
Application System/400 
performance  characteristics 

The operating system for Application System/400" 
(AS/400m) provides  an  unprecedented breadth of func- 
tion and system  services in a  single, integrated sys- 
tem. The majority of functions are  implemented on top 
of an abstract, high-level  machine interface in a hard- 
ware-independent  manner, using many architectural 
characteristics normally  associated with poor perform- 
ance.  Despite these architectural and functional traits 
of the operating system, the AS1400 exhibits excellent 
price and performance characteristics for commercial 
applications and is a competitive system in the mid- 
range commercial application arena.  A  number  of de- 
sign and optimization techniques, many  of them 
unique  or  innovative, were incorporated into the 
AS1400 to achieve  a combination of advanced  design, 
function, and performance and  are the main subjects 
discussed in this paper. 

M any of the basic architectural Characteristics 
of the hardware and operating system of Ap- 

plication System/400'" ( ~ ~ 1 4 0 0 ~ ~ )  originated with the 
System/38, one of its predecessors. Some of the basic 
system objectives and requirements underlying the 
design  of the System/38 included: hardware inde- 
pendence for the operating system, enhanced pro- 
ductivity for system and application programmers, 
optimization of  system for interactive processing, 
greater integrity and reliability for interactive proc- 
essing, major usability improvement over predeces- 
sor systems, extendability for the operating system 
and its applications, and leading-edge commercial 
application support. 
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The System/38 requirements applied equally well (if 
not more so) to  the development of the AS1400 family 
of computers. In addition, several major objectives 
also existed for the A S ~ O O ,  including compatibility 
with System/36, System/38, and Systems Applica- 
tion Architecture; a selection of products ranging 
from the size  of System/36 to double the size  of 
System/38; improved personal computer affinity  via 
seamless interfaces; and market leadership in  com- 
munications. 

Some of the key ~ ~ 1 4 0 0  architectural characteristics 
that were developed to  support these objectives in- 
cluded: 

High-level, abstract machine interface (MI) 
Pervasive late binding 
Capability-based (object-oriented) operating sys- 

Segment-based virtual addressing (hardware and 

Relational database management system (RDBMS) 
High  level  of inherent operating system integrity 

tem (Operating System/400") 

licensed internal code) 

and reliability 
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Consistent interfaces to lower-level  services 
Wide  range  of high-function primitives 
High-function program model (automatic  and 
static storage initialization, exceptions, debug, 
trace, and so on) 
High  degree of “fault tolerance” and “fault isola- 
tion” in the system software support 
Major application programming interfaces (APIS) 
of predecessors  fully supported 

Many of these characteristics are  commonly associ- 
ated with poor performance. In the A S ~ O O ,  a  number 
of hardware and software design and architectural 
approaches were  used, often in a  unique or innova- 
tive manner,  to provide the benefits  of these char- 
acteristics without incurring the performance over- 
head normally associated with them. 

The hardware design features include tagged storage 
for pointers, high-function input/output processors 
(IOPS) to offload  processing from the  CPU,  and high- 
function microcode primitives and services. 

The software architectural features include single- 
level  storage management and  automatic utilization 
of all of main storage as a DASD (direct-access storage 
device) cache, high-function MI primitives and serv- 
ices, object-oriented architecture, a single, common 
code generator producing re-entrant programs, an 
integrated, natively supported System/36 execution 
environment,  and cooperative processing (involving 
personal computers). 

System structure overview. A review  of A S ~ O O  system 
structure and terminology is  necessary prior to dis- 
cussing specific AS/400 performance characteristics. 

The hardware and licensed internal code implement 
an instruction set and multiprogramming primitives 
called the Internal Microprogrammed Interface 
(IMP]). The licensed internal code portion of the 
system is implemented using the IMPI  instructions 
and  contains  the traditional operating system kernal- 
type functions (storage management, resource man- 
agement, authority, low-level Systems Network Ar- 
chitecture [SNA] layers of 110 operations, and so on) 
as well as the basic object handlers that provide the 
foundation for object orientation of the operating 
system. See Reference 1 for more detail on  the 
processor and IMP] design. 

The licensed internal code implements a higher-level 
interface known as the MI. This MI instruction set, 
although giving the appearance of being directly 
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executed, is compiled into IMPI instructions via a 
licensed internal code component known as  the 
translator. 

The operating system proper (Operating Sys- 
tem/400,  or os/4oo”) is implemented on  the MI layer 
and, in concert with the licensed internal code, con- 
tains all of the traditional operating system functions 
plus many services normally provided as separate 

The IMP1 instruction  set is similar 
to the System/360-System/370 

instruction  set. 

products on  other systems (communications, RDBMS, 
automatic configuration, performance data collec- 
tion,  and so on). os/400 supports a free-format com- 
mand language (CL) which can be either interpreted 
or,,dmpiled, extensive system displays and menus, 
and system  services in support of both licensed pro- 
grams (compilers, editors, office, programming 
workbench, and so on)  and  the largest inventory of 
commercial applications in  the industry available at 
this stage in the life  cycle  of a system. 

Figure 1 illustrates the system structure. 

Basic hardware structure 

The A S / ~ O O  family of computers is a system, made  up 
of several  processors, including the  main processor, 
a service  processor, one  or more storage control 
processors, one or more local workstation processors, 
and optional communications processors. The stor- 
age control, local workstation, and  communications 
processors  offload functions from the  main proces- 
sor. 

The A S ~ O O  main processor hardware provides control 
storage, main storage, a set  of internal registers, and 
an address translation unit. 

The most highly  used parts of the licensed internal 
code execute in the high-speed control storage, 
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Figure 1 System structure overview 

whereas the rest  of the licensed internal  code executes 
IMPI  instructions  in  main storage. The IMPI instruc- 
tion set provides 16 general-purpose registers, a  con- 
dition-code register, and  an instruction-address reg- 
ister. This  instruction set is used by the licensed 
internal  code to  implement  the M I  instruction set. 
The high-level M I  instruction set is not  interpreted 
but is translated by the licensed internal  code  to  the 
IMPI  instruction set before execution. 

The IMP] instruction set is similar to  the System/360- 
System/370 instruction set, but with many  exten- 
sions. It provides one-, two-, four-, and six-byte 
registers with the ability to  do  arithmetic  on one-, 
two-, and four-byte integers. It provides a binary 
floating point  implementation and decimal  arith- 
metic on integers up to 15 digits. 

The IMP] has a large number of register-immediate 
and storage-immediate instructions. These instruc- 
tions provide faster execution  than  their register- 
storage and storage-storage counterparts. 

The IMPI provides instructions  that allow a fast im- 
plementation of many of the MI instructions. The 
IMPI  also provides many  instructions to  implement 
common sequences of more basic instructions. For 
example, there  are  test-and-branch  instructions 
which can be used to test a bit and branch,  depending 
on  instruction  contents. 

