
The role of work
management in
application development

Quality is probably one of the most serious concerns
of today's software community. For software applica-
tions exhibiting a certain complexity, the quality of a
product can only be guaranteed by a methodological
approach, using appropriate administration and tools.
The methodology and administration must be mani-
fested in a well-defined and well-observed application
development process. The process must integrate the
human activity, the tools, and the intermediate and
final work products into a coherent flow of actions. In
this regard, the development of applications follows
patterns that are well established in other industries
where an application development (AD) process model
is defined and then executed via an interpretation
mechanism. The complexity of the development proc-
ess makes it necessary to support and integrate all of
its aspects by means of on-line interactive computer
support. Computer-aided process support in the gen-
eral sense we call work management. This paper ex-
plains the concepts of an application development
process model and of work management for applica-
tion development under ADlCycIe- and its relation to
project management.

T he concept of an application development proc-
ess interrelates cost, timeliness and quality-

three closely interleaved problems''' that haunt to-
day's software industry. Quality affects the other two
problems. Inadequate quality results in excessive
testing, rework, and maintenance which in turn in-
fluence delivery dates and productivity, and there-
fore cost. Thus the issue of software quality seems
central to the progress of the software industry. This

by G. Chroust
H. Goldmann
0. Gschwandtner

paper discusses the concept of an application devel-
opment process model and of work management for
application development under AD/Cycle'".

Application development process

The concept. Most quality-related attributes334 can-
not be adequately measured and are difficult to
predict. Even if a measurable value is found to be
low, there is usually no easy way to improve it in a
finished product, because one cannot inject quality
into a product. This means that concerns about the
quality of a software product must be addressed
during its creation. In order to ensure a consistently
high level of quality in a software product, one must
ensure that quality be an integral part of the produc-
tion process-a message that many other industries
have understood for many years.'

The production process then becomes the object of
scrutiny,6 similar to that in other industries where
quality products of any type are produced according
to a stable, well-understood process which is some-
what independent of the product.

Copyright 1990 by International Business Machines Corporation.
Copying in printed form for private use is permitted without
payment of royalty provided that (I) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright
notice are included on the first page. The title and abstract, but no
other portions, of this paper may be copied or distributed royalty
free without further permission by computer-based and other
information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

D
IBM SYSTEMS JOURNAL, VOL 29, NO 2. 1990 CHROUST, GOLDMANN. AND GSCHWANDTNER 189

Figure 1 The application development process

PROCESS
A PARTICULAR METHOD OF DOING SOMETHING,
GENERALLY INVOLVING A NUMBER OF STEPS
OR OPERATIONS*

APPLICATION DEVELOPMENT PROCESS A PROCESS THE OUTCOME OF WHICH IS
A SOFTWARE PRODUCT (AN APPLICATION)**

A DESCRIPTIVE REPRESENTATION OF
APPLICATION DEVELOPMENT PROCESS MODEL THE APPLICATION DEVELOPMENT PROCESS,

ALLOWING REASONING ABOUT
THE APPLICATION DEVELOPMENT PROCESS*

see Kcterrnce 7.

’’ * Sec Relerence 14

An important step of abstraction is to separate con-
cerns about the product (i.e., the application to be
created) and the process by which it is created. Once
seuarated, the application development process (see
Figure I) can be described and evaluated indepen-
d e n t l ~ . ~

Conceptually an application development process
model, sometimes called simply a process model, is
an abstraction from actual application development
processes (see Figure 2) and is intended as a template,
or prescription, for future application development
processes. The simplest structure of a process model
describes the results-called the work objects-to be
created and the activities which are necessary to
produce them. The term work object is used to
denote all the different results (final and intermedi-
ate) that are produced during application develop-
ment. The creation of an application is achieved by
a process based upon the application development
process model. The actual process is then known as
an instance of the model, with the understanding
that all elements of the instantiated process (typically
activities and work objects) are instances of the re-
spective descriptions of activities and work objects
in the model. An application development process
model usually provides additional information
which eases and standardizes the process.

The application development process model. Suc-
cessful application development is the result of sev-
eral factors. The ultimate aim of an application
development project is the delivery of a set of work
objects (e.g., code, documentation). It is necessary to
derive them via numerous intermediate work ob-

190 CHROUST, GOLDMANN, AND GSCHWANDTNER

jects, each of which shows a different aspect of the
application. These work objects have certain rela-
tionships among them (see Figure 3). The totality of
this information is described in the application de-
velopment information model (AD information
model) of AD/Cycle, which represents the work ob-
jects and their relationships. Further details are dis-
cussed later in the paper in the section on the AD
information model. In addition, one has to establish
the means by which these work objects are to be
produced, that is, which steps should be taken and
which methods applied. This can be stratified in two
levels: (1) The individual steps to be taken can be
defined locally and are further explained in the sec-
tion on activities. Each activity defines one step, the
inputs, the outputs, and what should be done in the
step. (2) The methodology which performs the over-
all process is defined globally. The section on the
work-flow structure shows how the individual activi-
ties are to be sequenced in order to form a complete
process.

The AD information model and work-flow structure
together form the core of the application develop-
ment process model. A description of the process is
shown in Figure 4.

The need for computer support. Application devel-
opment process models have been around for many
years. Some time ago, IBM Germany published and
taught a textual description of a process model
called “Verfahrenstechni$.”8 Further moels include
Boehm’s waterfall model, an IBM model, and many
 other^.'^"^ Such descriptions tend to be largely ig-
nored because they offer information which is re-

IBM SYSTEMS JOURNAL, VOL 29, NO 2, 1990

Figure 2 Abstracting an application development process model-the letters indicate activities that, when abstracted,
result in one step in the application development process model

APPLICATION DEVELOPMENT PROCESS 1 APPLICATION DEVELOPMENT PROCESS 2

I I I I I

ABSTRACTION: APPLICATION DEVELOPMENT PROCESS MODEL 7

mote from the actual point of need, are often cum-
bersome to look up, and are difficult to maintain-
especially if they exist in many copies.

