Intelligent Forms
Processing

The automatic reading of optically scanned forms con-
sists of two major components: extraction of the data
image from the form and interpretation of the image as
coded alphanumerics. The second component is also
known as optical character recognition, or OCR. We
have implemented a method for entry of a wide variety
of forms that contain machine-printed data and that
are often produced in business environments. The
function, called Intelligent Forms Processing (IFP), ac-
cepts conventional forms that call for information to be
printed in designated blank areas, but in which the
information may exceed boundaries due to poor regis-
tration during printing. The human eye easily accom-
modates data that impinge on form boundaries or on
background text; however, the same powers of dis-
crimination applied to machine processing pose a
technical challenge. The IFP system uses a setup
phase to create a model of each form that is to be
read. Scanned forms containing data are compared
against the matching form model. Special algorithms
are employed to extract data fields while removing
background printing (e.g., form lines) intersecting the
data. The extracted data images are interpreted by an
OCR process that reads typical monospace fonts. New
fonts may be added easily in a separate design mode.
If the data are alphabetic, a lexicon may be assembled
to define the possible entries.

form is a conventional means for recording

data, but it is seldom the final repository for
data. Inevitably, at least part of the information
represented on forms is transferred elsewhere in or-
der to be recalled for later reference. Before the
advent of computers, a bookkeeper’s job in any
industry consisted largely of filling in the columns of
a ledger volume with data from transaction slips. In
the computer age, the secondary destination is often
a database system.
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The increased use of computers has brought a con-
tinually decreasing cost for maintaining and using
large volumes of data. Where the information is not
generated by computer, or otherwise not accessible
electronically, the labor-intensive task of feeding data
into a processing system has come to account for a
greater percentage of the overall cost. Eventually,
perhaps, most data now entered on paper forms will
be entered into databases directly at origination.
Before the simple, conventional methods using paper
forms can be replaced by electronic methods, the
problems of user acceptance, data conversion be-
tween diverse systems, and legal requirements for
record keeping must be overcome,

An image solution to capture the data can avoid
some of these problems. Ideally this approach would
permit minimal disruption in the way a business
processes its transactions using paper records. As
shown elsewhere in this issue,' many of the require-
ments for recording, maintaining, and distributing
information on documents can be met using opti-
cally scanned representations. However, database
searching and other machine processing of the doc-
ument contents require that it be recorded as al-
phanumeric codes rather than as image. Thus we are
led to consider methods for automatically interpret-
ing the data on the form images in order to create
corresponding records in a database.
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Figure 1 Intelligent Forms Processing overview

The automatic encoding of character images is called
optical character recognition (OCR). OCR originated
to meet the need for high-speed input of data from
billing statements and other documents particularly
designed for data processing. To achieve the greatest
accuracy and performance, special stylized print
fonts have been developed and used in the printing
of the form data. OCR has also been developed to a
high capability in the reading of conventional ma-
chine-printed text such as typed pages or magazine
articles. In Japan, where key entry is more difficult
because of the thousands of different symbols used,
considerable progress has been made in the ocr of
hand-printed data.

If forms are specially designed for machine process-
ing, and if the data are imprinted according to certain
specifications, as in the case of credit card slips, then
high accuracy can be achieved. The possibility of
interference from background printing can be re-
moved completely by printing the forms in a color
such as red or green that can be made invisible to
the scanner by the use of light-restricting filters.
Redundant data, such as check sums, are sometimes
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printed along with the data in order to permit error
detection and correction.

In some cases the forms cannot be redesigned for
computer simplicity. Examples of this include ar-
chives containing forms from past years. Currently,
the authors are pursuing a project involving approx-
imately 40 million birth, death, marriage, and dis-
solution certificates that have been collecting in the
state of California’s archives for over 80 years. A key
part of the project calls for transfer to a computer
database of the data contained in these certificates.

We are also seeking to incorporate similar capability
into the regular flow of data within an enterprise.
Our system, Intelligent Forms Processing (IFP), a
component of the state of California’s Vital Records
Improvement Project (VRIP), is intended to process
data on forms designed according to current prac-
tices in form layout and usage. Figure 1 depicts an
overview of the IFp. The system will accommodate
misplacement of data in the fields, use of conven-
tional print fonts, and the mixing of forms in batch
processing. Optical scanning of forms provides input
for display applications such as distribution, print-
ing, and reviewing. By converting the data content
to symbol codes and organizing it in a database, 1Fp
permits conventional processing applications such as
indexing, search, and retrieval based on content,
sorting, update, statistics gathering, etc.

