Application System/400
performance characteristics

The operating system for Application System/400™
(AS/400™) provides an unprecedented breadth of func-
tion and system services in a single, integrated sys-
tem. The majority of functions are implemented on top
of an abstract, high-level machine interface in a hard-
ware-independent manner, using many architectural
characteristics normally associated with poor perform-
ance. Despite these architectural and functional traits
of the operating system, the AS/400 exhibits excellent
price and performance characteristics for commercial
applications and is a competitive system in the mid-
range commercial application arena. A number of de-
sign and optimization techniques, many of them
unique or innovative, were incorporated into the
AS/400 to achieve a combination of advanced design,
function, and performance and are the main subjects
discussed in this paper.

Many of the basic architectural characteristics
of the hardware and operating system of Ap-
plication System/400™ (as/400™) originated with the
System/38, one of its predecessors. Some of the basic
system objectives and requirements underlying the
design of the System/38 included: hardware inde-
pendence for the operating system, enhanced pro-
ductivity for system and application programmers,
optimization of system for interactive processing,
greater integrity and reliability for interactive proc-
essing, major usability improvement over predeces-
sor systems, extendability for the operating system
and its applications, and leading-edge commercial
application support.
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The System/38 requirements applied equally well (if
not more so) to the development of the As/400 family
of computers. In addition, several major objectives
also existed for the As/400, including compatibility
with System/36, System/38, and Systems Applica-
tion Architecture; a selection of products ranging
from the size of System/36 to double the size of
System/38; improved personal computer affinity via
seamless interfaces; and market leadership in com-
munications.

Some of the key As/400 architectural characteristics
that were developed to support these objectives in-
cluded:

¢ High-level, abstract machine interface (M)

* Pervasive late binding

* Capability-based (object-oriented) operating sys-
tem (Operating System/400™)

¢ Segment-based virtual addressing (hardware and
licensed internal code)

* Relational database management system (RDBMS)

e High level of inherent operating system integrity
and reliability

© Copyright 1989 by International Business Machines Corporation.
Copying in printed form for private use is permitted without
payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright
notice are included on the first page. The title and abstract, but no
other portions, of this paper may be copied or distributed royalty
free without further permission by computer-based and other
information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

cLark anD corrigan 407




» Consistent interfaces to lower-level services

* Wide range of high-function primitives

¢ High-function program model (automatic and
static storage initialization, exceptions, debug,
trace, and so on)

¢ High degree of “fault tolerance” and “fault isola-
tion” in the system software support

e Major application programming interfaces (APIs)
of predecessors fully supported

Many of these characteristics are commonly associ-
ated with poor performance. In the As/400, a number
of hardware and software design and architectural
approaches were used, often in a unique or innova-
tive manner, to provide the benefits of these char-
acteristics without incurring the performance over-
head normally associated with them.

The hardware design features include tagged storage
for pointers, high-function input/output processors
(10ps) to offload processing from the cpu, and high-
function microcode primitives and services.

The software architectural features include single-
level storage management and automatic utilization
of all of main storage as a DASD (direct-access storage
device) cache, high-function M1 primitives and serv-
ices, object-oriented architecture, a single, common
code generator producing re-entrant programs, an
integrated, natively supported System/36 execution
environment, and cooperative processing (involving
personal computers).

System structure overview. A review of AS/400 system
structure and terminology is necessary prior to dis-
cussing specific As/400 performance characteristics.

The hardware and licensed internal code implement
an instruction set and multiprogramming primitives
called the Internal Microprogrammed Interface
(imp1). The licensed internal code portion of the
system is implemented using the IMPI instructions
and contains the traditional operating system kernal-
type functions (storage management, resource man-
agement, authority, low-level Systems Network Ar-
chitecture [sNA] layers of 170 operations, and so on)
as well as the basic object handlers that provide the
foundation for object orientation of the operating
system. See Reference 1 for more detail on the
processor and IMPI design.

The licensed internal code implements a higher-level
interface known as the Mi. This MI instruction set,
although giving the appearance of being directly
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executed, is compiled into IMPI instructions via a
licensed internal code component known as the
translator.

The operating system proper (Operating Sys-
tem/400, or 0s/400™) is implemented on the mI layer
and, in concert with the licensed internal code, con-
tains all of the traditional operating system functions
plus many services normally provided as separate

The IMPI instruction set is similar
to the System/360-System/370
instruction set.

products on other systems (communications, RDBMS,
automatic configuration, performance data collec-
tion, and so on). 0s/400 supports a free-format com-
mand language (cL) which can be either interpreted
or compiled, extensive system displays and menus,
and system services in support of both licensed pro-
grams (compilers, editors, office, programming
workbench, and so on) and the largest inventory of
commercial applications in the industry available at
this stage in the life cycle of a system.

Figure 1 illustrates the system structure.

Basic hardware structure

The As/400 family of computers is a system, made up
of several processors, including the main processor,
a service processor, one or more storage control
processors, one or more local workstation processors,
and optional communications processors. The stor-
age control, local workstation, and communications
processors offload functions from the main proces-
SOr.

The As/400 main processor hardware provides control
storage, main storage, a set of internal registers, and
an address translation unit.

The most highly used parts of the licensed internal
code execute in the high-speed control storage,

IBM SYSTEMS JOURNAL, VOL 28, NO 3, 1989




Figure 1 System structure overview

whereas the rest of the licensed internal code executes
IMPI instructions in main storage. The iMPI instruc-
tion set provides 16 general-purpose registers, a con-
dition-code register, and an instruction-address reg-
ister. This instruction set is used by the licensed
internal code to implement the M1 instruction set.
The high-level M1 instruction set is not interpreted
but is translated by the licensed internal code to the
IMPI instruction set before execution.

The IMPI instruction set is similar to the System/360-
System/370 instruction set, but with many exten-
sions. It provides one-, two-, four-, and six-byte
registers with the ability to do arithmetic on one-,
two-, and four-byte integers. It provides a binary
floating point implementation and decimal arith-
metic on integers up to 15 digits.

