
A message management

computers
1 system for personal

by L. d’Arielli

This paper presents a design for a message manage-
ment system that reduces the coding effort for the
application developer, gives the user greater control
over the treatment of application messages, and elimi-
nates many problems of translation. Any message may
be directed to one or more devices (screen, printer)
andlor files (log, activity), with the ability to exclude
message elements (e.g., date and time) from being
sent to any output destination, or to exclude a destina-
tion altogether. Because the message-handling code
and message texts are separated from one another
and from the application code, the developer need only
issue a message identifier and set the associated vari-
able values. The message identifier contains codes for
both class and severity, and the developer provides
default selection criteria that the user can modify.
These tables of selection criteria provide a simple yet
highly flexible means of determining where each mes-
sage will be sent and in what form. The simplicity of
including variable information and the separation of
message texts into a master repository (where an in-
formation developer or translator can work on them)
tend to improve the quality of messages to the user by
making them more consistent and informative.

S ince the introduction of the first personal com-
puter, many thousands of people have started

using computers who are not, and have no wish to
become, experts in data processing. This fact has
many implications in software design, not the least
of which is the need for better messages from the
computer (or, more accurately, the program) to the
user. These messages give the user information
(“OK, I’ve done it.”), or warnings (“I can’t do it, or

IBM SYSTEMS JOURNAL, VOL 28. NO 3, 1989

the results may not be reliable.”), or announce an
outright error (“I tried to do it, but it went wrong.”).
The old generation of users, who tended to be data
processing specialists, was prepared to accept cryptic
and critical messages. The new generation expects a
message to provide help without the need to search
a manual for an explanation.

The problems of message handling. In the most
frequent situation, in which the user is working
interactively with the computer, the user does at least
have the advantage of being able to see the situation
at the moment the message is issued. In an event-
driven situation, such as when a personal computer
is receiving data from an international network,
much more information is needed to tell the user
what to do or what has happened.

As an example, take the case of simply copying a file
from a fixed disk to a diskette on an IBM Personal
Computer or Personal System/2@ (PS/~@) using a
command of the Personal Computer Disk Operating
System (DOS) in an interactive situation:

copy c:daniela.dat a:emanuela.dat

Copyright 1989 by International Business Machines Corporation.
Copying in printed form for private use is permitted without
payment of royalty provided that (I) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright
notice are included on the first page. The title and abstract, but no
other portions, of this paper may be copied or distributed royalty
free without further permission by computer-based and other
information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

d’ARIELLI 479

In this situation, messages such as:

1 file(s) copied

File not found

Disk full

are, perhaps, sufficient. The context is known, the
command remains on the screen, and lengthier mes-
sages could soon become tedious. The user does not
have to be told:

File c:daniela.dat not found

In contrast, in the case in which networking is being
used, a message such as:

Disk full

is totally inadequate. The user needs something like:

Disk A: full, unable to write file EMANUELA.DAT
received from TIMBUKTOO at 04:12:36 GMT

or, for example, in Italian:

Disco A: pieno, I’archivio EMANUELA.DAT ricevuto
alle 04:12:36 GMT da TIMBUKTOO non viene scritto

This example highlights two requirements: the inclu-
sion of variable information and the need to provide
National Language Support (NLS).

Developers too have their problems. For a particular
application, they must decide whether messages may
be displayed, printed, or recorded in a file. Then they
must decide which destinations are appropriate for
each individual message. And finally, they must write
the code to assemble and issue each message to each
destination.

All of this effort is spent to produce a totally inflexible
system: The developer must dig into the code in
order to implement any change in destination or
format, while the user can do nothing at all to alter
what the developers have provided.

A solution to these problems. This paper describes
how the problems of providing messages were solved
when designing and implementing the IBM Personal
Computer/Distributed Systems Node Executive
(PCIDSNX) at the IBM Telecommunications Devel-
opment Center in Rome, Italy. Included with this

480 d’ARIELLI

product is a system for handling messages called the
Message Management System. (The similarities with
the message management of Operating System/2’”
[os/zTM]”* are coincidental; PCIDSNX was developed
totally independently.)

Separating message texts from application code is
not new. It is virtually indispensable if messages are

Message texts are called skeletons.

to be translated. But the Message Management
System described here goes further, separating the
message-handling code from the application code. It
has been largely implemented as a component of
Release 1 of PC/DSNX, which has been available since
March 1988.

