a  distributed system can 
all perform the  same  functions, in which case the 
availability of the total complex is increased. If one 
node should fail, the  others can take over its work. 
Such a  distributed system can grow incrementally 
through the  addition of  new nodes. 

A force leading to interconnection is the benefit of a 
larger user community, giving greater value to the 
sharing of data  and applications and  to  communi- 
cation through mail and messages.  Also, distribution 
of software to  the nodes becomes much simpler. 

Local-area distributed systems allow specialized 
hardware or software of one  node  to be  used from 
another node. For example, one  node may have a 
high-speed graphics printer  and  another  node  a da- 
tabase management system. That hardware and soft- 
ware may be essential to other nodes, but used by 
them less frequently. Thus it is possible for the 
hardware and software to be shared. Such sharing is 
especially important for workstations, because their 
local function is more  limited. Sharing allows more 
reliable and  more cost-effective devices to be  used 
for file storage. Price and performance considerations 
lead to systems in which microcomputers assume 
much of the  computing load. 
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The potential of local-area distributed systems has 
not yet been fully realized. Centralized systems rep- 
resent many years  of experience, and  the  art of 
designing and managing them is  highly developed. 
Distributed systems lack a comparably mature cul- 
ture for their use and  management.  The software 
technology is still in its early stages. The potential 
security advantages are  accompanied by  new security 
exposures. Auditing becomes more complex as sys- 
tems proliferate and disperse. Applications estab- 
lished in a centralized environment are not always 
easily transformed into distributed applications, and 
new distributed applications have been difficult to 
develop. 

Distributed systems are most often used  in univer- 
sities and  other campus-like clusterings of  users. 
They usually develop from the  bottom  up, with 
departments or groups creating their own LAN sys- 
tems  that later join  a global  system connected by a 
backbone LAN.  Small businesses use workstations on 
LANS. Engineering and research groups use LANS of 
high-performance workstations. The most common 
functions  are file sharing, printing, messages. mail. 
document  distribution,  and  remote task execution, 
though far more is possible. 

Concepts  and  models 

A system  is said to present a single-system imagc if 
it behaves like a single computer, with the user 
essentially unaware what node is doing what func- 
tion.  One system structure  that presents a single- 
system image is the distributed operating system 
(DoS).' A DOS distributes the basic operating system 
objects-files,  processes or tasks, queues, and, per- 
haps, segments of memory. (A process is sometimes 
defined as an execution of a program, sometimes a i  
a stream of activity.) A distributedjile  system ( DFS) 
provides some of the features of a DOS and can 
present a single file system image. A distributed 
system can be built on a DFS model, with distributed 
files supporting all the  other  functions of the system. 

In other systems, users may be quite aware of the 
network and of  where functions  are camed out&This 
is true for a network operating system (NOS). An 
NOS often involves heterogeneous hardware and  op- 
erating systems, whereas a DOS is limited to a single 
operating system and often a single machine archi- 
tecture. The NOS preserves the varying system images 
of its nodes. The DOS and NOS typically differ  in their 
design as well as their image. The DOS usually 
changes or replaces the kernel of an existing operat- 
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ing system, whereas the NOS adds  a network com- 
ponent at a fairly high  level. 

The client-server model applies to both DOS and NOS. 
A client (software executing at  one node) makes a 
request for a service that is provided somewhere in 
the system. The request is handled by a server, which 
is software executing possibly at  another node. (In 
commercial LAN systems, server often refers to a 
node specialized to provide a service.) In a DOS, each 
node is capable of playing both  the client and  the 
server roles. In other systems, some nodes lack the 
server capability. Even where all nodes have the  same 
base capability, some nodes can be dedicated to 
specific functions. The client-server model is the 
basis for resource-sharing  systems,”9 which are sys- 
tems  that emphasize the sharing of computing re- 
sources or services (as opposed to files or devices). A 
task is performed at a node that is specialized to 
handle the task or that has spare capacity. 

In recent years, the object-oriented model has become 
increasingly important for system design. In such a 
model, every system object has a type that defines a 
set of operations to create and  manipulate objects of 
that type. The  implementation of an object is hidden 
from its users, who see only the type definition. This 
approach is fitting for distributed systems, where it 
is  especially appropriate to hide how an object is 
implemented-perhaps on another  computer of a 
different architecture. The client-server model sup- 
ports the object model, in the sense that  an object 
can be encapsulated by a set of servers. The object 
model can unify the views of users, programs, and 
system designers. This unification is rare, however, 
because most systems must  support pre-existing user 
and program views. 