The 1MPI has a large number of register-immediate
and storage-immediate instructions. These instruc-
tions provide faster execution than their register-
storage and storage-storage counterparts.
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The IMPI provides instructions that allow a fast im-
plementation of many of the MI instructions. The
IMPI also provides many instructions to implement
common sequences of more basic instructions. For
example, there are test-and-branch instructions
which can be used to test a bit and branch, depending
on instruction contents.

Low-level system services

High-level IMPI instructions. The 1MPI instruction
set, made available by the hardware and licensed
internal code, includes some functions which, on
most machines, would be implemented from more
primitive instructions by the operating system. Be-
cause the functions are implemented in AS/400 hard-
ware and licensed internal code, they perform much
faster than if built from primitive instructions. These
functions include:

e Task dispatching—The IMPI provides a fast, prior-
itized, pre-emptive task dispatcher.
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* Queuing—The 1MPI provides a set of instructions
and data structures that allow tasks to communi-
cate via messages. The queuing functions are in-
tegrated with the task dispatching functions such
that the receive message functions place a task in
a wait state until an appropriate message is avail-
able on the queue. This allows the licensed internal
code layer to be implemented as a multitasking,
message-passing system.

¢ Serialization—The 1MPI provides instructions that
allow tasks to have a very fast serialization mech-
anism.

* Locking—The 1MpI includes a set of instructions
for the management of lock conflict. These in-
structions make available a fast hashing function
for accessing symbolic locks and for automatic
conflict detection.

* Data compression—The IMPI has a set of instruc-
tions that perform sNA and Multileaving Remote
Job Entry (MRJE) data compression. These instruc-
tions perform the CcPU-intensive compression al-
gorithms much faster than the equivalent algo-
rithm implemented by general-purpose, low-level
IMPI instructions.

e Data scanning—The IMPI provides instructions
that perform complex operations on character
string data, including scanning for specific char-
acters and trailing blank truncation.

¢ Array subscripting—In support of high-level lan-
guages, the IMPI provides a set of instructions that

compute array element addresses from array in-
dexes.

e Supervisor link—The MP1 provides a set of in-
structions used to route requests from user pro-
grams (MI programs) into the licensed internal
code layer. These instructions automatically allo-
cate a save area, save the registers of the process,
and route execution to the proper function. A
complementary instruction is used to restore reg-
isters, free the save area, and return to the user
program.

« Implicit instructions—The IMPI provides that any
unimplemented instructions will be executed as if
they were supervisor link instructions. The li-
censed internal code can implement complex
functions as if they were IMPI instructions.

The MP1 also provides an attribute bit for each
quadword (16 bytes on a 16-byte boundary) within
main storage. This bit is not addressable by the
normal IMPI instructions used to address storage.
The bit specifically identifies quadwords in storage
containing MI pointers. MI pointers are addresses that
MI programs may use and manipulate. MI programs
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have no direct access to the tag bit. The tag bit is
turned on by the licensed internal code when a
pointer is set and turned off by hardware anytime
the quadword is modified (except through a con-
trolled set of IMPI pointer manipulation instructions).
This procedure allows the system to detect invalid
pointers. It is not possible for an M1 program to
counterfeit a pointer or to modify a pointer in an
invalid way.

The attribute bit implementation allows the valida-
tion of pointers in an extremely efficient way and is
the basis for system integrity at the mi layer.

An error detected during the execution of an IMPI
instruction is routed to the licensed internal code
using the same technique used for the supervisor link
instructions. The 1Mp1 identifies many exceptional
conditions in this way, allowing the licensed internal
code layer to take appropriate action.

Index support. The licensed internal code layer im-
plements a general balanced binary tree with front
compression. The binary tree function is used exten-
sively for fast, keyed information retrieval within the
licensed internal code and 087400 components. This
implementation is highly optimized to minimize the
number of disk operations required to retrieve an
entry. The tree is balanced at a page level, providing
a very broad, short tree.

Binary tree indexes are used within the licensed
internal code by:

» Storage management, for permanent, temporary,
and free-space directories

» Database, for indexed file support

 Libraries, for object name to address resolution

e Security, as a fast mechanism to check a user’s
authority to perform object operations

* Event management, to provide a fast way for
finding processes that act as monitors for specific
events

The binary tree function is also made available to
0s/400 with support for an MI object, an index, which
contains a binary tree. This is used within 0s/400 for:

* Message files, so that the text of a message can be
found quickly

* Job queues, so that jobs may be ordered by priority
and status

« Qutput queues, so that spool files may be ordered
by priority and status
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Measurements on customer systems with heavy da-
tabase applications show 10 to 15 percent of the total
cpU being used by the index support code. See
Reference 2 for more information on the implemen-
tation of the binary tree function.

Storage management. The As/400 hardware and li-
censed internal code provide a “single-level storage”

Auxiliary storage management uses
a binary buddy system to manage
free disk space.

addressing architecture. A better term might be “uni-
form addressable storage.” As objects (files, pro-
grams, control blocks, directories, and so on) are
created, they are allocated disk space and are as-
signed a range of virtual addresses. These virtual
addresses are used by the IMPI instructions to address
the object data directly. The storage management
licensed internal code reads the object data from disk
into main storage on demand, as required by instruc-
tion access. This is known as “demand paging.”
Essentially all of main storage is used as a cache for
objects stored on disk.

Storage management is divided into two parts: aux-
iliary storage management and main storage man-
agement. Auxiliary storage management allocates
disk space to objects, whereas main storage manage-
ment handles the demand paging.

Figure 2 shows the following relationships:

« Auxiliary storage management assigns disk space
to the virtual addresses of an object.

s Main storage management moves the pages of an
object between disk storage and main storage.

s The cpU addressing hardware translates the virtual
address of an object into the corresponding main
storage address.

Auxiliary storage management. Auxiliary storage
management uses a binary buddy system to manage
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free disk space. The binary buddy system only allows
disk space blocks (extents) whose sizes are a power
of two. Thus, one sector, two sectors, four sectors,
eight sectors, and so on, are valid free-space block
sizes. This scheme has several performance advan-
tages:

s Garbage collection (the recombination of small
blocks of free space into larger blocks) is very
simple and fast. When a disk block is freed, a
simple check can be made to see if its “buddy” is
also free. If it is, the two buddies are combined,
and the process is repeated until no buddy is
found.

