The role of work
management in
application development

Quality is probably one of the most serious concerns
of today’s software community. For software applica-
tions exhibiting a certain complexity, the quality of a
product can only be guaranteed by a methodological
approach, using appropriate administration and tools.
The methodology and administration must be mani-
fested in a well-defined and well-observed application
development process. The process must integrate the
human activity, the tools, and the intermediate and
final work products into a coherent flow of actions. In
this regard, the development of applications follows
patterns that are well established in other industries
where an application development (AD) process model
is defined and then executed via an interpretation
mechanism. The complexity of the development proc-
ess makes it necessary to support and integrate all of
its aspects by means of on-line interactive computer
support. Computer-aided process support in the gen-
eral sense we call work management. This paper ex-
plains the concepts of an application development
process model and of work management for applica-
tion development under AD/Cycle™ and its relation to
project management.

he concept of an application development proc-

ess interrelates cost, timeliness, and quality—
three closely interleaved problems" that haunt to-
day’s software industry. Quality affects the other two
problems. Inadequate quality results in excessive
testing, rework, and maintenance which in turn in-
fluence delivery dates and productivity, and there-
fore cost. Thus the issue of software quality seems
central to the progress of the software industry. This

IBM SYSTEMS JOURNAL, VOL 29, NO 2, 1990

by G. Chroust
H. Goldmann
O. Gschwandtner

paper discusses the concept of an application devel-
opment process model and of work management for
application development under AD/Cycle™.

Application development process

The concept. Most quality-related attributes®* can-
not be adequately measured and are difficult to
predict. Even if a measurable value is found to be
low, there is usually no easy way to improve it in a
finished product, because one cannot inject quality
into a product. This means that concerns about the
quality of a software product must be addressed
during its creation. In order to ensure a consistently
high level of quality in a software product, one must
ensure that quality be an integral part of the produc-
tion process—a message that many other industries
have understood for many years.’

The production process then becomes the object of
scrutiny,® similar to that in other industries where
quality products of any type are produced according
to a stable, well-understood process which is some-
what independent of the product.

© Copyright 1990 by International Business Machines Corporation.
Copying in printed form for private use is permitted without
payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and 1BM copyright
notice are included on the first page. The title and abstract, but no
other portions, of this paper may be copied or distributed royalty
free without further permission by computer-based and other
information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

CHROUST, GOLDMANN, AND GSCHWANDTNER 189

Figure 1 The application development process

(PROCESS

(APPLICATION DEVELOPMENT PROCESS

APPLICATION DEVELOPMENT PROCESS MODEL

A PARTICULAR METHOD OF DOING SOMETHING,
GENERALLY INVOLVING A NUMBER OF STEPS
OR OPERATIONS™*

A PROCESS THE OUTCOME OF WHICH IS
A SOFTWARE PRODUCT (AN APPLICATION }**

A DESCRIPTIVE REPRESENTATION OF

THE APPLICATION DEVELOPMENT PROCESS,
ALLOWING REASONING ABOUT

THE APPLICATION DEVELOPMENT PRQOCESS*

* See Reference 7.

** Sec Reference 34,

An important step of abstraction is to separate con-
cerns about the product (i.e., the application to be
created) and the process by which it is created. Once
separated, the application development process (see
Figure 1) can be described and evaluated indepen-
dently.”

Conceptually an application development process
model, sometimes called simply a process model, is
an abstraction from actual application development
processes (see Figure 2) and is intended as a template,
or prescription, for future application development
processes. The simplest structure of a process model
describes the results—called the work objects—to be
created and the activities which are necessary to
produce them. The term work object is used to
denote all the different results (final and intermedi-
ate) that are produced during application develop-
ment. The creation of an application is achieved by
a process based upon the application development
process model. The actual process is then known as
an instance of the model, with the understanding
that all elements of the instantiated process (typically
activities and work objects) are instances of the re-
spective descriptions of activities and work objects
in the model. An application development process
model usually provides additional information
which eases and standardizes the process.

The application development process model. Suc-
cessful application development is the result of sev-
eral factors. The ultimate aim of an application
development project is the delivery of a set of work
objects (e.g., code, documentation). It is necessary to
derive them via numerous intermediate work ob-

190 cHROUST, GOLDMANN, AND GSCHWANDTNER

jects, each of which shows a different aspect of the
application. These work objects have certain rela-
tionships among them (see Figure 3). The totality of
this information is described in the application de-
velopment information model (AD information
model) of AD/Cycle, which represents the work ob-
jects and their relationships. Further details are dis-
cussed later in the paper in the section on the AD
information model. In addition, one has to establish
the means by which these work objects are to be
produced, that is, which steps should be taken and
which methods applied. This can be stratified in two
levels: (1) The individual steps to be taken can be
defined locally and are further explained in the sec-
tion on activities. Each activity defines one step, the
inputs, the outputs, and what should be done in the
step. (2) The methodology which performs the over-
all process is defined globally. The section on the
work-flow structure shows how the individual activi-
ties are to be sequenced in order to form a complete
process.

The AD information model and work-flow structure
together form the core of the application develop-
ment process model. A description of the process is
shown in Figure 4.

The need for computer support. Application devel-
opment process models have been around for many
years. Some time ago, 1BM Germany published and
taught a textual description of a process model
called “Verfahrenstechnik.”® Further models include
Boehm’s waterfall model,” an 18M model, ®and many
others." ™" Such descriptions tend to be largely ig-
nored because they offer information which is re-

IBM SYSTEMS JOURNAL, VOL 29, NO 2, 1990

Figure 2 Abstracting an application development process model-the letters indicate activities that, when abstracted,
result in one step in the application development process model

CAPPLICATION DEVELOPMENT PROCESS 1)

APPLICATION DEVELOPMENT PROCESS 2)

~ I
4
v ol D A A4 WD A F]
Ll Ll L
A)| B F A o B F
>

v
m

CABSTRACTION: APPLICATION DEVELOPMENT PROCESS MODEL

v

v

A 4

v

v

mote from the actual point of need, are often cum-
bersome to look up, and are difficult to maintain—
especially if they exist in many copies.