Models of communication architectures are also  val- 
uable for underst:;ding distributed systems. The OSI 
Reference Model was not originally intended to 
apply within systems, where a system was defined as 
one or more  autonomous  computers. As LANS be- 
came more prevalent, however, OSI standards work 
was applied to  the nodes of local systems. OSI, mean- 
ing Open Systems Interconnection, emphasizes the 
fact that  the interfaces are in the public domain.  The 
OSI model specifies layers, where each layer provides 
services to the layer above, and each layer adds value 
to the layers below. The lower layers are closer to 
the physical media, and  the higher layers are closer 
to the  application.  The seven OSI layers are described 
elsewhere.” The  functions discussed in this paper 
are primarily at layers 5 and 6, the session and 
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presentation layers. These layers are supported by 
layer 3, the network layer, and layer 4, the transport 
layer. SNA similarly provides a layered architec- 
ture.12.13 

For a homogeneous DOS, layering is not needed and 
may be inefficient, and  the DOS can be  viewed as  a 
single  system of an OSI network. For a heterogeneous 
NOS, however, and for the individual computers  that 
are potential nodes of various distributed systems, 

Ideally,  the  user  should  see  no 
difference  between  local  and 

remote  function. 

there are benefits from following a  standard 
The design and business advantages of 

layering may outweigh its cost, which is becoming 
relatively smaller. Even personal computers can now 
support SNA and OSI protocols. 

Requirements 

User interface. As the scope of a user’s work extends 
beyond the local computer to a  distributed system, 
new and somewhat conflicting needs arise. This is 
especially true for heterogeneous systems. Ideally, 
the user should see no difference between local and 
remote function  and should be able to use a familiar 
or preferred mode of interaction.  From  a user’s point 
of  view, local means  the user’s node, and remote 
means  any  other node. From an observer’s point of 
view,  all nodes are local. Systems of heterogeneous 
nodes require the interposition of a user interface 
management system that masks inessential differ- 
ences, a difficult problem that is not solved by cur- 
rent systems. One  approach is to use a workstation 
as  a  front  end to all  services, with workstation soft- 
ware masking some of the heterogeneity. 

A major benefit of a  distributed system is the user’s 
greater ability to carry out concurrent activities, 
some of which are  supported by remote nodes. A 
display interface with multiple windows allows the 



user to  monitor  the progress of all these activities. 
With the X Window System,15 which originated to 
meet the needs of network environments, an appli- 
cation  can use windows on  any display in  the  net- 
work and  in  a  network-transparent way. X is built 
on  the client-server model, the client being the  ap- 
plication and  the server controlling the display. Since 
multiple clients can have connections to a server at 
once, X supports  the  requirement for monitoring 
concurrent network-wide activities. 

Program interface. Distribution imposes two new 
kinds of requirements. In the first instance, conven- 
tional  and pre-existing programs  must  run properly 
and must be able to take advantage of distributed 
resources. For example, these programs must be able 
to share files on a file server without  any changes to 
the programs. In the second instance, programs writ- 
ten for a  distributed  environment  must be able to 
request services of other nodes, offer services to  other 
nodes, or simply communicate with programs at 
other nodes. 

In one  approach to this, an operating system call 
(such as file I/O) is intercepted and transformed by 
programs called stub routines into  a request on  an- 
other  node. The transformation may use informa- 
tion supplied in  a  prior  command, such as  the infor- 
mation necessary to  map a disk drive to a  remote 
directory. The generated request may itself be con- 
sidered a program in  a network control language.16 
Another  approach is a system interface that  can be 
invoked from various programming languages. This 
approach is used in  the IBM Advanced Program-to- 
Program Communication (APPC), which provides 
verbs such as SEND-DATA and RECEIVE-AND-WAIT. 
Some systems conveniently generate such calls from 
multiple languages by means of stub  generator^.'"^^ 
The  third  approach is a  programming language or 
language extensions designed specifically for distrib- 
uted programming. Building distributed  applications 
is difficult, and  an  appropriate language can help. A 
language also serves as a  conceptual framework for 
the  distributed ~ystern.’~-’~  One of the  most fully 
developed languages is  Argus, an object-oriented 
language for distributed  programming. Argus  re- 
sources are encapsulated in guardians, which are 
abstract data types that expose the  operations avail- 
able on those resources. One guardian  may use an- 
other’s operations by means of remote calls, without 
regard for location. 

Management. Controlling  a  distributed system is not 
in principle different from controlling a centralized 

one  that  supports varied work and  many users. In 
both  structures it is useful to distribute  control to 
the people who own data, applications, and  comput- 
ing resources. A  distributed system, even if com- 
posed entirely of personal computers,  must  be  man- 
aged-a function called network management. Some 
of this has to  do with the physical 
network-keeping track of the hardware configura- 
tion, detecting and correcting faults, monitoring per- 
formance,  and providing data  that  can  be used in 
planning for expansion. LAN hardware typically pro- 
vides features to collect the needed data. At the 

Most  applications  assume  a  model 
of local  sequential  execution, 

and  distributed  systems  preserve 
that  model  to  varying degrees. 

higher systems  management level, different features 
are needed. System software must  control access to 
services and  data.  The software must identify users 
and  authenticate service requests. It must perform 
accounting and ensure  that software at different 
nodes is compatible. Also, the systems management 
software must  maintain  performance  through func- 
tions such as load balancing  and the migration of 
services and  data between machines. 