» External free-space fragmentation is nearly elimi-
nated in most real-world cases.

Auxiliary storage management uses binary tree in-
dexes to maintain allocated and free-disk-space di-
rectories. These indexes are organized so that most
operations (allocation, deallocation, and translation
between virtual addresses and disk addresses) can be
performed with a single index operation.

Auxiliary storage management uses one of two tech-
niques to select the disk unit (actuator) from which
the space will be allocated. If the request is small
(less than or equal to 32K bytes), a randomized
round-robin scheme is used. If the request is large,
the disk unit with the greatest percentage of free
space is selected. Data on the system is fairly well
spread out among the disk units and provides rea-
sonable disk-access balancing.

Storage management forces newly created objects to
contain binary zeros on first reference. This action
guarantees that a new object never contains old data
from a deleted object that occupied the same disk
space. No performance penalty occurs because the
virtual address assigned to the object is stored in a
“header” associated with each sector on disk. When
a page of an object i1s read into main storage, its
virtual address is compared with the address stored
in the header. If they do not match, the contents of
the disk sector are not part of this object and the
page is “zeroed.” This technique eliminates the need
to “zero” disk space when it is allocated (or freed) or
to maintain a large table containing an entry for
each virtual page indicating whether it had ever been
referenced.

Optionally, auxiliary storage management may di-
vide the disk units into auxiliary storage pools (ASPs).
Most user data (files, programs, and so on) are stored
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Figure 2 Relationship of an object and storage
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in the “system” Asp. Certain objects, such as journals
and saved files, may be created and stored into other
“user” Asps. This process provides a physical sepa-
ration between the active data files and the on-line
backup, which improves performance by avoiding
disk arm contention.

Main storage management. The basis for main stor-
age management is a simple, demand paging scheme
with an LRU (least recently used) page replacement
algorithm. Performance would not be adequate with
this simple approach in most environments. Main
storage management provides functions that allow
other components of the licensed internal code and
the operating system to improve the paging perform-
ance of the machine. Some of these functions are:

Requesting that large blocks of virtual pages are
read into storage prior to any reference to them.
This can be performed either synchronously with
the requestor or asynchronously.

Requesting that blocks of virtual pages are
“cleared.” This allocates zeroed pages of main
storage to the virtual pages without doing any 1/0
operations.

Identifying blocks of virtual pages not likely to be
referenced in the near future. These pages are
written to disk (if changed) and put at the head of
the LRU list.

Dividing main storage into “pools.” A customer
may divide main storage into pools. Each user and
system task is assigned to one of the pools. All
task paging requests are satisfied only from their
assigned pool. In this way, the customer may
ensure that a batch job, for example, will not steal
the pages of a higher-priority interactive user.

The integrated database licensed internal code is
highly optimized to reduce both 1/0 requests and
main storage requirements.

When handling a request to read a virtual page into
main storage, main storage management must deter-
mine the disk address assigned to the given virtual
address. Determination is made by finding the entry
in the binary tree index, which is built by auxiliary
storage management. Main storage management
maintains a “lookaside directory” of recently used
virtual addresses, which can be examined very
quickly. The index operation can be avoided by
using the lookaside directory.

With the single-level addressing structure of the
AS/400, main storage can be thought of as a cache for
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virtual storage. In this way, little within the system
is sensitive to the main storage size. As more main
storage is added to a system, the amount of disk 1/0

The access group gathers many

small objects associated with a

process into a few large blocks
of disk space.

activity is reduced, since more data is automatically
cached in main storage.

Access groups. Storage management uses an MI ob-
ject, the access group, as a container where other
objects may be suballocated. The access group gath-
ers many small objects associated with a process into
a few large blocks of disk space. When a process
enters a long wait (for terminal response), its access
group is written to disk in the fewest possible 1/0
operations. The main storage pages are then placed
at the top of the LRU list. When the process executes
again, the pages of the objects in its access group
(that were in main storage before the long wait) are
read back into main storage.

If the demand for main storage pages is small, storage
management determines dynamically that the access
groups of a process need not be written to or read
from disk at all. This determination is based on a
number of factors which are dynamically monitored.
These include: the general faulting rate in the pool,
the number of pages of the access group which were
still resident in the pool at the start of the last few
transactions, the number of faults that occurred on
the access group during the last transaction, and any
simple patterns detected in the read and write deci-
sions over the last few transactions (both for the pool
and the specific access group). The amount of data
and history gathering done is directly tied to the
general faulting rate in the pool so that this overhead
is also minimized as demand in the pool decreases.
With this enhancement, response time for machines
with a large amount of main storage is fast and the
CPU resource is substantially reduced. Access group
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swapping in a highly memory-constrained system
can consume 30 percent of the cpu resource of the
system. Swapping decreases to 1-2 percent of the
cPU as the paging demand in the pool decreases.

Because main storage is used as a cache for virtual
storage and has the ability to dynamically turn swap-
ping on and off, there is a strong and direct relation-
ship between main storage size and the amount of
disk 1/0 operations required on a system. If the main
storage size is increased, the amount of disk 1/0
operations decreases. The system shifts smoothly
from an environment of heavy swapping and fault-
ing, to one where 1/0 activity is required only for
randomly accessed data when main storage is added.

See Reference 3 for more information on the imple-
mentation of storage management.

Resource and process management. Resource and
process management are the licensed internal code
components that control the execution of user and
system tasks within the system.

Although the 1MPI instructions supply a task dis-
patcher, its pre-emptive, priority scheduler is not
adequate for a system with other resource con-
straints. For example, allowing all processes to com-
pete for the cpu could quickly force the working set
(the number of main storage pages required to run
without excessive page faults) of the system to exceed
the available main storage.