In order to be fruitful, it is necessary to bring the
developer into intimate interaction with the process
definition. The complexity of the process, the mul-
titude of intermediate and final work objects, the
number of team members involved, and the need

IBM SYSTEMS JOURNAL, VOL 29, NO 2, 1990

for high quality require computer support. A work
manager is supported by a database system. An early
account of these concepts, probably coining the term
process mechanism for the first time, is found in
Reference 14. Thus we develop applications not only
for the computer, but also with the computer. In
AD/Cycle we have defined Work Manager to be the
work management component, discussed in a later
section.

CHROUST, GOLDMANN, AND GscHwanDTNer 191

Figure 3 Relationships among work objects

v
SPECIFICATION

SPECIFIES

v
MODULE DESIGN

IMPLEMENTS

A

IMPLEMENTS

SOURCE CODE USES

1S_COMPILED_INTO IS_TRANSFORMED _INTO

Supplying the Work Manager with all necessary
features needed by the members of the development
team (e.g., tools, help texts), yields an environment
invariably called an Integrated Project Support
Environment (1pSE)” or Software Engineering Envi-
ronment (Sg).'*”"®

The process model provides a description of the
application development methodology. In this re-
spect it can be compared to a street map, which
indicates acceptable ways to reach a certain location.
An on-line process model can also actively provide
guidance to its users. The objective of process man-
agement is to aid in determining the order of activi-
ties and to communicate with the users.

It is also necessary to administer the produced (in-
termediate and final) work objects when performing
actual application development. Storage and re-

102 CHROUST, GOLDMANN, AND GSCHWANDTNER

trieval procedures have to be established, and tools
have to be accessed.

Implementing a project is not just a matter of follow-
ing a process model. People, schedules, and resources
have to be considered and planned. This is the
objective of project management. Project manage-
ment will also (based on resource availability and on
project priorities) influence the order in which ac-
tivities may be executed. Extra tasks must be planned
for education or vacation. The Work Manager will
be controlled by the additional constraints imposed
by project management, The Work Manager pro-
vides automated on-line process management by
utilizing elementary project management functions
and providing interfaces to project management
tools.

Components of an application development
process model

The components of an application development
process model include the AD information model,
the work-flow structure, and auxiliary information
such as help texts, skeletons, and samples. It is an
advantage to divide a process model into several
model segments.

The AD information model. The AD information
model represents the work objects, their relation-
ships, and attributes.

Work objects and their relationships. The aim of a
development project is the delivery of a set of work
objects (the code, the documentation, etc.). The im-
possibility of deriving these end products in one step
from the initial information makes it necessary to
define several layered intermediate work objects.

The application is usually described by separate
views (e.g., as the user sees it, how it is to be imple-
mented, etc.) that are reflected in different docu-
ments (the various work objects). These work objects
provide specialized views of the final application.
This is similar to building a house, where different
documents (floor plan, plan of plumbing installa-
tions, functional overview, etc.'g) are created before
a single brick is laid. At the end of a project an
architect hands to the customer not only the keys of
the house, but also a considerable amount of the
intermediate documentation.

Similarly, an application may be considered as the
set of all work objects that are created during the

I8M SYSTEMS JOURNAL, VOL 29, NO 2, 1990

Figure 4 Components of an application development project

____________________ —

- PERSONNEL
PROJECT .| - RESOURCES
MANAGEMENT |« - DEADLINES

:
> PROJECT
MANAGEMENT
<
TO-DO LISTS J

WORK FLOW > APPLICATION >~ PROCESS
DEVELOPMENT MANAGEMENT
PROCESS ;
MODEL

INFORMATION

MODEL

________ p—
___________________________ J—

application development process (e.g., the programs,
the specifications, etc.). Each work object makes
some contribution to the meaning and shape of the
final application, providing some aspect (view) of
the final application. These different work objects
bear numerous relationships to one another, as in-
dicated in Figure 3.

Most intermediate work objects should be preserved
for auditing and maintenance at a later date. Thus
the installed application is, so-to-speak, the only end-
user visible part of a large set of work objects. All
the created work objects may be of interest for a
complete understanding of an application.

IBM SYSTEMS JOURNAL, VOL 29, NO 2, 1990

In AD/Cycle the description of the individual work
objects and their relationships is stored in the AD
information model. The AD information model is
intended to be the common basis for tool integration
and communication. The AD information model is
extendable; this means that if a model segment (dis-
cussed in the section, “Model segments”) needs ad-
ditional work objects that are initially not in the AD
information model, they can be added.”®”' Actual
instances of these descriptions, i.e., the work objects
resulting from application development, are stored
in the Repository Manager™. When performing ac-
tual application development, some of these relation-
ships can be formally verified; with respect to others,

CHROUST, GOLDMANN, AND GsCHWANDTNER 193

a more intuitive understanding is necessary. A cor-
rect (and complete) application will consist of a set
of work objects that fulfill all the relationships.

The choice of which work objects are specified in
the AD information model and their interrelations
predetermines to some extent the methodology for
producing them. The information model does not
explicitly specify the order in which the individual

The AD information model
describes the work objects
and their relationships.

work objects are to be created. It does express a
goal—that is, what the structure of the final appli-
cation should be. Naturally the structure has to be
compatible with the development methods, i.e., it
must provide for all intermediate work objects which
are needed if following specific methods.

Attributes of work objects. In addition to its contents,
one usually wants to record certain important facts
(or attributes) about a work object. Several of these
attributes will influence the direction in which the
project proceeds. Because application development
is a team effort, the attributes are also a basis for
communication between team members,

Attributes of a work object may describe the follow-
ing;

% Contents of the work object in a concise form,
such as statistical data—especially when the com-
putation of this attribute is difficult (e.g., the num-
ber of noncommentary source statements of a
program’’)

* Historical information about a work object (e.g.,
creation date, last update)

*» Administrative information, such as the name of
the library where it is stored

% Project-oriented information, such as the owner,
the authorizations to modify, etc.