A variety of print styles is expected to be encoun-
tered. One major constraint in this area, in keeping
with present capabilities in OCR, is the focus on
reading machine-printed rather than hand-printed
characters. If a breakthrough occurs in the ocr of
hand printing (or even further in the future, in
handwritten script), the general schema of this sys-
tem can be directly extended to include these capa-
bilities. At present the system does presume some
previous knowledge of document typestyles or fonts.
Most machine-printed forms are prepared on type-
writers or electronic printers using basic print styles
with the primary objective of portraying data clearly
and legibly. The aesthetic considerations of docu-
ment composition that are paramount in general
publishing are absent, and so the myriad of type
styles used in books, magazines, and newspapers is
not encountered. In fact, a survey of several thousand
documents stored in our initial application reveals
that only a handful of fonts predominate.”

The next section discusses the problem of reading
conventional forms by machine, and details the ma-
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jor functions that a form reader for such documents
must possess. The authors present their approach to
implementing such a system. First a method is given
for determining the genre or class to which a form
belongs, when different forms are mixed in batch
processing. Next a method is discussed for specifying
and locating the data to be read on a form, and for

The data can be
inaccurately positioned on the form.

separating the data image from background printing
that might interfere with the recognition process.
OCR of data images is described, with special atten-
tion to lexical processing for cases where there is
advance knowledge of admissible data values. The
final section summarizes the discussion and de-
scribes how a user can adapt the system to changing
requirements by modifying the parameters used for
OCR and lexical analysis.

Difficulties in automated forms processing

This section discusses the problems that are the most
critical when considering the design of a system for
extracting and encoding data from forms.

Many form formats. In typical business environ-
ments, many different kinds of forms are used to
document frequently occurring events. Often these
events happen randomly, making it difficult to pre-
dict which type of form will be required for the next
transaction. The result is a mixed batch of forms of
differing types. An automated system accepting these
forms must be able to identify each piece of input
with its form type. Such a system must be able to
accommodate the many different form types that
might be used within a single environment.

Errors in typing information onto a form. Data may
be entered on a form either by a person or by a
computer-controlled printer. In either case the data
can be inaccurately positioned on the form. For
instance, it requires experience and care to register a
form in a typewriter such that entries are printed
precisely in the blank areas of each field. Typing
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frequently impinges on lines or other background
printing.

The encoding system must be able to detect that the
data have been misregistered and to compensate for
the misregistration. In addition, when data come
into contact with preprinted lines or text on a form,
an automated system should be able to differentiate
between the preprinted matter and the data.

Poor typing quality. If the ribbon on a typewriter is
worn, or if the printing mechanism is not functioning
correctly, then data appearing on the form can be of
poor quality. Likewise, a carbon copy of a document
has a significantly lower quality than the original
document. Other factors that affect typing quality
include the age of the document, the color of the ink
that was used, the quality of the paper (i.c., newsprint
versus linen), and the amount of handling the doc-
ument has received.

Many of today’s OCR techniques rely on high quality
type such as that found in magazines, journals, and
other typeset publications. However, the print qual-
ity on business forms varies widely, depending on
the factors listed above. In such an environment, a
forms-reading system must be able to accurately
recognize print with a broad range of quality.

Many fonts. Printing devices differ from one business
to another. Even within a single enterprise that re-
ceives documents from many sources or has accu-
mulated documents over an extended period of time,
many different printing devices are represented. As
a result, the size and shape of characters (i.c., the
typestyle or font) that appear on documents will also

vary greatly.

Scanner misregistration. Optical scanners introduce
some degradation in the quality of images. This loss
of quality can be minimized by careful hardware
design. More difficult to avoid, however, are differ-
ences in location of a given data field within the
scanned versions of successive documents. This mis-
registration typically consists of differences both in
offset and skew angle of the document. The conse-
quence is that processing routines cannot reliably
retrieve data images from a prespecified image loca-
tion, especially when the form has not been specially
designed for OCR or is densely packed with data.

The Intelligent Forms Processing system

When a form is scanned, the first problem to be
solved is to identify the form as a member of a group
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Figure 2 Forms editor
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of previously defined form types. The process of
classifying the form is called form recognition. For
form recognition to be successful, each type of form
that the system will be required to process must be
defined. The IFP system employs a setup phase, called
the forms editor, to define each form.