The process management component implements a
scheduler, limiting the number of processes that may
actively compete for pages in a storage pool to a
number set for that pool by the user. An active
process may become ineligible to compete when it
has used a certain amount of CPU time, known as a
timeslice. An active process that becomes ineligible
or that reaches a long wait for terminal response has
its access group “purged.” When an access group is
purged, any changed pages are written to disk, and
the pages are forced to the top of the LRuU list. This
action amounts to swapping the process out. A proc-
ess eligible to compete has its access group swapped
in.

Relational database support

The key AS/400 system component, from the per-
formance standpoint of commercial applications, is
its relational database management system (RDBMS).
Because of the performance-critical nature of this
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component, the majority of the run-time support
and management of the RDBMS (including journaling
and commitment control support) is implemented
in the licensed internal code layer (below the M
layer). Run-time support is closely integrated with
two other key performance areas of licensed internal

Storage management services are
extensively used by the RDBMS.

code support, index support and storage manage-
ment. Index support is heavily used to implement
the logical views of the database in the most perform-
ance-efficient manner possible. See References 4, 5,
and 6 for more detail on the RDBMS design and
implementation.

Storage management services are extensively used
by the RDBMS to maximize and overlap disk 1/0
operations and minimize working set size. Antici-
patory asynchronous reads and writes on database
record segment pages and indexes are done based on
expected or historical reference patterns. Blocking of
multiple data pages to and from disk are done au-
tomatically when sequential processing patterns are
detected or at the request of the application. Journals
can also be placed in an auxiliary storage pool,
separate from the rest of the system, to eliminate
contention for the disk arm.

One important consequence of the single-level store
as it relates to the database is the cost of ensuring
that all changed pages associated with a file have
been forced to disk when the file is deactivated
(closed). Because of the implicit sharing (or caching)
provided by main storage management, finding all
changed pages of an object currently in memory
requires either examining all of the pages in the main
store or checking each page of the object to deter-
mine if it is in main store. This technique becomes
prohibitively expensive as the size of the main store
and object increases. On the System/38 Model 700
with 32M bytes of main store, this approach was
consuming up to 30 percent of the system CPU in
the RAMP-C™ benchmark. A bit-map technique was
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implemented to resolve this problem so that at file
close time a bit map associated with the file identifies
which pages were modified, thus restricting the num-
ber of page examinations required.

Sophisticated search features, based on estimates
made with incomplete information, or “guessti-
mates,” of the number of selected keys in specified
indexes, minimize processing time for dynamic quer-
ies. This key range “guesstimate” technique is unique
to the System/38 and AS/400 in that it is done dynam-
ically, without requiring any additional index man-
agement at update time or static key counting rou-
tines run at the user’s request. See Reference 7 for a
detailed description of this technique.

Implicit index sharing by multiple logical views is
done when equivalent sequencing is specified in the
logical view definition, avoiding the maintenance of
multiple indexes at execution. Such sharing is partic-
ularly important on the AS/400 because of the serial-
ization protocols currently used in the RDBMS. These
protocols result in all of the indexes involved in an
update being locked concurrently while the update
is in progress. Therefore, the potential for contention
on a file increases with the number of concurrently
updated logical views over it. This potential can be
a serious bottleneck on a large system with a heavily
updated file that has a large number of logical views
over it. This design will need to be changed to
provide for more granular serialization as the system
size and number of supported users grows.

Combining the characteristics of implicitly cached
main storage, automatically balanced disk arm uti-
lization, high-function horizontal IMPI primitives,
and the low-level, integrated implementation of the
RDBMS results in unusually good performance char-
acteristics for a relational database. This result is a
key contributor to the good price/performance char-
acteristics of the As/400.

Machine interface

Abstract machine. From a performance standpoint,
perhaps the most important architectural feature of
the AS/400 is the machine interface (M) layer. The mi
layer is an enforced boundary (a set of instructions)
formally structured in accordance with the architec-
ture between the licensed internal code layer of the
system and the 0S/400 layer. The MI instruction set,
although giving the architectural appearance and
function of direct execution, is actually compiled.
The 0s/400, and all code above it (licensed programs,
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applications), is implemented entirely on the M1. The
MI instruction set can be categorized into several
logical groupings: computational instructions; spe-
cific objects (over 15 different object types are sup-
ported); locking, exceptions, events; and machine
resource observation and management.

All of the systems compilers are targeted to this Mi
instruction set, producing a “program template”
which is then used as input to the MI instruction
“Create Program.” This process invokes a translator
component in the licensed internal code layer that
“translates” this program template into a program
object containing an IMPI instruction stream. Gen-
erating the instruction stream involves normal code
generation chores (such as performing register opti-
mization, temporary operand management, and so
on) followed by the final step of encapsulating all of
the generated pieces into a new program object. A
system pointer is returned to the program object,
which can then be used as the operand of a call or
transfer M1 instruction.

MI instructions are characterized by being high-level,
generic, and machine-independent. There is no con-
cept of registers, physical storage locations, or other
hardware-specific characteristics in the instruction
syntax. For example, the computational instructions
consist of generic arithmetic operations and string
manipulation operations. To add two numbers to-
gether, a single add numeric instruction exists that
accepts any combination of numeric operand types
and precisions. At translate time, if the type and
precision of the operand is known, an appropriate
set of IMPI instructions is generated to perform the
operation, performing type conversions and preci-
sion adjustments as required. If the operand attri-
butes are not determined at translate time (i.e., late
binding was used via data pointers), a Supervisor
Link (svL) to the appropriate licensed internal code
routine is generated, performing the operation in an
interpretive manner when executed.

Along with the traditional numeric and string ma-
nipulation instructions supported in the computa-
tional class, a number of higher-function instructions
for performing common string-handling operations
exist. Besides generalized versions of the Sys-
tem/370-like translate instructions, there are instruc-
tions in support of parsing (scanning for the occur-
rences of a particular string in another string or array)
and string compression and decompression (MRIJE
and sNa flavors). Special support for double-byte
character strings (DBCS for ideographic character sets)
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is also provided in the scan instruction. Character
string operands can be up to 32K bytes in length,
and arrays of up to 16 megabytes are supported.