194 CHROUST, GOLDMANN, AND GSCHWANDTNER

» Statements about the work object, which are based
on human evaluation, e.g., the completion state
or level of quality

It should be noted that some of the interesting attri-
butes, such as the completion state, cannot be as-
signed automatically, but only by human interac-
tion. In general the computer cannot deduce whether
a work object is finished, although there might be
indications of disbelieving the developer’s statement
(if the compilation of a work object produces a severe
error, it is obviously not finished).

The process model can restrict the values a work
object attribute may have and the authorized tran-
sitions between the values. Changes to attributes may
only follow established transition rules as illustrated
in Figure 5.

Work flow. The AD information model describes the
work objects and their relationships. In an actual
application development project, instances of the
descriptions have to be created. This means that the
steps to do the activities and their sequence (the
work-flow structure) must be established in order to
populate the Repository Manager with actual data.

Activities. An activity is considered to be the smallest
unit of work identified on a certain level of the
model. It specifies which work objects are to be
worked on in one elementary step and which work
objects are assumed to be prerequisites for this work.
The before, after, and together activities for the work
objects are defined.

An activity has to take into account the available or
anticipated tools and also the relationships expressed
in the AD information model. In simple cases an
activity can be equated to the call of one or more
tools; for many activities this may be just an editor.
Based upon the current state of the work object,
certain tools may not be eligible for invocation. Thus
activities define the local use of tools and practices.
In other words, identifying activities can be seen as
interpreting certain of the relationships in the AD
information model as transformations. For example,
in Figure 3 the relationship of IMPLEMENTS can be
taken to indicate that one should create SOURCE CODE
(and also a PANEL SOURCE) based upon the MODULE
DESIGN.

The choice of activities is not always straightforward:
In a reverse engineering situation it can be deduced

IBM SYSTEMS JOURNAL, VOL 28, NO 2, 1990

Figure 5 Assignment of completion state to work objects

COMPLETION STATE { CHANGE
, CREATED OF A WORK OBJECT | OF COMPLETION STATE
e l _______ -
| |
| |
e e —— I _______ -
[IN_WORK l IN_REWORK < <
o | o]

APPROVED

from Figure 3 that the module design should be
recreatggi from the source code and the panel
source.” Similarly the function-oriented and data-
flow-oriented paradigms of application develop-
ment™* differ with respect to the chosen types of
transformations. Thus different transformations (ac-
tivities) with different prerequisites and results may
be defined, despite the fact that the underlying AD
information model is the same. Such differences will
be reflected as different process models over the same
AD information model.

IBM SYSTEMS JOURNAL, VOL 29, NO 2, 1990

From the relevant literature’’™'® it can be observed
that the different paradigms of software development
that are discussed are essentially concerned with the
order in which activities are to be executed (the work
flow), and with certain notational conveniences of
describing the contents of the various work objects,
while the contents of an information model are of
little concern.

The definition of activities can also mean clustering
several transformations into one step. This clustering

CHROUST, GOLDMANN, AND GSCHWANDTNER 195

defines the “together” aspect of the activities. (In
Figure 3 both the SOURCE CODE and the PANEL
SOURCE might be produced in one step for good
reasons.)

The choice of what constitutes an activity should
also be consistent with the granularity of the AD
information model. In other words, in each activity
one or only a small set of work objects should be
created.

Defining activities together with their prerequisites
and results obviously imposes some ordering on the
transformations. It defines sequencing on a local
scale. Having defined the activities, only certain ways
of traversing the model are still valid. This is similar
to a street map where all streets are marked as one-
way streets.

Work-flow structure. While the definition of activities
can be considered a local introduction of work flow
into the development process, the definition of how
these activities should follow one another can be
considered the global definition of the development
method. Successor relationships can be established
between the existing activities, resulting in a net-
work-like arrangement of the activities, the work-
flow structure.

Thus activities in the network are interrelated be-
cause the output work objects of some activities are
input to other activities and may be restricted by the
relationship holds. The definition of activities and of
the work-flow structure are complementary.

For further control of sequencing (the navigation),
we introduce entry predicates and exit ?ssertions in
the sense of the state change architecture” (see Figure
6).

Each activity may have an entry predicate that de-
termines whether the activity may be performed. In
general, this entry predicate is a logical expression
involving attributes of some of the input work ob-
jects. Which attributes are actually process-relevant
is only determined by their occurrence in some entry
predicate or exit assertion.

An activity may also have an exit assertion that
indicates whether this activity has produced all its
expected results. It is in general formulated as a
logical expression of the attributes of some work
objects.

196 CHROUST. GOLOMANN, AND GSCHWANDTNER

In the Figure 6 example, the activity CODE creates
both the SOURCE CODE and the PANEL SOURCE. The
work-flow structure may add an additional successor
relationship between PRODUCE SPECIFICATION and
EXTERNAL REVIEW, and CREATE DESIGN. It implies
that despite the fact that CREATE DESIGN does not
have an output or input dependency on EXTERNAL
REVIEW, there is still a successor relationship.

Work object based work-flow structure. Experience
has shown that in certain cases the definition of an
activity can be understood by default using the re-
lationships between the affected work object. In this
case it is not necessary to explicitly define this activ-

1ty.

As a consequence one can derive the order in which
work objects should be created by defining a state
change protocol for every work object. Based upon
this state change protocol, the connection between
work objects is mirrored by a connection between
certain states of the work objects.

Help texts, skeletons, samples. The availability of
computer support allows some additional productiv-
ity aids to be provided to the user. By providing on-
line help texts, information about standards, and
standardized skeletons for the results to be created,
a more uniform and professional application results.
The most important productivity aids are the follow-
ing:

* On-line help texts are an essential component for
user-friendly, usable systems.

* Reuse and standardization are enhanced by pro-
viding a specific skeleton for editing parts of a
work object.

e Samples are read-only examples of completed
work objects used as guidelines for work.