In order to be fruitful, it is necessary to bring the
developer into intimate interaction with the process
definition. The complexity of the process, the mul-
titude of intermediate and final work objects, the
number of team members involved, and the need

b
IBM SYSTEMS JOURNAL, VOL 29. NO 2, 1990

for high quality require computer support. A work
manager is supported by a database system. An early
account of these concepts, probably coining the term
process mechanism for the first time, is found in
Reference 14. Thus we develop applications not only
for the computer, but also with the computer. In
AD/Cycle we have defined Work Manager to be the
work management component, discussed in a later
section.

CHROUST, GOLDMANN, AND GSCHWANDTNER 191

Figure 3 Relationships among work objects

-l

Q SPECIFICATION

SPECIFIES

MODULE DESIQN
IMPLEMENTS

I

IMPLEMENTS

SOURCE CODE USES W&L .i&Pw

IS-COMPILED-INTO IS-TRANSFORMED-INTO

v v

Supplying the Work Manager with all necessary
features needed by the members of the development
team (e.g., tools, help texts), yields an environment
invariably called En Integrated Project Support
Environment (IPSE) or Software Engineering Envi-
ronment SEE).'^"^

The process model provides a description of the
application development methodology. In this re-
spect it can be compared to a street map, which
indicates acceptable ways to reach a certain location.
An on-line process model can also actively provide
guidance to its users. The objective of process man-
agement is to aid in determining the order of activi-
ties and to communicate with the users.

It is also necessary to administer the produced (in-
termediate and final) work objects when performing
actual application development. Storage and re-

trieval procedures have to be established, and tools
have to be accessed.

Implementing a project is not just a matter of follow-
ing a process model. People, schedules, and resources
have to be considered and planned. This is the
objective of project management. Project manage-
ment will also (based on resource availability and on
project priorities) influence the order in which ac-
tivities may be executed. Extra tasks must be planned
for education or vacation. The Work Manager will
be controlled by the additional constraints imposed
by project management. The Work Manager pro-
vides automated on-line process management by
utilizing elementary project management functions
and providing interfaces to project management
tools.

Components of an application development
process model

The components of an application development
process model include the AD information model,
the work-flow structure, and auxiliary information
such as help texts, skeletons, and samples. It is an
advantage to divide a process model into several
model segments.

The AD information model. The AD information
model represents the work objects, their relation-
ships, and attributes.

Work objects and their relationships. The aim of a
development project is the delivery of a set of work
objects (the code, the documentation, etc.). The im-
possibility of deriving these end products in one step
from the initial information makes it necessary to
define several layered intermediate work objects.

The application is usually described by separate
views (e.g., as the user sees it, how it is to be imple-
mented, etc.) that are reflected in different docu-
ments (the various work objects). These work objects
provide specialized views of the final application.
This is similar to building a house, where different
documents (floor plan, plan of plumbing installa-
tions, functional overview, etc.I9) are created before
a single brick is laid. At the end of a project an
architect hands to the customer not only the keys of
the house, but also a considerable amount of the
intermediate documentation.

Similarly, an application may be considered as the
set of all work objects that are created during the

IBM SYSTEMS JOURNAL, VOL 29. NO 2, 1990

Figure 4 Components of an application development project

"""""""""
I

- PERSONNEL
- RESOURCES
- DEADLINES MANAGEMENT

I I I

""I

PROJECT
MANAGEMENT

ro-Do LISTS

"""""""""" J

1

PROCESS
MANAQEWENT

J

application development process (e.g., the programs,
the specifications, etc.). Each work object makes
some contribution to the meaning and shape of the
final application, providing some aspect (view) of
the final application. These different work objects
bear numerous relationships to one another, as in-
dicated in Figure 3.

Most intermediate work objects should be preserved
for auditing and maintenance at a later date. Thus
the installed application is, so-to-speak, the only end-
user visible part of a large set of work objects. All
the created work objects may be of interest for a
complete understanding of an application.

In AD/Cycle the description of the individual work
objects and their relationships is stored in the AD
information model. The AD information model is
intended to be the common basis for tool integration
and communication. The AD information model is
extendable; this means that if a model segment (dis-
cussed in the section, "Model segments") needs ad-
ditional work objects that are initially not in the AD
information model, they can be added.20*21 Actual
instances of these descriptions, i.e., the work objects
resulting from application development, are stored
in the Repository Manager'". When performing ac-
tual application development, some of these relation-
ships can be formally verified; with respect to others,

IBM SYSTEMS JOURNAL, VOL 2 9 , NO 2, 1990 CHROUST, GOLDMANN, AND GSCHWANDTNER 193

a more intuitive understanding is necessary. A cor-
rect (and complete) application will consist of a set
of work objects that fulfill all the relationships.

The choice of which work objects are specified in
the AD information model and their interrelations
predetermines to some extent the methodology for
producing them. The information model does not
explicitly specify the order in which the individual

The AD information model
describes the work objects

and their relationships.

work objects are to be created. It does express a
goal-that is, what the structure of the final appli-
cation should be. Naturally the structure has to be
compatible with the development methods, i.e., it
must provide for all intermediate work objects which
are needed if following specific methods.

Attributes of work objects. In addition to its contents,
one usually wants to record certain important facts
(or attributes) about a work object. Several of these
attributes will influence the direction in which the
project proceeds. Because application development
is a team effort, the attributes are also a basis for
communication between team members.

Attributes of a work object may describe the follow-
ing:

Contents of the work object in a concise form,
such as statistical data-especially when the com-
putation of this attribute is difficult (e.g., the num-
ber of rpcommentary source statements of a
program)
Historical information about a work object (e.g.,
creation date, last update)
Administrative information, such as the name of
the library where it is stored
Project-oriented information, such as the owner,
the authorizations to modify, etc.

194 CHROUST, GOLDMANN, AND GSCHWANDTNER

Statements about the work object, which are based
on human evaluation, e.g., the completion state
or level of quality

It should be noted that some of the interesting attri-
butes, such as the completion state, cannot be as-
signed automatically, but only by human interac-
tion. In general the computer cannot deduce whether
a work object is finished, although there might be
indications of disbelieving the developer’s statement
(if the compilation of a work object produces a severe
error, it is obviously not finished).