Each class of object supported by the mi layer has its
own unique set of instructions appropriate for the
class of object (i.e., a program object supports “cre-
ate,” “delete,” “call,” “transfer,” and “materialize”
instructions). In general, these instructions (at exe-
cution) result in an SVL operation to invoke the

A dominant characteristic of the
AS/400 is its object-oriented
architecture.

appropriate licensed internal code routine to perform
the function. It is also true for most of the other
instructions in the remaining two categories.

A program object contains an instruction stream
that is a mixture of:

IMPI instructions, corresponding to early-bound
computational MI instructions

SVLs to licensed internal code routines, to perform
more complex and late-bound operations, such as
object management, database access, authoriza-
tion management, and so on

This mixture results in a machine interface that is
high-level, abstract, late-bound, and interpretive in
nature. The machine interface is translated, however,
into an instruction stream, where the performance-
critical computational and string-handling opera-
tions are handled in line with compiled, early-bound
performance characteristics (where possible). Fur-
thermore, since there is a single translator for a single
M1 instruction set targeted by all compilers on the
system, it is comparatively easy to enhance the IMPI
support (i.e., to provide additional high-function
primitives) and quickly take advantage of the en-
hancement because only one code generator must
be modified.

See References 8 and 9 for more detail on the M1 and
on object-oriented architecture.
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MI objects. A dominant characteristic of the As/400,
both externally (to the user) and internally (in the
0s/400 design and implementation) is its object-ori-
ented architecture.

The basic object handlers are implemented in the
licensed internal code layer, providing the support
for the set of objects at the m1. These objects are
interfaced by the 057400 and licensed programs (LPs)
via the respective object-specific MI instructions.
These M1 objects present a set of common functions
(via MI instructions) to all of the system code built
on top of the mi layer, thus providing the benefits of
improved integrity and reliability, functional and
interface consistency, optimized performance, and
reduced operating system code redundancy.

These benefits come from formally encapsulated
function and data structures that are centralized,
carefully implemented, and easily accessed. The
structures are widely used throughout the operating
system and LPs as basic building blocks for the
functions and objects they provide. This formalized
and rigidly enforced data abstraction model is a key
contributor to the integrity, reliability, and usability
characteristics of 08/400. It also contributes signifi-
cantly to its performance characteristics by providing
a highly shared implementation of common con-
structs which can then be highly optimized.

Several MI objects are used in support of the RDBMS
of the system. These include cursor, data space, data
space index, journal port, journal space, and commit
block. These M1 objects provide the basic, supporting
building blocks for the 0s/400 RDBMS.

Most of the fundamental areas of the functions of
the operating system are supported through appro-
priate MI objects. Other objects that have a key
influence on the performance of the system include
contexts (libraries), user profiles (authorization), and
programs.

Contexts and address resolution. The context object
maps the symbolic identification (type and name) of
an MI object to its virtual address. Above the Mi layer,
this virtual address is embodied in a 16-byte pointer,
which can only be produced and manipulated
through MI instructions (such as object creates and
resolve pointer) that are designed in the architecture.
Pointers are hardware-tagged so that they cannot be
counterfeited or manipulated through interfaces not
conforming to the architecture. Since pointers are
the primary mechanism for identifying object oper-
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ands on MI instructions, context objects serve as the
mechanism for mapping the symbolic object identi-
fication, of an object provided by a user, to the virtual
address needed to access the object on the system.

Context objects are used by 08/400 to support what
is presented to the user as a library. A user-specified

System authorization management
is based on user profiles.

(and modifiable) list of libraries is associated with
each job on the system, and objects can be referenced
by the user explicitly qualified to a specific library. If
not explicitly qualified to a library, the library list of
the job resolves the reference by searching each
library on the list in order until a matching entry is
found. Context objects are implemented as indexes
(keyed by object type and name) to provide optimum
performance for this address resolution.

User applications refer to all of the objects making
up an application symbolically, and everything is
represented as an object in the system (including the
user’s job itself, over 40 different external object
types are on the system). This representation com-
bined with the late-bound nature of the system (no
link-editing, late-bound calls, each CL command rep-
resented by an object, and so on) results in this
address resolution operation occurring very fre-
quently in the system, often accounting for 5 percent
of the CPU usage in interactive applications.

User profiles and authority management. System
authorization management is based on user profiles.
Each system user is represented by a user profile
object, which serves as the repository for all author-
ization information related to that user. All objects
created on the system are owned by a specific user,
and authorization to use, modify, and manage that
object (and the data within it, in some cases) can be
controlled on an individual user basis. At creation
time, the object is given a default level of access
authority that applies to all users. The authority level
can be overridden on an individual user basis to give
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that user more or less authority to access each object.
Each operation or access to an object must be verified
by the system to ensure the user’s authority. This
level of authority checking in combination with the
granularity of objects typically used in an application
(data and device files, programs, libraries, data areas,
commands, spool files, data queues, device and con-
troller descriptions, output queues, message queues,
menus, and so on) implies the potential for a great
deal of execution overhead, and a number of opti-
mizations exist to minimize this overhead. The en-
hancements include:

¢ All object authority user profile attribute—When
the attribute is present in the user profile attempt-
ing an operation, no further checking is required.
This mechanism is used when the user configures
the system to run without resource authorization
checking. It can also be granted to selected profiles
when resource authorization checking is active.

¢ Default authority in the object—The object de-
fault level of authority is stored in the object itself,
along with a bit that specifies whether any specific
(private) authorities have been granted to specific
users. This default avoids doing any user profile
lookup if no private authorities exist for the object.

 Pointer authority—A user’s authority to access an
object can be stored in a resolved object pointer
as part of the address resolution operation. An
example is the database file open processing, which
performs an address resolution, storing authority
in the pointer used for subsequent operations
against the file (within the same job), and avoids
authorization checking on the data accesses to the
file.

A number of additional constructs exist for control-
ling object authorizations (such as group profiles,
adopted authorities, and authorization lists). A com-
plete authorization verification can result in several
user profiles being accessed. The user profile object
itself is implemented as an index (using the virtual
address of the object as the key), thus providing
optimum performance for random lookup opera-
tions when they do have to be made.