The above components are an integral part of any
process model. The Work Manager has to take care
that they are presented to the user in an appropriate
form.

Model segments. A complete application develop-
ment process model can be considered to consist of
several separate model segments, which describe sep-
arate areas of responsibility or separate subprocesses.
One can, on the other hand, also consider application
development process models to be built from several
model segments. This allows alternate model seg-
ments to exist in order to handle some tasks by
different means. Model segments that are to be com-

IBM SYSTEMS JOURNAL, VOL 28, NO 2, 1990

Figure 6 Information model and process model

(PROCESS MODEL: ACTIVITIES AND WORK FLOW)

A

SPECIFICATION
——
L2 1 .
MODULE
»| DESIGN
EP v
EP = ENTRY PREDICATE
XA = EXIT ASSERTION
—— = DEPENDENCIES DUE TO
USAGE OF WORK OBJECTS
AS OUTPUT AND INPUT
———~-p = SUCCESSOR RELATIONSHIP
ESTABLISHED BY THE .| SOURCE CODE
WORK-FLOW STRUCTURE >

(APPLIOATON DEVELOPMENT INFORMATION MODEL: WORK OBJECTS AND THEIR RELATIONSHIPS)

SPECIFICATION MODULE
—b ¥ DESIGN

SOURCE CODE PANEL SOURCE -

l l

IBM SYSTEMS JOURNAL, VOL 29, NO 2, 1990 CHROUST, GOLDMANN, AND GSCHWANDTNER 197

bined must exhibit a strong compatibility with one
another.

The major model segment of any application devel-
opment process model is the run-time application
model segment, which describes the creation of the
actual application. This core is usually augmented
by several other model segments that describe ac-
tivities not directly involved in the creation of the
application, but nevertheless are integrally needed in
order to create a quality application. The run-time
application model segment is obviously the back-
bone of the process.

Model segments exist for different reasons, such as
adding a perspective, the description of a tool, or
choosing alternate paradigms.

In a development project, several areas of responsi-
bility are often only loosely connected to the run-
time application model segment and are concerned
with creating work objects of their own. They are
often called perspectives. Since the run-time appli-
cation model segment is the central core of the
process, all other model segments are dependent on
it and must mirror the structure of the application
development and be compatible with it. The quality
assurance model segment,26 for example, must have
a structure analogous to that of the run-time appli-
cation model segment. Major perspectives are doc-
umentation, quality assurance, and product control.

Another important example for a model segment is
the description of a complex tool. Such a tool essen-
tially performs a certain set of activities in the devel-
opment process and thus can be described by a
model segment. This allows the user to compare and
match tools with an existing model.

For certain areas of application development, differ-
ent methodologies or paradigms can be used. Typi-
cally the technical design of an application can be
function oriented, data oriented, object oriented, or
data-flow oriented. Having different model segments
available allows the user to isolate the decision on
the methodology and allows the model builder to
choose the appropriate paradigm.

In order to build an application development process
model, it is necessary to combine several such model
segments as shown in Figure 7. Due to the interde-
pendencies of the various model segments, some
tailoring may be necessary before combination. The
combination of model segments can also be consid-
ered reuse of partial models.

198 CHROUST, GOLDMANN, AND GSCHWANDTNER

Combination works somewhat like set union, that
is, identical work objects and activities in the model
segments are collapsed into one, while differing work
objects and activities are collected in the resulting
model. Obviously the tailoring and combination
function can be driven to unlimited complexity. For
practical purposes, however, relatively simple func-
tions like union, simple substitution, etc. are suffi-
cient.

Examples of model segments. Important model seg-
ments (similar to ADPSZ6) are: the run-time applica-
tion segment, the product documentation segment,
the test environment segment, and the quality assur-
ance segment. These are discussed in the following
paragraphs.

The run-time application model segment, based upon
the AD information model of AD/Cycle,”>? contains
the definition of those work objects that contribute
directly to executable user application, as discussed
in a previous section, “The AD information model.”
It remains to define the activities and to specify the
work-flow structure associated with it. The work-
flow structure will follow the phase model of
AD/Cycle28 (requirements, analysis and design, pro-
duce, build and test, production and maintenance).
Beneath that there will be groups of activities and
single activities defined, closely resembling the proc-
ess model of Application Development Project
Support (ADPS).>*%

The second model segment describes product docu-
mentation. Product documentation (comprising er-
ror messages, help panels, and manuals) must be
developed as an integral part of software develop-
ment, in parallel with the actual application. This
product documentation model segment uses as input
all relevant work objects from the run-time applica-
tion model segment (this means it must be tailored
after the run-time application model segment) and
delivers the necessary documentation work objects
to the appropriate integration activities of the run-
time application model segment.

The third model segment is used mostly for testing,
but it can also be the basis for experimenting with
code fragments. The developer needs an environ-
ment that mimics reasonably the target environ-
ment. This environment will be built on several
occasions, e.g., for module test, integration test, and
system test, etc. This test environment model segment
is fairly independent from the development model
segment, with the restriction that it must be com-

IBM SYSTEMS JOURNAL, VOL 29, NO 2, 1990

Figure 7 The concept of model segments

DEVELOPMENT DEVELOPMENT DEVELOPMENT
MODEL MODEL MODEL ces
SEGMENT 1 SEGMENT 2 SEGMENT 3
DOCUMENTATION DOCUMENTATION QUALITY QUALITY
MODEL MODEL ASSURANCE ASSURANCE
SEGMENT 1 SEGMENT 2 SEGMENT 1 SEGMENT 2
y
TAILORING
-
v h 4
COMBINATION
v
A TAILORING
v v
COMBINATION
eee
APPLICATION DEVELOPMENT PROCESS MODEL

be tailored to resemble the run-time application
model segment by applying the following two rules:

patible with the type of environment for which de-
velopment is done.