The application code communicates with the mes-
sage-handling code through an interface control
block an$ is itself controlled by tables defined by the
customer when installing the package. This ap-
proach has a number of advantages for the devel-
opers and translators of the product and also gives
the customer considerable control over the selection
and routing of messages. It should, perhaps, be
stressed at the outset that it is not intended that the
customer should modify the basic message texts.

The logical starting point of the description is the
master message repository containing all of the mes-
sage texts. The use of this file makes it easier:

To keep the wording and contents of messages

To avoid duplicating messages
To keep messages up-to-date
To translate messages into foreign languages

The repository is used to create, more or less auto-
matically, two other files: the text formatter, Script,
source file for the messages section of the manual
and the message skeletonjile. All three files are text
files that developers and translators can view and
change with an ordinary personal computer editor,
but clearly it is almost always easier, and invariably
safer, to modify message texts in the repository file.

consistent

IBM SYSTEMS JOURNAL, VOL 28, NO 3, 1989

The message texts are called skeletons at this point
because they contain consistent wording and the
names of any imbedded variables. The values of the
variables put the “flesh” on the “bare bones” of these
texts.

How a message is issued. Given the existence of the
message skeleton file and the Message Management
System (MMS), the application code initiates a mes-
sage simply by putting the module name and the
values of any associated variables into an area acces-
sible to the MMS and issuing a message request con-
sisting of the message identifier (for example,
“PXM3004E”).

From this point, the MMS takes over. First, it assem-
bles the full message text, combining the skeleton
text and the values of any imbedded variables and
adding the module name, the date and time, and the
time zone. These last items may be required for
diagnostics, tracking, and audit. The time zone is of
interest only if the application involves communi-
cation across time zones.

The full message text is then made available to a
user exit, permitting the customer to write a small
program to make any necessary modifications. For
example, the values of any variables may need to be
manipulated for a language written from right to
left.

On regaining control, the MMS consults the message
selection criteria contained in the message customi-
zation file that customers can tailor if the defaults
do not satisfy their needs. These criteria are the fan-
out vector, the filter matrixes, and the format vector.

The fan-out vector simply determines what possible
destinations are available. (Screen, printer, log file,
and activity file are the defined destinations in
PCIDSNX.) A customer who does not want an activity
file at all says so by modifying the fan-out vector.

The MMS now looks at the filter matrixes for the
remaining destinations. Every message identifier
contains a class code, the meaning of which is appli-
cation-dependent, and a severity code (Information,
Warning, or Error). The filter matrix for a destina-
tion determines, for each combination of class and
severity, whether or not the message is required.

At this point, therefore, the MMS knows that the
message request affects only certain destinations, for
example, the screen and the log file.

IBM SYSTEMS JOURNAL, VOL 28, NO 3, 1989

The MMS now consults the format vector, which
provides the reference number of the output format
used for each destination. An output format simply
consists of a list of the message elements (for exam-
ple, application module name, message identifier,
message text, and its imbedded variables, date and
time) to be included in all messages to the destination
concerned. The output formats themselves are pre-
defined in the application and cannot be modified
by the customer.

Finally, the MMS makes a copy of the message for
each destination that has not been eliminated in the
previous stages, removing unwanted message ele-
ments according to the output format(s), and issues
the message(s) to the destination(s).

Message Management System rationale and
overview

The first decision was to build the message skeleton
file, which contains all of the messages, as a “flat”
text file, written with use of any personal computer
editor. In this way it is easily displayed, printed, and
translated. Each message skeleton has its unique
message identifier and can imbed the names of one
or more variables. The variables will be resolved
when the message is issued.

Another decision was to store the message in such a
way that, when it has been resolved, a user program
can extract whatever information is of interest, such
as values of resolved variables, message identifier,
module name, date, and time.

The call to a user exit routine is provided after the
resolved message has been built in memory and
before it is issued. This ordering allows the customer
to control the message handling by extracting infor-
mation for statistics in real time, by taking over the
message management entirely (fanning out, filtering,
and formatting), or by modifying4the text of the
resolved message before it is issued.

The message customization file gives the customer
or end user a simple and effective means of control-
ling how messages are handled. The message selec-
tion criteria allow different types of messages to be
passed to different destinations, and there are also
facilities for adding information provided by DOS (for
example, date and time) or by the application. The
personal computer operating system described here
is DOS, but the same approach, with some modifica-
tions to the implementation, would be valid for 0s/2
or any other operating system.