Once the form has been identified, the data that the
user desires to capture must be found and extracted
from the image. The data extraction function of the
IFP system is used to locate the desired data and to
extract them while ignoring the form’s preprinted
lines and text, as well as data that the user does not
wish to capture.

After the desired image data have been extracted,
they must be converted to a machine-readable for-
mat (i.e., American Standard Code for Information
Interchange [asci1] or extended binary-coded deci-
mal interchange code [EBCDIC)) using OCR. Within
the Intelligent Forms Processing function, several
methods of OCR are used in combination in order to
identify as accurately as possible the image data being
processed. The first technique applied, decision tree
classification, relies on the configuration of the pixels
that make up a character in order to recognize it.
The second technique, lexical analysis, modifies the
initial recognition result based on linguistic context
and on the identification of groups of characters
having similar shape. Since these techniques comple-
ment one another, the accuracy of recognition can
be greatly enhanced.

Two additional functions are provided to support
and improve the recognition capability. The first
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function is a mechanism for extending the library of
fonts recognizable to decision tree classification. The
second function permits extensions to the library of
lexicons (a lexicon is a list of possible values for a
field—e.g., a city field might have a list of cities
associated with it) that are used by lexical analysis
in evaluating the contents of a data field.

The following sections define each of these processes
in more detail.

Forms editor. Before forms can be processed by IFp,
a model must be created for each type of form to be
processed. The model of a form type consists of a
form pattern and a description of each field con-
tained on the form. A form pattern is the set of
characteristics that are used to distinguish one form
type from another. The field description consists of
the location of the field on the form (expressed in
Cartesian coordinates), an acceptance threshold for
OCR, and a lexicon.

In an 1FP form model, a data field is expressed by
two points that describe the opposing corners of a
rectangle. The rectangular area is called a mask. The
assumption of a rectangle for describing a field is
made in order to simplify the geometric calculations
required when extracting a field from an image. In
the future, more complex field description coordi-
nates might be used to describe a field of irregular
shape.

The acceptance threshold is used by the decision tree
classification to determine whether the recognition
of a character is reliable enough to be accepted. The
lexicon is used by lexical analysis to verify and
improve OCR accuracy. These field attributes are
described in more detail later in the paper.

A system may be required to process a large variety
of different forms, many of which are slight varia-
tions of a single form type. Since it would be redun-
dant to re-enter the same information for each of a
number of similar form types, IFP provides a mech-
anism for grouping form types. Such a group, called
a form class, is made up of a list of fields and their
associated acceptance thresholds and lexicons. Once
a form class is created to define all of the fields that
may occur within a group, all that needs to be
specified for each form type is the location of its
fields.

The forms editor specifies form information to the
IFP system. The forms editor is an 0s/2® Presentation
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Figure 3 Methods of form registration
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Manager™ program that allows the user to scan in a mation has been entered into the forms editor, forms
blank form that serves as a master for a specified containing data can be read by IFP.
form type. The master may then be used to define a
form model. With the forms editor, the form types Form recognition. Several methods were considered
may be grouped into form classes. Figure 2 illustrates for recognizing a form type (Figure 3). One method
a birth certificate form definition. After this infor- matches the form number that is typically printed
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Figure 4 Image skew
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on the document. The second method compares the
layout, or geography, of the form’s text and lines to
differentiate form types. The third method, and the
one that is incorporated by 1Fp, relies on the hori-
zontal and vertical lines of a form. Each of these
methods is discussed below.

Most forms contain a preprinted number that iden-
tifies the form type. However, in order to read the
form number it must first be located on the form,
because the identifying number is often printed in
different locations for different form types. In addi-
tion, since most forms contain a great deal of other
preprinted information, the process of differentiating
a form number from the surrounding form infor-
mation can be quite complex.

Using the layout of both the text and lines on the
form would appear to be a reliable method for
distinguishing one form from another. This method
has a difficulty, however, because the data recorded
on the form cannot easily be separated from pre-
printed matter until the form type is known. The
data vary for each instance of a form, and unless
these data can be ignored, the recognition of a form
is difficult. In addition, the processing involved in
recording the attributes of the form and comparing
these attributes to the form patterns contained in the
form library can be quite expensive, because the
forms may be quite complex.

The 1FP system uses the horizontal and vertical lines
that are printed on the form. Form lines are usually
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For office Use

longer and thinner than image patterns that repre-
sent preprinted text or typed data. Hence it is easy
1o detect the form lines. Once the occurrence of each
line on a form is recorded, these lines can be com-
pared to those stored in the models in the form
library to determine a form’s type.