The process model can restrict the values a work
object attribute may have and the authorized tran-
sitions between the values. Changes to attributes may
only follow established transition rules as illustrated
in Figure 5 .

Work flow. The AD information model describes the
work objects and their relationships. In an actual
application development project, instances of the
descriptions have to be created. This means that the
steps to do the activities and their sequence (the
work-flow structure) must be established in order to
populate the Repository Manager with actual data.

Activities. An activity is considered to be the smallest
unit of work identified on a certain level of the
model. It specifies which work objects are to be
worked on in one elementary step and which work
objects are assumed to be prerequisites for this work.
The before, after, and together activities for the work
objects are defined.

An activity has to take into account the available or
anticipated tools and also the relationships expressed
in the A D information model. In simple cases an
activity can be equated to the call of one or more
tools; for many activities this may be just an editor.
Based upon the current state of the work object,
certain tools may not be eligible for invocation. Thus
activities define the local use of tools and practices.
In other words, identifying activities can be seen as
interpreting certain of the relationships in the AD
information model as transformations. For example,
in Figure 3 the relationship of IMPLEMENTS can be
taken to indicate that one should create SOURCE CODE
(and also a PANEL SOURCE) based upon the MODULE
DESIGN.

The choice of activities is not always straightforward:
In a reverse engineering situation it can be deduced

IBM SYSTEMS JOURNAL, VOL 29, NO 2, 1990

Figure 5 Assignment of completion state to work objects

I CREATED I
"""_ f _""" ~

I I
I I
L - - - - - - -

I"""-d
I IN-WORK I

"""""""" 7

COMPLETION STATE i CHANGE I
OF A WORK OBJECT I OFCOMPLETION STATE I

L""_"""""d

IN-REWORK 4"-

.......................... 1 1 -l

I I
I I
L""""_""""""" ,""""""""""""-d

I COMPLETED I
""""""""_ +

INSPECTED

r"""""""-

SENT-OUT-FOR-APPROVAL

1"

r""""-""" + 7
I I
I I
L"""-I_"""2

I APPROVED

from Figure 3 that the module design should be From the relevant 1iteraturel5-'* it can be observe d
recreak! from the source code a i d the panel
source. Similarly the function-oriented and data-
flow-y$ented paradigms of application develop-
ment differ with respect to the chosen types of
transformations. Thus different transformations (ac-
tivities) with different prerequisites and results may
be defined, despite the fact that the underlying A D
information model is the same. Such differences will
be reflected as different process models over the same
AD information model.

Y

that the different paradigms of software development
that are discussed are essentially concerned with the
order in which activities are to be executed (the work
flow), and with certain notational conveniences of
describing the contents of the various work objects,
while the contents of an information model are of
little concern.

The definition of activities can also mean clustering
several transformations into one step. This clustering

IBM SYSTEMS JOURNAL, VOL 29, NO 2, 1990 CHROUST, GOLDMANN. AND GSCHWANDTNER 195

defines the “together” aspect of the activities. (In
Figure 3 both the SOURCE CODE and the PANEL
SOURCE might be produced in one step for good
reasons.)

The choice of what constitutes an activity should
also be consistent with the granularity of the AD
information model. In other words, in each activity
one or only a small set of work objects should be
created.

Defining activities together with their prerequisites
and results obviously imposes some ordering on the
transformations. It defines sequencing on a local
scale. Having defined the activities, only certain ways
of traversing the model are still valid. This is similar
to a street map where all streets are marked as one-
way streets.

Work-flow structure. While the definition of activities
can be considered a local introduction of work flow
into the development process, the definition of how
these activities should follow one another can be
considered the global definition of the development
method. Successor relationships can be established
between the existing activities, resulting in a net-
work-like arrangement of the activities, the work-
flow structure.

Thus activities in the network are interrelated be-
cause the output work objects of some activities are
input to other activities and may be restricted by the
relationship holds. The definition of activities and of
the work-flow structure are complementary.

For further control of sequencing (the navigation),
we introduce entry predicates and exit gssertions in
the sense of the state change architecture (see Figure
6).

Each activity may have an entry predicate that de-
termines whether the activity may be performed. In
general, this entry predicate is a logical expression
involving attributes of some of the input work ob-
jects. Which attributes are actually process-relevant
is only determined by their occurrence in some entry
predicate or exit assertion.

An activity may also have an exit assertion that
indicates whether this activity has produced all its
expected results. It is in general formulated as a
logical expression of the attributes of some work
objects.

196 CHROUST. GOLDMANN. AND GSCHWANDTNER

In the Figure 6 example, the activity CODE creates
both the SOURCE CODE and the PANEL SOURCE. The
work-flow structure may add an additional successor
relationship between PRODUCE SPECIFICATION and
EXTERNAL REVIEW, and CREATE DESIGN. It implies
that despite the fact that CREATE DESIGN does not
have an output or input dependency on EXTERNAL
REVIEW, there is still a successor relationship.

Work object based work-flow structure. Experience
has shown that in certain cases the definition of an
activity can be understood by default using the re-
lationships between the affected work object. In this
case it is not necessary to explicitly define this activ-
ity.

As a consequence one can derive the order in which
work objects should be created by defining a state
change protocol for every work object. Based upon
this state change protocol, the connection between
work objects is mirrored by a connection between
certain states of the work objects.

Help texts, skeletons, samples. The availability of
computer support allows some additional productiv-
ity aids to be provided to the user. By providing on-
line help texts, information about standards, and
standardized skeletons for the results to be created,
a more uniform and professional application results.
The most important productivity aids are the follow-
ing:

On-line help texts are an essential component for
user-friendly, usable systems.
Reuse and standardization are enhanced by pro-
viding a specific skeleton for editing parts of a
work object.
Samples are read-only examples of completed
work objects used as guidelines for work.

The above components are an integral part of any
process model. The Work Manager has to take care
that they are presented to the user in an appropriate
form.