Quality assurance is supported by the fourth model e For every group of activities of the run-time ap-
segment. It has to be interleaved with the respective plication model segment, a quality assurance ac-
development activities. Therefore the quality assur- tivity is defined to parallel it.

ance model segment looks like a slightly pruned copy e For selected important activities of the run-time
of the corresponding run-time application model application model segment, a specific is addi-
segment. The quality assurance model segment can tionally defined.

CHROUST, GOLDMANN, AND GSCHWANDTNER 199

IBM SYSTEMS JOURNAL, VOL 29, NO 2, 1980

Figure 8 Activities, work objects, and their descriptions

(PROOESS MODEL (DESCRIPTION OF WORK)

{
OBJECTS AND ACTMVITIES)

AD1

wD1 AD2 WD3

v
v

AD4

AD3

AD = DESCRIPTION OF AN ACTIVITY
WD = DESCRIPTION OF A WORK OBJECT

(|NSTANCES (ACTUAL WORK OBJECTS AND ACTIVITIES))
AT
v
] w11 A21 ol W31
Ll Ll
I w12 = o A22 | wa2
w1z | .| A23 w33 Fr—
) 4
w23 w22 w21
\ 4 \ A 4
l A31 A4
A4
l A32
v
A33
A = ACTMITY
W = WORK OBJECT

Dynamically expanded model segments. In many
instances a set of activities has to be repeated in
several places. An example is creating an operational
test environment. This obviously has to be done for
unit test, and later almost the same set of activities
has to be performed to create a system test environ-
ment. Therefore a process model has to provide
means to expand a given activity into a chosen
predefined model segment. This behavior is similar
to a subroutine call in programming languages.

200 CHROUST, GOLDMANN, AND GSCHWANDTNER

Work management

Models and their instances. An established applica-
tion development process model is a template for
future projects. Such a process model contains only
descriptions of activities and work objects, not indi-
vidual instances. Certain properties of the desired
development process are defined in the model. Other
properties, considered individual, are not described
in the model and will vary from project to project.

IBM SYSTEMS JOURNAL, VOL 29, NO 2, 1990

Typically the model does not (but could) say how
many instances of an activity or work object will
be created in a specific development project (see
Figure 8).

Project management. Even given an extensive proc-
ess model there are many aspects outside of process
management. Project management is concerned
with embedding an application development process
into a real-world environment, taking into account
constraints and requirements posed by budget, time,
manpower, risk,30 etc. It is concerned with planning,
tracking, and controlling any one individual project.

Project management has to rely on the contents of
the underlying process model. Its findings influence
the process inasmuch as additional constraints and
considerations with respect to navigation arise (e.g.,
“Phase 3 should not be started before June first.”),
and additional tasks outside the project model (be it
education, vacation, or interrelation to other proj-
ects) are taken into account.

The unit of project planning and project control is
called a task. A task identifies a certain amount of
work to be done. It is associated with resources such
as people, hardware, software, or time. Typically one
records the planned and actual beginning of the task,
the planned and actual end of the task, the respon-
sible person(s), the resources to be utilized, and other
pertinent information.

In general the beginning and ending of a task can be
associated with states of selected work objects (see
Figure 9). That is, the definition of a task includes
the specification of an initial condition and a goal to
be achieved. The process model describes how this
possibly complex work step is to be done technically;
project management defines it as a unit of planning
for which certain resources are available and relates
it to the other tasks within the project.

The granularity of a task (the size) depends on the
characteristics of the project, the management style
of the project manager, the type and experience of
team members, the risk-level of the project, the
enterprise culture, and many other factors. Project
: 31,32 B . .
management literature describes criteria for
choosing the size of tasks. A task can be, for example,
producing a complete design document or writing a
source program until it is ready for inspection.

Figure 10 shows four work object types (SPECI-
FICATION, MODULE DESIGN, SOURCE CODE, PANEL

IBM SYSTEMS JOURNAL, VOL 29, NO 2, 1990

Figure 9 Task and state of work objects

TASK BEGIN STATE OF WORK OBJECTS
OR ACTIVITIES

AT BEGINNING OF TASK

[
4

WORK TO BE DONE
AS SPECIFIED
B8Y PROCESS MODEL

4

END STATE OF WORK OBJECTS
OR ACTVITIES
AT END OF TASK

[
y

SOURCE [see also Figure 3]) and their associated
work objects (SPECS0, MDESIGNO, SOURCECODEI,
SOURCECODE2, PANELSOURCE!, PANELSOURCE2). It
also shows the associated tasks as chosen by the
project manager. TASK1 and TASK2 are established for
producing specifications and design, respectively.
TASK4 and TASKS5 are both related to producing source
code and panels, respectively; each encompasses the
production of two work objects. TASK3, representing
education needed for TASK4, has no equivalence in
the process model. It is introduced by the project
manager. Project management may also introduce
further dependencies between tasks (for example,
education is only needed for TASK4).

Work management for AD/Cycle. The Work Man-
ager monitors application development based on the
process model and on the current state of the various
work objects. It identifies what is ready to be worked
upon. It consults project management information
as to whether further restrictions on the choice of
actions exist. The Work Manager has to fulfill several
functions and, as a consequence, several different
interfaces can be identified (Figure 11).

Process definition and maintenance. A major task of
the Work Manager is aiding to build models. This
usually is a special component not accessible to a
regular user. It involves the administration of the
different model segments, their creation and modi-
fication, facilities tailoring model segments according
to other model segments, and combination of model

CHROUST, GOLDMANN, AND GSCHWANDTNER 20

Figure 10 Work object, activities, and their relation to project management

PROCESS MODEL (INFORMATION MODEL) [PROJECT MANAGEMENT
(ACTIVITIES) _IWORK OBJECT TYPES) | (WORK OBJECTS) J \ (TASKS)
PRODUCE
SPECIFICATION
SPECIFICATION SPECSO | | sk
> PRODUCE SPEGIFICATION
05/02-05/21
TWO-PERSON WEEK
¢ JOHN