In a system that processes many form types, the time
required to determine a form’s type would be exces-
sive if each form had to be compared to many models
in the form library to seek a match. IFP makes use
of a binary decision tree to compare only a subset of
the lines to specified lines of the form models. (This
decision tree logic is based on the principles used for
clustering during Ocr.) The use of this scheme greatly
reduces the performance cost of having a large num-
ber of form types in the form library.

Once the form type has been identified, a complete
comparison of the form lines is made between the
matching form type’s model and the form being
processed, in order to verify that the incoming form
image is indeed of the identified form type. This is
necessary in case a previously unseen form type is
scanned, or in scanning a faded form whose lines
cannot be detected adequately. If the form is suc-
cessfully identified, the comparison also provides
information about the positional differences between
the form type’s model and the input form. This
information is used by data extraction to accurately
locate the fields on the form.

The primary weakness of this method is that it
cannot differentiate between two form types if they
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share the same line layout. This can occur, for ex-
ample, if a form type is revised by changing the
meaning of a field without altering the form layout,
or if the form type contains no lines. In such cases
the forms would have to be batched and manually
identified to the system, or else other information,
e.g., the form 1D number, would have to be derived.

Data extraction. Three steps are required to extract
the data from the fields of a form. The first step is to
adjust the mask coordinates (these were defined
using the forms editor) so that the positional differ-
ence between the master form and input form is
compensated for. Second, the data are extracted
from each field using the mask coordinates. Finally,
any extraneous lines that intrude into the fields are
removed.

Registration. The degree of form skew, the horizontal
offset, and the vertical offset affect the ability to
accurately locate and capture the data in the desired
fields. Each of these variables is used to adjust the
mask coordinates so that the data may be more
accurately captured.

The skew of a form (Figure 4) is the degree of rotation
difference between the master form and the incom-
ing form. Since each mask is defined as a horizontal
rectangle, increasing the form skew raises the chances
of background form information residing within the
rectangle. To reduce the possibility of the mask
becoming contaminated with background informa-
tion, it must be adjusted based on the form skew.

IFP adjusts the masks by reducing the height of the
mask as the skew increases (see Figure 5). This
reduction serves to lessen the possibility of capturing
unwanted background information, since the ad-
justed mask represents the area within the original
mask that has not been affected by skew. Unfortu-
nately, the reduction of the mask size increases the
possibility that the desired data will not lie entirely
within the mask. This serves to introduce ambiguity
during the extraction process, which tends to in-
crease the processing time required to extract the
data.

An alternative that was considered for adjusting the
mask involves rotating the mask rectangle by the
degree of the form skew. This solution both reduces
the possibility of capturing unwanted background
information and preserves the data that lie within
the mask. The processing required to handle a ro-
tated mask during the extraction process was deemed
to be too expensive.
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Figure 5 Skew adjustment of a mask

The horizontal and vertical offsets represent the
translation required to map the incoming form to
the master form. For instance, if a line on the form
appeared in the 100th row for the master form and
in the 96th row for the incoming form, then the
vertical offset would be 4, since it would require
adjusting the incoming form down 4 rows to com-
pensate for the difference. These differences are gen-
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Figure 6 Measuring positional offset
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Figure 7 Two categories of data search regions

erally caused by the placement of the form in the
scanner or by the differences between scanners in
initiating the scanning of a form.

The offsets are calculated by comparing the incom-
ing form’s line descriptions to the master form’s
pattern (Figure 6). After the offsets have been deter-
mined, they are used to translate the masks’ absolute
coordinates (defined using the forms editor) into the
incoming form’s coordinates.
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Masking of data. Once the mask coordinates have
been mapped onto the form to be read, the data
within each mask can be extracted. During the proc-
ess of extracting the data, two types of data may
be encountered: perfect data or ambiguous data
(Figure 7).

Perfect data are data that reside entirely within the
mask. A check is made whether the pixels along the
perimeter of the mask are all 0, or off. If all of the
pixels are off, the data within the mask are considered
to be perfect. Perfect data can be extracted immedi-
ately.

Ambiguous data exist wherever there is an on bit
along the perimeter of the mask. Ambiguous data
are data that extend outside of the mask and that
may encounter interference from the form lines or
background text. Each instance of such data must
be tracked beyond the mask and extracted using
special processing.