Attributes of distributed  systems 

Transparency. A highly desirable attribute is location 
transparency, which is a system view that  eliminates 
program and user concern with where resources are 
and even whether they are in one or many locations. 
Transparency is important for three reasons. It re- 
duces the complexity of applications, ideally making 
them as simple to build as  applications for central- 
ized systems. Also, transparency allows applications 
to move easily between centralized and distributed 
environments.  Further,  transparency allows re- 
sources and applications to move  from  node to node 
without changing the behavior of the applications. 
Most applications  assume  a model of local sequential 
execution, and distributed systems preserve that 
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model to varying  degrees. For transparency to be 
maintained, locations should not  appear  in pro- 
grams. Assume for example, that  the global name of 
a file starts with its node name. If the node name 
appears in a program, moving the file invalidates the 

The need is for a  more  structured 
form  of  communication and for 

addressing by function,  rather  than 
by process  identifier. 

program. If the meaning of a name  depends on the 
node that uses the name, a program cannot execute 
at different nodes. Although complete transparency 
is a goal, systems that provide less than complete 
transparency can nevertheless be quite powerful. 

Mechanisms for distribution. The  methods used for 
distributing the activity of a system are extremely 
important, because they determine  not only the ef- 
ficiency and reliability of the system but also its 
convenience for users and application developers. 

A method that is  well-developed in centralized sys- 
tems is interprocess communication (IPC) in which 
one process communicates with another by sending 
it a message that specifies the identity of the intended 
recipient. It seems natural to extend IPC so that  the 
communicating processes can be at different nodes. 
This method has the advantage of compatibility with 
the centralized environment,  but it also has weak- 
nesses. It is  difficult to write and debug distributed 
programs that use  messages, without any higher-level 
structure. Also, it is inappropriate for one process to 
know the identity of another when the processes are 
distributed over a possibly heterogeneous network. 
The need  is for a more structured form of commu- 
nication and for addressing by function, rather than 
by process identifier. 

A widely-used method for more structured commu- 
nication extends the familiar concept of the proce- 
dure call. A remote procedure  call ( R P C ~  behaves 
very much like a procedure call in a programming 
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language. Parameters are passed by value, and  return 
parameters are available when the call completes. In 
terms of the client-server model, the procedure being 
called  is a service that may be either local or remote.’ 
The caller is the client and  the handler of the call is 
the server. (Note that remote calls can be supported 
locally also.) RPC has the advantage of simplicity and 
familiarity, but may be  inefficient when the caller 
needs no results or acknowledgement. Another dis- 
advantage is that RPC does not fully exploit the 
parallelism  of a distributed system. The client is 
blocked (i.e., cannot execute) until the call com- 
pletes. For this reason, some systems provide an 
asynchronous RPC. After making the call the client 
continues to execute and checks for completion at a 
later time. With this form, a process can be a client 
for multiple requests at once. In some systems, a 
service request sets up a virtual  circuit that connects 
the client and server, and further messages can be 
exchanged using that circuit. A still more structured 
form of service request is a distributed transaction, 
which  is  discussed later in this section. Security 
features may be associated with a service request. 

Once a service request mechanism is in place, it can 
be  used for traditional operating system  services, as 
well as for those service requests that  are unique to 
a distributed environment. Printing, for example, 
becomes a service. A name service looks up objects 
including services and finds their locations and pos- 
sibly other attributes. Other services provide file 
transfer, remote file  access, and remote execution. 
Although motivated by distribution, this structuring 
of the operating system into services  is valuable in 
its own right, contributing  to a clean modular struc- 
ture. 

Systems  vary a great deal in  the way they implement 
distribution.  LOCUS,^' for example, intercepts file I/O 
calls and  other operating system calls and invokes 
tailored high-performance communication proto- 
cols. In NOS, the  communication  component typi- 
cally  resides at a higher level and has a layered form. 
Low-level tailored mechanisms perform better, but 
limit portability. M f ~ y  systems use standard proto- 
cols, such as TCP/IP, which provide error checking, 
flow control, and  other services. TCPIIP was  devel- 
oped for networks of hosts, but it is now well within 
the capabilities of workstations. The  trend for work- 
stations is to place the  communication function in 
network interface units with their own processors 
and memory. The issue of special-purpose versus 
generalpurpose  transport protocols is  discussed  else- 
where.’ 



A distributed system requires special operating sys- 
tem support, including lightweight processes for sys- 
tem work. These are processes that  can be created, 
dispatched, and destroyed quickly, whose  use  of 
memory is efficient, and whose IPC is fast. Such 
processes  usually share an address space and  are 
often queue-driven. Many systems assign each serv- 
ice request to a lightweight  process that is either 
created on  demand or assigned from a pre-existing 
pool corresponding to a service. The system must 
have  efficient interrupt handling (because the com- 
pletion of requests occurs asynchronously) and must 
have  efficient storage management for buffering  of 
messages. A time-out facility is needed to detect the 
failure of a service request. 

Naming. Users and programs need to refer to the 
objects of a distributed system (users, workstations, 
services, . . .) so as to preserve location transparency. 
This means using a name  that will not change when 
the object moves. Some component must then  map 
names into locations. This component is  called a 
name service or directory  service. 3023' The  name serv- 
ice may be provided by one node or by each node 
for the objects that it owns. For greater availability, 
the directory used  by the  name service may be rep- 
licated at some or all nodes. The  name service may 
also determine what objects satisfy the user's  needs. 
For example, the user may need a printing service 
that accepts PostScript@ format for desktop publish- 
ing. The  name service must  then associate objects 
with their names and their attributes. One essential 
attribute is location. Examples of other  attributes for 
a print service are  the formats it accepts and its 
speed. Required for a compute service are its archi- 
tecture, memory size, and special coprocessors. By 
analogy with telephone directories, the finding of the 
attributes given the name is a white-pages service. 
The finding of the object given some attributes is a 
yellow-pages service. As systems grow and intercon- 
nect, users  need the yellow-pages function to take 
full advantage of the resources of the distributed 
system. 