Model segments. A complete application develop-
ment process model can be considered to consist of
several separate model segments, which describe sep-
arate areas of responsibility or separate subprocesses.
One can, on the other hand, also consider application
development process models to be built from several
model segments. This allows alternate model seg-
ments to exist in order to handle some tasks by
different means. Model segments that are to be com-

IBM SYSTEMS JOURNAL, VOL B, NO 2. 1990

Figure 6 Information model and process model

PROCESS MODEL: ACTIVITIES AND WORK FLOW

I 1 ""_ ~ I I _""""" 1 I
XA I I

I I
I I
I I
I I

XA

--+I SPECIFICATION I" I
I I L

XA

EP - ENTRY PREWCATE
XA - EXIT ASSERTION

___* = DEPENDENCIES DUE TO
USAGE OF WORK OBJECTS
AS OUTPUT AND INPUT

"" -b - SUCCESSOR RELATIONSHIP
ESTABLISHED BY THE
WORK-FLOW STRUCTURE

"-+ DESIGN
MODULE

APPLEATION DEVELOPMENT INFORMATiON MOMLI WORK OBJECTS AND THEIR RELATIONSHIPS

2

SPECIFICATION --+
MODULE

b DESIGN

SOURCE CODE PANEL SOURCE

IBM SYSTEMS JOURNAL, VOL 29, NO 2. 1990 CHROUST, GOLDMANN. AND GSCHWANDTNER 197

bined must exhibit a strong compatibility with one
another.

The major model segment of any application devel-
opment process model is the run-time application
model segment, which describes the creation of the
actual application. This core is usually augmented
by several other model segments that describe ac-
tivities not directly involved in the creation of the
application, but nevertheless are in grally needed in
order to create a quality applicati f n. The run-time
application model segment is obviously the back-
bone of the process.

Model segments exist for different reasons, such as
adding a perspective, the description of a tool, or
choosing alternate paradigms.

In a development project, several areas of responsi-
bility are often only loosely connected to the run-
time application model segment and are concerned
with creating work objects of their own. They are
often called perspectives. Since the run-time appli-
cation model segment is the central core of the
process, all other model segments are dependent on
it and must mirror the structure of the application
development and be com@ible with it. The quality
assurance model segment, for example, must have
a structure analogous to that of the run-time appli-
cation model segment. Major perspectives are doc-
umentation, quality assurance, and product control.

Another important example for a model segment is
the description of a complex tool. Such a tool essen-
tially performs a certain set of activities in the devel-
opment process and thus can be described by a
model segment. This allows the user to compare and
match tools with an existing model.

For certain areas of application development, differ-
ent methodologies or paradigms can be used. Typi-
cally the technical design of an application can be
function oriented, data oriented, object oriented, or
data-flow oriented. Having different model segments
available allows the user to isolate the decision on
the methodology and allows the model builder to
choose the appropriate paradigm.

In order to build an application development process
model, it is necessary to combine several such model
segments as shown in Figure 7. Due to the interde-
pendencies of the various model segments, some
tailoring may be necessary before combination. The
combination of model segments can also be consid-
ered reuse of partial models.

198 CHROUST, GOLDMANN, AND GSCHWANDTNER

Combination works somewhat like set union, that
is, identical work objects and activities in the model
segments are collapsed into one, while differing work
objects and activities are collected in the resulting
model. Obviously the tailoring and combination
function can be driven to unlimited complexity. For
practical purposes, however, relatively simple func-
tions like union, simple substitution, etc. are suffi-
cient.

Examples of model segzents. Important model seg-
ments (similar to ADPS) are: the run-time applica-
tion segment, the product documentation segment,
the test environment segment, and the quality assur-
ance segment. These are discussed in the following
paragraphs.

The run-time application model segment, based upon
the AD information model of A D / C ~ C ~ ~ , ~ ~ , ~ ’ contains
the definition of those work objects that contribute
directly to executable user application, as discussed
in a previous section, “The AD information model.”
It remains to define the activities and to specify the
work-flow structure associated with it. The work-
flow strugure will follow the phase model of
AD/Cycle (requirements, analysis and design, pro-
duce, build and test, production and maintenance).
Beneath that there will be groups of activities and
single activities defined, closely resembling the proc-
ess model of Application Development Project
SUppOrt

The second model segment describes product docu-
mentation. Product documentation (comprising er-
ror messages, help panels, and manuals) must be
developed as an integral part of software develop-
ment, in parallel with the actual application. This
product documentation model segment uses as input
all relevant work objects from the run-time applica-
tion model segment (this means it must be tailored
after the run-time application model segment) and
delivers the necessary documentation work objects
to the appropriate integration activities of the run-
time application model segment.

The third model segment is used mostly for testing,
but it can also be the basis for experimenting with
code fragments. The developer needs an environ-
ment that mimics reasonably the target environ-
ment. This environment will be built on several
occasions, e.g., for module test, integration test, and
system test, etc. This test environment model segment
is fairly independent from the development model
segment, with the restriction that it must be com-