Ambiguous data that extend sufficiently far from
their mask may cross a form line. Therefore, as the
ambiguous data are tracked, the tracking location is
compared with the locations of the lines that were
found during the form recognition process. Any
interfering form line is detected and removed.

A line removal process, as illustrated in Figure 8, is
used to eliminate the line without removing the data
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that intersect the line. The process is performed by
deleting the line and then replicating any pixels that
lie just above and below the line through the region
of the deletion.

Although resolving conflicts between the background
text and the data is an important process, algorithms
to solve this type of ambiguity are considerably more
complex and have not yet been implemented within
IFP. Simply measuring the average height of extracted
data and clipping tracked data beyond this height
offers an attractive method of dealing with data that
do not merge far into background text.

Removal of nondata images. In addition to the prob-
lems above, there is also the possibility that some
ambiguous data might not be a part of the data
printed in the field, but rather belong to an extra-
neous line or mark intruding into the field. This type
of problem is detected when the height of the ambig-
uous data is determined to be larger than the maxi-
mum height expected for a single character.

When such an extraneous line (which may be
curved) is detected, a continuity-following algo-
rithm’ is applied to track the line through intersec-
tions with the data (Figure 9). The tracked line is
deleted except at intersections with the data or form
lines.

As each field is processed and the data contained
within the field are extracted, the extracted field is
placed into a new area of memory. This area can be
thought of as a new or extracted image which con-
tains only the data portion of the form image. The
extracted image is then passed to optical character
recognition for the automatic encoding of the data.

Optical character recognition. The image created by
data extraction provides a clean image of the data to
be recognized using OCR. As described above, this is
done field-by-field, with the characters in each field
extracted as a single image block. Before a field image
can be recognized, it must be segmented into indi-
vidual character images. These are then recognized
in turn by a classifier.

Segmentation. In the process of analyzing the overall
image into character patterns, the segmentation rou-
tine performs the following functions:

e The pitch, i.e., the distance from character to
character, is estimated.

e Touching characters are separated, and broken
characters are merged.
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Figure 8 Line removal
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Figure 9 Extraneous lines
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Skew of the typing within each field is measured.

The overall image is partitioned into print lines.

A baseline is computed for each line of print.

The character patterns are ordered in reading se-

quence.

¢ The position of each character with respect to the
baseline is calculated.

¢ Spaces between words are detected.

casey anp Fercuson 443




Figure 10 (A) Connected components; (B) bounding rectangle description of connected components

Figure 11 Decision tree classification

OCR BY DECISION TREE USING CHARAGTER PIXELS

The input to these operations is the set of connected
components of the extracted image, as shown in
Figure 10. A connected component is a subimage
satisfying two conditions: (1) from any black pixel
of the subimage there is a path consisting solely of
black pixels that connects it to any other black pixel
of the subimage, and (2) there is no such connection
from a pixel of the subimage to any black pixel
outside the subimage. Typically a connected com-
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ponent is represented by its bounding rectangle, the
box with vertical and horizontal edges determined
by the top, bottom, left, and right edges of the
connected component. Figure 10A shows an image
whose connectivity is tracked to determine the dis-
tinct subimages indicated. The horizontal and verti-
cal extent of each subimage is measured during the
process, and for segmentation processing the char-
acters are represented only by the bounding rectan-
gles, as shown in Figure 10B. Notice that the letter i
yields two bounding rectangles, which will be com-
bined during segmentation processing.

Connected components of scanned printing fre-
quently correspond to individual characters, thus the
ensemble of connected components is analyzed to
determine pitch, locate baselines, and measure skew.
Following this, touching characters are separated by
searching for weak connections between left and
right sections of a connected component in the
neighborhood of a pitch boundary between charac-
ters. Joining of broken characters, sequencing of the
patterns for recognition, etc. are also done by ana-
lyzing the connected components.

Decision tree classification. An OCR classifier is a unit
that accepts a single character pattern as input, and
returns an identification symbol, or ID (for example
an ASCH or EBCDIC code). It has previously been
shown in Reference 4 that highly accurate recogni-
tion of a given font style can be obtained using
decision trees that test a series of prespecified pixels
on each character. The decision trees are designed
automatically using statistics on the probability of
black and white for each pixel, where the statistics
are gathered from scanned sample characters.