All of the messages are categorized into classes and
severities, and both of these items of information are
encoded in the message identifier. These two cate-
gories provide a basis for the logical differentiation
that controls filtering. The current implementation
of these message selection criteria supports two de-
vices (screen and printer) and two files (log file and
activity file).

Figure 1 shows the overall relationship between the
application and the Message Management System
(MMS).

It is the application developer’s responsibility to
build the message skeleton file, providing for each
message the appropriate identification, the message
text, and the names of any imbedded variables. To
ensure that the name of a variable always has the
same meaning, the developer also needs to provide
the MMS with a message variable table (MVT) that lists
all of the variables with the address in the message
boundary block (MBB) in which the value of each
variable will be placed. This MBB is the control block
used to exchange all of the request and response
information between the application and the MMS.

With the names of the variables and related infor-
mation separated into the MVT and then copied into
the MMS area, it becomes easier to issue an error
message from the application program, because there
is no need to provide both the names and the con-
tents of the variables each time a message is issued.
Only their contents are necessary.

At initialization time, at least the MVT, the name of
the message skeleton file, and the name of the mes-
sage customization file are passed to the MMS by the
application. The MMS is thus able to build, in mem-
ory, the message skeleton index to allow keyed access
to the message skeleton file, to load into memory
the message selection criteria from the message cus-
tomization file, and to set up appropriate values in
the message control block.

From now on, in order to issue a message, any
module of the application has only to provide the
message identifier, its module name, and the values
of the variables related to that particular message.
On the basis of this information and that in the
internal control areas, the MMS reads the skeleton
message from the message skeleton file, obtains the
values of the variables and substitutes them in the
message text, and builds the resolved message to be
passed to the user exit routine. When MMS regains

482 d’ARIELLI

control from the exit routine, it makes use of the
message selection criteria. Only if the fan-out vector
and the filter matrix let it through will the message

A variable always has the same
name in all of the messages

in which it appears.

be arranged in the user-defined format and sent to
the corresponding device or file. At the end of this
process, the MMS puts the return code and the con-
dition code vectors resulting from the operation in
the MBB for the use of the application program.

Data integrity. The MMS checks the validity of the
files at startup. However, direct editing of the files by
the customer could introduce inadvertent errors and
is therefore discouraged. To persuade the customer
not to edit the message customization file directly,
PC/DSNX provides an interface program for custom-
ization. This program leads the customer through a
series of interactive panels and checks the validity of
any changes made.

If it is felt necessary to protect the message custom-
ization file and the message skeleton file from any
attempt by the naive user to edit them directly, they
can easily be made read-only files.

Message skeleton structure

The message skeleton file can be created using any
personal computer editor that is capable of editing a
“flat file” of variable record length. Each message
skeleton occupies one or more lines in the file. The
beginning of a message is marked by a new message
identifier starting in column one. The file format is,
therefore:

XXXcnnns Text of message, with KW=&VARNAME
imbedded

. . .

keywords and variable names

XXXcnnns Text of next message

IBM SYSTEMS JCURNAL. VOL 28, NO 3, 1989

Figure 1 General structure and interfaces

DOS

Two key points of the MMS are the structure of the
message identifier “XXXcnnns” and the handling of
imbedded variables.

The message identifier includes two characters that
describe the nature of the message, namely the mes-
sage class “c” and the message severity “s.” This
format imposes a discipline on the developer to
categorize all of the application messages into classes
and severities. The message class is a way to subdi-
vide all of the application messages into categories
that are meaningful to the end user according to the

IBM SYSTEMS JOURNAL, VOL 28, NO 3, 1989

type of their content. The message severity, on the
other hand, classifies the messages according to the
level of intervention that the application requires
from the user. On the basis of the combination of
these two codes, a more granular and still simple
filter grid can be built. This granularity is sufficient
for most applications.