A name may be absolute, i.e., having the same 
interpretation wherever it is used, or a name may be 
relative to  the node that is  using it, or even to some 
context within that node. Absolute names have the 
advantage that they can be passed around  and have 
the same meaning wherever they are used. Absolute 
names must be unique, and  one way to assure 
uniqueness is for a centralized name service to gen- 
erate them when objects are created. An alternative 
is a hierarchically-structured name space, with part 

of a name identifying a node (which defeats trans- 
parency). Relative names  must be interpreted within 
the appropriate context. An example occurs in LAN 
file systems. To refer to a remote directory the client 
uses a name  that is mapped at  the client node- 
using the local  context-into the  name offered by 
the server. For example, a server offers a directory 
under  the  name MEMOS, and a PC DOS user specifies 
that drive L refers to MEMOS. 

When the naming systems of the nodes are different, 
a global scheme is  used. When local-area systems are 
enlarged or interconnected, uniqueness must be en- 
sured in  the larger context. A promising solution is 
to retain the  name services of the nodes or LANS and 
to bridge them by a global naming service. Naming 
requirements are complex, and many problems re- 
main unsolved. 

Homogeneity and heterogeneity. The original plans 
for a distributed system known as Andrew at  the 
Carnegie-Mellon University ". . . assumed there 
would  be nothing else on campus except  Andrew. 
This model ideal was comparable to building an 
expressway across Wyoming, working with  virgin 
territory, when in fact we were talking about  running 
one through something like Heteroge- 
neity is as common  in organizations as in big cities, 
because  local decisions are made autonomously. 
Clearly, the more alike the nodes, the simpler it is to 
build a workable system; but techniques for dealing 
with heterogeneity are being developed. Heteroge- 
neity occurs at various levels: LAN hardware, com- 
munication protocols, machine architecture, oper- 
ating system, and application interface. Both OSI and 
SNA address heterogeneity at  the  communication 
level, and OSI standards organizations are addressing 
heterogeneity at higher  levels. IBM'S Systems Appli- 
cation Architecture (SAA)'~ aims  at consistent user 
and programming interfaces and  communications, 
across heterogeneous architectures and operating 
systems. 

File sharing illustrates many of the problems intro- 
duced by heterogeneity. Different character sets are 
used.  Files are organized either as sequences of bytes 
or as sequences of records. Directories are flat or 
hierarchical. Integers have different lengths, and 
floating point representations differ. A system that 
provides remote task execution must also cope with 
differences in instruction set and configuration. Fi- 
nally, the NOS itself must be portable across the 
different architectures or must exist in different ver- 
sions. Problem\,yJ heterogeneity are discussed more 
fully  elsewhere. 
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Concurrency control and reliability. Even a central- 
ized  system must control concurrent access to shared 
data,  to ensure that each operation is carried out 
properly and  that integrity of data is maintained. 
Distributed systems are not different in principle, 
but concurrency control is far more difficult.  Coq; 
currency control is  discussed along with  reliability, 
because the techniques used must consider both 
objectives. 

The most common approach to providing reliability 
is through redundancy. Centralized systems are in- 
creasingly redundant,  but  a distributed structure is a 
natural framework for redundancy. File  service can 

File  replication  is  ideally 
transparent to users  and  to 

components  outside  the  file  system. 

be provided by multiple nodes, and  a file can be 
replicated at each of the nodes. This replication both 
protects the file against loss and increases its availa- 
bility for access. At a lower  level, replication of 
storage can be used to build an abstraction called 
stable storage.36 Other services, or generalized proc- 
essing  power, can also  be provided at multiple nodes. 
A system can go still further and replicate processes. 
Every  process can have a backup process at  a differ- 
ent node that receives the same messages and per- 
forms the same processing. If one process  fails, the 
other can continue. In an object-oriented system, it 
is objects that are replicated. Systems that  continue 
operating correctly even though some componenJs 
fail are called fault tolerant or highly available. 
Replicating data  and processes introduces new over- 
head, because the nodes involved must coordinate 
their activity. Some systems (Argus, for example) 
allow an application developer to specify  which ob- 
jects are resilient to failures.  Replication-especially 
of heavily-shared  system data, such as directories- 
can improve performance. File replication is ideally 
transparent to users and  to  components outside the 
file system. The system must ensure that  a request 
receives the latest version and must keep the copies 
consistent, even if failures occur. 
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The concept of a transaction is  useful to underst@; 
ing concurrency and reliability requirements. 
The essence of a transaction is that it  is atomic: either 
all its operations complete satisfactorily, or the effect 
is  as though the transaction never started. Once the 
transaction commits, its updates can be assumed to 
be  valid and actions complete. The transaction con- 
cept originated for database systems but is increas- 
ingly applied to file systems. Some applications for 
which distributed systems are used (in banking, for 
example) depend on transactions. A large  system 
supports many transactions at once, and different 
transactions use and modify the same data. Opera- 
tions from different transactions are interleaved in 
time, and operations of one transaction are carried 
out  at different nodes. Despite the complexity, it 
must appear as though the transactions were  exe- 
cuted in some order, withm$interleaving. This de- 
mands specialized support. 