CREATE DESIGN

v v
MODULE DESIGN MDESIGN®

A4

TASK2:
PRODUCE DESIGN

05/22-07/14
TWO-PERSON MONTH

JOHN, PETER
v v
CODE TASK 3: PL/I
PL/I COURSE EDUCATION
FOR
TASK 4

05/14- 06/25
TWO-PERSON WEEK g oo] L]
TOM

SOURCE CODE

) 4

TASK 4:
+»| SOURCE_CODE1 [~ 7 CODE PL/I

i) i

06/04-06/15

PANEL SOURCE p»| PANEL_SOURCE1 TWO-PERSON WEEK

TOM
PL/t SKiLLS

—

TASKS:
»| SOURCE_CODE2 -~ cobe coBOL

07/02-07/20

»| PANEL_SOURCE2 TWO-PERSON WEEK
JOHN

COBOL SKILLS

202 CHROUST, GOLDMANN, AND GSCHWANDTNER IBM SYSTEMS JOURNAL, VOL 28, NO 2, 1990

Figure 11 Components and interfaces of a Work Manager

NAVIGATION SUPPORT

USER AS
NAVIGATOR

WORK MANAGER .

PROCESS
MODEL

PROCESS DEFINITION
PROCESS MAINTENANCE

MODEL
ADMINISTRATOR

TOOL INTERFACE | . 3

USER INTERFACE
(WORK BENCH)

SOFTWARE
ENGINEERS

segments (see Figure 7). To the regular user the
application development process model should ap-
pear fixed. The Work Manager, however, can dy-
namically create the application development proc-
ess model. Auxiliary functions would include com-
paring and copying model segments.

The Work Manager derives the process from the
process model, interprets it, and presents it via a set
of dialogs to the human user or invokes the tools
integrated into the process (see Figure 12).

This user interface is used for the incorporation of
both local changes, which are only relevant for one
specific project, and permanent changes that reflect
past experience. The latter allows the user to incor-
porate experience into the process model, which in
turn makes the model a valuable asset of a com-
pany’s development potential by establishing a cer-
tain software development culture.

Performing development work. The Work Manager
communicates with the agents of the application
development process with software tools that per-
form some actions and with human beings who
perform the creative tasks in development.

IBM SYSTEMS JOURNAL, VOL 29, NO 2, 1990

The use of tools is key to productivity. Tools have
been employed from the very outset of software
engineering, the earliest being assemblers and com-
pilers. Incorporating the tool interface (see Figure
11) into the Work Manager relieves the user from
considerable clerical detail. The calling mechanism
is standardized and delegated to the Work Manager,
and storage of work objects and their retrieval is
performed under the control of the Work Manager
and is thus mechanized.

The information contained in the process model is
presented to the user in the form of a so-called “work
bench,” which allows access to the information, as
shown in Figure 13. It provides on-line help texts
and information about standards, for example.

Navigation. The application development process
model is presented to the user through the work-
bench interface in order to let the user choose the
next step(s). This navigation is subject to the con-
straints expressed in the process model, the data
dependencies between the defined activities, the suc-
cessor relations expressed in the process model, and
the constraints imposed by project management.
Furthermore the entry predicates and the exit asser-

CHROUST, GOLOMANN, AND GSCHWANDTNER 203

Figure 12 Components of an application development project

PROCESS MODEL

A 4

PROCESS

A

INTERPRET

WORK MANAGER

INTEGRATE

T
|
|
I
|
|
|
|
|
|
|
|
|
|
|
|
1
i
1
v

L INVOKE

TOOLS

(WORK OBJECTS

DATABASE SYSTEM

DERIVE | = o e

COMMON
USER
ACCESS

USER AS

- SOFTWARE ENGINEER
- NAVIGATOR
- MODEL ADMINISTRATOR

tions must be taken into account. Depending on the
philosophy, the Work Manager will take more or
less initiative in suggesting what to do next. The
amount of control that the work process exercises
over the end user varies from very restrictive to very
liberal; that is, the to-do lists may prescribe the
sequence in which items have to be dealt with, or
may allow freedom of choice.

AD/Cycle work management in a cooperative envi-
ronment. Figure 14 shows how work management
fits into the AD/Cycle environment and illustrates
how the host and the programmable workstation
(PWS) cooperate.

204 CHROUST, GOLDMANN, AND GSCHWANDTNER

The integrity and consistency of the overall applica-
tion development process is maintained at the host.
User interaction, on the other hand, is primarily
handled by the pws, following Common User Inter-
face (CuA) rules” and exploiting the graphics capa-
bilities of the workstation. Thus the Work Manager
consists of two closely cooperating components: one
on the host and one on the pws. This cooperation is
implemented by means of the communication facil-
ity between the workstation and the host.

Tools are invoked by the Work Manager, directly or
indirectly, on behalf of a user. The Work Manager

IBM SYSTEMS JOURNAL, VOL 29, NO 2, 1990

Figure 13 Schema of a work bench

NEEDED WORK NEEDED WORK NEEDED WORK NEEDED WORK
OBJECT OBJECT OBJECT OBJEGT
(PREREQUISITE) (PREREQUISITE) (PREREQUISITE) (PREREQUISITE)
EXPLANATION:
-HELP TEXTS
- STANDARDS
~RULES
vy vvVYy&vVv
ACTVITY < -
(WORK BENGH) < _gfﬂ,;,E_EgNS
v v v
WORK OBJECT WORK OBJECT WORK OBJECT
TO BE CREATED TO BE CREATED TO 8E CREATED
{DELIVERABLE) (DELIVERABLE) (DELIVERABLE)
I DATABASE
A SYSTEM

TOOLS

A
v

is sensitive to the return information reported back
by tools and translates it into status information.

Host and workstation tools can be defined to the
process model; tool invocation on the PWS exploits
workstation services. The pPws can invoke host tools
by requesting them as services from the host Work
Manager, and vice versa.

Summary

The pressing user requirements on the quality of
software, and thus on the application development
process, make an automated approach necessary.

IBM SYSTEMS JOURNAL, VOL 29, NO 2, 1990

The clear definition of an application development
process model, defining the steps to be followed and
the work objects to be created, can be considered a
necessary part of application development in addi-
tion to the separation of process and product func-
tion.