The naming of variables is the other key point. A
variable always has the same name in all of the
messages in which it appears (for example, &FILEID
for file name), and the application program always

places the value of a variable in the same location in
the MBB. This approach (as opposed to the ten num-
bered variables described in References 1 and 2,
where the file name might be %1 in one message
and %4 in another) has several effects:

The name of the variable is meaningful.
There is virtually no limit to the number of vari-
ables that can be imbedded in a message. The only
constraint imposed by the MMS at present is the
maximum message length of 32 kilobytes.
It is much easier to translate the message skeleton
file into any foreign language (which might require
variables to be used in a different order).
It is much easier to create an accurate list of
messages for inclusion in the documentation.

The named variables are recognized, among the text
words, through the csov> (Start Of Variable) char-
acter-in the example above, the ampersand (&).
Once the MMS has replaced the named variable with
its corresponding application value, there is no easy
way to recognize the value of the variable among the
words of the resolved message text.

This situation could make it difficult for a user
program to extract the values of the variables. To
overcome this problem, therefore, a keyword is put
in front of the named variable, for instance “FN=”
meaning “File Name.” These keywords are part of
the skeleton text and are not recognized by the MMS
as having any special significance. Only the user
program needs to know them, so they must be
documented in the user manual. They can also be
translated just like any other part of the skeleton
text, whereas the message identifiers and the names
of the variables must not.

Below, a detailed description of the skeleton message,
with the actual values provided in the PC/DSNX ap-
plication, provides a practical example that may
make these concepts clearer.

XXX Software Product Message Acronym
(three characters). The capital alphabetic
string “PXM” is used for messages pertain-
ing to the PCIDSNX application.

C Message class (one character). Allowed
values are 0-9 and A-Z. The PC/DSNX
application implements only the follow-
ing classes:

0 Interactive messages, including
prompts

484 d’ARIELLI

1 Host request activity messages
2 Transmission error messages
3 I/O error messages
4 DOS or PCIDSNX program logic error

messages

nnn Message number (three characters). Mes-
sages are numbered in a separate series
for each class.

S Message severity (one character). The fol-
lowing values, with the corresponding
meaning, are implemented:

I Information
W Warning
E Error

text Message skeleton text with imbedded
variables. Message variables inside text
have the following format:

<SOV> cVarname>

sov Start Of Variable identifier, a unique
ASCII character, defined by the develop-
er, that identifies the name of a variable.
It must not have any other meaning
anywhere in the message skeleton file. It
may be any ASCII character in the hex
range 21 through 7F except the alpha-
numeric characters (0-9, a-z, A-Z).
The PC/DSNX default is “&.”

The translator of the messages might pos-
sibly need to change the sov, but the
customer should not.

Varname This is the name of a variable that is also
defined in the MVT. It has a maximum
length of eight alphanumeric characters
(0-9, a-z, A-Z).

Any nonalphanumeric character marks
the end of the variable name.

Structure of files and tables

Message skeleton file. The message skeleton file is
built up of some application-specific information in
the first lines followed by all of the message skeletons.

IBM SYSTEMS JOURNAL, VOL 28. NO 3, 1989

Figure 2 Format of the message skeleton file-examples of all the message classes are included in this selection

* * * Top of File * * *
PC/DSNX MESSAGE SKELETON FILE
/ * 5669-333 (6476171) (C) COPYRIGHT IBM CORPORATION 1988 * /
/ * ALL RIGHTS RESERVED - LICENSED MATERIALS - PROPERTY OF IBM * /
PXMOOOlW Activate the printer.
PXM0002E A number of messages sent to the printer have been lost because
the printer is not active.
PXM0003W Activate drive DR=&DRIVEID.

PXM1007I File FN=&FILEID has been replaced.

PXM1014E File FN=&FILEID was not sent because it was not found.

PXM2003E A SNA Conversation Failure Occurred. VERB=&APPCVERB,
PRC=&APPCPRC, SRC=&APPCSRC.

PXM2006E An unrecoverable error occurred when parsing the MU.
SNAC=&SNACODE, SNAS=&SNACODE, STRID=&STRID, STRDATA=&STRXCPN,
SEGNUM=&SEGNUM, BYTENUM=&BYTENUM.

PXM3001E An unrecoverable error occurred while accessing the file
FN=&FILEID.

PXM3003E Processing cannot continue because disk DR=&DRIVEID
is full.

PXM4005E An unrecoverable error occurred due to invalid data in the
PC/DSNX system file FN=&FILEID.