Low-level system services 

High-level IMP1 instructions. The IMPI instruction 
set, made available by the  hardware  and licensed 
internal code, includes  some  functions which, on 
most machines, would be  implemented from more 
primitive instructions by the  operating system. Be- 
cause the  functions  are  implemented  in A S / ~ O O  hard- 
ware and licensed internal code, they perform much 
faster than if built  from  primitive  instructions. These 
functions  include: 

Task dispatching-The IMPI  provides a fast, prior- 
itized, pre-emptive task dispatcher. 
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Queuing-The IMPI  provides a set of instructions 
and  data structures  that allow tasks to  communi- 
cate via  messages. The  queuing functions  are  in- 
tegrated with the task dispatching  functions such 
that  the receive message functions place a task in 
a wait state  until  an  appropriate message is avail- 
able on  the queue.  This allows the licensed internal 
code layer to be implemented  as  a  multitasking, 
message-passing system. 
Serialization-The IMP] provides instructions  that 
allow tasks to have a very fast serialization mech- 
anism. 
Locking-The IMPI  includes a set of instructions 
for the  management of lock conflict. These  in- 
structions  make available a fast hashing function 
for accessing symbolic locks and for automatic 
conflict detection. 
Data compression-The IMPI  has a set of instruc- 
tions  that perform SNA and Multileaving Remote 
Job Entry (MRJE) data compression.  These  instruc- 
tions perform the  cpu-intensive compression al- 
gorithms  much faster than  the  equivalent algo- 
rithm  implemented by general-purpose, low-level 
IMPI  instructions. 
Data scanning-The IMPI provides instructions 
that perform complex operations on character 
string data,  including  scanning for specific char- 
acters and trailing blank truncation. 
Array subscripting-In support of high-level lan- 
guages, the IMPI  provides a set of instructions  that 
compute  array  element addresses from  array  in- 
dexes. 
Supervisor link-The IMP]  provides a set of in- 
structions used to  route requests from user pro- 
grams ( M I  programs)  into  the licensed internal 
code layer. These instructions  automatically allo- 
cate a save area, save the registers of the process, 
and  route  execution  to  the  proper  function.  A 
complementary  instruction is used to restore reg- 
isters, free the save area, and  return  to  the user 
program. 
Implicit instructions-The IMPI  provides that  any 
unimplemented  instructions will  be executed as if 
they were supervisor link  instructions. The li- 
censed internal  code  can  implement  complex 
functions as if they were IMPI instructions. 

The IMPI  also provides an  attribute bit for each 
quadword (16 bytes on a 16-byte boundary) within 
main storage. This bit is not addressable by the 
normal IMPI  instructions used to address storage. 
The bit specifically identifies quadwords  in storage 
containing MI pointers. MI pointers  are addresses that 
M I  programs may use and  manipulate. MI programs 
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have no direct access to  the tag bit. The tag bit is 
turned  on by the licensed internal  code when a 
pointer is set and  turned off by hardware  anytime 
the  quadword is modified (except through  a  con- 
trolled set of IMPI pointer  manipulation  instructions). 
This  procedure allows the system to detect invalid 
pointers. It is not possible for an MI program to 
counterfeit  a  pointer or  to modify a  pointer  in an 
invalid way. 

The  attribute bit implementation allows the valida- 
tion of pointers  in an extremely efficient way and is 
the basis for system integrity at  the M I  layer. 

An error detected during  the  execution of an IMPI  
instruction is routed to  the licensed internal  code 
using the  same  technique used for the supervisor link 
instructions. The IMPI identifies many exceptional 
conditions in this way, allowing the licensed internal 
code layer to take  appropriate  action. 

Index support. The licensed internal  code layer im- 
plements  a general balanced binary  tree with front 
compression. The binary  tree  function is used exten- 
sively for fast, keyed information retrieval within the 
licensed internal code and ospoo components.  This 
implementation is highly optimized to minimize the 
number of disk operations required to retrieve an 
entry. The tree is balanced at a page  level, providing 
a very broad,  short tree. 

Binary tree indexes are used within the licensed 
internal  code by: 

Storage management, for permanent,  temporary, 

Database, for indexed file support 
Libraries, for object name  to address resolution 
Security, as a fast mechanism to check a user’s 
authority to perform object operations 
Event management, to provide a fast way for 
finding processes that  act  as  monitors for specific 
events 

and free-space directories 

The binary  tree  function is also made available to 
Os/400 with support for an MI object, an index, which 
contains  a binary tree. This is used within Os/400 for: 

Message  files, so that  the text of a message can be 

Job queues, so that  jobs  may be ordered by priority 

Output queues, so that spool files may be ordered 

found quickly 

and status 

by priority and status 
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I 

Measurements on customer systems with heavy da- 
tabase applications show 10 to 15 percent of the total 
CPU being used by the index support code. See 
Reference 2 for more  information on  the implemen- 
tation of the binary tree  function. 

Storage management. The A S ~ O O  hardware  and li- 
censed internal  code provide a “single-level storage” 

Auxiliary  storage  management  uses 
a binary  buddy  system  to manage 

free disk  space. 

b addressing architecture.  A better term might be “uni- 
form addressable storage.” As objects (files, pro- 
grams, control blocks, directories, and so on) are 
created, they are allocated disk space and are as- 
signed a range of virtual addresses. These virtual 
addresses are used by the IMPI  instructions to address 
the object data directly. The storage management 
licensed internal code reads the object data from disk 
into  main storage on demand,  as required by instruc- 
tion access. This is known as “demand paging.” 
Essentially all of main storage is  used as  a cache for 
objects stored on disk. 

Storage management is divided into two parts: aux- 
iliary storage management  and  main storage man- 
agement. Auxiliary storage management allocates 
disk space to objects, whereas main storage manage- 
ment handles the  demand paging. 

1 

Figure 2 shows the following relationships: 

Auxiliary storage management assigns disk space 
to the virtual addresses of an object. 
Main storage management moves the pages  of an 
object between disk storage and  main storage. 
The CPU addressing hardware  translates  the virtual 
address of an object into  the  corresponding  main 
storage address. 

I 

Auxiliary storage management. Auxiliary storage 
management uses a  binary  buddy system to manage 
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free disk space. The binary  buddy system only allows 
disk space blocks (extents) whose  sizes are  a power 
of two. Thus,  one sector, two sectors, four sectors, 
eight sectors, and so on, are valid free-space block 
sizes. This scheme has several performance  advan- 
tages: 

Garbage collection (the  recombination of small 
blocks of  free space into larger blocks) is very 
simple and fast. When  a disk block is freed, a 
simple check can be made to see if its  “buddy” is 
also free. If it is, the two buddies  are  combined, 
and  the process is repeated until no buddy is 
found. 
External free-space fragmentation is nearly elimi- 
nated in most real-world cases. 