An important concurrency control technique, used 
with or without transactions, is locking. When ap- 
plications are moved from separate workstations to 
a LAN, locking becomes necessary and must be pro- 
vided automatically. Locking must be coordinated 
in a distributed system. In LOCUS, for example, the 
node where the file is stored gives out locking tokens 
to other nodes. Another technique is optimistic con- 
currency control, where transactions are allowed to 
run without locking until they commit. At that time, 
a test is made  to ensure that  the committed trans- 
actions have executed in a serializable way. The 
optimism here is the belief that most transactions do 
not update the same data,  and  thus locking would 
generally  be  wasted. Transaction recovery  is sup- 
ported by logging: logs must be kept at all the nodes 
involved in  a distributed transaction. Transaction- 
commit often uses a two-phase commit protocol, in 
which one node, acting as coordinator, directs all the 
nodes to prepare to  commit  and then, after confir- 
mation from all nodes, directs them  to  commit. 

In a distributed system, deadlock can occur not only 
because  files or  other resources are locked, but also 
because of communication. Node 1 may be  waiting 
for a message from node 2, which  is  waiting for a 
message from node 3, which is waiting for a message 
from node 1. Deadlock detection is more complex 
in a distributed system, and many systems use the 
simpler technique of time-outs. In a time-out, if some 
event (typically a message receipt) does not occur 
within a specified time limit, the related service 
request or transaction is discarded. Time-outs have 
the advantage of responding to any kind of failure 
at another node. 



Security. Disjqbuted systems introduce new security 
problems. Much attention has been given to 
network security, including LAN security, but rela- 
tively little to  the overall  system security. Any  system 
must protect the confidentiality of its users’ infor- 
mation and provide access control, that is, the system 
must ensure that resources are used only by those 
who are authorized to use them  and  that  the re- 
sources are used  in authorized ways.  In order to  do 

The  eavesdropping  problem  can be 
solved  by  encrypting  all LAN 

transmissions. 

this a system must provide secure communication, 
ways  of authenticating users and service requests, 
and control of access to services and  data. It must 
back up these facilities  with a protected audit trail. 

A LAN presents several communication security 
problems. Data  on  the LAN are available to every 
network interface unit (NIU). A well-behaved NIU 
looks only at  the  data addressed to  its node, but a 
serious intruder can tap  into  the LAN or  capture a 
node, especially if the node is a personal computer. 
The  intruder can then eavesdrop on any data  on  the 
LAN. The  intruder can go further and insert phony 
messages onto  the  LAN, such as messages that  purport 
to originate at  another NIU. The  intruder can also 
delete, modify, or replay legitimate messages. The 
combination of these passive and active attacks can 
gain the intruder unauthorized access to resources. 
Deletion of  messages can result in denial of  service 
to authorized users. The eavesdropping problem can 
be solved by encrypting all LAN transmissions, and 
digital signatures can be used to authenticate mes- 
sages, that is, to determine if a received  message  is 
in fact identical to the  one sent by the sender.48 
Message identifiers such as time  stamps  or sequence 
numbers can be  used to prevent or detect replay. 

Access control can be modeled as an access matrix 
where the  columns represent resources or objects 
and  the rows represent users. The entries in element 
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i, j of the matrix then represent the access authority 
user i has to object j .  Examples of  access authorities 
are read, update, and control. Some systems do not 
follow this model, but instead rely on resource pass- 
words. 

Two ways to implement the access matrix model are 
access  lists and capabilities. An access list is  associ- 
ated with an object and lists all the users  who have 
access authority for that object, along with their 
specific authorization. It is often kept at the node 
where the object resides. A capability is a token or 
ticket that is  passed by a user when requesting access 
to  an object. A service request must contain either 
the user’s identity or  the capability and must be 
secure from modification. Access control can be 
enforced at  the node of the object, either by general 
mechanisms of the node or by the server for that 
object. Alternatively, a trusted service at a secw- 
node can be involved, as with the Kerberos system, 
developed for the MIT Project Athena. Using encryp- 
tion-based protocols, Kerberos authenticates users, 
and it authenticates clients and servers to  one  an- 
other. 

Example systems 

This section presents systems that have been chosen 
as examples of different approaches to local-area 
distributed systems. The systems are discussed in 
relation to  the issues presented in the two preceding 
sections. 