* * * End of File * * *

Figure 2 illustrates an example of the message skel-
eton file as it is viewed when displayed by a personal
computer editor. The first line is the file descriptor,
which is checked by the MMS. This is followed by the
copyright information in the form of comments. The
remainder of the file consists of all of the message
skeletons with the imbedded variables and keywords.

For economy of effort and to ensure consistency, the
message skeleton file could be generated automati-
cally from a master message repository that is also
used to generate the source file for the messages
section of the manual.

Message skeleton index. The highest performance
would be obtained by keeping the entire message

IBM SYSTEMS JOURNAL, VOL 28, NO 3, 1989

1

skeleton file in memory, but not every system has
enough space to do this. Instead, the MMS builds a
memory-resident index that gives fast random access
to the disk-resident message skeleton file, thus com-
bining good performance with economical use of
memory.

As an example of relative size, the PC/DSNX message
skeleton file, containing about 120 messages, is
I O 200 bytes long, whereas the message skeleton
index takes only 1680 bytes of memory.

At startup time, the MMS sequentially reads the whole
message skeleton file and dynamically builds the
message skeleton index, with one entry for each
message containing its relative byte address and

d'ARIELLI 485

Figure 3 Example of message output formats

DATE AND TIME

TIME ZONE (TZ)

MESSAGE TEXT

length. Thereafter, the message skeletons are read
directly from disk by key (the message identifier)
only when they are needed.

A small reduction in startup time could have been
achieved by creating the message skyleton index once
only, as can be done by a utility. It was decided,
however, that with the comparatively small message
file of PC/DSNX, it was better to play safe in main-
taining the accuracy of the index while reducing
dependencies.

The user with ample memory can improve perform-
ance by copying the message skeleton file onto a
virtual (RAM) disk. Performance in general can also
be improved by faster reading of all files, obtainable
by increasing the number of DOS buffers in the CON-
FIGSYS file, and/or by making use of the IBMCACHE
program on the P S / ~ reference diskette.

Message boundary block. The message boundary
block (MBB) is a control area used as the interface
between the application and the MMS. The applica-
tion issues all message demands via this control area.
It has room, at least, for the message identifier,
module name, contents of all of the variables, and
return codes and condition codes.

Message variable table. The message variable table
(MVT) is an internal table with as many entries as
there are different variables named in all of the
skeleton messages. Each entry contains the variable
name, the address and length of the variable value,
and the data transformation to be provided on that
value (for example, no translation, translation from
binary to decimal or hexadecimal printable format,
and so on). It represents a bridge to translate the
values of the variables from the MBB into the message
to be issued.

486 ~ARIELLI

Message control block. The message control block
(MCB) is an internal area containing information to
make the MMS work properly in any environment. It
contains the pointers to all of the other control
blocks, along with certain other information.

The screen environment type tells the MMS whether
to display the resolved and formatted message or to
copy it back to the application buffer, in which case
it will be the responsibility of the application to
display it.

For National Language Support, the skeleton text
code page and the date and time format enable the
MMS to represent the resolved message text and date
and time in the proper way.

Finally, the time zone allows local times to be ex-
pressed on a common base in a network involving
communication across time zones.

Format of the resolved message. After the specific
message skeleton has been filled with the values of
the variables, three message-independent items are
added. One of these items, the module name (the
component of the application that issued the mes-
sage), may be required for diagnostic purposes. An-
other is the date and time, required for logging and
auditing purposes. The third item is the time zone,
only required for networking applications. The first
two items are available only at the moment when
the message is issued, whereas the time zone is
recorded by the customer on installation.

The message string so generated consists of the fol-
lowing five items:

Message identifier
Module name
Date and time
Time zone
Text of the message, with all variables resolved

Different message formats can be built by selecting
different combinations of these five elements (but
without changing their order). The message text, of
course, should always be selected.

The PCIDSNX implements only the five most-used
combinations, coded as message output formats 0-
4 and shown in Figure 3. The format of the fully
resolved message, as it is passed to the user exit
routine, is given in Figure 4.

IBM SYSTEMS JOURNAL, VOL 28, NO 3, 1989

Figure 4 Format of the fully resolved message (with lengths of fixed fields)

Figure 5 The message selection criteria-data are contained (in vector format) in the message customization file

FAN-OUT VECTOR
(GENERAL)

FILTER MATRIX FORMAT VECTOR
(ONE FOR EACH DESTINATION) (GENERAL)

DMCE/FILE SELECTION

SCREEN

PRINTER

LOG FILE

ACTIVITY FILE

W

DEVICE/FILE FORMAT

SCREEN

PRINTER

LOG FILE

The date, time, and time-zone fields are automati- How message selection is performed
cally expanded in a later stage, according to instruc-
tions held in the message control block.