Auxiliary storage management uses binary tree  in- 
dexes to  maintain allocated and free-disk-space di- 
rectories. These indexes are organized so that  most 
operations  (allocation,  deallocation, and translation 
between virtual addresses and disk addresses) can be 
performed with a single index operation. 

Auxiliary storage management uses one of two tech- 
niques to select the disk unit  (actuator)  from which 
the space will  be allocated. If the request is small 
(less than or equal to 32K bytes), a  randomized 
round-robin  scheme is used. If the request is large, 
the disk unit with the greatest percentage of  free 
space is selected. Data  on  the system is fairly well 
spread out  among  the disk units  and provides rea- 
sonable disk-access balancing. 

Storage management forces newly created objects to 
contain binary zeros on first reference. This  action 
guarantees  that  a new object never contains old data 
from a deleted object that occupied the  same disk 
space. No performance penalty occurs because the 
virtual address assigned to  the object is stored in  a 
“header” associated with each sector on disk. When 
a page  of an object is read into  main storage, its 
virtual address is compared with the address stored 
in  the header. If they do not  match,  the  contents of 
the disk sector are  not  part of this object and  the 
page is “zeroed.”  This  technique  eliminates  the need 
to  “zero” disk space when it is allocated (or freed) or 
to maintain  a large table  containing an entry for 
each virtual page indicating whether it had ever been 
referenced. 

Optionally, auxiliary storage management may di- 
vide the disk units  into auxiliary storage pools (ASPS). 
Most user data (files, programs, and so on)  are stored 
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in the “system” ASP. Certain objects, such as journals 
and saved  files,  may  be created and stored into  other 

ration between the active data files and  the on-line 
backup, which improves performance by avoiding 

I ‘‘user’’ ASPS. This process provides a physical  sepa- 

~ disk arm  contention. 

Main storage management. The basis for main stor- 
age management is a simple, demand paging scheme 
with an LRU (least recently used) page replacement 
algorithm. Performance would not be adequate with 
this simple approach in most environments. Main 
storage management provides functions that allow 
other  components of the licensed internal code and 
the operating system to improve the paging perform- 
ance of the machine. Some of these functions are: 

Requesting that large blocks of virtual pages are 
read into storage prior to any reference to  them. 
This can be performed either synchronously with 
the requestor or asynchronously. 
Requesting that blocks of virtual pages are 
“cleared.” This allocates zeroed pages  of main 
storage to  the virtual pages without doing any I/O 

Identifying blocks of virtual pages not likely to be 
referenced in the near future. These pages are 
written to disk  (if changed) and  put  at  the head of 
the LRU list. 
Dividing main storage into “pools.” A customer 
may divide main storage into pools.  Each  user and 
system task is assigned to one of the pools. All 
task  paging requests are satisfied only from their 
assigned pool. In this way, the customer may 
ensure that  a batch job, for example, will not steal 

b 

b operations. 

b the pages  of a higher-priority interactive user. 

The integrated database licensed internal code is 
highly optimized to reduce both I/O requests and 
main storage requirements. 

When handling a request to read a virtual page into 
main storage, main storage management must deter- 
mine the disk address assigned to  the given virtual 
address. Determination is made by finding the entry 
in the binary tree index, which  is built by auxiliary 

maintains  a “lookaside directory” of recently used 
virtual addresses,  which can be examined very 
quickly. The index operation can be avoided by 
using the lookaside directory. 

With the single-level addressing structure of the 
AS/400, main storage can be thought of as a cache for 

1 storage management. Main storage management 
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virtual storage. In this way, little within the system 
is sensitive to  the main storage  size. As more main 
storage  is added to  a system, the  amount of  disk I/O 

The  access group gathers many 
small  objects  associated  with  a 
process  into  a  few  large  blocks 

of disk  space. 

activity is reduced, since more data is automatically 
cached in main storage. 

Access groups. Storage management uses an MI ob- 
ject, the access group, as a  container where other 
objects may be suballocated. The access group gath- 
ers many small objects associated with a process into 
a few large blocks of  disk space. When a process 
enters a long wait (for terminal response), its access 
group is written to disk in the fewest  possible I/O 
operations. The main storage pages are  then placed 
at the  top of the LRU list. When the process executes 
again, the pages  of the objects in its access group 
(that were in main storage before the long wait) are 
read  back into  main storage. 

If the demand for main storage pages  is small, storage 
management determines dynamically that  the access 
groups of a process need not be written to or read 
from disk at all. This determination is  based on  a 
number of factors which are dynamically monitored. 
These include: the general faulting rate in the pool, 
the  number of  pages  of the access group which  were 
still resident in  the pool at  the start of the last  few 
transactions, the  number of faults that occurred on 
the access group during  the last transaction, and any 
simple patterns detected in  the read and write deci- 
sions over the last few transactions (both for the pool 
and  the specific  access group). The  amount of data 
and history gathering done is directly tied to the 
general faulting rate in the pool so that this overhead 
is also minimized as demand  in  the pool decreases. 
With this enhancement, response time for machines 
with a large amount of main storage is  fast and  the 
CPU resource is substantially reduced. Access group 
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swapping in a highly memory-constrained system 
can  consume 30 percent of the CPU resource of the 
system. Swapping decreases to 1-2 percent of the 
CPU as  the paging demand  in  the pool decreases. 

Because main storage is used as  a  cache for virtual 
storage and has the ability to dynamically turn swap- 
ping on and off, there is a  strong and direct relation- 
ship between main storage size and  the  amount of 
disk 110 operations  required on a system. If the  main 
storage size is increased, the  amount of disk 110 
operations decreases. The system shifts smoothly 
from an  environment of heavy swapping and fault- 
ing, to  one where I/O activity is required  only for 
randomly accessed data when main storage is added. 

See Reference 3 for more  information on the imple- 
mentation of storage management. 

Resource  and  process  management. Resource and 
process management  are  the licensed internal  code 
components  that  control  the  execution of user and 
system tasks within the system. 

Although the IMP] instructions supply a task dis- 
patcher, its pre-emptive, priority scheduler is not 
adequate for a system with other resource con- 
straints.  For  example, allowing all processes to com- 
pete for the CPU could quickly force the working set 
(the  number of main storage pages required to  run 
without excessive  page faults) of the system to exceed 
the available main storage. 

The process management  component  implements  a 
scheduler, limiting  the  number of processes that  may 
actively compete for pages in  a storage pool to  a 
number set for that pool by the user. An active 
process may become ineligible to compete when it 
has used a  certain amount of CPU time,  known as a 
timeslice. An active process that becomes ineligible 
or  that reaches a  long wait for terminal response has 
its access group  “purged.”  When an access group is 
purged, any changed pages are written to disk, and 
the pages are forced to  the  top of the LRU list. This 
action amounts  to swapping the process out.  A proc- 
ess  eligible to compete has its access group swapped 
in. 