IBM SYSTEMS JOURNAL, VOL 29, NO 2, 1990

Figure 7 The concept of model segments

D

f d

DEVELOPMENT
MODEL
SEGMENT 1 SEGMENT 2

DEVELOPMENT
MODEL

DEVELOPMENT
MODEL
SEGMENT 3

...
I I I

7 COMBINATION

~~~1 DOCUMENTATION  DOCUMENTATION QUALITY 
ASSURANCE 
SEGMENT 2 

r COMBINATION 

... 
APPLICATION DEVELOPMENT PROCESS MODEL I 

B 

D 

B 
IBM SYSTEMS JOURNAL, VOL 29, NO 2, 1990 CHROUST.  GOLDMANN,  AND  GSCHWANDTNER 199 

patible with the type of environment for which de- 
velopment is done. 

Quality assurance is supported by the fourth model 
segment. It has to be interleaved with the respective 
development activities. Therefore the quality assur- 
ance model segment looks like a slightly pruned copy 
of the corresponding run-time application model 
segment. The quality assurance model segment can 

be tailored to resemble the  run-time applicatiog 
model segment by applying the following  two  rules: 

For every group of activities of the  run-time ap- 
plication model segment, a quality assurance ac- 
tivity is  defined to parallel it. 
For selected important activities of the run-time 
application model segment, a specific  is addi- 
tionally defined. 



Figure 8 Activities, work objects, and  their descriptions 

PROCESS MODEL (DESCRIPTION OF WORK 
OBJECTS AND ACTIVITIES) 

AD1 

" f  
L J 

+ , l  
AD = DESCRIPTION OF AN  ACTIVITY 
WD = DESCRIPTION OF A WORK OBJECT 

( INSTANCES (ACTUAL WORK OBJECTS  AND  ACTIVITIES) > 
A l l  

,A331 I" 
A = ACTIVITY 
W = WORK OBJECT 

Dynamically expanded model segments. In many 
instances a set of activities has to be repeated in 
several  places.  An example is creating an operational 
test environment. This obviously has to be done for 
unit test, and later almost the same set  of activities 
has to be performed to create a system test environ- 
ment. Therefore a process model has to provide 
means to expand a given activity into a chosen 
predefined model segment. This behavior is similar 
to a subroutine call in programming languages. 

200 CHROUST,  GOLDMANN.  AND  GSCHWANDTNER 

Work management 

Models and their  instances. An established applica- 
tion development process model is a template for 
future projects. Such a process model contains only 
descriptions of activities and work objects, not indi- 
vidual instances. Certain properties of the desired 
development process are defined in  the model. Other 
properties, considered individual, are  not described 
in the model and will vary from project to project. 

IBM SYSTEMS JOURNAL,  VOL 29 NO 2. 1990 



Typically the model does not  (but could) say how 
many instances of an activity or work object will 
be created in a specific development project (see 
Figure 8). 

Project  management. Even  given an extensive proc- 
ess model there are many aspects outside of process 
management. Project management is concerned 
with embedding an application development process 
into a real-world environment, taking into account 
constraints and requirements posed by budget, time, 
manpower, risk,  etc. It is concerned with planning, 
tracking, and controlling any one individual project. 

Project management has to rely on  the  contents of 
the underlying process model. Its findings influence 
the process inasmuch as additional constraints and 
considerations with  respect to navigation arise (e.g., 
“Phase 3 should not be started before June first.”), 
and additional tasks outside the project model (be it 
education, vacation, or interrelation to other proj- 
ects) are taken into account. 

The unit of project planning and project control is 
called a task. A task  identifies a certain amount of 
work to be done. It is  associated  with resources such 
as people, hardware, software, or time. Typically one 
records the planned and actual beginning of the task, 
the planned and actual end of the task, the respon- 
sible person@), the resources to be utilized, and other 
pertinent information. 

In general the beginning and ending of a task can be 
associated  with states of selected  work objects (see 
Figure 9). That is, the definition of a task includes 
the specification of an initial condition and a goal to 
be achieved. The process model describes how this 
possibly complex work step is to be done technically; 
project management defines it as a unit of planning 
for which certain resources are available and relates 
it to the  other tasks within the project. 

The granularity of a task (the size) depends on  the 
characteristics of the project, the management style 
of the project manager, the type and experience of 
team members, the risk-level  of the project, the 
enterprise culture, and many other factors. Project 
management describes criteria for 
choosing the size  of  tasks. A task can be, for example, 
producing a complete design document or writing a 
source program until it is  ready for inspection. 

Figure 10 shows four work object types (SPECI- 

30 

FICATION, MODULE DESIGN, SOURCE CODE, PANEL 

IBM SYSTEMS JOURNAL, VOL 29, NO 2, 1990 

Figure 9 Task and state of work objects 

TASK 

- J’ 

STATE OF WORK OBJECTS 
OR ACSlVlTlES 
AT BEGINNING OF TASK I I 

WORK TO BE DONE 
AS SPECIFIED 
BY PROCESS  MODEL 

AT END OF  TASK 

SOURCE [see also Figure 31) and their associated 
work objects (SPECSO,  MDESIGNO, SOURCECODEI, 
SOURCECODEZ, PANELSOURCEI, PANELSOURCEZ). It 
also  shows the associated tasks as chosen by the 
project manager. TASK1 and TASKZ are established for 
producing specifications and design,  respectively. 
 TASK^ and TASKS are  both related to producing source 
code and panels,  respectively; each encompasses the 
production of two work objects.  TASK^, representing 
education needed for  TASK^, has no equivalence in 
the process model. It is introduced by the project 
manager. Project management may also introduce 
further dependencies between tasks (for example, 
education is only needed for TASK4). 

Work management for AD/Cycle. The Work Man- 
ager monitors application development based on the 
process model and  on  the  current state of the various 