Figure 11 represents a decision tree classification.
The circled numbers denote (row, column) coordi-
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nates in a character array. The recognition process
starts at the top and determines the color of the input
pattern at the specified location. If it is white, the
process repeats at the next node down and to the
left; if black, the node down and to the right is
checked. Thus, the classification algorithm follows a
path which terminates in a symbol class. In practice
the trees are much larger, identifying 100 or more
classes and constructed with several thousand nodes.

When documents arrive from many different
sources, as is typically the case with typed data on
forms, a library of tree logics is needed, one for each
font that will be encountered. The proper font logic
for a given document is determined by trial and error
using the first few lines of the document. Fonts
having size characteristics that match those of the
printing are tried for recognition, and each classifier
provides its own estimate of the accuracy of its
recognition. These estimates are evaluated to select
the best classifier for reading the remainder of the
image.

In a survey of vital records documents, the authors
found that six fonts comprised more than 98 percent
of the machine printing. The sections below show
how decision trees for additional fonts can be added
to the basic library in order to accommodate printing
not recognized in a first pass.

Speed of recognition with the decision tree method
depends not only upon implementation, but also
upon quality of the printing. Figure 12 shows how
the time required for recognition varies as docu-
ments are successively degraded in quality by re-
copying with a poorly tuned photocopier. The rate
of correct recognition remains high (over 99.5 per-
cent), but the time spent in classifying degraded
third-generation copies is more than double that
required for first copies. The times in Figure 12 are
relative units. The ideal document is the norm. For
poor quality characters, the classifier shifts to a more
complex algorithm requiring additional passes
through the decision trees, thus increasing the proc-
essing time,

Second pass recognition. In reading large volumes of
forms we expect to process a variety of fonts. Docu-
ments containing standard fonts can be read suc-
cessfully, but any documents printed in fonts not
represented in the library of decision trees will be
rejected. If only a few documents are rejected, the
data can be manually keyed. However, if many
documents are printed in alien fonts, they can still
be efficiently entered by OCR by the following steps:
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Figure 12 Processing time vs print quality
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. Group rejected documents having a common
print style.

. Collect and identify sample characters from each
group.

. Design new decision tree logics for each group,
using the statistics of the identified samples.

. Repeat the recognition process on rejected docu-
ments using the newly created decision trees.

It is not necessary to use the entire collection of
rejected documents in steps 1 to 3. The design stage
need only have a few samples of each character type.
If the character distribution is that of typical English
text, for example, then after several thousand char-
acters have been collected, there is a high probability
of having a sample of each letter. If a letter is not
represented after, say, 10 000 samples, then one an-
ticipates that its frequency of occurrence in the re-
maining documents will be low as well, and it can
be rejected and keyed manually when encountered.

The following section discuss the implementation of
the second-pass design.

Clustering. The authors have previously published
(Reference 5) a method for efficiently matching char-
acter patterns. The algorithm accepts as input a
sequence of character patterns, plus a similarity cri-
terion for matching pairs of patterns. It produces as
output a list of prototype patterns selected from the
inputs. The prototypes serve as representatives of the
input set by virtue of two properties: (1) no two
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prototypes match one another, and (2) every input
pattern matches some prototype (or possibly more
than one).

With each prototype is defined a cluster, consisting
of the prototype itself plus all patterns that match it.
Applied to a sample of 10 000 or so characters in a
single font, this algorithm typically produces clusters
for each of the symbols present, as well as a number
of small clusters resulting from touching or broken
characters, or from shape variations.

When the input character sequence is printed text,
cryptographic methods for identifying the clusters
have been explored.’ Alternatively, the clusters can
be identified manually after the prototypes are dis-
played on a screen. In single-font typing applications,
e.g., most form data, only a typical typing keyboard
of 100 or fewer characters has to be keyed in order
to label a font.

Document grouping by font. The clustering algorithm
groups character patterns. A method for grouping
the documents according to the similarity of print
was explored. Each such group of documents should
contain a common print style, and two different
groups should contain dissimilar printing. Thus the
groups fit the definition of clusters (see above) except
that similarity is defined over a pair of documents
rather than with respect to a pair of character pat-
terns.

A natural measure of similarity is the number of
common characters on two documents. Pursuing
this concept, document grouping can be integrated
with character clustering. This is done by clustering
an input document using each of the prototype sets
obtained from previous documents. If there are con-
siderable matches between a prototype set and a
document, then the characters on the document are
clustered using the matching prototype set. If no
prototype set matches the document, then its char-
acters are used to start a new set.