Relational  database support 

The key ~S1400 system component,  from  the per- 
formance  standpoint of commercial applications, is 
its relational database  management system (RDBMS). 
Because  of the performance-critical nature of this 
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component,  the  majority of the  run-time  support 
and  management of the RDBMS (including  journaling 
and  commitment  control  support) is implemented 
in the licensed internal  code layer (below the MI 
layer). Run-time  support is closely integrated with 
two other key performance areas of licensed internal 

Storage  management  services are 
extensively  used by  the RDBMS. 

code support, index support and storage manage- 
ment.  Index  support is heavily used to  implement 
the logical  views  of the  database  in  the  most  perform- 
ance-efficient manner possible. See References 4, 5, 
and 6 for more detail on the RDBMS design and 
implementation. 

Storage management services are extensively used 
by the RDBMS to maximize and overlap disk 110 
operations and minimize working set size. Antici- 
patory asynchronous reads and writes on database 
record segment pages and indexes are done based on 
expected or historical reference patterns. Blocking of 
multiple data pages to  and from disk are  done  au- 
tomatically when sequential processing patterns  are 
detected or  at  the request of the  application.  Journals 
can also be placed in an auxiliary storage pool, 
separate from the rest of the system, to eliminate 
contention for the disk arm. 

One  important  consequence of the single-level store 
as it relates to  the database is the cost of ensuring 
that all changed pages associated with a file have 
been forced to disk when the file  is deactivated 
(closed). Because of the implicit sharing (or caching) 
provided by main storage management, finding all 
changed pages  of an object currently  in  memory 
requires either  examining all of the pages in  the  main 
store or checking each page  of the object to  deter- 
mine if it is in  main  store.  This  technique becomes 
prohibitively expensive as  the size  of the  main  store 
and object increases. On the System/38 Model 700 
with 32M bytes of main store, this  approach was 
consuming  up to 30 percent of the system CPU in 
the RAMP-c’“ benchmark.  A  bit-map  technique was 
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implemented to resolve this  problem so that  at file 
close time  a bit map associated with the file identifies 
which pages were modified, thus restricting the  num- 
ber of  page examinations  required. 

Sophisticated search features, based on estimates 
made with incomplete  information,  or “guessti- 
mates,” of the  number of selected keys in specified 
indexes, minimize processing time for dynamic  quer- 
ies. This key range “guesstimate” technique is unique 
to  the System/38 and A S / ~ O O  in  that it is done  dynam- 
ically, without  requiring  any  additional index man- 
agement at  update  time or static key counting  rou- 
tines  run at  the user’s request. See Reference 7 for a 
detailed description of this  technique. 

Implicit index sharing by multiple logical  views is 
done when equivalent sequencing is specified in the 
logical  view definition, avoiding  the  maintenance of 
multiple indexes at execution.  Such  sharing is partic- 
ularly important  on  the A S ~ O O  because of the serial- 
ization protocols currently used in the  RDBMS. These 
protocols result in all  of the indexes involved in an 
update being locked concurrently while the  update 
is in progress. Therefore, the  potential for contention 
on a file increases with the  number of concurrently 
updated logical  views over it.  This  potential  can  be 
a serious bottleneck on a large system with a heavily 
updated file that has a large number of  logical  views 
over it. This design will need to be changed to 
provide for more  granular serialization as  the system 
size and  number of supported users grows. 

Combining  the characteristics of implicitly cached 
main storage, automatically balanced disk arm uti- 
lization, high-function horizontal IMPI  primitives, 
and  the low-level, integrated implementation of the 
RDBMS results in unusually good performance  char- 
acteristics for a relational database.  This result is a 
key contributor  to the good price/performance  char- 
acteristics of the A S ~ O O .  

Machine  interface 

Abstract machine. From  a  performance  standpoint, 
perhaps  the  most  important  architectural feature of 
the ~ ~ 1 4 0 0  is the  machine interface (MI) layer. The M I  
layer is an enforced boundary (a set of instructions) 
formally structured in accordance with the architec- 
ture between the licensed internal  code layer of the 
system and  the os/400 layer. The M I  instruction set, 
although giving the  architectural  appearance and 
function of direct execution, is actually compiled. 
The os/400, and all code above  it (licensed programs, 
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applications), is implemented entirely on  the MI. The 
M I  instruction set can be categorized into several 
logical groupings: computational  instructions; spe- 
cific objects (over 15 different object types are  sup- 
ported); locking, exceptions, events; and machine 
resource observation and management. 

All of the systems compilers  are targeted to this M I  
instruction set, producing  a  “program  template” 
which is then used as  input  to  the M I  instruction 
“Create  Program.”  This process invokes a  translator 
component  in  the licensed internal  code layer that 
“translates”  this  program  template  into  a  program 
object containing an IMPI  instruction  stream.  Gen- 
erating  the  instruction  stream involves normal  code 
generation chores  (such  as performing register opti- 
mization,  temporary  operand  management, and so 
on) followed by the final step of encapsulating all of 
the generated pieces into  a new program object. A 
system pointer is returned  to the program object, 
which can  then  be used as  the  operand of a call or 
transfer M I  instruction. 

M I  instructions  are characterized by being high-level, 
generic, and machine-independent.  There is no con- 
cept of registers, physical storage locations, or  other 
hardware-specific characteristics in  the  instruction 
syntax. For example, the  computational  instructions 
consist of generic arithmetic  operations and string 
manipulation  operations. To add two numbers  to- 
gether, a single add  numeric  instruction exists that 
accepts any  combination of numeric  operand types 
and precisions. At translate  time, if the type and 
precision of the  operand is known, an appropriate 
set of IMPI  instructions is generated to perform the 
operation, performing type conversions and preci- 
sion adjustments as required. If the  operand attri- 
butes  are  not  determined at translate  time (i.e., late 
binding was used via data pointers),  a Supervisor 
Link (SVL) to  the appropriate licensed internal  code 
routine is generated, performing the  operation  in an 
interpretive  manner when executed. 

Along with the  traditional  numeric and string ma- 
nipulation  instructions  supported  in the  computa- 
tional class, a  number of higher-function instructions 
for performing common string-handling operations 
exist. Besides generalized versions of the Sys- 
tem/370-like translate  instructions,  there  are  instruc- 
tions  in  support of parsing (scanning for the occur- 
rences of a  particular  string  in  another  string or array) 
and  string compression and decompression (MRJE 
and SNA flavors). Special support for double-byte 
character strings (DBCS for ideographic character sets) 
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is also provided in the scan instruction. Character 
string operands can be up  to 32K bytes in length, 
and arrays of up  to 16 megabytes are supported. 