work objects. It identifies  what is ready to be  worked 
upon. It consults project management information 
as to whether further restrictions on  the choice of 
actions exist. The Work Manager has to fulfill  several 
functions and, as a consequence, several different 
interfaces can be identified (Figure 1 1). 

Process definition and maintenance. A major task of 
the Work Manager is aiding to build models. This 
usually  is a special component  not accessible to a 
regular  user. It involves the administration of the 
different model segments, their creation and modi- 
fication, facilities tailoring model segments according 
to  other model segments, and combination of model 

CHROUST,  GOLDMANN.  AND  GSCHWANDTNER 201 



Figure 10 Work object, activities, and their relation to project management 

(ACTIVITIES) 
INFORMATION  MODEL 
(WORK  OBJECT  TYPES) I (WORK OBJECTS) (TASKS) 

PRODUCE 
SPECIFICATION 

L SPECIFICATION 

1 

E l  CREATE DESDN 

9 MODULE  DESIGN 

-El PANEL  SOURCE 

05/02  - 05/21 
TWO-PERSON WEEK 

-"- 
I 

c c 
I I MDESIGNO 

L t "-1 TASKP: 
PRODUCE  DESIGN 

I I 
05/22 - 07/14 
TWO-PERSON MONTH 
JOHN,  PETER 

I I 
I I I  

PL/I COURSE  EDUCATION 

05/14-  05/25 TASK 4 

I 

" 

CODE PL/I 
TASK4: I 
TWO-PERSON WEEK 
0 6 / 0 4  - 06/15 

PL/I SKILLS I 1 TOM 

1 
"4 CODE  COBOL I TASKS: 

TWO-PERSON WEEK 
07102-07/20  

JOHN 
COBOL SKILLS 1 I , 

202 CHROUST,  GOLDMANN.  AND  GSCHWANDTNER  IBM  SYSTEMS  JOURNAL, VOL 29 NO 2. 1990 



Figure 11 Components  and  interfaces of a Work Manager 

USER AS 
NAVIGATOR 

U 

1 

PROCESS DEFINITION 
PROCESS MAINTENANCE I 

I 

MODEL 
ADMINISTRATOR 

IV / 

SOFTWARE 
ENGINEERS 

segments  (see  Figure 7). To the regular user the 
application development process model should ap- 
pear fixed. The Work Manager, however, can dy- 
namically create the application development proc- 
ess  model.  Auxiliary functions would include com- 
paring and copying model segments. 

The Work Manager derives the process from the 
process model, interprets it, and presents it via a set 
of  dialogs to  the  human user or invokes the tools 
integrated into  the process  (see  Figure 12). 

This user interface is  used for the incorporation of 
both local  changes,  which are only relevant for one 
specific project, and  permanent changes that reflect 
past experience. The latter allows the user to incor- 
porate experience into  the process model, which in 
turn makes the model a valuable asset of a com- 
pany’s development potential by establishing a cer- 
tain software development culture. 

Performing development work. The Work Manager 
communicates with the agents of the application 
development process  with  software tools that per- 
form some actions and with human beings who 
perform the creative tasks in development. 

IBM SYSTEMS JOURNAL,  VOL 2 9 ,  NO 2, 1990 

1 

The use  of tools is key to productivity. Tools have 
been employed from the very outset of software 
engineering, the earliest  being assemblers and com- 
pilers. Incorporating the tool interface (see  Figure 
1 1)  into  the Work Manager relieves the user from 
considerable clerical detail. The calling mechanism 
is standardized and delegated to  the Work Manager, 
and storage  of  work objects and their retrieval is 
performed under  the control of the Work Manager 
and is thus mechanized. 

The information contained in the process model is 
presented to the user in the form of a so-called “work 
bench,” which  allows  access to the information, as 
shown in Figure 13. It provides on-line help texts 
and information about standards, for example. 

Navigation. The application development process 
model is presented to  the user through the work- 
bench interface in order to let the user choose the 
next  step(s). This navigation is subject to  the con- 
straints expressed in the process model, the  data 
dependencies between the defined activities, the suc- 
cessor relations expressed in the process model, and 
the constraints imposed by project management. 
Furthermore the entry predicates and  the exit asser- 



Figure 12 Components of an application development project 

PROCESS MODEL 

I PROCESS 

I 

I 
I I INTERPRET 

INTEGRATE """_"" 
I 
I 
I 
I 
I 
I 
I I INVOKE 
I 

7 ""_""" 

WORK OBJECTS 

DATABASE SYSTEM 

tions must be taken into account. Depending on the 
pililosophy, the Work Manager will take more or 
less initiative in suggesting  what to  do next. The 
amount of control that  the work  process  exercises 
over the  end user varies from very restrictive to very 
liberal; that is, the to-do lists may prescribe the 
sequence in which items have to be dealt with, or 
may allow freedom of choice. 

AD/Cycle work management in a cooperative envi- 
ronment. Figure 14 shows  how  work management 
fits into  the AD/Cycle environment  and illustrates 
how the host and  the programmable workstation 
(PWS) cooperate. 

COMMON 
USER 
ACCESS 

USER AS 

-SOFTWARE ENQINEER 
- NAVIGATOR 
-MODEL ADMINISTRATOR 

0 

The integrity and consistency of the overall applica- 
tion development process  is maintained  at  the host. 
User interaction, on the  other  hand, is primarily 
handled by the 7 ~ s .  following Common User Inter- 
face (CUA) rules and exploiting the graphics capa- 
bilities of the workstation. Thus  the Work Manager 
consists of two closely cooperating components: one 
on the host and  one on the PWS. This cooperation is 
implemented by means of the  communication facil- 
ity  between the workstation and  the host. 

Tools are invoked by the Work Manager, directly or 
indirectly, on behalf of a user. The Work Manager 

IEM SYSTEMS JOURNAL, VOL 29, NO 2. 1990 



Figure 13 Schema of a work bench 

e r-I 
1111 

1 

EXPLANATION: 

-HELP TEXTS 
-STANDARDS 
-RULES 

ACTIVITY 
(WORK BENCH) -SAMPLES 

I 
TO BE CREATED 
(DELIVERABLE) J WORK OBJECT 

TO BE CREATED 
(DELIVERABLE) 

WORK  OBJECT 
TO BE CREATED 
(DELIVERABLE) 

is  sensitive to  the return information reported back 
by tools and translates it into status information. 

Host and workstation tools can be defined to  the 