The most expensive part of this authority resolution
are the index operations against the user profiles.
These operations have been observed in some cus-
tomer systems to be consuming 15 to 20 percent of
the total processor when the various optimizations
described above were disabled. The authority verifi-
cation algorithm has been optimized to perform the
checks in an ascending order of cost, attempting to
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Figure 3 Space objects and space pointers

avoid the index operations if possible. For example,
the authority in the pointer is checked first, next the
user profile(s) is checked for all object authority, then
the object is checked for no private authorities and
sufficient default authority. This order typically re-
sults in less than 5 percent of the authority verifica-
tions performing an index operation (0 percent if
resource authorization checking is not active).

See References 10 and 11 for detail on the authori-
zation support.

Space objects. A space object is an M1 object that is
essentially a free-format byte string (up to 16 mega-
bytes in length), which can be freely accessed and
manipulated using MI computational instructions.
Access to this byte string is gained through a special-
purpose pointer called a space pointer (Spp). Figure
3 depicts space objects and space pointers. An SPP
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identifies the space object and an offset within it.
The spp can be used as the operand for many of the
MI instructions. The offset within an SPP can be
manipulated via specific M1 instructions that are
provided for this purpose. A high-performance form
of a space pointer, called a machine space pointer
(MsPP), i1s supported with limitations on its use, such
that its actual storage location cannot be accessed
directly from an M1 program. The pointer can be
optimized to and manipulated as a six-byte virtual
address, potentially being optimized into a register
across MI instructions, without compromising pro-
gram debug support. A specific authority to access
the object is required in order to set a space pointer
(from a system pointer) to the space object, but once
it has been initially set, its offset within the space can
be manipulated without any authorization checking.

At the time the space object is created, 16 megabytes
of address space are reserved for the object, with the
actual disk allocations being made only upon explicit
request or, optionally, automatically on first refer-
ence to an offset.

The space object provides a high-performance free-
format construct for use when the frequency of
reference or unpredictability of use would make
more formal encapsulation of the object impractical.
It often serves the function of “GETMAIN” type of
support in more conventional systems without the
space-management (chaining and so on) problems
normally associated with these older mechanisms.
Space objects are extensively used for control blocks
within 0s/400 as well as for many of the external
objects (commands, job descriptions, menus, device
files, data areas, and so on) presented to the user.

MI program architecture. All M1 programs are re-
entrant—that is, the instruction stream and other
constant execution entities are nonmodifiable and
shared among multiple users. Only one copy ever
exists in main storage, regardless of the number of
concurrent users. Storage for program variables and
other process-specific pieces of the program are al-
located and managed in process-specific storage by
the M1 on appropriate Call and Return boundaries.
(The external call is implemented as an SVL routine
in the licensed internal code.) In addition to allocat-
ing and managing this storage in a manner consistent
with its attributes (static or automatic), program
variables can be initialized to specific values by the
MI at the time the program is called, by specifying
the initial values in the declarations of the variable.
This feature, plus other services such as exception-
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description management, invocation-tracing sup-
port, event management, and so on, provide a very
rich, productive programming model at the Mmi level.

From a performance standpoint, this rich support
can make external program calls expensive. The
minimum path length is on the order of 60 instruc-
tions, with much longer path lengths being incurred,
depending on features used (such as the number of
variables initialized). Path length has not been a
significant problem in the commercial application
arena as it is characterized by large programs and
relatively infrequent external calls.

Since M1 programs are re-entrant (do not have to be
loaded or relocated), they have their program vari-
able storage automatically allocated (in separate seg-
ments) at call time and can be identified either
symbolically (late-bound call) or by virtual address
pointer (early-bound call). Since all other external
references are resolved at execution time, there is no
concept of a link loader at the M1 level. Program
“linkage” is dynamic, implicitly occurring at external
call time. If the called program is symbolically iden-
tified, an implicit address resolution is performed
using an explicitly specified context or an implicitly
specified list of contexts (an address resolution list
associated with the process). This resolution maps
the symbolic program name to a virtual address. The
address can optionally replace the symbolic specifi-
cation (in the processes, program variable storage
area) so that subsequent call executions do not incur
the overhead of the address resolution. This option
is commonly used in application programs to pro-
vide dynamic binding to the programs on the first
call; then subsequent calls in the “run unit” of the
language reuse the resolved address. Similar tech-
niques are also applied to other external references
by the program.

This linkage technique has been further refined for
the 0s/400 system code by building a “system entry
point table” containing the addresses of all of the
system programs (built at the time that the system
code is installed). All external calls within the system
code and from application code to system code are
done via these preresolved pointers.

Similar techniques are heavily used within the 0s/400
system code to early-bind other external references.
Numerous control blocks and structures are built
and initialized at different points in time (install,
initial program load, job initiation, first use, and so
on), binding external addressability at the most ap-
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propriate point based on functional and performance
considerations and on tradeoffs. A vast majority of
external references are early-bound without losing

The Ml supports a set of common
program debug functions.

the flexibility of late binding. Late binding is still
used freely when functional considerations make it
desirable.

Program debug. The M1 also supports a set of com-
mon program debug functions, including the ability
to set breakpoints on MI instructions as well as dis-
playing and modifying program variables while at a
breakpoint. Breakpoint support is implemented
through licensed internal code support and desig-
nates an address range within an instruction stream
(specific to a process) where interrupts will be pre-
sented on instruction execution. This designation
allows supporting breakpoints to be on the program
anytime (in a process-specific manner), without in-
curring any extra overhead in the instruction stream
when running without breakpoints being set.