Distributed file systems. A DFS is crucial for net- 
works of workstations, and it can also play a major 
role  in configurations of  larger computers. Various 
configurations are possible. There are those in which 
any node can offer  files for use  by other nodes. In 
other cases,  all shared files  reside atfile servers, which 
may  use  specialized hardware or operating systems, 
or which  may  be  specialized in function only. A 
mainframe can act as a file server. In a workstation 
environment, file servers provide availability and 
trustworthiness. They can use faster and more cost- 
effective storage, provide automatic backup and re- 
covery, and allow  users to move from workstation 
to workstation. In short, they provide many of the 
advantages of a centralized system. A DFS typically 
aims at some level  of  transparency-at a minimum, 
supporting existing programs that were not written 
for a distributed system. Remote file  access can 
perform as well as or better than local access,  if the 
file  server has faster storage media than  the local 
node. 

IBM  SYSTEMS JOURNAL, VOL 28, NO 2. 1989 



Most DFSS are extensions of either the UNIX@ file 
system or a personal computer file system. This 
section describes some wlx-based systems. 

We  begin  with the widely  used NFSTM50'5' of Sun 
Microsystems, Inc. NFS is  designed for portability to 
machines other  than Sun's workstations and  to op- 
erating systems other  than UNIX. Its protocols, which 
are public, have  been implemented by many ven- 
dors. NFS provides transparency and largely  preserves 
the semantics of the UNIX file system. UNIX uses tree- 
structured directories, and  a MOUNT command at- 
taches a directory at any point in  the currently active 
tree. With NFS, a MOUNT command  can also attach 
remote files.  Any subdirectory of a server node can 
be mounted. 

Two related  issues in the implementation of a DFS 
are whether a virtual circuit is  used and whether state 
i n f ~ r m a t i o n ~ ~  is kept at  the server. An approach 
without states is simpler, but potentially less  efficient. 
NFS uses an RPC protocol without virtual circuits that 
can be supported by different transport mechanisms. 
The server does not keep track of past  requests. This 
greatly  simplifies crash recovery-none is required 
at  the server, and the client simply retries. In order 
to preserve UNIX semantics, file changes must be 
made  on  the disk  for each write operation, which  is 
a possible source of  inefficiency. 

The R F S ~ ~  system ofAT&T, Inc. has similar functions, 
but  a quite different design.  Any node may be client, 
server, or both. A server  explicitly  offers a subtree, 
under  a symbolic name, and  the client mounts  the 
directory using that name. A distributed name server 
keeps track of all currently offered subtrees and their 
nodes. The client and server communicate through 
a virtual circuit between  two nodes. The circuit is 
held  as long as there are any mounts  and is  used for 
all requests between those nodes. The server main- 
tains directory state information in cases  where it 
can expect another access from the client to  the same 
file (as  in OPEN). Since directory state information is 
maintained, a recovery mechanism must be pro- 
vided. 

Other issues concern the  amount or unit of data  that 
is transferred per request, whether there is caching 
of data by the client, and  the  unit used for locking. 
In RFS each file system  call  is  passed to  the server, 
and  no caching is done by the client; thus  a record 
is the typical unit of transfer. File and record locking 
work  in the remote case as well as the local  case. A 
potential problem for a DFS is time skew. The server 
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and client may not agree  perfectly about  the  time of 
day, causing problems for users and programs that 
rely on  the  time  a file  was created or last  modified. 

Communication  security  is  provided 
by encryption-based  authentication 

and by  the  encryption of 
communications. 

RFS solves this problem by calculating the difference 
between client and server views  of time when a 
virtual circuit is established. Any time-based infor- 
mation is adjusted to compensate for this difference. 

The Andrew file  system  is part of a more general 
facility for distributed personal computing that is 
designed to support  thousands of workstations. An- 
drew utilizes file sharing as  the supporting base for 
most shared facilities. Other services are requested, 
for example, by depositing a request file in  an appro- 
priate directory. Andrew assumes that client work- 
stations have significant amounts of disk storage. 
This allows Andrew to rely on client caching. An- 
other requirement is that  the file servers and  com- 
munication be considered secure, whereas the work- 
stations and network are not. The file  servers are 
dedicated to  that function and physical  access to 
them is controlled. Thus they are not threatened by 
actions of either user programs or users. Communi- 
cation security is provided by encryption-based au- 
thentication and by the encryption of communica- 
tions. These security features are part of Andrew's 
remote procedure call. 

In contrast to NFS and RFS, where the client MOUNT 
refers to a subtree offered by a specific node, Andrew 
presents one global shared name space. From the 
workstation viewpoint, the name space is divided 
into local and shared portions. The  unit of sharing 
is a whole  file, and whole  files are cached on disk at 
the workstation. This works  because the working set 
of files for a user  is  fairly small and because  high- 
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performance, high-capacity workstations are used. 
Andrew and  other DFSS also gain performance 
through caching in memory, which can be done  at 
both client and server nodes. A workstation process, 
running  on behalf of the file system, determines 
whether a shared file request can be  satisfied lo- 
cally-that  is,  if there is a valid  copy in the local 
cache memory. If not,  the file  is  fetched from the 
server that is the custodian of that file.  Each  server 
stores a subtree of the shared name space, and each 
keeps a copy of a database that identifies the custo- 
dian for each  file. The request for a file can specify 
callback, which causes the workstation to be  notified 
when the cached copy becomes invalid. When a 
cached file is  closed, the updated copy is transmitted 
to  the appropriate custodian. Authorization is  des- 
ignated by user or group for each directory and is 
implemented by access  lists in  a protected database 
replicated at each server. A server uses a pool of 
lightweight  processes,  with each such process hand- 
ling one RPC connection. 