Considerations for National Language Support

To minimize the design problems of the Message
Management System without losing generality, it
was decided to code as Single Byte Character Set
(SBCS) Left-to-Right items the message identifier,
module name, date, time, time zone, and variable
names. The message skeleton text, with the exception
of the imbedded variables, can be coded in any
language, whether SBCS or Double Byte Character
Set (DBCS).

Note that only items that are not translatable are
used as variables. Examples are items such as file
specification, return code, drive name, etc. A variable
will never contain a natural-language word.

BM SYSTEMS JOURNAL, VOL 28, NO 3, 1989

I

-
Once the message has been resolved and the message-
independent items have been added, the user-defined
message selection criteria are applied to determine
to which destinations the message should be sent,
and in what format. As described earlier, the message
selection criteria consist of three components: the
fan-out vector, the filter matrixes (one for each des-
tination), and the format vector.
Figure 5 shows, in tabular form, an example of the
data that may be held. In the fan-out vector and the
filter matrix, where Y stands for yes, the message
may be passed to the corresponding device or file,
and where N stands for no, the message must not be
passed to the corresponding device or file. In the
format vector, the numbers are the message output
formats as defined in Figure 3.
The fan-out vector allows the customer to totally
exclude a destination that is not required. Figure 5

shows that the customer has chosen never to direct
messages to the printer. The fan-out vector is a
binary vector with one position for each possible
destination.

Once the message has passed the fan-out vector for
a destination, it has to pass a specific filter matrix for
that destination. The filter matrix allows the cus-
tomer to choose, for each supported destination,
whether or not the message should be passed, based
on the class and severity of the message. The filter
matrix is held as a two-dimensional binary matrix.

When both the fan-out vector and the appropriate
filter matrix have let a message through, it will reach
its destination. It only remains to format the message
in accordance with the format vector.

Formatting allows the customer to choose how many
of the elements of a message are required at each
destination. Like the fan-out vector, the format vec-
tor has a global effect: Whatever message output
format is specified in the format vector for a partic-
ular destination, that format applies to all messages
directed to that destination.

The format vector has as many components as there
are destinations defined.

An example. Figure 6 is a schematic representation
of how a message is built and sent to devices and
files. Suppose that an application module, named,
for instance, APXAMAN, issues the error message
whose message identification is PXM~OO~E, and sup-
pose that the message skeleton text is as follows:

PXM2003E A SNA Conversation Failure Occurred.
VERB=&APPCVERB,PRC=&APPCPRC,

SRC=&APPCSRC.

The application module has to store the following
into the message boundary block:

The message identifier ~ X ~ 2 0 0 3 E
The module name APXAMAN
The values of the variables named in the skeleton,
which give sufficient information for a correct
diagnosis

It then calls the Message Management System.

Building of a message by the MMS can be seen in
Figure 6. The numbers in parentheses here corre-
spond to the numbered steps in the figure. MMS (1)

488 d’ARIELLI

retrieves the message identifier and the values of the
variables that have been passed into the message
boundary block and (2) reads the message text from
the message skeleton file. Then it (3) asks the oper-
ating system to get the date and time and (4) obtains
the time zone value that was passed into the message
control block at initialization time. Suppose that
this is minus five hours and zero minutes (U.S.
Eastern time zone). In the example, the values of
variables, as can be seen in (l), are the APPC verb
&APPCVERB=ALOC, the primary return code
&APPCPRC=OOO~, and the secondary return code
&APPCSRC=084C0000.

At this point the MMS takes two actions. First, it
resolves all the message variables, replacing the vari-
able names &APPCVERB, &APPCPRC, and &APPCSRC
with the corresponding variable values ALOC, 0003,
and 084coooo (1). Next, it inserts all of the message-
independent items, APXAMAN as the module identi-
fication (l), 19880325 and 152347 (3:23 p.m. and 47
seconds on March 25, 1988) as date and time (3),
and -0500 as the time zone (4).