process model; tool invocation on  the PWS exploits 
workstation services. The PWS can invoke host tools 
by requesting them as services from the host Work 
Manager, and vice  versa. 

Summary 

The pressing  user requirements on the quality of 
software, and  thus on the application development 
process, make an  automated approach necessary. 

The clear definition of an application development 
process model, defining the steps to be followed and 
the work objects to be created, can be considered a 
necessary part of application development in addi- 
tion to  the separation of  process and product func- 
tion. 

The requirement for computer-supported work 
management has arisen because of the complexity 
of the development process, the  multitude of  work 
objects, and  the complexity and diversity of today’s 
tools. A summary of the major requirements follows: 

Allow an application development process model 
to be defined, dynamically modified, and moni- 

IBM SYSTEMS JOURNAL,  VOL 29, NO 2, 1990 



Figure 14 Cooperative application development work management 

PROGRAMMABLE 
WORKSTATION 

I 

r 
I 
I 

I 
I 

I 

HOST TOOLS 

r 
INFORMATION MODEL > 

APPLICATION  DEVELOPMENT  PROCESS MODEL WORK MANAGEMENT I 
1 

I 
I 

I I I I ! 

1 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
L 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

L 

PROORAMMAf3LE WOAKSTATION X X X S  I 

206 CHROUST. GOLDMANN, AND GSCHWANDTNER IEM SYSTEMS  JOURNAL,  VOL 29. NO 2, 1990 



tored, measured, and improved. It has to be adapt- 
able to specific enterprise needs. 
Allow individual processes to be derived from the 
application development process model and inter- 
preted by a work manager. The system should 
allow for navigating through the process and for 
extracting to-do lists for individual users or user 
groups. 
Assist the user  in performing the work by provid- 
ing easy, automated,  and standardized access to 
the work  objects stored in the Repository Man- 
ager. 
Make it easy to access the right tools at  the right 
time. Tools are used to implement the steps de- 
fined in the process model. This means that  the 
role for each tool participating in  the process has 
to be defined. 
The enforcement of the process should be adapt- 
able to impose more or less discipline, as required 
for individual projects.  Different  styles of process 
management should be supported, from manual 
choice of the next step to  the completely automatic 
navigation through the process. 
Provision of a project management interface for 
planning and controlling process resources is  nec- 
essary. 
The system has to conform to  the Systems  Appli- 
cation Architecture” (sAA~”) requirements and fol- 
low the CUA standards. It must be integrated with 
AD/Cycle by relying on the AD information 
model. It should use the Repository Manager and 
be compatible with the AD/Cycle tool strategy. 

B 

) 

) 

Thus work management for AD/Cycle  offers a total 
systems approach to application development, mak- 
ing the model of the process  accessible on-line to the 
software developer, project manager, and  other per- 
sonnel involved. The use  of work management re- 
sults in a more systematic, professional, and trans- 
parent application development process,  which in 
turn manifests itself in higher quality and productiv- 
ity, and  thus in reduced cost. 

1 Acknowledgments 

The  authors acknowledge the contributions to  the 
concepts in this paper by many researchers and 
developers in the IBM Corporation. Special thanks go 
to  Kurt Bandat, Philip Joseph, Guenther Kalod, 
Roland Lutz, Dieter Mutschmann-Sanchez, Dick 
Phillips, Dieter Schoeberl, Franz Spickhoff, and 
Wolfgang Thumser. 

ADICycle, Repository  Manager, Systems Application Architec- 
ture,  and SAA are  trademarks  of  International Business Machines 
Corporation. 

Cited  references 

1. M. Gerisch and J. Schumann, Software EntwurJ; Rudolf Muel- 
ler-Verlag, Koeln (1988). 

2. G. Simons, Introducing Software Engineering, NCC Publica- 
tions,  Manchester, England (1987). 

3.  B. W. Boehm, Characteristics ofSojiware Quality, TRW Series 
of Software Technology, North-Holland, Elsevier Science Pub- 
lishers, Amsterdam (1980). 

4. H. Sneed, Software-Entwicklungsmethodik, Rudolf Mueller- 
Verlag, Koeln (1 986). 

5 .  P. B. Crosby, Quality Is Free, Mentor Books/New American 
Library, New York (1980). 

6. V. Merlyn and  G. Boone, “Case Tools,” CornputerWorld 23, 
No. 13, 65-86 (March 27, 1989). 

7. J. C .  Wileden and M. Dowson,  “International  Workshop on 
the Software Process and Software Environments,” Software 
Engineering Notes 11, No.  4, 1-74 (1986). 

8. Handbuch fuer DV-Projekte-Methoden fuer Planung, Steu- 
rrung, Entwicklung und Beirieb von EDV Verjiahren, GE12- 
1473-1 (1978), IBM Corporation  (out of print). 

9. B. W. Boehrn, “Software Life Cycle Factors,” in Handbook of 
Software Engineering, C. R. Vick and C. C .  Ramamoorthy, 
Editors, Van  Nostrand  Reinhold  Company, Inc., New York 
(1984), pp. 494-5 18. 

10. R. A. Radice, N. K.  Roth, A. C. OHara, Jr., and W. A. 
Ciarfella, “A Programming Process Architecture,” IBM  Sys- 
tems Journal 24, No. 2, 79-90 (1985). 

1 1 .  H. Bender, R. Fuhrmann,  H. U. Kittel, B. Menze, J. E. 
Mueller, and  D.  Nadolny, Sojiware Engineering in der Praxis 
(dm Bertelsrnann-Modell), CW-Publikation,  Muenchen 
(1983). 

12.  W. End,  H.  Gotthardt,  and  R.  Winkelmann, Softwareenlwick- 
lung-Leilfaden fuer Planung, Realisierung und Einfuehrung 
von DV-Verjiahren, Siemens  AG., fifth revised and  extended 
edition (1986). 

13.  L. J. Peters and L.  L. Tripp, “A Model of Software Engineer- 
ing,” Proceedings of the 3rd International Conference on Soft- 
ware Engineering (May 1978), pp. 63-70. 

14. G. F. Hoffnagle and W. E.  Beregi, “Automating  the Software 
Development Process,” IBM  Systems Journal 24, No. 2, 102- 
120 ( I  985). 

15. Integrated Project Support Environments, J. McDermid, Edi- 
tor, Peter Peregrinus Ltd., London (1985). 

16. H. Huenke, “Software Engineering Environments,” Proceed- 