The program variable display and modification sup-
port is provided via a table generated by the trans-
lator that maps program variables into their storage
locations at execution. Currently this support is au-
tomatically provided, so a recompile is not needed
to perform program debugging operations. To make
this support as predictable as possible, the M1 archi-
tecture guarantees that the storage locations associ-
ated with variables are always current at M1 instruc-
tion boundaries (the only place where breakpoints
are serviced) and that changes made to variables
while at a breakpoint will be reflected immediately
in the execution of the program. Ensuring this pre-
dictability places some constraints on register opti-
mization. Although addresses are currently opti-
mized into registers across MI instructions, data items
are not. This restriction can result in poor perform-
ance for tightly coded loops where the loop control
code and array index values cannot be optimized
into registers. For the typical commercial application
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environment, this condition is generally not a prob-
lem because of the existence of the high-function
string manipulation of MI instructions, which usually
eliminates the need for tightly coded loops at the m1.
As newer languages and engineering and scientific
languages (Pascal, C, FORTRAN) are supported on the
system, this performance shortcoming of the MI may
become more serious, requiring a relaxation of this
aspect of the architecture as a program option.

Transaction processing model

The As/400 IMPI supports a basic tasking model rep-
resented by a task dispatching element (512-byte
memory-resident control block). The licensed inter-
nal code layer of the system combines this tasking
model with several other constructs to provide an Ml
“process model.” Constructs include:

» User profile

» Process access group

~ Program variable storage—Program automatic
storage area (PASA) and program static storage area
(PssA)

» MI exception-handling support

» Event-handling support

» Object-locking support

The 0s/400 combines an MI process with additional
structures and support to present a “job” to the user.
The additional structures include:

s Job message Q

s Qutput Q

& QTEMP library

» Local data area

« MI response Q (1/0 interface to the mi)

s Data management communications Q (manages
file opens and dynamic file redirection)

All this system function, available in support of a
user’s “job,” in combination with the previously
discussed support (re-entrant programs, dynamic ad-
dress resolution, storage management, RDBMS, and
so on) results in a transaction processing model based
in each user’s job. This model results in a dramati-
cally simplified, flexible, and dynamic application
development environment. Application control flow
is single thread and free of conventional resource
bottleneck constraints that confront more conven-
tional transaction processing environments. Each
user’s job contends for and accesses resources dy-
namically and independently of other users, using
shared copies of the permanent objects in main
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storage (code, data, indexes, control blocks) and their
own job-specific program variable and file-access
buffer areas. Thus, the performance benefits of
shared system resources are achieved without the
drawbacks of restricted address space, complex, in-

System compatibility results in
performance characteristics similar
to native applications.

flexible resource management problems, and rigid
early-bound requirements which come from trans-
action processing models servicing multiple users
under a single task.

Execution environment support

AS/400 System/36 Environment. One of the major
challenges in the development of As/400 was provid-
ing a platform to support the execution of the Sys-
tem/36 application family with equivalent or im-
proved price and performance. Given the radical
differences in the architectures, designs, and heritages
of the two systems, the conventional solution would
have been to support an emulation mode (based on
hardware) on the new system. This choice would
have had the advantage of providing object code
compatibility but would not have achieved the ob-
jective of immediately providing a wide range of new
functions, productivity, and capacity to System/36
applications. An alternative solution was imple-
mented, based on software.

The As/400 System/36 Environment (S36E) provides
source code compatibility for System/36 applica-
tions on the AS/400. Compatibility is accomplished
by providing a “mapping” layer of support and struc-
tures in 0S/400 to map the System/36 Application
Programming Interfaces (APIs) to the underlying na-
tive support in 0S/400. As a result, the S36E is an
integrated extension to 0s/400 rather than an emu-
lator or a “mode.” There is no concept of “hot
keying” between the environments. Applications
running in the $36€ share the same system facilities
and support that an AS/400 application does. The S36E
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language compilers generate code that runs directly
on the As/400 hardware, and the System/36 com-
mand language invokes the appropriate 0S/400 serv-
ices directly. The database, spool, security, message
handler, display facilities, and so on used by appli-
cations running in the S36€ are the same as and are
fully shared with the native AS/400 applications. See
Reference 12 for a more complete description of the
System/36 Environment design.

System compatibility results in performance char-
acteristics similar to native applications. Although
there is some performance overhead incurred in
mapping some System/36 functions to the appropri-
ate native services, these functions are generally in
the 5 to 15 percent range. When a migrated Sys-
tem/36 application does experience significantly de-
graded performance (compared to the equivalent-
sized System/36), it is usually caused by the design
of the application. That is, it is making unusually
heavy use of a system service, which is significantly
more expensive on the As/400 than it was on the
System/36.

For example, the creation and deletion of a file on
the System/36 is relatively cheap (fast) since it pri-
marily involves a Volume Table of Contents (VTOC)
update (the System/36 had a simple flat file system).
On AS/400, all files are part of a full-function RDBMS,
and the creation of one file involves creating and
linking a number of complex control blocks as well
as the updating of the data dictionary. Creation and
deletion of a database file on AS/400 is much more
costly (and slow) than on System/36. However, a
System/36 application executing in the S36E on AS/400
is using a full-function RDBMS file instead of the
limited-function flat file on the System/36, making
much of the function (and performance) of the in-
tegrated RDBMS immediately available to the Sys-
tem/36 application.

System/36 Environment applications that make
heavy use of those system functions which perform
comparatively poorly on the As/400 have been ob-
served to sometimes require 50 percent more system
resource than they did on the System/36 and may
have to be modified (usually in relatively simple
ways) to achieve acceptable performance. See Ref-
erence 13 for a more detailed description.

Save/restore (backup and recovery)

One implication of the auxiliary storage manage-
ment scheme of the As/400 (distributing the disk

IBM SYSTEMS JOURNAL, VOL 28, NO 3, 1989

extents associated with an object across multiple
DASD units) is that a simple sector-by-sector copy of
the contents of a single device to a backup medium
is of no value in the event of a future device failure.
Since any single device, in general, contains only
some of the pieces of any specific object, a backup
of those pieces is out of synchronization with the
other pieces residing on other devices. Short of doing
a sector image backup of all of the relevant DASD on
the system and then restoring all of these devices
(essentially reloading the entire system), a sector
image backup has little value. Thus the system save
and restore strategy is based on a higher-level, object-
oriented premise: essentially collecting and copying
complete images of objects to the backup media on
the basis of an object, group of objects, library, or
group of libraries. This process is clearly more com-
plex, requiring significantly more system processing
for organization and management, particularly for
complex database networks where many files (phys-
ical and logical views) may be interconnected so that
they must be backed up together. For smaller objects,
the result is that significantly more disk 1/0 activity
1s required since smaller disk 1/0 operations must be
used to collect the small extents associated with these
objects. Other object-related information, such as
authorizations which are not physically stored with
the object but must be recoverable, also add compli-
cation to this kind of a scheme.