Once the message has been resolved (5) , it is passed
to the user exit routine if there is one. The format of
the resolved message has already been shown in
Figure 4. To allow for the possibility that the routine
might increase the length of the text, the message is
passed in a buffer with some free space. The first two
fields specify the full buffer length and the length of
the complete resolved message. The user exit allows
the user to manipulate the message text, overwriting
the original text and expanding it within the limits
of the free space (and modifying the value of “11”-
message length-if necessary). It would be highly
undesirable for the user exit routine to tinker with
the other fields.

Suppose a user exit routine exists that simply puts
the first letter of each word in uppercase. Then, on
return, a slightly different message is obtained (6).
(This very unrealistic example merely illustrates the
fact that the user can modify the resolved message
text. A realistic example would over-complicate the
description.)

The MMS then applies the message selection criteria
to this message, formatting it appropriately for each
valid destination.

Figure 7 shows how the message is fanned out,
filtered, and formatted for each device and file.
Again, in the following discussion, the numbers in
parentheses correspond to areas in the figure.

IBM SYSrEMS JOURNAL, VOL 28, NO 3, 1989

Figure 6 How a message is built; processing continues with the message selection criteria in Figure 7

MESSAGE
CONTROL

PXM2 0 03E APXAMAN
ALOC 0003 084COOOO

PXM2003E
A SNA Conversation Failure Occurred.
VERB=&APPCVERB, PRC=&APPCPRC, SRC=&APPCSRC.

19880325
152347

PXM2003E APXAMAN 19880325 152347 -0500
A SNA Conversation Failure Occurred.
VERB=ALOC, PRC=0003, SRC=084C0000.

i

ROUTINE

PXM2003E APXAMAN 19880325 152347 -0500
A SNA Conversation Failure Occurred.
VERB=ALOC, PRC=0003, SRC=084C0000.

In the overall picture of the cascade of vectors and from being forwarded to the printer. (The effect of
matrixes, only the values relevant to class 2, seventy this is that the filter matrix for the printer is never
E, are shown in the filter matrixes to make it easier referred to. Note that the “Y” in the 2E cell therefore
to follow the example. has no effect until such time as the fan-out vector

The fan-out vector directs the MMS to send or not to
send messages to the corresponding device or file. As The message in the example is of class 2 and severity
can be seen, the fan-out vector prevents any message E, and this is the key information for filtering. The

might be changed.)

IBM SYSTEMS JOURNAL, VOL 28, NO 3, 1989 ~ARIELLI 489

Figure 7 The message selection process

@ PXM2003E APXAMAN 19880325 152347 -0500
A SNA Conversation Failure Occurred.
VERB=ALOC, PRC=0003, SRC=084C0000.

CLASS = 2
SEVERITY = E

SCREEN PRINTER LOG FILE
ACTIVITY
FILE

FAN-OUT
VECTOR

2 1 0 1
FORMAT
VECTOR

@ PXM2003E
A SNA Conversation Failure Occurred.
VERB=ALOC, PRC=0003, SRC=084C0000.

ACTUAL
DESTINATIONS

PXM2003E APXAMAN 1988/03/25 15:23:47 -05:OO
A SNA Conversation Failure Occurred.
VERB=ALOC, PRC=OOO3, SRC=084C0000.

490 d'ARIELLI IBM SYSTEMS JOURNAL, VOL 28. NO 3, 1989

Figure 8 General inputloutput interfaces

;“I ISSUER

1

1

filter matrix for the activity file has an “N” in the 2E
cell, which blocks any further progress of the message
on that path.

The filter matrixes for the screen and the log file, in
contrast, contain “Y”s in the 2E cells, so the message
is passed on to be formatted as indicated by the
format vector-that is, output format 2 (7) and 0
(8), respectively.

An application using a dialog manager. Because most
interactive applications will run under a dialog man-

ager, it was thought useful to implement the MMS in
such a way that it can either interface with the display
device directly or return the resolved message for the
screen to a buffer provided by the application. Which
of these two modes is active depends on the screen
environment type value chosen.

When the messages are to be displayed by the MMS,
it will use the normal DOS Function Call to manage
the screen (see Figure 8). When the messages are to
be displayed by the application, via the dialog man-
ager rules, the MMS will return the resolved message

IBM SYSTEMS JOURNAL, VOL 28, NO 3, 1989 d’ARIELLI 491

Figure 9 General inputloutput interfaces under a dialog manager

DOS

ISSUER I MANAGER

ISSUER

1 ISSUER

APPLICATON MESSAGE MANAGEMENT SYSTEM

1

~

SCREEN

to an application buffer, and the application will
then issue the message to the dialog manager (see
Figure 9).