Each  class  of object supported by the MI layer has its 
own unique set of instructions appropriate for the 
class of object (i.e., a program object supports “cre- 
ate,” “delete,” “call,” “transfer,” and “materialize” 
instructions). In general, these instructions (at exe- 
cution) result in an SVL operation to invoke the 

A dominant  characteristic of the 
AS/400 is its object-oriented 

architecture. 

appropriate licensed internal code routine to perform 
the  function. It is also true for most of the  other 
instructions in the remaining two categories. 

A program object contains  an instruction stream 
that is a mixture of: 

IMP] instructions, corresponding to early-bound 
computational M I  instructions 
SVLS to licensed internal code routines, to perform 
more complex and late-bound operations, such as 
object management, database access, authoriza- 
tion management, and so on 

This mixture results in a machine interface that is 
high-level, abstract, late-bound, and interpretive in 
nature. The machine interface is translated, however, 
into  an instruction stream, where the performance- 
critical computational and string-handling opera- 
tions are handled in line with compiled, early-bound 
performance characteristics (where possible). Fur- 
thermore, since there is a single translator for a single 
M I  instruction set targeted by all compilers on  the 
system,  it  is comparatively easy to  enhance  the IMP] 
support (i.e., to provide additional high-function 
primitives) and quickly take advantage of the en- 
hancement because only one code generator must 
be  modified. 

See References 8 and 9 for more detail on  the M I  and 
on object-oriented architecture. 
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MI objects. A dominant characteristic of the AS/400, 
both externally (to the user) and internally (in  the 
ospoo design and  implementation) is its object-ori- 
ented architecture. 

The basic object handlers are implemented in the 
licensed internal code layer, providing the  support 
for the set  of objects at  the MI. These objects are 
interfaced by the os/400 and licensed programs (LPS) 
via the respective  object-specific M I  instructions. 
These M I  objects present a set of common functions 
(via MI instructions) to all of the system code built 
on  top of the M I  layer, thus providing the benefits  of 
improved integrity and reliability, functional and 
interface consistency, optimized performance, and 
reduced operating system code redundancy. 

These benefits come from formally encapsulated 
function and  data structures that are centralized, 
carefully implemented, and easily  accessed. The 
structures are widely  used throughout  the operating 
system and LPS as basic building blocks for the 
functions and objects they provide. This formalized 
and rigidly enforced data abstraction model is a key 
contributor  to  the integrity, reliability, and usability 
characteristics of os/400. It also contributes signifi- 
cantly to its performance characteristics by providing 
a highly shared implementation of common con- 
structs which can then be highly optimized. 

Several M I  objects are used in support of the RDBMS 
of the system. These include cursor, data space, data 
space index, journal  port,  journal space, and  commit 
block. These M I  objects provide the basic, supporting 
building blocks for the os/400 RDBMS. 

Most of the  fundamental areas of the functions of 
the operating system are supported through appro- 
priate M I  objects. Other objects that have a key 
influence on the performance of the system include 
contexts (libraries), user  profiles (authorization),  and 
programs. 

Contexts and address  resolution. The context object 
maps the symbolic identification (type and  name) of 
an M I  object to its virtual address. Above the M I  layer, 
this virtual address is embodied in a 16-byte pointer, 
which can only be produced and manipulated 
through M I  instructions (such as object creates and 
resolve pointer) that  are designed in the architecture. 
Pointers are hardware-tagged so that they cannot be 
counterfeited or manipulated through interfaces not 
conforming to the architecture. Since pointers are 
the primary mechanism for identifying object oper- 
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ands on MI instructions, context objects serve as the 
mechanism for mapping the symbolic object identi- 
fication, of an object provided by a user, to  the virtual 
address needed to access the object on  the system. 

Context objects are used by Os/400 to  support what 
is presented to  the user as a library. A user-specified 

System  authorization  management 
is based on  user  profiles. 

(and modifiable) list of libraries is associated with 
each job on  the system, and objects can be  referenced 
by the user  explicitly qualified to a specific library. If 
not explicitly qualified to  a library, the library list  of 
the job resolves the reference by searching each 
library on  the list in order until a matching entry is 
found. Context objects are implemented as indexes 
(keyed by object type and  name)  to provide optimum 
performance for this address resolution. 

User applications refer to all  of the objects making 
up  an application symbolically, and everything is 
represented as an object in the system (including the 
user’s job itself,  over 40 different external object 
types are on the system). This representation com- 
bined with the late-bound nature of the system (no 
link-editing, late-bound calls, each CL command rep- 
resented by an object, and so on) results in this 
address resolution operation occurring very  fre- 
quently in the system, often accounting for 5 percent 
of the CPU usage in interactive applications. 

User profiles and authority  management. System 
authorization management is  based on user  profiles. 
Each  system user is represented by a user  profile 
object, which  serves as  the repository for all author- 
ization information related to  that user. All objects 
created on  the system are owned by a specific  user, 
and authorization to use, modify, and manage that 
object (and  the  data within it, in some cases) can be 
controlled on an individual user  basis. At creation 
time, the object is  given a default level  of  access 
authority that applies to all  users. The  authority level 
can  be ovemdden on an individual user  basis to give 
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that user more or less authority to access each object. 
Each operation or access to  an object must be verified 
by the system to ensure the user’s authority. This 
level  of authority checking in combination with the 
granularity of objects typically  used in  an application 
(data  and device  files, programs, libraries, data areas, 
commands, spool files, data queues, device and con- 
troller descriptions, output queues, message queues, 
menus, and so on) implies the potential for a great 
deal  of execution overhead, and  a  number of opti- 
mizations exist to minimize this overhead. The en- 
hancements include: 

All object authority user  profile attribute-When 
the  attribute is present in the user  profile attempt- 
ing an operation, no further checking is required. 
This mechanism is  used  when the user configures 
the system to  run without resource authorization 
checking. It can also be granted to selected  profiles 
when resource authorization checking is active. 
Default authority in the object-The object de- 
fault level  of authority is stored in the object itself, 
along with a bit that specifies whether any specific 
(private) authorities have  been granted to specific 
users. This default avoids doing any user  profile 
lookup if no private authorities exist for the object. 
Pointer authority-A  user’s authority to access an 
object can be stored in a resolved object pointer 
as part of the address resolution operation. An 
example is the database file open processing,  which 
performs an address resolution, storing authority 
in the pointer used for subsequent operations 
against the file (within the same job),  and avoids 
authorization checking on the  data accesses to  the 
file. 

A number of additional constructs exist for control- 
ling object authorizations (such as group profiles, 
adopted authorities, and  authorization lists). A  com- 
plete authorization verification can result in several 
user  profiles  being  accessed. The user  profile object 
itself  is implemented as an index (using the virtual 
address of the object as the key), thus providing 
optimum performance for random lookup opera- 
tions when they do have to be made. 