To maximize the save and restore processing per-
formance, a number of different strategies and sup-
port have been developed both to improve the per-
formance of the processing itself and to reduce the
volume of objects that must be backed up. The save
and restore design employs extensive multitasking
and main storage buffering, achieving the maximum
possible amount of concurrent disk 1/0 operations
and overlap with media 1/0 activity. The multitask-
ing and buffering can be easily restricted by tuning
parameters (CPU priority and buffer sizes which di-
rectly affect the amount of concurrent disk 1/0 op-
erations) so that the impact of this activity on the
rest of the system can be controlled when running
in a nondedicated environment.

To reduce the volume of data to be backed up, the
system supports a save changed objects scheme,
whereby only those objects that have changed in a
library (since the last time the entire library was
backed up) are saved. Database files being journaled
can be exempted from this procedure since a journal
save achieves the same result (in less time if the file
is large and the activity comparatively low).
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The system also supports the concept of a save file.
This file, residing on DASD, is a simulated tape file
which can be used as a substitute for removable
media on save and restore operations. If the save file
is placed in an auxiliary storage pool (ASP) separate
from the rest of the system, it provides the following
benefits:

¢ Operatorless backup. For example, unattended
backup overnight.

e Improved performance; i.e., a simulated tape de-
vice that runs at DASD speed.

e Improved flexibility. The backup can be done
unattended when the system and objects are not
in use, then optionally copied with low overhead
(at device speed) to removable media during prime
shift without interfering with normal operations
and use of the objects. Or, if the save file is in a
separate ASP, it can be left on line. If a disk unit
in the system ASP is lost, the system ASP can be
reloaded (after appropriate repair actions). Then
the AsP containing the save file can be logically
reattached to the system and used as the source
for restore operation as appropriate.

Checksums. Probably the most innovative feature of
the AS/400 system in this area is the facility known as
checksums. This facility provides data redundancy
on the DASD of the system using an exclusive ORing
technique such that the contents of any disk drive
on the system can be reconstructed from the contents
of several other disk drives (from three to seven,
depending on the systems configuration). Although
the implementation of the concept on the AS/400 does
not allow continued operation of the system while a
disk device 1s inoperable, it does provide data recov-

" ery characteristics similar to DASD mirroring at a
fraction of the DASD cost (13 to 33 percent additional
DASD required, depending on the configuration). Al-
though there 1s a CPU cost for the support (about 5
to 10 percent for interactive workloads) and an in-
crease in disk /0 operations (about 25 percent for
interactive workloads), it provides a cost-effective
solution for many users desiring “no data loss” from
DASD failure characteristic to the system.

The checksumming concept that was implemented
implies that for every write of changed data to disk,
the corresponding data locations on all of the other
DASD in the checksum set must be read into memory
and a checksum calculated and then written out to
the checksum disk. Three key optimizations were
adopted in the AS/400 implementation of checksum-
ming which allow its performance to be acceptable.
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First, when a changed page is written to DASD, the
old data in the location is read into memory along
with the old version of the checksum for that data.
By exclusive Oring of the new data, old data, and
old checksum, the new checksum value can be de-
rived. This method avoids having to read all of the
DASD locations that correspond to the checksum,
reducing the required disk 1/0 operations from N

Storage on the system is
segregated into two
classes.

(where N is the number of DASDs in the checksum
set) to four when writing changed data to disk.

Second, the checksum data for a checksum set is
spread evenly across the DASDs in a checksum set,
thus spreading the 1/0 activity required to maintain
it evenly among all of the members of the set and
avoiding over-utilization of one DASD arm in the set.

Third, the storage on the system is segregated into
two classes: temporary objects, whose existence does
not span 1pLs, and permanent objects. Since the
temporary objects normally represent 5 percent or
less of the DASD space on a system but account for
40 to 60 percent of the DASD writes on a typical
customer system, segregating these two classes of
storage and providing the checksum protection only
for the permanent objects significantly reduces the
number of DASD operations that incur checksum-
ming overhead. The negative implication of this
operation is that the system cannot continue to run
when a DAsSD fails, as the portions of temporary
objects stored on that device are no longer available
and cannot be recovered. System operation cannot
be resumed until the failing device has been repaired
(and the permanent data on it reconstructed if lost
during the repair action).

For systems that are not Cpu-bound and which add
an appropriate amount of DASD and/or main mem-
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ory (adding memory almost always results in a sig-
nificant reduction in total disk 1/0 activity), interac-
tive performance with the checksum support active
is usually equivalent to that prior to activating check-
sums (and adding the appropriate hardware). Very
disk-write-intensive batch performance can degrade
significantly, in some extreme cases by as much as a
factor of three. This performance can usually be
improved by fixing problems in the application such
as blocking factors or changing file placement to get
better overlap between DAsD controllers or adding
DASD controllers/buses. See Reference 14 for more
details on this support.

Concluding remarks

The architecture of As/400 is characterized by a num-
ber of features normally associated with poor per-
formance, such as a hardware-independent operating
system, a relational database, pervasive late binding,
and a broad range of functions.

However, through extensive use of techniques such
as low-level implementations of highly used primi-
tives, an innovative storage management system,
careful scoping of early- and late-bound features
based on function and performance tradeoffs, and
many other optimization techniques, the AS/400 ex-
hibits competitive price and performance character-
istics in the commercial application (as typified by
the RaMP-C benchmark) marketplace.

Application System/400, AS/400, Operating System/400, OS/400,
and RAMP-C are trademarks of International Business Machines
Corporation.
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