
Design rationale of the
AS/400 user interface

This paper discusses the design rationale of the soft-
ware user interface of the Application System/400"
(AS/400"). It presents the design approaches used to
produce the interface of this interactive system.

A lthough advancements in technology are mak-
ing more and more complex systems available

to the users of small systems, the interface between
the user and such systems must become simplified
in order to fully utilize the richer function provided.
The small business environment, in particular, re-
quires that new systems be usable by the personnel
in such an environment. The introduction of such
machines cannot require the addition of new and
sophisticated data processing expertise.

In the past, much of the perceived ease of use of
smaller systems was due to their limited function
and to the fact that their users were primarily profes-
sional programmers, operators, and data-entry
clerks. These users were able to learn the system
interfaces because they were trained as data process-
ing personnel, and the interfaces involved relatively
few functions. Today, end users want to directly
access and manage their own data. Functional re-
quirements for end users now include a database
system, communications, security, backup, and
problem determination. Even in large installations,
users of the system usually own the data that they
are utilizing. Therefore, limited function can no
longer be a basis for ease of use. New design ap-
proaches and interface design standards are neces-
sary.

by J. H. Botterill

The Application System/400" (AS/400") is a new
system that spans the range of small-to-intermediate
systems and is designed to meet the requirement of
making system-provided function available to end
users. It addresses the needs of a simple environment
with a single user, as well as complex environments
with many workstations and many users. Supporting
nonprogrammable terminals' is crucial, due to their
cost advantage and the customer's current invest-
ment in them. At the same time, the p2rcentage of
programmable workstations attached to systems will
continue to grow. The mixed environment needs to
be supported in a consistent manner to allow a
graceful transition from one to another. Applications
need to be able to fully capitalize on the program-
mable workstation capabilities where appropriate.

For these reasons, the ~ ~ 1 4 0 0 system interface is pri-
marily a nonprogrammable terminal interface which
is also available on programmable workstations. It is
designed to be a simple, self-guiding interface for
new users; an efficient, productive interface for ex-
perienced users; and the consistent base for address-
ing new user interface technology. The interface is
similar to that available on stand-alone program-
mable workstations and is the result of the use of
new advancements in object-oriented interfaces, ob-
ject-action interaction, selection, layering, and word

Copyright 1989 by International Business Machines Corporation.
Copying in printed form for private use is permitted without
payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journalreference and IBM copyright
notice are included on the first page. The title and abstract, but no
other portions, of this paper may be copied or distributed royalty
free without further permission by computer-based and other
information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

IBM SYSTEMS JOURNAL, VOL 28, NO 3, 1989

entry on a base of proven ease-of-use techniques. It
includes: system-wide consistency, user-friendly
menus, self-directing entry displays, extensive help,
powerful list displays, a comprehensive command
set, and the consistency of an underlying object
structure.

The primary focus of this paper is to discuss the
design approaches used and the rationale behind the
design of an interface which seeks to meet the objec-
tive of addressing a broad spectrum of users. A series
of approaches are discussed, some of which add new
dimensions to proven approaches, and others which
are new. For example, system consistency includes
not only consistency within the parts of a system,
but consistency with other IBM systems, and consis-
tency between nonprogrammable terminals and pro-
grammable workstations. Productivity and ease of
learning are improved through object-oriented inter-
face design and object-action interaction. The inter-
face flexibility is addressed through layering, selec-
tion techniques, and fast paths. The use of word
entry and search technologies improves the retrieval
of help information. The paper addresses the user
interface design approaches that were used in devel-
oping the system; it does not discuss the function,
even though a significant amount of function is
provided to make the users more productive. The
paper concentrates on general, system-wide ap-
proaches, rather than how specific functions are de-
signed. For details on the function or the interface
for a particular function, the reader may refer to the
~ ~ 1 4 0 0 publications listed as general references at the
end of this paper.

Thus, some of the approaches followed in designing
the AS/400 user interface include:

Consistency of appearance and operation
Object-oriented design and object-action interac-

Recognition and selection
Interface layering
Grouping
Fast paths

The approaches themselves are described, along with
how they have been applied to the two primary user
interfaces of the system, interactive panels and com-
mands.

The interactive display interface is menu driven and
provides access to all interactive system function.
This interface allows the user to access one or more

tion

444 BOTTERILL

objects of a given type and then perform actions on
them, or to perform actions on a task basis. The
panel dialog for this interactive interface is made up
of full-screen panels and is described in the section,
"Consistency of appearance and operation."

The command interface is a high-level action-on-
object command interface called the control lan-

The AS/400 provides a new
dimension in user interface

consistency.

guage (cL). It is a fast path for requesting functions
from command lines on interactive panels, as well
as a high-level programming language for controlling
application programs and invoking system function.
The design of the CL is described later in this paper.

Design approaches

Consistency of appearance and operation. The key
to designing an effective user interface is to establish
a set of rules that cause the application to respond
in a consistent and easy-to-understand manner.

Just as in a dialog or interaction between two people,
the dialog between a person and a computer appli-
cation is much more efficient and comfortable if the
responses fit what is expected and can be easily
understood. The sooner a user can recognize the
interaction style of an application and can know
what type of responses to e pect, the sooner that
user can be effective. The user s view of the applica-
tion is referred to as the user's conceptual model.
The consistency of a new application and the simi-
larity between it and other applications with which
the user has experience, greatly reduces the time
required to build the correct user conceptual model.

For these reasons, IBM has developed a consistent set
of rules for the user interface of its A S / ~ O O products.
Users who have multiple A S / ~ O O applications or use
both applications and portions of the AS/~OO operat-
ing system (Operating System/400", or OS/~OO") ,
benefit greatly from user interface consistency. Less

r,

IBM SYSTEMS JOURNAL, VOL 28, NO 3, 1989

learning time is required, and less time is required
to readjust when switching from another application.
Time and money are saved, user frustration is re-
duced, and job satisfaction is increased.

The ~ S / 4 0 0 provides a new dimension in user inter-
face consistency. It is a comprehensive, object-ori-
ented interface that uses four primary panel types.
The design of these panel types is based on the design
approaches presented in this paper and the rules for
a nonprogrammable terminal interface as specified
in IBM’S Systems Application Architecture (SAA) user
interface document, Common User Access: Panel
Design and User Inter~ct ion.~,~ Since the AS/400 in-
terface is based on the Entry Model4 of the Common
User Access (CUA) interface, it gives the added benefit
of a level of consistency with new SAA products on
attached Personal System/2@ (PS/~@) programmable
workstations and on System/370 computer systems.

The four basic CUA panel types used are menu, list,
entry, and information. These as well as other appli-
cation-specific panel definitions are built from a set
of panel elements, panel areas, dialog actions, and
function key assignments, many of which are CUA-
defined. For example, F3 is used to exit, F4 to obtain
prompting, and F12 to cancel back to the previous
panel. The primary CUA elements that are not uti-
lized in the A S / ~ O O interface are action bars, pull-
downs, pop-up windows, cursor selection, and mne-
monic selection, all of which are normally used in
~ s p b a s e d applications and which take advantage of
a programmable workstation and provide a win-
dowed direct manipulation interface.