The most expensive part of this authority resolution 
are the index operations against the user  profiles. 
These operations have been observed in some cus- 
tomer systems to be consuming 15 to 20 percent of 
the total processor  when the various optimizations 
described above were disabled. The authority verifi- 
cation algorithm has been optimized to perform the 
checks in an ascending order of cost, attempting  to 
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Figure 3 Space  objects  and  space  pointers 

avoid the index operations if possible. For example, 
the authority in the pointer is checked first, next the 
user  profile(s)  is checked for all object authority,  then 
the object is checked for no private authorities  and 
sufficient default authority. This order typically  re- 
sults in less than 5 percent of the authority verifica- 
tions performing an index operation (0 percent if 
resource authorization checking is not active). 

See References 10 and I 1  for detail on the  authori- 
zation support. 

Space objects. A space object is an M I  object that is 
essentially a free-format byte string (up  to 16 mega- 
bytes  in length), which can be freely  accessed and 
manipulated using M I  computational instructions. 
Access to this byte string is gained through a special- 
purpose pointer called a space pointer (SPP). Figure 
3 depicts space objects and space pointers. An SPP 
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identifies the space object and  an offset within it. 
The SPP can be  used as the operand for many of the 
M I  instructions. The offset within an SPP can be 
manipulated via  specific M I  instructions that  are 
provided for this purpose. A high-performance form 
of a space pointer, called a machine space pointer 
(MSPP), is supported with limitations on its use, such 
that its actual storage location cannot be  accessed 
directly from an M I  program. The pointer can be 
optimized to  and manipulated as a six-byte virtual 
address, potentially being optimized into  a register 
across M I  instructions, without compromising pro- 
gram debug support. A specific authority  to access 
the object is required in order to set a space pointer 
(from a system pointer) to  the space object, but once 
it has been initially set, its offset within the space can 
be manipulated without any authorization checking. 

At the  time  the space object is created, 16 megabytes 
of address space are reserved for the object, with the 
actual disk allocations being made only upon explicit 
request or, optionally, automatically on first refer- 
ence to  an offset. 

The space object provides a high-performance free- 
format construct for use  when the frequency of 
reference or unpredictability of  use  would make 
more formal encapsulation of the object impractical. 
It often serves the function of “GETMAIN” type of 
support in more conventional systems without the 
space-management (chaining and so on) problems 
normally associated with these older mechanisms. 
Space objects are extensively  used for control blocks 
within ospoo as well as for many of the external 
objects (commands, job descriptions, menus, device 
files, data areas, and so on) presented to  the user. 

MI program architecture. All M I  programs are re- 
entrant-that is, the instruction stream and  other 
constant execution entities are nonmodifiable and 
shared among multiple users. Only one copy ever 
exists in  main storage, regardless of the  number of 
concurrent users. Storage for program variables and 
other process-specific  pieces of the program are al- 
located and managed in process-specific  storage by 
the M I  on appropriate Call and  Return boundaries. 
(The external call  is implemented as an SVL routine 
in the licensed internal code.) In addition to allocat- 
ing and managing this storage in a  manner consistent 
with its attributes (static or  automatic), program 
variables can be initialized to specific  values  by the 
M I  at the time the program is called, by specifying 
the initial values in the declarations of the variable. 
This feature, plus other services such as exception- 
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description management,  invocation-tracing  sup- 
port, event management,  and so on, provide  a very 
rich, productive programming model at  the M I  level. 

From  a  performance  standpoint,  this rich support 
can  make  external  program calls expensive. The 
minimum  path length is on the  order of 60 instruc- 
tions, with much longer path lengths being incurred, 
depending on features used (such as  the  number of 
variables initialized). Path length has not been a 
significant problem  in  the  commercial  application 
arena  as it is characterized by large programs and 
relatively infrequent  external calls. 

Since M I  programs  are  re-entrant (do  not have to be 
loaded or relocated), they have their  program vari- 
able storage automatically allocated (in  separate seg- 
ments) at call time  and  can be identified either 
symbolically (late-bound call) or by virtual address 
pointer  (early-bound call). Since all other  external 
references are resolved at  execution  time,  there is no 
concept of a  link loader at  the M I  level. Program 
“linkage” is dynamic, implicitly occurring  at  external 
call time. If the called program is symbolically iden- 
tified, an implicit address resolution is performed 
using an explicitly specified context or an implicitly 
specified list of contexts  (an address resolution list 
associated with the process). This resolution maps 
the symbolic program name to a virtual address. The 
address can  optionally replace the symbolic specifi- 
cation  (in  the processes, program variable storage 
area) so that  subsequent call executions do not  incur 
the overhead of the address resolution.  This  option 
is commonly used in application  programs to pro- 
vide dynamic  binding to  the programs on the first 
call; then  subsequent calls in  the  “run  unit” of the 
language reuse the resolved address. Similar  tech- 
niques are also applied to  other external references 
by the  program. 

This linkage technique has been further refined for 
the os/400 system code by building a “system entry 
point  table”  containing the addresses of all of the 
system programs  (built at  the  time  that  the system 
code is installed). All external calls within the system 
code  and from application  code to system code  are 
done via these preresolved pointers. 

Similar techniques  are heavily used within the OS/400 
system code to early-bind other  external references. 
Numerous  control blocks and structures  are  built 
and initialized at different points  in  time (install, 
initial program load, job initiation, first use, and so 
on), binding external addressability at  the most  ap- 
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propriate  point based on functional and performance 
considerations and on tradeoffs. A vast majority of 
external references are  early-bound  without losing 

The MI supports a set  of  common 
program  debug  functions. 

the flexibility of late  binding.  Late  binding is still 
used  freely when functional  considerations  make  it 
desirable. 

Program debug. The M I  also supports  a set of com- 
mon program debug functions,  including  the ability 
to set breakpoints on M I  instructions  as well as dis- 
playing and modifying program variables while at a 
breakpoint.  Breakpoint  support is implemented 
through licensed internal  code  support and desig- 
nates an address range within an instruction  stream 
(specific to a process) where interrupts will  be pre- 
sented on instruction  execution.  This designation 
allows supporting  breakpoints to be on the program 
anytime  (in  a process-specific manner),  without  in- 
curring  any  extra overhead in  the  instruction  stream 
when running  without  breakpoints being set. 