ings, Lahnstein,  BRD, 1980, North-Holland Elsevier Science 
Publishers, Amsterdam  (198 I ) .  

17. 1. Sommerville, Sofiware Engineering Environments, Peter 
Peregrinus Ltd., London ( 1  986). 

18. M. V. Zelkowitz, “Requirements  for  a Software Engineering 
Environment,” Proceedings of the University of Maryland 
Workshop, May 1986, Ablex Publishing Company, NJ (1989). 

19. J. A. Zachman, “A Framework  for  Information Systems Ar- 
chitecture,” IBM  Systems Journal 26, No. 3, 276-292 (1987). 

20. V. J. Mercurio, B. F. Meyers, A. M. Nisbet, and G. Radin, 
“AD/Cycle Strategy and  Architecture,” IBM  Systems Journal 
29, No. 2, 170- I88 (1990,  this issue). 

21. J. Sagawa, “Repository  Manager  Technology,” IBM  Systems 
Journal 29, No. 2, 209-227 (1990,  this issue). 

1 
IBM SYSTEMS JOURNAL, VOL 29, NO 2, 1990 CHROUST, GOLDMANN. AND GSCHWANDTNER 207 



22. M.  E. Fagan,  “Design and Code Inspections to Reduce Errors 
in  Program Development,” IBM  Systems Journal 15, No. 3, 

23. C. Chroust, “Software Development Paradigms-A Unifying 
Concept,” R. Trappl, Editor, Tenth European Meeting on 
Cybernetics and Systems Research, Vienna  (April  1990). 

24. J. Blank and M. J. Krijger,  “Software  Engineering: Methods 
and Techniques,” Wiley-Interscience  Publishers, New  York 
(1983). 

25. R. W. Phillips, “State Change Architecture: A Protocol for 
Executable  Process  Models,” C. Tully, Editor, Representation 
and Enacting the Software Process,  Proceedings 4th Interna- 
tional So$ware  Process Workshop, May  1988 ACM Software 
Engineering Notes 14, No. 4,  129-132 (1989). 

26. G. Chroust, “Application Development Project Support 
(ADPs)-An Environment for Industrial Application Devel- 
opment,” ACM Software Engineering Notes 14, No. 5 ,  83- 
104 (1989). 

27. R. W. Matthews and W. C. McGee, “Data Modeling  for 
Software Development,” IBM  Systems Journal 29, No. 2, 
228-235 (1990, this issue). 

28. AD/Cycle Concepts, GC26-4531 (September 1989), IBM Cor- 
poration; available through IBM branch offices. 

29. Application Development Project Support/Application Devel- 
opment Model and Process Mechanism-General Informa- 
tion, GH19-8 IO9 (April  1990), IBM Corporation; available 
through IBM branch offices. 

30.  B. Boehm, “A Spiral  Model of Software Development and 
Enhancement,” ACM SIGSOFT-Software Engineering 
Notes 11, No. 4, 22-42 (1986). 

3 1. P. W. Metzger, Managing a Programming Project, 2nd Edi- 
tion, Prentice-Hall,  Inc.,  Englewood  Cliffs, NJ (I98 1). 

32.  D. J. Reifer, “Tutorial: Software Management,” IEEE  Com- 
puter Society, Catalog Number 81-85492 (1981). 

33. J. M. Artim, J. M. Hary, and F. J. SpickhoK, “User Interface 
Services  in  AD/Cycle,” IBMSystems Journal 29, No. 2,236- 
249 (1990, this issue). 

34. G. Chroust, “Application Development with  ADPS,” Soft- 
waretechnik Trends 9, No. 3,  13-30 (1989). 

183-211 (1976). 

Gerhard  Chroust IBM Programming Systems, Vienna Software 
Development Laboratory, Cobdeng. 2, A-IOIO Vienna, Austria. 
Dr. Chroust is currently a staff programmer, working on the 
definition  of an application development process model for 
AD/Cycle.  After joining IBM in  1966, he participated until 1970 
in the creation of a formal  definition of PL/I (Vienna Definition 
Language),  becoming  assistant to the laboratory director for the 
next five  years.  From  1977 to 1982 he  was responsible  for the 
mathematical/logical run-time library of the 8 I O 0  PL/I compiler. 
Since  1983  Dr. Chroust has had  responsibility for the process 
model of Application Development Project Support (ADPS) and 
its successor products, coordinating the national language support 
for ADPs from  1987 to 1989. Dr. Chroust holds an M.S. from the 
University of Philadelphia and a Ph.D. from the Technical Uni- 
versity  of  Vienna.  Since  1980  he has served  as  Associate  Professor 
at the University  of  Linz and as a lecturer on software  engineering 
and microprogramming at several Austrian universities. He has 
published a book on microprogramming and computer architec- 
ture and has  published numerous papers on firmware and software 
engineering.  He  is a member of the editorial board of the IBM 
Programming Series and a board member of both the Austrian 
Computer Society and the Austrian Society for Cybernetic Studies. 

208 CHROUST. GOLDMANN. AND GSCHWANDTNER 

Helmut  Goldmann IBM Programming Systems, Vienna Software 
Development Laboratory, Cobdeng. 2, A-I010 Vienna. Austria. 
Mr. Goldmann joined IBM in  1967 after graduating from the 
Technical  University  in Vienna with a Master’s  degree  (Dip1.-Ing.) 
in  physics. The areas in which  he has worked include formal 
definition of PL/I (Vienna Definition  Language) and of program- 
ming  languages  in  general, programming system  design, compiler 
construction (PL/I compiler for the 8 IOO), and the implementation 
and architecture of  software  for application development support. 
He was responsible  for the coordination of the model and driver 
components of the ADPs product. He is currently working on the 
modeling of the internal data of a process manager and related 
architectural and design problems. 

Otto Gschwandtner IBM Programming Systems, Vienna Soft- 
ware Development Laboratory, Cobdeng. 2, A-1010 Vienna, Aus- 
tria. Dr. Gschwandtner joined IBM in  1973. He was systems 
engineer in the large Multiple Virtual Storage (MVS) customer 
area. In  1977 he joined the Vienna Software Development Labo- 
ratory,  where  he  worked on the Screen  Definition  Facility, various 
application development projects, and ADPS.  He  is currently a 
development manager,  working on ADPs enhancements. 
Dr. Gschwandtner received a Ph.D. degree  in mathematics from 
the University  of Vienna. Before joining IBM,  he spent one year 
as a visiting  scholar at Stanford University and three years  as 
teaching  assistant and lecturer in the area  of mathematical logic at 
the  University of Vienna. 

Reprint Order No. G321-5393. 

IBM SYSTEMS JOURNAL, VOL 29, NO 2, 1990 