In this section, the design consistency conventions
and rules are presented in terms of panel layout,
panel areas, panel types, and common dialog actions
and function key assignments.

Later sections of this paper address the higher-level
design approaches used in the A S / ~ O O interface that,
together with the consistency rules, yield the design
and style of the A S / ~ O O user interface.

Panel layout. Four standardized panel types are used
to establish consistency on the AS/~OO. These are:

9 Menu panels that display a fixed list of choices
from which the user can select an object, an action,
or another menu
List panels that display a variable list of objects
and allow users to request actions to be performed
on them

I

I

IBM SYSTEMS JOURNAL, VOL 28, NO 3. 1989

Entry panels that contain fields in which the user
can type information to qualify a request or enter
data
Information panels that display information for
viewing only; these can be data presentation panels
or help panels

All panels are one of these four basic types, except
for a relatively small number of application-specific
panels (such as calendar, editor, or screen design
panels). Each of these four panel types follows a
consistent basic layout which is designed to be
scanned from the top down and from left to right.
To confirm that the correct panel was selected, iden-
tifying information is positioned at the top. This is
followed by instructions and the panel body, which
is the primary interactive or information presenta-
tion area. Secondary elements are at the bottom,
including a command area for fast path commands,
function key descriptions for navigation and alter-
native functions, and a message area. This layout is
shown in Figure 1.

Panel areas. The consistency across the AS/400 user
interface is further enhanced by maintaining con-
sistency within each area of the panel.

The title line contains two identifiers:

The panel ID is a short identifier for the panel
which is primarily used for menus. It is located
left-justified on the title line. In the case of menus,
it can be used as the target of the GO command to
move directly to that menu.
The text title clearly communicates the purpose
and context of the panel. It is centered on the title
line.

The information area contains identifying informa-
tion relating to the content of the panel body area.
It is shown below the title line in a separate area with
labeled output values. For example, the information
for a panel of the content of a job queue identifies
the name of the job queue and other appropriate
information, such as status. The top appears as fol-
lows:

Work with Job Queue

Queue: USERQO1 Library: QGPL Status: RLS

The instruction area contains instructions that tell
users what is required to interact with the panel body
area. Instructions are kept short and address only

EOTTERILL 445

Figure 1 Common AS1400 panel layout

BLANK LINE

BLANK LINE

BLANK LINE

BLANK LINE

the primary interaction, so users read them and are
not confused by detail. The function key area and
help panels address the other secondary interactions
that are supported.

The ~ ~ 1 4 0 0 uses very generic, consistent instruction
text for each panel type. For example, on a menu
panel the instruction is “Select one of the following”;
on a list panel, “Type options, press Enter”; on an
entry panel, “Type choices, press Enter”; and on an
information panel, “Press Enter to continue.” The
text follows regular sentence style for readability,
begins in position two of the line, and is preceded
and followed by a blank line so as to be clearly visible
to new users.

The panel body area is where the main user inter-
action and information presentation occurs. The
other areas support it. For example, in a menu panel
this area contains the choices, in a list panel it
contains the list entries, and in an entry panel it
contains the entry fields with their prompts. If all or
a part of the panel body area contains more infor-
mation than can be visible at one time, that area is
made scrollable. The Page Down and Page Up keys
are supported for scrolling forward and backward,
respectively. Whenever the user is on any part other

446 BOTERILL

than the last part of a scrollable area, the word “More
. . .” appears in high intensity in the location infor-
mation field, right-justified on the bottom separator
line (see Figure 2). When the user is on the last panel
of a scrollable area, “More . . .” is replaced with
“Bottom.”

The command area contains an entry field where
application or system commands can be typed as a
fast path. The format of the command area is a
prompt containing the word “Command” (e.g., “Se-
lection or command”), followed by an arrow on the
subsequent line and the entry field.

The function key area for the A S ~ O O describes the
active function keys. The function key descriptions
begin on line 22, if two lines are needed, and on line
23 if only one is used. The format of each function
key description is: Fn=function, where “n” is the
function key number. For example, F3=Exit.

“F24=More keys” is shown and active if all active
function keys are not displayed. This may be for lack
of space or because some assignments are for unusual
situations which would be confusing to a new user.
The F24 key results in the next set of function keys
being shown.

IBM SYSTEMS JOURNAL, VOL 28, NO 3. 1989

The message area is where one or more messages
are displayed to identify conditions relating to the
entered values or requests.

These panel areas are then used in each panel type
as appropriate.

Panel types. Four primary panel types are used across
the system to develop a highly consistent predictable
interface.

One of the four basic panel types is a menu panel.
An A S / ~ O O menu displays a list of choices from which
the user can make one selection. A menu always has
a title, an instruction, a list of choices, and a labeled
entry field for typing the number of the choice se-
lected.

A comprehensive set of AS/400 menus allows users to
quickly identify and select the type of object to work
with or the task to perform. The type of object may
be a file, a document, a job, or mail, as shown in
Figure 3. The task, for example, may be a general
user task, an office task, an operations task, or a
programming task. Some choices result in a lower-
level menu, with a more refined grouping of choices.

In this way, the interface can accommodate either
object or task (action) requests. Object requests usu-
ally result in displaying a list of the requested type
of objects to which the user is authorized. On the list
panel, one or more actions can be requested on the
displayed objects. Usually task choices go to a task-
specific entry panel. In either the object or task case,
the user need not know any commands, keywords,
or option names. Where needed, the system presents
an entry panel with multiple fill-in-the-blank
prompts.

Specific menus are provided for common groups of
tasks, such as office, programming, and operation
tasks. A User Tasks menu provides access to com-
mon tasks (see Figure 4) for users who are not data
processing professionals and do not need the full
function of the other specialized menus. For exam-
ple, such users may use an application and also need
to send a message to a coworker (option three) or
check their printed output (option five) without hav-
ing to be trained as a system operator.

A command line is provided on each system menu.
Individuals who use the system frequently can nav-
igate directly to any menu by typing GO and the

Figure 2 Scrollable area with location information

IBM SYSTEMS JOURNAL, VOL 28. NO 3, 1989 BOTTERILL 447

Figure 3 Interactive display interface

MENUS:
SELECT OBJECTS
OR TASKS

OBJECT LISTS
1E.G.. DOCUMENTS,
FILES. JOBS):
REQUEST ACTIONS
TO BE PERFORMED
ON OBJECTS

1.User tasks
2.0ffice
3. System
4.Files ...
5.Programming

9.Application Menu
=>

User Tasks

1. Job
2.Messages

5. output
=>

I -

1 .Mail
2.Documents

=>

1 - Documents

2=Change 3=Copy
- xx xx xx

xx xx xx
xx xx xx

-
-

I

h I
ENTRY DISPLAYS: Change
(E.G., FOR CHANGE)

- - - - - - - - - -

xx. .-
xx. .__
xx. ._ x x

xx. . -

WHICH
GENERATE

-r T

L. "_

J

r---
I
I
I
I
I

J

COMMANDS Change Document Description (CHGDOCD)
Copy Document (CPYDOC)

COMMAND LINE
ON ANY MENU:

=> CHGDOCD

I 1 Help

I "- -"

I EXTENSIVE HELP
WITH SEARCH

448 BO~ERILL IBM SYSTEMS JOURNAL, VOL 28, NO 3, 1989

Figure 4 Example of a menu panel

”-

I I USER

User Tasks
System: CHICAGO

Se lec t one o f the fo l lowing:

2 .
1.