The program variable display and modification sup- 
port is provided via a  table generated by the  trans- 
lator  that  maps program variables into  their storage 
locations at  execution.  Currently  this  support is au- 
tomatically provided, so a recompile is not needed 
to perform program debugging operations. To make 
this support  as predictable as possible, the MI archi- 
tecture  guarantees  that  the storage locations associ- 
ated with variables are always current  at M I  instruc- 
tion boundaries  (the only place where breakpoints 
are serviced) and  that changes made to variables 
while at a  breakpoint will be reflected immediately 
in  the  execution of the  program.  Ensuring  this pre- 
dictability places some  constraints on register opti- 
mization. Although addresses are  currently  opti- 
mized into registers across MI instructions, data items 
are  not.  This restriction can result in  poor  perform- 
ance for tightly coded loops where the  loop  control 
code and  array index values cannot be optimized 
into registers. For  the typical commercial  application 
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environment, this condition is  generally not  a prob- 
lem  because  of the existence of the high-function 
string manipulation of MI instructions, which  usually 
eliminates the need for tightly coded loops at  the MI. 
As newer  languages and engineering and scientific 
languages (Pascal, C, FORTRAN) are supported on  the 
system, this performance shortcoming of the MI may 
become more serious, requiring a relaxation of this 
aspect of the architecture as a program option. 

Transaction  processing  model 

The A S ~ O O  IMPI  supports a basic tasking model rep- 
resented by a task dispatching element ( 5  12-byte 
memory-resident control block). The licensed inter- 
nal code layer of the system combines this tasking 
model with  several other constructs to provide an M I  
“process model.” Constructs include: 

User profile 
Process  access group 
Program variable storage-Program automatic 
storage area (PASA) and program static storage area 
(PSSA) 
MI exception-handling support 
Event-handling support 
Object-locking support 

The ospoo combines an MI process  with additional 
structures and support to present a “job” to  the user. 
The additional structures include: 

Job message Q 
Output Q 

Local data area 
M I  response Q (I/O interface to the MI) 
Data management communications Q (manages 

QTEMP library 

file opens and  dynamic file redirection) 

All this system function, available in support of a 
user’s “job,” in combination with the previously 
discussed support (re-entrant programs, dynamic ad- 
dress resolution, storage management, RDBMS,  and 
so on) results in a transaction processing model based 
in each user’s job. This model results in a  dramati- 
cally  simplified,  flexible, and  dynamic application 
development environment. Application control flow 
is  single thread and free  of conventional resource 
bottleneck constraints that confront more conven- 
tional transaction processing environments. Each 
user’s job contends for and accesses resources dy- 
namically and independently of other users,  using 
shared copies of the  permanent objects in main 
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storage (code, data, indexes, control blocks) and their 
own  job-specific program variable and file-access 
buffer areas. Thus, the performance benefits  of 
shared system resources are achieved without the 
drawbacks of restricted address space, complex, in- 

System  compatibility  results  in 
performance  characteristics  similar 

to native  applications. 

flexible resource management problems, and rigid 
early-bound requirements which come  from trans- 
action processing models servicing multiple users 
under a single task. 

Execution  environment  support 

AS/400 System/36 Environment. One of the major 
challenges in the development of AS/400 was provid- 
ing a platform to  support  the execution of the Sys- 
tem/36 application family  with equivalent or im- 
proved  price and performance. Given the radical 
differences in the architectures, designs, and heritages 
of the two systems, the conventional solution would 
have  been to  support  an  emulation mode (based on 
hardware) on  the new system. This choice would 
have had the advantage of providing object code 
compatibility but would not have achieved the ob- 
jective of immediately providing a wide  range of  new 
functions, productivity, and capacity to System/36 
applications. An alternative solution was imple- 
mented, based on software. 

The A S / ~ O O  System/36 Environment ( ~ 3 6 ~ )  provides 
source code compatibility for System/36 applica- 
tions on the AS/400. Compatibility is accomplished 
by providing a  “mapping” layer of support  and struc- 
tures in os/400 to  map  the System/36 Application 
Programming Interfaces (APIS)  to  the underlying na- 
tive support  in os/400. As a result, the S36E is an 
integrated extension to ospoo rather than  an  emu- 
lator or a  “mode.” There is no concept of “hot 
keying”  between the environments. Applications 
running in the S36E share the same system facilities 
and support that  an A S / ~ O O  application does. The ~ 3 6 ~  
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language compilers generate code  that  runs directly 
on the A S / ~ O O  hardware, and  the System/36 com- 

ices directly. The database, spool, security, message 
handler, display facilities, and so on used by appli- 
cations  running  in  the S36E are  the  same as and  are 
fully shared with the native A S ~ O O  applications. See 
Reference 12 for a  more  complete  description of the 
System/36 Environment design. 

I mand language invokes the  appropriate os/400 serv- 

System compatibility results in  performance  char- 
acteristics similar to native applications. Although 

1 
there is some  performance  overhead  incurred in 
mapping  some System/36 functions to  the appropri- 
ate native services, these functions  are generally in 
the 5 to 15 percent range. When  a migrated Sys- 
tem/36  application does experience significantly de- 
graded performance  (compared to  the equivalent- 
sized System/36), it is usually caused by the design 
of the  application.  That is, it is making  unusually 
heavy use  of a system service, which is significantly 
more expensive on the A S ~ O O  than  it was on the 
System/36. 

1 For example, the  creation and deletion of a file on 
the System/36 is relatively cheap (fast) since it pri- 
marily involves a  Volume  Table of Contents (VTOC) 
update  (the System/36 had a  simple flat file system). 
On A S ~ O O ,  all  files are  part of a full-function RDBMS, 
and  the  creation of one file involves creating and 
linking a  number of complex control blocks as well 
as  the  updating of the data dictionary.  Creation and 
deletion of a  database file on A S / ~ O O  is much  more 
costly (and slow) than on System/36. However, a 
System/36 application executing in the ~ 3 6 ~  on A S ~ O O  

limited-function flat  file on the System/36, making 
much of the  function (and performance) of the  in- 
tegrated RDBMS immediately available to  the Sys- 
tem/36  application. 

1 is using a full-function RDBMS file instead of the 

System/36 Environment  applications  that  make 
heavy use  of those system functions which perform 
comparatively poorly on the A S ~ O O  have been ob- 
served to sometimes require 50 percent  more system 
resource than they did on the System/36 and may 

ways) to achieve acceptable performance. See Ref- 
erence 13 for a  more detailed description. 

1 have to be modified (usually in relatively simple 

Save/restore  (backup  and  recovery) 

One  implication of the auxiliary storage manage- 
ment scheme of the ~ ~ 1 4 0 0  (distributing  the disk 

IEM SYSTEMS JOURNAL, VOL 28, NO 3, 1989 

extents associated with an object across multiple 
DASD units) is that  a  simple sector-by-sector copy of 
the  contents of a single device to a  backup  medium 
is  of no value in the  event of a  future device failure. 
Since any single device, in general, contains only 
some of the pieces of any specific object,  a  backup 
of those pieces  is out of synchronization with the 
other pieces residing on other devices. Short of doing 
a sector image backup of all of the relevant DASD on 
the system and  then restoring all of these devices 
(essentially reloading the  entire system), a sector 
image backup has little value. Thus  the system save 
and restore strategy is based on a higher-level, object- 
oriented premise: essentially collecting and copying 
complete images of objects to  the  backup media on 
the basis of an object, group of objects, library, or 
group of libraries. This process is clearly more  com- 
plex, requiring significantly more system processing 
for organization and  management, particularly for 
complex database networks where many files (phys- 
ical and logical  views) may be interconnected so that 
they must be backed up together. For smaller objects, 
the result is that significantly more disk I/O activity 
is required since smaller disk I/O operations  must  be 
used to collect the small extents associated with these 
objects. Other object-related information, such as 
authorizations which are  not physically stored with 
the object but  must be recoverable, also add  compli- 
cation to this  kind of a scheme. 