Andrew supports PCS running PC DOS by means of 
PC servers that  run on UNIX workstations. The PC 
servers  receive PC DOS file requests from client PCS 
and transform them  into UNIX file requests.  Inas- 
much as these servers  have  access to the global  file 
tree, their clients also  have that access. 

Other DFSS are RT PC" Distributed Se rv iy  (which 
also provides distributed message queues), Cedar, 
and Sprite." IBM'S Distributed Data Management 
( D D M ) ~ ~  is an architecture for data sharing among 
systems of heterogenous hardware and software. 

Distributed  operating systems. We have seen that 
transparency is a powerful concept. Research on 
transparency led to  the  LOCUS^' system. LOCUS is 
primarily a DFS, but it also provides remote processes 
and remote IPC. The nodes all run UNIX, but can use 
different hardware. For LOCUS, as for Andrew, the 
heart of the system  is its file system. LOCUS supports 
distributed, possibly replicated files. It provides con- 
currency controls and  atomic file update. The Trans- 
parent Computing Facility  of IBM'S AIX" system in- 
corporates technology similar to  that of LOCUS. 

Users and programs at all using sites-the LOCUS 
term for nodes-see a single  global tree of  files. The 
term filegroup is  used for a self-contained subtree 
mounted  at some point in the global tree. Copies of 
a file may  exist at one or more storage sites (sss). 
One of these sites stores the primary copy of the 
file-the copy guaranteed to be the latest version. 
Another site,  possibly different from the using and 
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storage  sites, is the current synchronization  site (CSS), 
which  is responsible for synchronization and also for 
selecting the ss to be  used  when a file is opened for 
use. 

Corresponding to each filegroup are physical con- 
tainers. A filegroup  may  be partially replicated in 
containers at various sites. The primary copy of the 
container is  always complete. The system ensures 
that  the copies stay consistent and  that  a file request 
is  satisfied by the most recent version. The file system 
implementation replicates its own data structures 
with the same mechanisms. 

The OPEN for a remote file is passed to  the css, which 
then selects the ss. The css identifies the latest version 
and asks each potential ss whether it has that latest 
version. The css then passes the OPEN to  the proper 
ss. In contrast to Andrew, LOCUS reads the file on 
demand,  one page at  a time. All updates are  atomic. 
Closing a file commits  the changes, and explicit  calls 
are also provided to  commit changes and  to discard 
changes. The changes are first committed in the 
primary copy. The ss notifies the css and all the 
other sss, which then obtain the latest changes by 
remote reading of the primary copy. Multiple UNIX 
processes can use  files concurrently. Even though 
these processes can be at different sites, LOCUS be- 
haves  exactly  like UNIX in this respect. 

LOCUS supports the UNIX pipe facility for interprocess 
communication. Because the behavior of  pipes  re- 
sembles that of  files, the mechanisms also are similar. 

LOCUS remote  tasking allows a user to  run  a program 
anywhere in the network, if the user has the required 
authorizations. A running process can move between 
sites that have the same hardware architecture. Mes- 
sages and signals can be sent to remote processes. 
LOCUS supports the UNIX FORK to create a child 
process  with the same program as its parent, and 
EXEC to replace the executing program. FORK can be 
local or remote; EXEC can be  used  with dissimilar 
sites and can cause the process to migrate to  other 
sites. One process can also signal another  to migrate. 
When a process  is created or moves, a site must be 
chosen for it. This choice is partly under application 
control. A process can specify  where its subprocesses 
will execute, but this specification  is not always 
respected, because, for example, of hardware limi- 
tations. The original site is responsible for keeping 
track of where a process  resides, so messages and 
signals can be properly forwarded. A message for a 
remote process  goes to  the original site, which either 

IBM SYSTEMS JOURNAL, VOL 28, NO 2, 1989 



forwards the message or notifies the sender of the 
proper site to use. If the original site is not in the 
network, another site assumes its role. 

Unlike many other systems, LOCUS relies on proto- 
cols that are tailored to the specific problem. For 
example, there is a simple protocol for OPEN that 
requires only four messages, after path name reso- 
lution is complete. Overhead is reduced by doing the 
simplest processing through interrupts  and  the rest 
through lightweight  server  processes. 

MOS" is a distributed system  with a structure different 
from that of LOCUS. The MOS kernel consists of an 
upper kernel that is considered a logical extension of 

A popular  form of distributed 
system is a  collection  of personal 

computers  in  a  LAN. 

the user's program, a lower kernel that implements 
the local objects of a machine, and  a linker that 
allows the upper kernel to use the lower kernel of 
any machine. It is the linker that distinguishes local 
from remote operations and  that intervenes for op- 
erations on network objects, whether local or remote. 
The state of a process  is completely independent of 
the lower kernel state, which  greatly  simplifies  proc- 
ess migration. vAxclusters6'  uses a very  high-speed 
connection for processors that have their own mem- 
ories and share disk storage. The system is controlled 
by a VAXIVMS distributed operating system. Research 
efforts ii distributed 6yperating iystems in$ude 
Accent, tht2V system, Emerald, Amoeba, and 
Quicksilver. 