3.
4 .
5 .
6 .
I .
8.
9.

Display or change your job
Display messages
Send a message
Submit a job
Work w i t h y o u r s p o o l e d o u t p u t f i l e s
Work wi th your ba t ch jobs
Di sp lay o r change your l i b ra ry l i s t
Change your password
Change y o u r u s e r p r o f i l e

60 . More u s e r t a s k o p t i o n s

90. S ign o f f

\ 1 ===>
S e l e c t i o n or command

F3=Exit F4=Prompt F9=Retrieve Fl2=Cancel
F13=User suppor t F16=System main menu

J
Y

panel I D that appears left-justified on the title line of
the desired menu. The menu panel I D is a simple
descriptive name, like MAIN, USER, or OFFICE. Other
commands can be entered on the command line to
request functions without using the menu option
paths or leaving the current panel. For example,
CHGDOCD entered on the command line of any menu
(as shown in Figure 3) runs the Change Document
Description function.

When a type of object is requested on a menu or by
entering a command, a list panel is provided showing
a list of the objects with type and attribute informa-
tion. A list panel provides a convenient means to
perform actions directly on objects, without having
to recall and enter an object’s name for each action.
Actions are requested by entering an action in the
option entry field in front of each object name.
Figure 5 shows a list of documents with a “5” typed
next to LETTER^" to request a panel of the content
of LETTER^. The supported action options are clearly
visible in the upper instruction area. These list panels
are referred to as “Work with” panels in menu
options, commands, and list panel titles, because
users can remain on them and focus their work on
the set of objects presented.

In the key areas of data definition, query, and office,
~ ~ 1 4 0 0 introduces enhanced list panels with an input-
capable list entry at the top of a list. This is a line
under the column headings with an underscored
entry field in each object-identifying column. In
Figure 5 the list entry is made up of two entry fields,
the option entry field and a document name entry
field. Users can type the action option desired and
the name of the document, without having to find
the document in the list. The panel also allows a
request to be typed to create a document that is not
in the list, without having to leave the list area.

In cases where the list actions require further quali-
fication and therefore present an entry panel, a fast
path is provided, allowing specification of the param-
eters on the command line when entering action
option numbers in the list area. The entry panels are
bypassed if the required parameters are specified on
the command line. The availability of this fast path
is indicated by the prompt “Parameters or com-
mand” for the command line.

Entry panels, which allow users to fill in the blanks,
are provided when more details are needed after a
task is selected from a menu or via a command or

IBM SYSTEMS JOURNAL, VOL 28 NO 3, 1989

Figure 5 Example of a “Work with” list panel

Work with Documents

Type options (and Document), press Enter.
l=Create 2=Revise 3=Copy 4=Delete 5=Display 6=Print

Option Document Subject Revised Types

INVENTOR Inventory for warehouse

LETTER1 Letter to ACB CORP
INVENTSM Inventory summary

LETTER2 Memo to J R Scruttle
LETTER3 Memo to J R Scruttle
LETTER6 Letter to Rundle Price
MEMOJHB Memo to J H Bottle
MONTHLY Monthly accounting summary
MONTHLYD Monthly detail for November
OLDMONTH Last month’s detail - Oct
REPORTYE Year end report

10/22/a1 DOCUMENT
03/24/81 DOCUMENT
12/01/a1 MEMO
12/03/a1 MEMO
12/04/81 MEMO
09/05/a1 MEMO
10/2a/01 MEMO
12/01/a1 DOCUMENT
12/02/a1 DOCUMENT
11/02/a1 DOCUMENT
11/3o/a1 DOCUMENT

More. . .
Parameters or command

xit F4=Prompt F5=Refresh F12=Cancel

by selecting an action from a list panel. Figure 6
shows an entry panel for a print request. The entry
panels are straightforward and require minimal user
interaction. They have a single column of entry
fields, each preceded by a field prompt and followed
by a list or description of the acceptable values for
that field. The values can be numeric values for
fixed, noncommand choices or actual command val-
ues, like *NO, for entry panels resulting from pressing
F4 (Prompt) for a command (see Figure 1 1, later).

The panel body of an entry panel is made up of three
columns from left to right. The columns are the field
prompts, the entry fields, and the descriptive text
that describes the values that can be entered in the
entry fields. Each column is left-aligned, as shown
below.

Type choices, press Enter.

Prompt. . . Values for field 1

Long prompt Values for field 2

The user is asked to respond only to required and
frequently used prompts. Choices that are infre-

quently used are not initially presented. They are
presented on a following panel if it is determined,
based on the initial responses, that more choices are
indeed necessary. For example, if a Copy File request
references a diskette file, only diskette-related op-
tions follow. Tape or database options are not shown.
This is called “intelligent prompting.” The prompts
are tailored to user responses.

The prompt function is also layered. Less frequently
used parameters may be requested by pressing the
F10 (Additional parameters) function key. Each of
these techniques results in users not having to ana-
lyze the individual fields or choices that do not apply
to their task. Wherever possible, default values are
already entered in the fields. The combinations of
defaults are carefully chosen so they result in a
commonly needed correct request.

The fields on an entry panel take two forms. The
first form is an entryjeld, which requests a name or
user-supplied value, like a document name, as shown
in Figure 6. An underscore shows the field‘s maxi-
mum length. For certain entry fields that accept a
name, the system makes available a list of the objects
to which the user is authorized. “F4 for list” is shown

450 BOTTERILL IBM SYSTEMS JOURNAL, VOL 28. NO 3. 1989

I

to the right of these fields to indicate that the F4 key
will request the list, shown in Figure 7. The user can
then make a selection from the list rather than type
in the name.

The second form of field on an entry panel is a
selectionjeld that allows a selection from a fixed set
of choices. The values are numbered as shown by
the prompt for type style in Figure 6 , unless the value
itself has significance, as in the case of an entry panel
for a command. The user need only type the number
for the desired choice in the same fashion as on a
menu. When the prompt requires a Yes or No
response, Y and N are accepted for Yes and No, as
shown by the duplex prompt in Figure 6. In the case

eter values are accepted and are listed to the right of
the entry field, like *REPLACE, *ADD, *MERGE.

1

I of an entry panel for a command, the actual param-

Infirmation panels display protected information.
The information panel shown as an example in
Figure 8 displays a series of output fields that are
identified by field prompts. The format is very sim-

FIGURE 7

ilar to an entry panel because the user is probably
already familiar with that format from entering or
changing the information. This avoids having to
learn and associate two formats.

Field prompts are in regular sentence style and are
located to the left of the field they identify. Field
prompts for output fields are not preceded by an
instruction line. The colon after the prompts and the
lack of an underscore indicate that the values are
output only.

Object-oriented design. In addition to consistency of
appearance and operation, one of the primary design
features of the AS/400 is its object-oriented approach.
Objects are the means by which information is stored
and processed. They are named collections of data
and attributes that are visible at the user interface.
The internal representation of the data and attributes
is not visible. The functions of the system operate
on the external objects.