I
In the PCIDSNX, this screen interface has been imple-
mented to comply with the IBM EZ-VU I I program
product.

Concluding remarks

The Message Management System is a simple and
effective way to manage application messages. The

application software does not have to be concerned
about where the subject message has to be sent. It
has only to provide the message identifier, its own
module name, and the variable values, and issue the
message.

The user-defined message selection criteria direct the
MMS to forward the message to the required destina-
tions (devices and files) with the chosen formats.

A master message repository can be used to generate
both the message skeleton file and the Script source

IBM SYSTEMS JOURNAL, VOL 28, NO 3. 1989

file of the messages and codes section of the user
manual for the application. This repository ensures
consistency between the text used by the program
and the messages documented in the manual.

The MMS can support any language on the National
Language Support (NLS) list. It is only necessary to
provide a translated message skeleton file (probably
generated from a master message repository) and the
corresponding code page indication. During trans-
lation, the file descriptor, message identifiers, and
the names of variables must not be translated. These
fields will be built into the resolved message in SBCS
Left-to-Right, as will the message-independent items
such as date and time. In general, from an NLS point
of view, the message texts will be in a mixed format.

Keywords are imbedded in the text immediately
before the names of variables. This action makes the
resolved message manageable by a user program,
which can easily extract the variable values. A user
can write a user exit routine to be used in real time,
or a stand-alone program to scan the activity and log
files after the application has ended.

If several message skeleton files in different languages
are provided, different languages can be used in
different runs. The only restriction is that the subject
languages must be compatible with the personal
computer hardware.

The already very good performance can be improved
by copying the message skeleton file to a virtual disk
in memory. A more general performance improve-
ment can also be obtained with the use of more DOS
buffers and/or Of IBMCACHE.

Acknowledgment

I would like to express my appreciation to Michael
Morgan for his generous assistance in reviewing my
English and making my wording and figures clearer.

Personal SystemJ2 and PS/2 are registered trademarks, and O p
erating Systemj2 and OS12 are trademarks, of International Busi-
ness Machines Corporation.

Cited references and notes

1 . IBM Operating SystemJ2 Programmer’s Toolkit, PN 6280200,
1BM Corporation: available through IBM branch offices or
authorized dealers.

2. IBM Operating Systemj2 Technical Reference, Vol. 1 and Vol.
2, PN 6280200, IBM Corporation: available through IBM
branch offices or authorized dealers.

3. Depending on the application, the “customer” may be the end
user or a single person installing the package for a number of

4. This procedure also complies with the National Language Sup-
end users.

port requirement to have in the Single Byte Character Set for
Right-to-Left Subset an “Exit for Automatic Shape Determi-
nation (ASD)” which is in charge of adjusting the text encoding
to be correctly displayed or printed.

Luigi d’Arielli IBM Italy, Field Systems Center, P.le dell’Ag-
ricolturu 24, 00144 Rome, Italy. Mr. d’Arielli obtained a Laurea
(equivalent of a Master’s degree) in nuclear engineering from the
Polytechnic of Turin in 1969. He joined IBM the following year,
and until 1972 he worked at Pisa University developing an admin-
istrative teleprocessing network. From 1972 to 1977, he was re-
sponsible for the development of a large network for the Italian
Social Security Institute in Rome. There he was also responsible
for development, with the customer, of application software to
improve user-monitoring and network control. In 1977 he went
to IBM Italy’s Field Systems Center and was involved in distributed
data processing support in the area of large networks. Mr. d‘Arielli
joined the Program Product Development Center in Rome in
1980 and participated in the design and development of Distrib-
uted Systems Executive (DSX), with a close involvement in its
usability testing. He then transferred to the newly formed Telecom-
munications Development Center in 1986, where he worked in
the areas of design and project management for PC Distributed
Systems Node Executive (DSNX) products and in SNAJDS archi-
tecture. In February 1989 he returned to the Field Systems Center,
where he is currently involved in supporting interconnected CICS
systems.

Reprint Order No. G32 1-537 I .

IEM SYSTEMS JOURNAL, VOL 28, NO 3, 1989