LAN operating systems for personal computers. A 
popular form of distributed system is a collection of 
personal computers in a LAN. A LAN operating sys- 
tem typically is a limited NOS, based on  an existing 
os, such as PC DOS. Most systems run on various 
LANS. Low cost is important for both the NIU and 
the software. Memory usage must be kept to  a min- 
imum, which leads to different software configura- 
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tions for clients and servers. PC LAN systems origi- 
nally provided simple disk  servers, but evolved rap- 
idly toward greater sophistication. Today these 
systems  all provide file, print, mail, and message 
service. Others provide gateway  service to  other  LANS, 
to  a minicomputer or mainframe, or  to  the telephone 
network. Still others provide remote task execution 
on another PC in  the LAN. The approach and imple- 
mentation vary considerably. 

Our first example is the IBM PC LAN Program.66 Using 
that program any PC can act as a server,  offering  file 
or print service. A PC can be  used  locally,  while 
acting as a server. If the usage is moderate, the local 
user may not experience any change in responsive- 
ness. There is no centralized control, and users do 
not log on to  the network. A file server offers a 
directory at any level in  the hierarchy, assigning it a 
name and optionally a password and specifying the 
type of  access  allowed. To the client PC, the directory 
appears as a remote disk  drive. No name service  is 
provided. A user  assigns a  name to the local PC, and 
the system checks for duplicate names. Security is 
provided by passwords on offered directories. The 
same directory can be  offered under  more  than  one 
symbolic name, so that different users can be  given 
different access. 

Novel1 NetWare'@7  is  designed quite differently. 
NetWare uses dedicated file servers that  run special 
software aimed at good network performance. Al- 
though the DOS file interface is  preserved for client 
programs, a NetWare server  uses its own data format 
and access techniques, including caching of disk data 
in the server memory. NetWare users must log on, 
and resource authorizations are given to individual 
users and  to user groups. 

R M ~  is an experimental system for PC LAN resource 
sharing. It provides a general client-server framework 
within which  services are built as applications. Re- 
mote execution is supported within that framework. 
R M  also provides a user interface for the  concurrent 
use  of network services, and  a programming interface 
for distributed applications. 

An introduction  to  the us!8and management of PC 
LANS is found elsewhere, as is a discussion of 
Microsoft's@ LAN Manager. 

Heterogeneous systems. The Distributed Academic 
Computing ( DAC) system assumes heterogeneity of 
hardware and operating system,  while encompassing 
mainframes, mini-computers, and workstations. Ex- 
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isting applications and operating systems are sup- 
ported. The goals of supporting both heterogeneity 
and transparency lead to  a complex but coherent 
design. The system supports the use of distributed 
objects in a location-transparent way.  Each  local 
operating system is augmented with both a local 
multitasking kernel and NOS kernel. The local kernel 
has a different implementation for each local oper- 
ating system,  whereas the NOS kernel is  highly port- 
able. The NOS kernel provides a remote  service call 
(RSC) that extends RPC to provide asynchrony, access 
control, and accounting. Other functions of the NOS 
are built as system  services that use kernel facilities. 
A global transport system69 provides communication 
in a way that is independent of node architecture, 
network, and network protocol. There is a re- 
mote file access  facility ( R F A ) ~ ~  for heterogeneous file 
systems. This paper touched earlier on  the problems 
arising from heterogeneity of  file  systems. The ap- 
proach taken in RFA is the definition of a homoge- 
neous global file system and  the building of  bridges 
between it and each local file system. RFA has client 
and server components, each providing a bridge to 
a local  file system. The client RFA intercepts local 
requests, transforms them  into requests on the global 
system, and sends them to  a file server. The server 
transforms the global request into  a request on  its 
local file system. Thus  the global  file  system does not 
exist in storage, but only as an intermediate form 
between  bridges. 

The Network Computer Architecture ( N C A ) ’ ~  devel- 
oped by Apollo  is aimed at making it easier to do 
remote computation in a heterogeneous network. 
NCA takes an object-oriented approach. A client pro- 
gram uses RPC to avail  itself  of operations provided 
by some object of the network. The architecture 
includes a language for defining interfaces to objects. 
A compiler for that language produces stub proce- 
dures for both the client and server. These stubs 
convert parameters and results to  and from a com- 
mon network data representation. NCA uses the bro- 
ker concept. Brokers do the work that allows clients 
and servers to cooperate. For example, brokers find 
objects, establish secure communications, and en- 
sure that software  license requirements are met. 

Concluding  remarks 

The motivations for local-area distributed systems 
are strong and likely to become stronger. The hard- 
ware  technology  is advancing at an astounding rate, 
and  the software technology is making good  progress 
in performance, network transparency, and reliabil- 
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ity. Greater LAN speed and capacity will lead to more 
applications that use image and voice. The great 
progress occurring in WAN technology means that 
WANS can soon support today’s LAN functions, such 
as distributed file  systems. The big challenges for the 
near future  are in managing such complex systems, 
coping with heterogeneity, making applications eas- 
ier to develop, and providing interfaces that allow 
the user to enjoy the full  value  of the distributed 
system. 
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