The external objects on the AWOO include conven-
tional data collections such as files and programs, as

IBM SYSTEMS JOURNAL, VOL 28. NO 3, 1989

~

Figure 7 Selection list

Select Document

Type o p t i o n s , p r e s s E n t e r .
l = S e l e c t 5 = D i s p l a y

Option Document Subject Revised Types

- INVENTOR I n v e n t o r y f o r w a r e h o u s e
- INVENTSM I n v e n t o r y summary
1 LETTER1 L e t t e r t o ABC CORP
- LETTER2 Memo t o J R S c r u t t l e

LETTER6 L e t t e r t o Rund le P r i ce
- LETTER7 L e t t e r t o Rund le P r i ce

- MONTHLY Monthly account ing summary - MONTHLY2 Monthly account ing summary

-
.......

- MEMOJHB Memo t o J H B o t t l e

MONTHLYD Monthly d e t a i l f o r November
OLDMONTH Las t month ' s detai l - Oct c - - REPORTYE Year end r epor t

- REPORTYE Year end r epor t
- REPORTAD Advanced report

F12=Cancel

10/22/87 DOCUMENT
03/24/87 DOCUMENT
12/01/87 MEMO
12/03/87 MEMO
09/05/87 MEMO
09/05/87 MEMO
10/28/87 MEMO
12/01/87 DOCUMENT
12/01/87 DOCUMENT
12/02/87 DOCUMENT
11/02/87 DOCUMENT
11/30/87 DOCUMENT
11/30/87 DOCUMENT
09/05/87 MEMO

more. . .

~ ~~

Figure 8 Example of an information panel

IBM SYSTEMS JOURNAL, VOL 28. NO 3, 1989

well as those unique to the A S ~ O O such as job descrip-
tions and message queues. All data are stored on the
system in object form and are processed through
interactive panels, control language commands, and
the high-level programming languages.

Objects are brought into existence through a Create
command function that defines the name, attributes,
and initial value or values for the object being cre-
ated. Each object is assigned a type which is deter-
mined by the object’s specific purpose. After an
object is created, it remains on the system until it is
explicitly deleted by a Delete function. During its
existence, only operations that are valid for that type
of object are allowed to be performed on the object.
Only users that are authorized to the specific object
and to the specific operations can perform those
operations on the object.

The key advantage of the object-oriented design is
that users only see and specify attributes which are
meaningful externally. The internal structure and
actual storage occupied by the information are hid-
den. Users do not have to know if a given object is
implemented as multiple data structures or one.
They do not have to know offsets or internal repre-
sentation. For example, a database file is made up of
four machine object structures: a space, a cursor, a
data space, and a data space index. The system
manages the individual pieces of the file in a way
that allows users to perceive the file as a single object.

To minimize user learning, all objects have a set of
common attributes including: name, type, subtype,
library, creation date, last change date, and text
description. They also have a common set of opera-
tions that can be performed on them. The operations
are created with a similar Create function, deleted
with a similar Delete function, changed with a
Change function, displayed with a similar Display
function, and worked on as a group of like objects
with a “Work with” function. Most types of objects
can be renamed, moved, saved, or restored using
one set of commands which operate on multiple
object types. Therefore when users are presented with
a new type of object, they can expect the new object
to have a similar design and behavior to those with
which they are already familiar. This function pre-
dictability makes it possible for users to feel com-
fortable and in control.

Figure 9 shows the primary groups of objects, along
with several examples of objects in each group. The
attributes and operations of objects within each
group have even greater similarity.

IEM SYSTEMS JOURNAL, VOL 28. NO 3, 1989

This object-oriented design allows a programmer to
define workstation and printer devices to the system,
create files, create application programs, and create
job-processing environments in a convenient,
straightforward fashion. It gives the flexibility and
extendability needed to allow the system and appli-
cations to be defined to meet each installation’s
needs.

Standard versions of all objects necessary for an
operational system are shipped with the system. The
initial or small-system user does not need to create
objects, such as job queues or output queues, to get
started. The extendability and flexibility are available
when needed.

Object-action flow. There are two basic methods by
which users request work. One method is to first
identify the object to be acted on, followed by the
action to be performed on the object (object-action).
A second method is to first identify the action de-
sired, then the object on which to perform the action
(action-object). The flow for each of these two ap-
proaches is shown in Figure 10. Both are likely
methods for users to approach different tasks, and
both are supported on the ~S/400.

The object-action approach provides many produc-
tivity and ease-of-use benefits. It is supported by
having the user first identify the type of object via a
menu, after which a “Work with” list panel of the
objects of that type is presented. The “Work with”
list panel is the cornerstone of this approach (see
Figure 5). On it the user may directly and repeatedly
request actions on the listed objects via action op-
tions. Entry panels are shown when an action re-
quires qualification.

Some of the advantages of object-action approach
are:

It allows seeing the objects before deciding which
actions are needed. The name as well as key
attributes are shown in the list entry for each
object. The user can display the contents of the
object.
It allows the user to conveniently change to a
different action after seeing the object, without
leaving the current panel showing the object or
the list of objects.
It allows the user to point to the name of the object
rather than having to type it correctly from mem-
ory. (The action-object approach can also provide
this through the prompt dialog action, but it re-

Figure 9 Object type groups

Group Object typelsubtype Content

File File Data and data description
Physical database file
Logical database file
Display file
Printer file
Intersystem Communications
Function (ICF) file

Program Program

RPG program
Control language program

COBOL program

Description
Device description
Line description
Subsystem description
Job description

Queue
Job queue
Output queue
Message queue

List
Authorization list
Configuration list
Document list

Directories

Folder
Library

Other
Document

Query definition
Graphics symbol set

Processing description

Set of attributes

Waiting line

List of entries

Directory of objects

Application-specific

It supports the convenience of performing an ac-
tion on multiple objects.
It supports performing multiple actions on multi-
ple objects in a very natural way.
It lends itself to performing a sequence of actions,
one after another, without leaving the list.
The object-action path is normally shorter because
the panel of the list of objects is reshown after
each set of actions is performed, allowing one or
more additional action requests to be entered.
With the action-object approach, the flow returns
the user to the menu, and the entire sequence
must be followed again for each action, including
at least one entry panel and optionally a selection
list to identify the object (see Figure 10).

The action-object approach is supported by having
primary tasks as menu choices in addition to the
work with object type choices. After a task is selected,
an entry panel is presented for the user to type the
name of the object and any other options. The user
may be given the opportunity to request a list of
objects from which a selection is made (see Figure
6), using the prompt common dialog action (the F4
key), thus avoiding the necessity of having to key a
name from memory. The action being performed
cannot be changed at this point; the user can only
select an object for the task in progress.

Recognition and selection. Another pervasive design
approach that is used in the A S / ~ O O is recognition and

IBM SYSTEMS JOURNAL, VOL 28, NO 3, 1989

selection. Recognition is easier than recall; selection
is easier than keying. Wherever possible, users are
presented with a list of choices and allowed to make
a selection, rather than having to remember a name
or command. Menus are one of the methods used
to implement this design approach, listing actions
and object types (or high-level groupings) that allow
the user to select by number.