The requirement for computer-supported work
management has arisen because of the complexity
of the development process, the multitude of work
objects, and the complexity and diversity of today’s
tools. A summary of the major requirements follows:

~ Allow an application development process model
to be defined, dynamically modified, and moni-

CHROUST, GOLDMANN, AND GscHwanoTner 205

Figure 14 Cooperative application development work management

TO-DO LIST

HOST
HOST TOOLS
INFORMATION MODEL
_fx

i B -‘j ------------- g
! APPLICATION DEVELOPMENT PROGESS MODEL WORK MANAGEMENT |
1 |
I !
i 1
t 1
| |
I I
| |
] !
i I
i 1
i !
: | COM
| !
| !
[1
| {

PROGRAMMABLE ! !

WORKSTATION | |
T T
! : COM
I t
i !
i |
i 1
| |
\ 1
| I
| I
| I
i t
i |
| 1
{ \
| |
l |
| !
| I
| 1
| !
I |

WORK MANAGEMENT N

PROGRAMMABLE WORKSTATION TOOLS

206 CHROUST, GOLDMANN, AND GSCHWANDTNER IBM SYSTEMS JOURNAL, VOL 29, NO 2, 1990

tored, measured, and improved. It has to be adapt-
able to specific enterprise needs.

e Allow individual processes to be derived from the
application development process model and inter-
preted by a work manager. The system should
allow for navigating through the process and for
extracting to-do lists for individual users or user
groups.

¢ Assist the user in performing the work by provid-
ing easy, automated, and standardized access to
the work objects stored in the Repository Man-
ager.

e Make it easy to access the right tools at the right
time. Tools are used to implement the steps de-
fined in the process model. This means that the
role for each tool participating in the process has
to be defined.

e The enforcement of the process should be adapt-
able to impose more or less discipline, as required
for individual projects. Different styles of process
management should be supported, from manual
choice of the next step to the completely automatic
navigation through the process.

e Provision of a project management interface for
planning and controlling process resources is nec-
essary.

e The system has to conform to the Systems Appli-
cation Architecture™ (sAA™) requirements and fol-
low the cuA standards. It must be integrated with
AD/Cycle by relying on the AD information
model. It should use the Repository Manager and
be compatible with the AD/Cycle tool strategy.

Thus work management for AD/Cycle offers a total
systems approach to application development, mak-
ing the model of the process accessible on-line to the
software developer, project manager, and other per-
sonnel involved. The use of work management re-
sults in a more systematic, professional, and trans-
parent application development process, which in
turn manifests itself in higher quality and productiv-
ity, and thus in reduced cost.

Acknowledgments

The authors acknowledge the contributions to the
concepts in this paper by many researchers and
developers in the 1BM Corporation. Special thanks go
to Kurt Bandat, Philip Joseph, Guenther Kalod,
Roland Lutz, Dieter Mutschmann-Sanchez, Dick
Phillips, Dieter Schoeberl, Franz Spickhoff, and
Wolfgang Thumser.

IBM SYSTEMS JOURNAL, VOL 29, NO 2, 1990

AD/Cycle, Repository Manager, Systems Application Architec-
ture, and SAA are trademarks of International Business Machines
Corporation.

Cited references

1.

2.

3.

20.

21.

M. Gerisch and J. Schumann, Software Entwurf, Rudolf Muel-
ler-Verlag, Koein (1988).

G. Simons, Introducing Sofiware Engineering, NCC Publica-
tions, Manchester, England (1987).

B. W. Boehm, Characteristics of Software Quality, TRW Series
of Software Technology, North-Holland, Elsevier Science Pub-
lishers, Amsterdam (1980).

. H. Sneed, Software— Entwicklungsmethodik, Rudolf Mueller-

Verlag, Koeln (1986).

. P. B. Crosby, Quality Is Free, Mentor Books/New American

Library, New York (1980).

. V. Merlyn and G. Boone, “Case Tools,” ComputerWorld 23,

No. 13, 65-86 (March 27, 1989).

. J. C. Wileden and M. Dowson, “International Workshop on

the Software Process and Software Environments,” Sofiware
Engineering Notes 11, No. 4, 1-74 (1986).

. Handbuch fuer DV-Projekte-Methoden fuer Planung, Steu-

erung, Entwicklung und Betrieb von EDV Verfahren, GE12-
1473-1 (1978), IBM Corporation (out of print).

. B. W. Boehm, “Software Life Cycle Factors,” in Handbook of

Software Engineering, C. R. Vick and C. C. Ramamoorthy,
Editors, Van Nostrand Reinhold Company, Inc., New York
(1984), pp. 494-518.

. R. A. Radice, N. K. Roth, A. C. O’Hara, Jr., and W. A.

Ciarfella, “A Programming Process Architecture,” IBM Sys-
tems Journal 24, No. 2, 79-90 (1985).

. H. Bender, R. Fuhrmann, H. U. Kittel, B. Menze, J. E.

Mueller, and D. Nadolny, Sofiware Engineering in der Praxis
(das Bertelsmann-Modell), CW-Publikation, Muenchen
(1983).

. W. End, H. Gotthardt, and R. Winkelmann, Softwareentwick-

lung—Leitfaden fuer Planung, Realisierung und Einfuehrung
von DV-Verfahren, Siemens AG., fifth revised and extended
edition (1986).

. L. J. Peters and L. L. Tripp, “A Model of Software Engineer-

ing,” Proceedings of the 3rd International Conference on Sofi-
ware Engineering (May 1978), pp. 63~70.

. G. F. Hoffnagle and W. E. Beregi, “Automating the Software

Development Process,” IBM Systems Journal 24, No. 2, 102-
120 (1985).

. Integrated Project Support Environments, J. McDermid, Edi-

tor, Peter Peregrinus Ltd., London (1985).

. H. Huenke, “Software Engineering Environments,” Proceed-

ings, Lahnstein, BRD, 1980, North-Holland Elsevier Science
Publishers, Amsterdam (1981).