This process can be made efficient by using early
cutoff rules for the matching and by using font
characteristics such as pitch, height, width, etc., to
select prototype sets for matching a given document.
The measure of similarity for document grouping
should take into account the possibility of multifont
documents, so that, for example, bursts of non-
matching characters should be a basis for rejection
of the match, and such documents should be
screened from the design set.
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Lexical analysis. Generally the data contained in a
particular field of a form are constrained in the sense
that not every character string is permissible. An
amount field is typically filled in with numeric data;
a name field, with alphabetic data. Such constraints
are useful for character recognition. For example, a
classifier designed to read only ten digits is more
accurate than one that must consider not only digits,
but also letters and punctuation, as possible identities
for each character pattern.

Even stronger constraints hold when the possible
entries in a field can be listed. For example, one field
may contain a reply to a question with possible
values yes or no. In such a case the system can verify
that the recognition result is one of the two possibil-
ities, and if not, can simply count the number of
character patterns in the field in order to make a
choice.

A different field may require a longer list of candidate
words. Thus, a field labeled “State” has only 50
possible entries, plus abbreviations. We term such a
list of admissible entries a /exicon. The yes-no ex-
ample, while the simplest case, illustrates the general
principles in using lexicons. First, the lexicon can
serve to validate a recognition result obtained by a
conventional classifier. Second, in case of a valida-
tion failure it can assist in making the correct rec-
ognition decision by a process of elimination of
candidates.

Clustering and lexicons. When a field is governed by
a lexicon, recognition may be considered to consist
of choosing the correct word from the prescribed list.
A pattern classifier, the standard tool in OCR, is useful
in this process, but is not the only basis for selection.
Clustering in the context of separating fonts and
selecting sample characters for the design of decision
tree classifiers has been discussed previously. Clus-
tering results from a single field can also assist in
making a selection from a lexicon.

Clustering reveals the similarities that exist among
the characters in a field. In the name Pennsylvania,
for example, letter positions 3, 4, and 10 are filled
by the same letter, and positions 9 and 12 by another
duplicated letter. One way to represent the property
of similarity is by a transformation in which the
letters of the alphabet are successively substituted for
the letters of the word starting from the first letter of
the word. Thus the first letter of Pennsylvania is
replaced by A, the second by B, and so on, with the
same symbol always substituted for any repeating
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letters. By this rule, Pennsylvania is encoded as
ABCCDEFGHCIH.

Such an encoding is called a pattern word in cryp-
tography, and can be derived from an optically
scanned, segmented word image by clustering the
sequence of character patterns in order to detect
similarities. Having obtained the pattern word
ABCCDEFGHCIH by clustering, it is not known
that the image processed is the word Pennsylvania,
but the system knows that it seeks a word with the
same letter in positions 3, 4, and 10, and a second
letter in positions 9 and 12, and that all the other
letters occur once each. If in addition it is known
that the word must belong to a lexicon consisting of
the 50 state names, the system can quickly infer that
it must be Pennsylvania. On the other hand, the
pattern word ABCD is shared by both Iowa and
Utah, illustrating that in general, clustering must be
combined with other forms of OCR.

Pattern words can be precomputed for a given lexi-
con, and stored in association with the words from
which they are derived. If the lexicon is searched on
the pattern word, then clustering alone quickly re-
duces the number of candidate words for a given
field to the subset having a common pattern word.

The fact that pattern words are derived from analyz-
ing shapes during clustering introduces additional
complexity. Thus, Alabama yields the pattern word
ABCDCEC if only the first letter is capitalized, and
ABACADA if printed in all uppercase letters. Both
forms must be considered in selecting candidates
from the lexicon.

Combining classifier and clustering results. Both de-
cision trees and clustering processes are subject to
errors due to the variations that occur from sample
to sample of a given symbol. However, both proc-
esses give information about the contents of the field.
It is therefore worthwhile to attempt to combine the
two results in order to obtain maximum overall
accuracy.

In general, if the tree classifier yields a result that is
in the lexicon and that has a pattern word consistent
with the clustering result, then the recognition can
be accepted. In cases where the clustering and clas-
sification conflict, some scheme is needed for evalu-
ating multiple candidates for the OCR result, or for
informing the system that no clearcut decision can
be found. In the latter case, the field can be displayed
to an operator and manually keyed.