The “Work with” list panel discussed previously is
another major application of this technique (see
Figure 5). First, the objects are listed along with other
information to assist recognition, such as date, status
indication, and text description. Second, the sup-
ported actions are listed across the top of the list
panel along with the assigned numeric action options
(e.g., 2=Change, 3=Copy, 4=Delete, 5=Display)

Figure 10 Object-oriented flows for change document attributes request

OBJECT-ACTION FLOW

2.Documents

ACTION-OBJECT FLOW

IBM SYSTEMS JOURNAL, VOL 28, NO 3, 1989 BOTERILL 455

used in selecting one of them. The user needs only
to key an action option next to the desired object
and to identify the object and the action to be
performed on it. No keying of the object name or
attributes is required. The action option simultane-
ously selects the object and the desired action.

On entry panels, recognition is used by showing the
list of choices to the right of each entry field having
a small set of choices. For example:

Type style . . . - l=Bold, 2=Elite, 3=Pica

If the set of choices is long or varies in length, as
does a list of document names, the prompt dialog
action (F4) may be requested to provide a list panel
showing a list of choices and allowing recognition
and selection.

Interface layering. Layering is an approach that is
used to address the reality that only a relatively small
portion of the function is commonly used. The
remainder of the function addresses special-case sit-
uations. This special-case function can detract from
the simplicity and flow for average users and can
make the product difficult to learn for new users.
Layering simplifies the flow for new and average
users, while still providing good support for the
special situations. The dialog is structured so the
special function is never more than a keystroke away,
but otherwise the details are hidden. This reduces
the chances of the special function being mistakenly
selected or confusing users.

One of the ways this approach is applied on the
~ ~ 1 4 0 0 is in the structuring of menus. Commonly
used actions are assigned to the primary or low
option numbers so they are clear and visible. Special-
case options are grouped under a single option fol-
lowing the others. For example, on the A S ~ O O Main
Menu, problem-handling options are grouped under
a single option of that name, after the primary
options. The Diskette menu has the following pri-
mary options:

1. Display diskette information
2. Format a diskette
3. Print contents of a diskette
4. Save
5. Restore

Two secondary grouping options are provided that
allow access to less commonly used groups of op-
tions:

456 BOTTERILL

50. System136 diskette procedures
70. Related commands

On many entry panels, layering is implemented by
providing a function key (the F10 key) for requesting
advanced functions. This means the user gets a sim-
ple entry panel that only presents the required and
frequently used options. In the case of a Copy File
function, the first panel prompts for the file name,
the file to copy to, whether to add on the end or

Grouping helps the user associate
like items.

replace the information there, and whether to create
a new file (see Figure 1 1). The experienced user can
press function key F 10 to get such advanced function
prompts as a specific record format, offset record
number, and whether to print a log of copied records.

On list panels, layering is used in two ways: layering
of the columns of information and layering of the
actions supported. The columns of information
shown initially are the ones that meet usual needs.
If there is a logical grouping of additional columns
of information available, the F l l function key is
supported to request that alternate view.

The second use of layering on list panels is in the
presentation of the action options in the instruction
area. The initial set of action options shown is the
set of commonly used actions; another set of less
commonly used options is often available by pressing
function key “F23=More options.” The layering is
done independent of the numbering of the options
so that consistency in numbering for similar actions
can be maintained across list panels, regardless of
whether they are normal or advanced actions.

The same approach is used for function keys in the
function key area using “F24=More keys” to access
the other groups of active function keys.

IBM SYSTEMS JOURNAL, VOL 28, NO 3, 1989

Figure 11 Example of entry panel prompting for Copy File command

J I B

Grouping. By relating like pieces of information or
functions and grouping them, it is possible to make
the interface simpler to understand. Grouping helps
the user associate like items and learn them collec-
tively rather than individually. It is the process of
subsetting a larger whole so that users can remember

1 the groups, which are fewer in number.

Two ways to communicate grouping are alignment
and separation. Both are used throughout the AS/400
interactive interface to communicate relationships,
clarify function, and facilitate scanning.

Examples of the use of grouping on the AS/400 are
the following:

b On entry panels the prompts, entry fields, and
descriptive text stand out as distinct from each
other because of being aligned and in separate
columns.
Blank separator lines are used to separate contex-
tual information, instructional information, data,
and function key descriptions.
Within the panel body area, groups of entry fields
or menu options are aligned and separated by

i
IBM SYSTEMS JOURNAL, VOL 28. NO 3. 1989

blank lines, so they stand out and can be quickly
scanned.
Information on printed listings is grouped under
subsection headings rather than being placed in a
single continuous listing.
The command set (over 800 commands) uses
about 75 command verbs. The verbs form groups
of like commands. Ten of these verbs or groups
account for approximately two-thirds of the com-
mands.

Fast paths. Fast paths are another design approach
used to support users of different skill levels. Layering
helps the novice and occasional user, but fast paths
assist the experienced user. Fast paths may take one
of two forms: (1) a shortcut for handling a portion
of the current task, or (2) an alternative way to
navigate to the application or task support.

A shortcut should not require a separate step to get
to it. For example, a list panel with an input-capable
top list entry allows users to key the name of the
object, rather than scroll to it.

Another example of a shortcut is the parameter line
on some “Work with” panels which allows the entry

BOTTERILL 457

panel to be bypassed for special qualifiers on individ-
ual actions. When an option is keyed next to a list
entry that normally results in an entry panel to finish
the specification, the values can be keyed into the
“Parameters or command” field in command syntax
to bypass the entry panel. (See Figure 5.)

Another example is a “Do all the above” option on
a menu like the Display Job menu that allows the
selection of a whole group of attributes to display
without having to request each individually.

An alternative navigational fast path is a way to
request a task which is based on where users are in
their session.

One example is being able to request a task through
the use of a command without having to go to the
menu supporting it. While the interactive interface
of ~ S / 4 0 0 is carefully designed not to require a knowl-
edge of commands, most actions result in a com-
mand being processed. These commands can be
entered directly, which sometimes may be a faster
method to request a function. The AS/400 commands
match the function, terminology, and choices shown
on the panels. This, coupled with the availability of
a command line on most menus and list panels (see
Figures 4 and 5) , makes it very easy for users to
begin using the commands for frequently requested
functions. The same entry panels that are presented
if a function is selected by number from a menu or
list panel can be requested by pressing F4 while
typing the command parameters. Any parameters
already typed are camed over and filled in on the
entry panels. Defaults are shown for any entry fields
for which values have not been specified as parame-
ters.

Another example of an alternative fast path is being
able to go directly to a menu by name rather than
by going through a sequence of menus. The GO
command supports this option.

Still another alternative is the ability to interrupt a
current task to do something else, without having to
exit and return. The System Request (Sys Rq) key is
active at all times, allowing users to interrupt their
current task and perform one of several supported
functions such as send a message, check on output
status, receive messages, or start a separate session.