. L. Sommerville, Software Engineering Environments, Peter

Peregrinus Ltd., London (1986).

. M. V. Zelkowitz, “Requirements for a Software Engineering

Environment,” Proceedings of the University of Maryland
Workshop, May 1986, Ablex Publishing Company, NJ (1989).

. J. A. Zachman, “A Framework for Information Systems Ar-

chitecture,” IBM Systems Journal 26, No. 3, 276-292 (1987).
V. J. Mercurio, B. F. Meyers, A. M. Nisbet, and G. Radin,
“AD/Cycle Strategy and Architecture,” IBM Systems Journal
29, No. 2, 170-188 (1990, this issue).

J. Sagawa, “Repository Manager Technology,” IBM Systems
Journal 29, No. 2, 209-227 (1990, this issue).

CHROUST, GOLDMANN, AND GSCHWANDTNER 97

22. M. E. Fagan, “Design and Code Inspections to Reduce Errors
in Program Development,” IBM Systems Journal 15, No. 3,
183-211 (1976).

23. C. Chroust, “Software Development Paradigms—A Unifying
Concept,” R. Trappl, Editor, Tenth European Meeting on
Cybernetics and Systems Research, Vienna (April 1990).

24. J. Blank and M. J. Krijger, “Software Engineering: Methods
and Techniques,” Wiley-Interscience Publishers, New York
(1983).

25. R. W. Phillips, “State Change Architecture: A Protocol for
Executable Process Models,” C. Tully, Editor, Representation
and Enacting the Software Process, Proceedings 4th Interna-
tional Software Process Workshop, May 1988 ACM Sofiware
Engineering Notes 14, No. 4, 129-132 (1989).

26. G. Chroust, “Application Development Project Support
(ADPS)—An Environment for Industrial Application Devel-
opment,” ACM Sofiware Engineering Notes 14, No. 5, 83—
104 (1989).

27. R. W. Matthews and W. C. McGee, “Data Modeling for
Software Development,” IBM Systems Journal 29, No. 2,
228-235 (1990, this issue).

28. AD/Cycle Concepts, GC26-4531 (September 1989), IBM Cor-
poration; available through IBM branch offices.

29. Application Development Project Support/Application Devel-
opment Model and Process Mechanism—General Informa-
tion, GH19-8109 (April 1990), IBM Corporation; available
through IBM branch offices.

30. B. Boehm, “A Spiral Model of Software Development and
Enhancement,” ACM SIGSOFT—Sofiware Engineering
Notes 11, No. 4, 22-42 (1986).

31. P. W. Metzger, Managing a Programming Project, 2nd Edi-
tion, Prentice-Hall, Inc., Englewood Cliffs, NJ (1981).

32. D. J. Reifer, “Tutorial: Software Management,” IEEE Com-
puter Society, Catalog Number 81-85492 (1981).

33. J. M. Artim, J. M. Hary, and F. J. Spickhoff, “User Interface
Services in AD/Cycle,” IBM Systems Journal 29, No. 2, 236~
249 (1990, this issue).

34. G. Chroust, “Application Development with ADPS,” Sofi-
waretechnik Trends 9, No. 3, 13-30 (1989).

Gerhard Chroust /BM Programming Systems, Vienna Sofiware
Development Laboratory, Cobdeng. 2, A-1010 Vienna, Austria.
Dr. Chroust is currently a staff programmer, working on the
definition of an application development process model for
AD/Cycle. After joining IBM in 1966, he participated until 1970
in the creation of a formal definition of PL/I (Vienna Definition
Language), becoming assistant to the laboratory director for the
next five years. From 1977 to 1982 he was responsible for the
mathematical/logical run-time library of the 8100 PL/I compiler.
Since 1983 Dr. Chroust has had responsibility for the process
model of Application Development Project Support (ADPS) and
its successor products, coordinating the national language support
for ADPS from 1987 to 1989. Dr. Chroust holds an M.S. from the
University of Philadelphia and a Ph.D. from the Technical Uni-
versity of Vienna. Since 1980 he has served as Associate Professor
at the University of Linz and as a lecturer on software engineering
and microprogramming at several Austrian universities. He has
published a book on microprogramming and computer architec-
ture and has published numerous papers on firmware and software
engineering. He is a member of the editorial board of the IBM
Programming Series and a board member of both the Austrian
Computer Society and the Austrian Society for Cybernetic Studies.

208 CHROUST, GOLDMANN, AND GSCHWANDTNER

Helmut Goldmann IBM Programming Systems, Vienna Sofiware
Development Laboratory, Cobdeng. 2, A-1010 Vienna, Austria.
Mr. Goldmann joined IBM in 1967 after graduating from the
Technical University in Vienna with a Master’s degree (Dipl.-Ing.)
in physics. The areas in which he has worked include formal
definition of PL/I (Vienna Definition Language) and of program-
ming languages in general, programming system design, compiler
construction (PL/I compiler for the 8100), and the implementation
and architecture of software for application development support.
He was responsible for the coordination of the model and driver
components of the ADPS product. He is currently working on the
modeling of the internal data of a process manager and related
architectural and design problems.

Otto Gschwandtner IBM Programming Systems, Vienna Sofi-
ware Development Laboratory, Cobdeng. 2, A-1010 Vienna, Aus-
tria. Dr. Gschwandtner joined IBM in 1973. He was systems
engineer in the large Multiple Virtual Storage (MVS) customer
area. In 1977 he joined the Vienna Software Development Labo-
ratory, where he worked on the Screen Definition Facility, various
application development projects, and ADPS. He is currently a
development manager, working on ADPS enhancements.
Dr. Gschwandtner received a Ph.D. degree in mathematics from
the University of Vienna. Before joining IBM, he spent one year
as a visiting scholar at Stanford University and three years as
teaching assistant and lecturer in the area of mathematical logic at
the University of Vienna.

Reprint Order No. G321-5393.

IBM SYSTEMS JOURNAL, VOL 28, NO 2, 1990