IBM SYSTEMS JOURNAL, VOL 29, NO 3, 1990

Figure 13 Algorithm for pattern word analysis

The algorithm that is proposed for making decisions
based both on decision tree classifiers and lexical
analysis using clustering is shown in Figure 13. The
system initially produces a word by a sequence of
tree decisions. The pattern word for this result is
computed. Another pattern word is obtained by
clustering. If the two agree, then the classifier result
will be accepted if the pattern word is also in the
lexicon. Otherwise both decision results are in con-
tradiction with the lexicon, and the result should be
manually reviewed.
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Figure 14 Combining clustering and tree decisions
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When the pattern word obtained by clustering differs
from that produced by the tree classifier, then a
weighted decision is made. The classifier word
fetches one candidate list from the lexicon, the clus-
tering pattern word fetches another. Each candidate
word is scored based on (1) agreements with the
classifier result, and (2) number of matches versus
the clustering pattern word. In addition, the tree
classifier confidence measure for each letter identifi-
cation 1s used to weight these scores.

Global clustering. Often all the data on a completed
form are typed by a single printer. Clustering the
character patterns of such a document yields a map
of similarity that extends across fields. These simi-
larity relationships permit the results of lexical analy-
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sis to be applied even to fields that are not covered
by lexicons. Thus, if Field 1 is constrained by a
lexicon, and lexical analysis indicates that a certain
symbol must be an R, then R is also a likely substi-
tution for a symbol belonging to the same cluster in
a field not covered by a lexicon.

In general, as before, classifier results and lexical
results must be weighted to produce a combined
decision for each field. The authors are seeking to
construct a statistical model that will guide the mak-
ing of such decisions. In the meantime simple, heu-
ristic rules for combining decisions are being imple-
mented. Currently the system makes independent
recognitions for each field, using a combination of
lexical analysis and classification, as described above.
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Then it compares the results with similarities ob-
tained by clustering and detects any discrepancies.
In Figure 14, for example, each pair of lines repre-
sents a data field of a test document. The tree clas-
sifier result (first line) is compared with the clustering
result (second line). The figure shows fields which
contain characters in cluster 9. A discrepancy ap-
pears in the fourth pair, where a sample of this cluster
has been labeled n, but u in all other occurrences.
Based on the statistical evidence, the system would
label all members of cluster 9 as u. Additional evi-
dence, if needed, would be supplied by the measure
of confidence for each decision given by the tree
classifier, and by any lexicons that might be available
for the fields in question.

A disputed character is assigned an identification
based on (1) the IDs of patterns to which it is similar,
(2) the tree classifier 1D obtained for it, and (3) in the
case where a lexicon exists for the field, 1Ds which, if
assigned to the character, will yield words that are listed
in the lexicon. If no 1D is sufficiently favored by the
scoring rule, then the field is rejected in favor of manual
entry.

Extending the library of lexicons. In order to use
lexical analysis on a field-by-field basis, a mechanism
for defining the possible values for a field is required.
Within IFP, this mechanism is the lexicon editor.
This tool provides a means for adding a lexicon to a
repository called the lexicon library, deleting a lexi-
con from the lexicon library, or replacing a lexicon
in the lexicon library.

To add or replace a lexicon in the library, a list of
possible values is first created and stored in a flat file.
This flat file may be created using any means that
the person creating the lexicon desires. Next, the
lexicon editor is invoked by specifying the name of
the flat file, the name by which the lexicon will be
referenced when defining forms in the forms editor
(or, for replacing a lexicon, the current name of the
lexicon in the library), and the lexicon’s type. IFP
will add the lexicon to the lexicon library.

To delete a lexicon, its name is specified. If the
lexicon does exist, it will be removed from the lexi-
con library.

Summary

The authors have shown how the characteristics of
printed forms can be advantageously used in con-
structing a system to automatically read data for
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input to databases. The background structure of
forms, particularly the use of lines to create field
boundaries, is used for registration and for recogni-
tion of form type. Data are first extracted as image
by a search process that is initiated at the central
region of each form data field. They are then coded
into character strings using conventional OCR proc-
essing assisted by a clustering operation that takes
advantage of lexical constraints to improve accuracy
of recognition.

The paper has discussed how difficult problems in
forms reading can be solved within IFp. Thus IFP
recognizes characters that cross field boundaries, de-
tecting and removing lines that pass through the
characters in the process. It permits quick logic ex-
tensions in order to read unfamiliar font styles, and
reports inconsistent or unreliable results to the over-
all system for manual correction.
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