Keeping the user in context. For users to know where
they are and feel comfortable, it is important to

458 EOTTERILL

provide needed confirmation of “where am I” infor-
mation. This is done in several ways:

The title of the panel corresponds to the text of
the selected action, whether it was a menu option,
list panel action, or a function key.
The panel ID in the upper left corner of a menu
corresponds to the name that can be used on the
GO command to get to the menu.
When appropriate, identifying information is
shown below the title in an information area,
giving the source of the information and any
criteria in effect. For example, for a display of the
content of a particular output queue, the name of
the queue is shown:

Printer Output Files

Queue: ELKGROVE

Forgiving. When errors are detected, the user needs
a consistent, easy way to correct the errors, back up,
or exit. Users should not be put in a position where
recovery is impossible or seems impossible. Errors
are considered normal occurrences, and the system
treats them as such. Instructions on how to correct
a problem are provided for each message. These are
available by pressing the Help key for the message.

When an error is detected on an AS/400 entry panel,
the values in error are reshown in reverse video, the
cursor is positioned at the first value in error, and an
error message is displayed. The reverse video allows
rapid identification of errors, whereas cursor posi-
tioning allows easy correction. The message gives a
description of the error. Additional information
about the error can be requested by pressing the Help
key with the cursor on the message. The user can
change any of the input values and then press Enter
to have them checked again. The F3 key can be
pressed to exit.

Wherever possible, arbitrary syntax rules or require-
ments on the order of specification are avoided.
Examples of this on the AS/400 are: tolerance of
uppercase and lowercase letters for names where the
distinction has no value; tolerance of the presence
or absence of leading zeros for a numeric value;
acceptance of synonyms and abbreviations when
entering search words within the Search index ca-
pability of help; and allowing either the presence or
absence of apostrophes around a character string
with no embedded blanks. Distinctions in these cases
would be viewed by users as unnecessary and frus-
trating.

IEM SYSTEMS JOURNAL, VOL 28, NO 3, 1989

Contextual help with word search. Even with a flex-
ible, layered user interface, the time comes when a
user does not understand how to use a panel or how
to get started on a task. Through the AWOO help
facility, support information is immediately at hand.

The help facility provides both context-sensitive help
(based on cursor position) and a searchable index of
help topics. All help information is stored in the
form of small building blocks, called information
modules. As shown by path one in Figure 12, when
a user presses a Help key, the help facility displays
the information module associated with the area
where the cursor is currently positioned. When the
cursor is in other, nonspecific areas of a panel, ex-
tended help is provided, as shown by path two. The
extended help consists of information modules on
the use of the display as a whole, in addition to all
of the field help modules describing the use of the
individual fields. The modules are linked together so
that users can move forward and backward through
them to see all of the help for the panel. If users
initially receive help for a specific field, they can get
the extended help by pressing a function key (F2).

If users want help on another task, a concept, or a
term that they do not understand, they can ask for
the information by keying a request in their own
words. They can request Search index from any-
where in help by pressing function key F11 and then
entering search words or a sentence request. Each of
the words (except words used as simple connectors
such as “the” or “of”) is matched against tables of
keywords and synonyms, and a list of the topics that
best match the user-entered words is displayed. In
the example shown in Figure 12, the user has entered
“move words.” The search process finds matches for
“moving” and “positioning” (which are synonyms
for “move”) and matches for “text” and ‘‘lines’’
(which are synonyms for “words”). As a result, the
user is presented with a list of topics on moving text
and positioning lines. The user can then select one
or more of the listed topics, and their information
modules are shown.

For more information see “The Application System/
400 help facility-design philosophy and considera-
tions,”’ also in this issue.

AS/400 control language

A single set of commands, called the A S / ~ O O control
language (cL), allows experienced interactive users

IBM SYSTEMS JOURNAL. VOL za, NO 3, 1989

and programmers to request system, utility, and
application functions, using consistent syntax and
semantics. It includes commands for requesting any
system function, some of which are for user job and
output management, system operation, configura-
tion, query, programming, and security manage-
ment. Almost all commands can be used interac-
tively, one at a time, or in a batch job. The control
language is, in many ways, a high-level language for
performing system functions and application con-
trol. It can be compiled for more efficient perform-
ance. In a compiled program it supports variables of
three data types, character, decimal, and logical; full-
screen input and output to the display workstation;
arithmetic functions; and calls to applications writ-
ten in any language.

A Create Command function is provided to allow
users to create their own commands or their own
versions of system commands. These commands can
invoke CL or high-level language programs, thus
allowing applications to benefit from all the capabil-
ities of CL including prompting, defaulting, and va-
lidity checking.

Syntax. The basic syntax of the CL is simple and free
form. The blank is the separator character. It is a
natural separator that is common to all countries.
The period and comma are supported as decimal
point characters, allowing worldwide portability and
a natural syntax. The command name and associated
parameters can begin in any character position, thus
allowing indentation and parameter alignment. Each
parameter has an associated keyword that can be
used to identify the parameter value. The keywords
may be omitted for the first set of parameters as long
as the values are entered in the fixed positional order.
For example, the Copy File command is defined to
have the following keyword form:

CPYF FROMFILE(fi1e name) TOFILE(fi1e name) . . .

With the keywords coded, the values can be coded
in any order. A request to copy file A to file B can
be coded with keywords in either of the following
two ways:

CPY FROMFILE(A) TOFILE(B)
CPYF TOFILE(6) FROMFILE(A)

The same request can be coded positionally without
keywords, but then the values must be coded in
the order defined in the command definition.

Figure 12 How a user gets help-contextual and word search

"-

Panel-X
HELP 2

I

F i e l d Xl.. -
Field help r

1 ; I F i e l d X3.. __ F i e l d X2: xxxxxx
xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx

F2=Extended help
Fll=Search index r

I I I

Extended help

xxxxxxxxxxxxxxxx
xxxxxxxxxxxxx...
F i e l d X1: xxxxxx
xxxxxxxxxxxxx...
F i e l d X2: xxxxxx
xxxxxxxxxxxxx...

Fl l-Search index

How t o search: x
xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx

Enter words.
r------------ 1
I move words I

L"" 7"7""-:
II

I I
I I ,-"-I L-,

I
I

I
I

i SEARCH I
I
I

I
I

L" 7 r-"
I 1 I
I L """__" -I

I TOPICS FOUND
L - - - - - - - - - - - - -

r---

L"_

Index for xx I
Select topic:

Move a block
Move a l i n e
Move t e x t l e f t
P o s i t i o n l i n e s

-.

Mow I block

Text f o r "Move a
block" : xxxxxxxx
xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx

1,

I lavetexttalt I

-1

JSER 1
3ELECTS
r o w

Text for "Move
t e x t l e f t " : x x x x
xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx

460 BOTTERILL IBM SYSTEMS JOURNAL, VOL 28. NO 3, 1989

For example:

CPYF A B

Command naming conventions. By convention, each
system and utility command is designed to request
a single function. This is normally an action-object
pair. No matter what logic path (object-action or
action-object) is used to narrow a request, the sim-
plest and thus final request level is an action-object
pair. This results in a very simple command name,
action object, and a focused set of parameters which
directly pertain to the request. This approach reduces
the complexity of the command by reducing the
number of conditional parameters. For example, if
the command performed an action on multiple types
of objects, different parameters may be needed for
the uniqueness of each object type, adding signifi-
cantly to the difficulty of learning and use.