To maximize the save and restore processing per- 
formance,  a  number of different strategies and  sup- 
port have been developed both  to  improve the per- 
formance of the processing itself and to reduce the 
volume of objects that  must be backed up. The save 
and restore design employs extensive multitasking 
and  main storage buffering, achieving the  maximum 
possible amount of concurrent disk I/O operations 
and overlap with media I/O activity. The multitask- 
ing and buffering can be easily restricted by tuning 
parameters (CPU priority and buffer sizes which di- 
rectly affect the  amount of concurrent disk I/O op- 
erations) so that  the  impact of this activity on the 
rest  of the system can be controlled when running 
in a  nondedicated  environment. 

To reduce the  volume of data  to be backed up, the 
system supports  a save changed objects scheme, 
whereby only those objects that have changed in  a 
library (since the last time  the  entire library was 
backed up)  are saved. Database files being journaled 
can be exempted  from  this  procedure since a  journal 
save achieves the  same result (in less time if the file 
is large and  the activity comparatively low). 
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The system also supports  the  concept of a save file. 
This file, residing on DASD, is a  simulated  tape file 
which can be used as a  substitute for removable 
media on save and restore operations. If the save file 
is placed in an auxiliary storage pool (ASP) separate 
from the rest  of the system, it provides the following 
benefits: 

Operatorless backup.  For example, unattended 
backup overnight. 
Improved  performance; i.e., a  simulated  tape  de- 
vice that  runs  at DASD speed. 
Improved flexibility. The  backup  can be done 
unattended when the system and objects are  not 
in use, then optionally copied with low overhead 
(at device speed) to removable media during  prime 
shift without interfering with normal  operations 
and use  of the objects. Or, if the save file  is in  a 
separate ASP, it can be  left on line. If a disk unit 
in the system ASP is lost, the system ASP can  be 
reloaded (after appropriate repair actions).  Then 
the ASP containing  the save file can be  logically 
reattached to  the system and used as  the source 
for restore operation  as  appropriate. 

Checksums. Probably the  most  innovative  feature of 
the AS/400 system in this area is the facility known as 
checksums. This facility provides data  redundancy 
on the DASD of the system using an exclusive oRing 
technique such that  the  contents of any disk drive 
on  the system can be reconstructed from the  contents 
of  several other disk drives (from  three to seven, 
depending on  the systems configuration). Although 
the  implementation of the concept on  the AS1400 does 
not allow continued  operation of the system while a 
disk device is inoperable, it does provide data recov- 
ery characteristics similar to DASD mirroring  at  a 
fraction of the DASD cost ( 13 to 33 percent additional 
DASD required, depending on  the configuration). Al- 
though  there is a CPU cost for the  support  (about 5 
to 10 percent for interactive workloads) and  an in- 
crease in disk 110 operations  (about 25 percent  for 
interactive workloads), it provides a cost-effective 
solution for many users desiring “no  data loss” from 
DASD failure characteristic to  the system. 

The  checksumming  concept  that was implemented 
implies that for every write of changed data  to disk, 
the  corresponding data locations on all of the  other 
DASD in  the checksum set must be read into  memory 
and  a checksum calculated and  then written out  to 
the checksum disk. Three key optimizations were 
adopted  in  the AS/400 implementation of checksum- 
ming which allow its  performance to be acceptable. 
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First, when a changed page is written to DASD, the 
old data  in  the  location is read into memory  along 
with the old version of the  checksum for that  data. 
By exclusive oRing of the new data, old data,  and 
old checksum,  the new checksum value can  be  de- 
rived. This  method  avoids having to read all of the 
DASD locations  that  correspond to  the checksum, 
reducing the  required disk I/O operations  from N 

Storage on the  system is 
segregated into two 

classes. 

(where N is the  number of DASDS in  the checksum 
set) to four when writing changed data  to disk. 

Second, the checksum data for a checksum set is 
spread evenly across the DASDS in  a checksum set, 
thus spreading the I/O activity required to maintain 
it evenly among all of the  members of the set and 
avoiding over-utilization of one DASD arm in  the set. 

Third,  the storage on  the system is segregated into 
two classes: temporary objects, whose existence does 
not span IPLS,  and  permanent objects. Since the 
temporary objects normally represent 5 percent or 
less  of the DASD space on a system but  account for 
40 to 60 percent of the DASD writes on a typical 
customer system, segregating these two classes of 
storage and providing the checksum protection only 
for the  permanent objects significantly reduces the 
number of DASD operations  that  incur  checksum- 
ming overhead. The negative implication of this 
operation is that  the system cannot  continue  to  run 
when a DASD fails, as  the  portions of temporary 
objects stored on  that device are no longer available 
and  cannot be recovered. System operation  cannot 
be resumed until  the failing device has been repaired 
(and  the  permanent  data on it reconstructed if lost 
during the repair action). 

For systems that  are  not  cpu-bound  and which add 
an appropriate amount of DASD and/or  main  mem- 
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ory (adding  memory  almost always results in  a sig- 
nificant reduction in total disk I/O activity), interac- 
tive performance with the checksum support active 
is usually equivalent to  that prior to activating check- 
sums  (and adding  the  appropriate  hardware). Very 
disk-write-intensive batch  performance  can degrade 
significantly, in  some  extreme cases by as  much  as  a 
factor of three.  This  performance  can usually be 
improved by fixing problems  in  the  application such 
as blocking factors or changing file placement to get 
better overlap between DASD controllers  or  adding 
DASD controllers/buses. See Reference 14 for more 
details on this  support. 

Concluding  remarks 

The architecture of A S / ~ O O  is characterized by a num- 
ber of features normally associated with poor per- 
formance, such as  a  hardware-independent  operating 
system, a relational database, pervasive late binding, 
and a  broad range of functions. 

However, through extensive use of techniques such 
as low-level implementations of highly used primi- 
tives, an  innovative storage management system, 
careful scoping of early- and late-bound features 
based on function and performance tradeoffs, and 
many  other  optimization  techniques,  the AS/400 ex- 
hibits competitive price and performance  character- 
istics in the  commercial  application  (as typified by 
the RAMP-c benchmark)  marketplace. 

Application System/400. AS/400, Operating  System/400,  OS/400, 
and  RAMP-C  are  trademarks of International Business Machines 
Corporation. 
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