The command set is then designed based on a single
set of action verbs, some of which are: Create,
Change, Delete, Display, Work with, and Copy, and
a set of objects, some of which are: File, Program,
Device Description, User Profile, and Job. The ac-
tion verbs create noticeable groupings of commands,
greatly simplifying the command set that numbers
more than 800 commands. Some of the commands
are the following:

Create User Profile
Change User Profile
Display Device Description
Display Job
Copy File
Work with Active Jobs

In order to simplify keying, the command names are
abbreviated using a fixed-length abbreviation scheme
ofconcatenating the individual abbreviations ofeach
word in the name. Abbreviations, other than the
ending one, are formed using the first character of
the word, followed by the two most prominent con-
sonants. Three characters allow for sufficient and
meaningful uniqueness, even for similar words like
Rename (RNM), Remove (RMV), Replace (RPL), Re-
store (RST), and Receive (RCV). The use of consonants
maximizes uniqueness and predictability and avoids
forming an inappropriate non-English word. This
entire approach results in a very predictable, consis-
tent command set that offers additional advantages
over “minimum length,” “minimum truncation,”
and a “single abbreviation for the whole command”
schemes. These are:

IBM SYSTEMS JOURNAL VOL 28 NO 3. 1989

Table 1 Command abbreviation construction

Commando Abbreviations
individual Combined

Create User Profile CRT USR PRF = CRTUSRPRF
Change User Profile CHG USR PRF = CHGUSRPRF
Display Device DSP DEV D = DSPDEVD

Display Job DSP JOB = DSPJOB
Copy File CPY F = CPYF
Work with Active Jobs WRK ACT JOB = WRKACTJOB

Description

Less learning is necessary; all commands are built
from the same abbreviations.
A command’s abbreviation is always valid, not
being dependent on the environment or release to
decide how many characters are necessary to de-
termine uniqueness.
Users can predict the name of the command they
need by just knowing the naming rule.
Users can parse any command name by only
knowing the three-character rule, and therefore
determine the command‘s function.

The last abbreviation in a name is sometimes re-
duced to less than three characters to minimize
keying. This is done only if it can be done consis-
tently and does not produce any ambiguity in parsing
the abbreviations. For example, D is used for De-
scription, and F for File, both of which identify a
class of object and appear at the end of command
names. In a few cases, exceptions are made to the
vowel rule due to the strong precedence of common-
use abbreviations that themselves were already three
characters. Examples are LIB for library, DEV for
device, and JOB for job. Common acronyms are used
for multiple word object names, like RJE for Remote
Job Entry.

The command abbreviations for the set of example
commands are shown in Table 1. The approach has
proven to be very extendable and rememberable.
Users have found that they can readily construct or
learn the names because of the strict consistency and
the intuitive action-object naming.

Keyword and value naming. A single, unabbreviated
word is preferred for keyword and value names in
order to make them easier to remember. For exam-
ple, some common keywords are FILE, TYPE, OUTPUT,
and TEXT. Some common special values are *YES,
*NO, *ALL, and *NONE. If the keyword or value name

represents a multiple word phrase, like user profile,
the rule scheme for concatenating three-character
abbreviations is used (for example, USRPRF). In either
case, the values are defined so as to be self-docu-
menting and not ambiguous. Values may be nu-
meric, character strings, names, or special values.

Special values are the identification of predefined
options within a keyword parameter. They are al-
ways preceded by an asterisk to distinguish them
from the name of an object. For example, the FILE
keyword for the Display File Description command
has a special value of *ALL representing the option
of listing the description of all the files, not just one.
This can be shown as:

FILEFALL or file name)

The file name specified could be any file name,
including ALL.

This approach to naming results in consistent self-
documenting keywords and values without having
reserved name restrictions that would be error prone.

Validity checking. Early validity checking is a sys-
tem-wide strategy and occurs no matter where com-
mands are entered. It is performed when a command
is entered on a command line, during interactive
command prompting as individual groups of param-
eters are entered, at source entry time as commands
are entered into a database file for later compilation
into a CL program, and at compilation of a CL
program. A job option exists to have the CL com-
mands in a batch job validity-checked as the job is
placed on the job queue for later batch execution.

The validity checking is defined when the command
is described to the system through the Create Com-
mand function. This results in a command descrip-
tion object which contains the full description of the
command necessary to do a thorough validity check.
The validity checking is done by a common com-
mand analyzer, no matter when and how the com-
mand is entered. This assures consistency of error
identification.

Parameter defaulting. The A S ~ O O control language
utilizes a highly visible defaulting approach. Most
parameters are optional. Each optional parameter is
displayed with a carefully selected default. Using an
approach with many defaults helps the user by re-
quiring less keying and less system knowledge.

462 BOTTERILL

Less knowledge is required because not all parame-
ters need to be understood to perform the desired
task. Parameters can be left to default to get the
function up and running. As learning progresses,
values can be specified to meet special needs. For

A system command prompter is
available to assist in entering

commands.

example, an output queue can be created with the
number of job separators defaulted to one. Later,
when it is found that three would be better, it can be
changed.

Many systems have used some form of defaulting
approach but have suffered from a number of com-
mon problems.

One common problem is that of not making defaults
visible or what is expected. On the A S ~ O O , the mystery
is avoided by making all defaulting visible. The
default value is always one of the standard user-
specifiable values, and the capability is given to
change defaults. Each value is fully described in the
supporting documentation.

On systems where the default is not required to be a
standard value, the default-action tends to develop
its own idiosyncrasies, such that letting a parameter
default results in several unexpected ramifications.

Parameter prompting. On many systems, interactive
command prompting is often inadequate or not
provided. Some systems do not have any help behind
the prompting. On still others, the prompting is only
available after the user makes an error.

As part of the A S ~ O O interactive interface, a system
commapd prompter is available to assist in entering
commands. Prompting can be requested at almost
any time while entering the command. Users can
key whatever is known and ask for prompting assist-
ance for the remaining parameters by pressing the
F4 (Prompt) key. In this way the interface adapts to
match the user level. The assistance is available for

IBM SYSTEMS JOURNAL, VOL 28, NO 3, 1989

the user needing it, but is not a frustration to the
user not needing it. The same prompting is provided
when entering a command interactively for imme-
diate execution or entering a command as part of a
CL program for later use. The prompter presents
entry panels that identify parameters, defaults, and
valid values so that the user can enter commands
without frequent reference to publications. The list
of valid values for a parameter can be requested by
pressing F4 while in the field in question. Help text
can be requested for the parameter by pressing the
Help key.

The prompting is layered so users are initially
prompted only for required and frequently used
parameters. Parameters that are less frequently used
are not initially shown. They can be requested by
pressing F10 (Additional parameters) and thus be
shown. Parameters that are only required in some
situations are also not initially presented. They are
presented on a following panel if it is determined,
based on the initial responses, that more parameters
are indeed necessary. For example, if a copy request
references a diskette file, diskette-related parameters
are shown but tape options are not shown. This is
called “intelligent prompting.” The system tailors
the prompts based on user responses.

Prompting frees users from specifying parameter
names or syntactical delimiters. They see only text
prompts and blanks for entering individual values.
Users can quickly review the command parameters
and their defaults and key only the values that they
want to change. When the Enter key is pressed, the
values are validity-checked. If any errors are found,
the panel is reshown with the values in error in
reverse video with appropriate error messages. The
cursor is positioned on the first value in error, and
the keyboard is unlocked for easy correction of the
value.

The prompting support exhibits many of the capa-
bilities built into the CL: consistency, defaulting, and
validity checking. Both prompting and the CL in
general have received high user-satisfaction ratings
on surveys of users.

Summary

With the introduction of the AS1400 comes an ad-
vanced nonprogrammable terminal user interface
that spans the comprehensive facilities of this mid-
range system. The interface is designed to be used
by a broad spectrum of users and provides them

IBM SYSTEMS JOURNAL VOL 28. NO 3. 1989

with interface capabilities not previously available to
users of general-purpose computers. The interface is
designed to allow each user to comfortably begin
work and grow in productivity, using menus, layered
entry panels, list panels, and command lines. It is a
very consistent interface across all ~ ~ 1 4 0 0 function
and introduces consistency between programmable
workstations and nonprogrammable terminals, with-
out compromising the potential and strengths of
either.

A complete interactive interface is provided for all
system-supplied functions including, for example,
end-user, operation, programming, office, query, and
problem-determination functions. A User Tasks
menu is provided to meet the needs of end users. It
and its accompanying facilities support displaying
messages, sending a message, submitting and con-
trolling jobs, checking on and changing output, and
signing off in a way designed for end users.

An improved list panel is used to simplify creating
and working with objects. It allows actions to be
performed directly on the objects in the list or by
typing the name. This allows actions to be performed
consecutively and in groups from within the list area,
simplifying and streamlining work.

Whenever an action is requested that requires addi-
tional information, an entry panel is provided that
overlays the interactive specification of option. The
frequently used options are presented first, and then,
on request, more advanced options are displayed.
Options whose applicability depends on other re-
sponses are only presented if appropriate.

At any time, users can ask for help that corresponds
directly to their needs. In addition to presenting
information describing the current field, the help
facility allows users to request other information by
typing words describing what they want to know. In
response, their request is satisfied by the presentation
of a list of topics from which they can choose the
ones they want displayed.

Because the interface is based on CUA, its capabilities
can continue to be extended to use other CUA inter-
action techniques and to make greater use of pro-
grammable workstation capabilities, preserving a
level of consistency with cuA-complying products
and today’s AS1400 interface.

The single control language allows appropriate per-
sons to install, configure, operate, test, and define

applications through a single set of commands. All
the ease-of-use of command prompting and validity
checking is available to them as well as to any
application. Programs can be written directly in CL
and make use of system functions or individual CL
commands, and can be executed directly out of high-
level language programs.

Feedback from a large number of customers verifies
that the user interface of the A S ~ O O has made signif-
icant strides. The comprehensive interactive inter-
face, which is designed for those who are not data
processing professionals, and the underlying control
language are a powerful and flexible combination.
As the use of computers increases and more and
more users who are not data processing professionals
join the ranks of computer users, users’ expectations
and the need for greater ease of use will continue to
rise. Therefore, completely new approaches and re-
finements in current user interface design approaches
must be developed in order to continue to make
computers more valuable to their users.

Acknowledgments

The author would like to acknowledge Dr. Joe
DiCecco for his significant contribution to the AS1400
user interface design. He was the primary software
human factors engineer. In addition, Dennis Char-
land and John Hamngton were the user interface
designers responsible for the help function design
and the user interface standards, and served as key
reviewers for this paper as well.

Application System/400, ASl400, Operating SystemI400, and
OS/400 are trademarks, and Personal System12 and PSI2 are
registered trademarks, of International Business Machines Cor-
poration.

Cited references and note

1 . In this paper, the term nonprogrammable terminal refers to
keyboard-display devices attached to a host processor in which
all or most of the user-interface functions are controlled by the
host. The term programmable workstation refers to keyboard-
display devices in which all or most of the user-interface func-
tion is controlled by the workstation itself.

2. Systems Application Architecture, Common User Access: Panel
Design and User Interaction, SC26-435 I , IBM Corporation
(December. 1987); available through IBM branch offices.

3 . S.vstems Application Architecture. Common User Acce.ss: Basic
Interface Design Guide, SC26-4583, IBM Corporation (avail-
able through IBM branch offices, fourth quarter 1989).

4. “Expanded role for the programmable workstation in Systems
Application Architecture,” IBM external announcement letter
(April 17, 1989).

5. D. A. Charland, “The Application System/400 help facility-
design philosophy and considerations,” IBM Systems Journal
28, No. 3 , 424-442 (1989, this issue).

464 BOTTERILL

General references

“Defining AS/400 compatible displays using data description,”
Specifications Newsletter, GC21-8 163, IBM Corporation (August,
1988): available through IBM branch offices.
R. E. Berry, “Common User Access-A consistent and usable
human-computer interface for the SAA environments,” IBM
Systems Journal 27, No. 3, 281-300 (1988).
J. H. Botterill, D. A. Charland, J. Y. Harrington, “An integrated
user interface,” IBM Application System/400 Technology, SA2 1-
9540, IBM Corporation (June 1988); available through IBM
branch offices.
J. H. Botterill, “The design rationale of the System138 user inter-
face,” IBM Systems Journal 21, No. 4, 384-423 (1982).
AS1400 S.vstcw Operations: Display Station User’s Guide. SC2 1-
9744. IBM Corporation (June 1988): available through IBM
branch offices.
AS1400 Programming: Control Language Programmer2 Guidr:
SC21-8077, IBM Corporation (June 1988); available through IBM
branch offices.
AS1400 Programming: Command Reference Summary, SC2 1 -
8076, IBM Corporation (October 1988); available through IBM
branch offices.
AS1400 Programming: Security Concepts and Planning Guide
SC21-8083, IBM Corporation (June 1988); available through IBM
branch offices.
S.vstems Application Architecture, Common User Access: Advanccd
Interface Design Guide, SC26-4583, IBM Corporation (available
through IBM branch offices, fourth quarter 1989).

J. Howard Botterill IBM Application Business Systems, Highway
52 & N W 37th Street, Rochester. Minnesota 55901. Mr. Botterill
is a senior programmer in the Software Strategy, Architecture, and
Planninggroup at IBM Rochester. He is responsible for the AS1400
user interface strategy. He joined IBM Rochester in 1967 and
helped develop the Multiple Terminal Monitor Task (MTMT)
terminal system for Systeml360. He worked on the Communica-
tion Control Program (CCP) for the System13 and had the design
control responsibility for the System138 user interface. From 1982
to 1984, he worked at the System Products Division headquarters
in White Plains, New York, coordinating the division’s usability
process. Since that time, he has worked on the design of the IBM
Common User Access user interface and the design of the AS/400
interface. He received his B.S. in mathematics from Wheaton
College, Wheaton, Illinois, and his MS. in mathematics from the
University of Michigan at Ann Arbor.

Reprint Order No. (3321-5369.

IBM SYSTEMS JOURNAL, VOL 28, NO 3, 1989

