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The  automatic  reading  of optically scanned  forms con- 
sists of two major  components:  extraction of the data 
image  from the  form and interpretation of the image  as 
coded  alphanumerics.  The  second  component  is also 
known  as optical character  recognition, or OCR. We 
have  implemented a method for entry  of a  wide  variety 
of  forms that  contain  machine-printed  data  and  that 
are often produced in business  environments.  The 
function,  called  Intelligent  Forms  Processing  (IFP),  ac- 
cepts Conventional  forms that  call  for  information to be 
printed in designated  blank  areas,  but  in  which  the 
information may  exceed  boundaries  due to poor regis- 
tration during  printing. The  human  eye  easily  accom- 
modates  data that  impinge  on  form  boundaries  or  on 
background  text;  however, the same  powers  of dis- 
crimination  applied to machine  processing  pose  a 
technical  challenge. The  IFP  system  uses a  setup 
phase to create  a model  of  each  form that is to be 
read.  Scanned forms  containing  data  are  compared 
against  the  matching  form  model.  Special  algorithms 
are  employed to extract  data  fields  while  removing 
background  printing (e.g., form  lines)  intersecting the 
data.  The  extracted  data  images  are interpreted by  an 
OCR process  that  reads typical monospace fonts. New 
fonts may be added  easily in  a  separate  design  mode. 
If the  data  are  alphabetic,  a  lexicon  may  be  assembled 
to define the  possible  entries. 

A form  is  a  conventional  means  for  recording 
data, but it  is  seldom the final  repository  for 

data. Inevitably,  at  least  part of the information 
represented on forms  is  transferred  elsewhere  in  or- 
der to be  recalled  for  later  reference.  Before the 
advent of computers,  a  bookkeeper’s job in  any 
industry  consisted  largely  of  filling  in the columns of 
a  ledger  volume  with data from  transaction  slips. In 
the computer age,  the  secondary  destination  is  often 
a  database  system. 

The  increased  use of computers  has  brought  a  con- 
tinually  decreasing  cost  for maintaining and using 
large  volumes of data. Where the information is not 
generated by computer, or otherwise not accessible 
electronically, the labor-intensive  task  of  feeding data 
into a  processing  system  has  come to account for  a 
greater  percentage of the overall  cost.  Eventually, 
perhaps,  most data now entered on paper  forms will 
be entered into databases  directly at origination. 
Before the  simple,  conventional  methods  using  paper 
forms  can  be  replaced by electronic  methods, the 
problems of user  acceptance, data conversion be- 
tween  diverse  systems, and legal requirements  for 
record  keeping  must  be  overcome. 

An image  solution to capture the data can avoid 
some of these  problems.  Ideally this approach  would 
permit  minimal disruption in the way a  business 
processes its transactions  usipg  paper  records. As 
shown  elsewhere in this issue,  many of the require- 
ments for  recording, maintaining, and distributing 
information on documents can be met  using  opti- 
cally  scanned  representations.  However,  database 
searching and other machine  processing of the doc- 
ument contents require that it be  recorded as al- 
phanumeric codes rather than as image. Thus we are 
led to consider  methods  for  automatically  interpret- 
ing the data on the form  images  in  order to create 
corresponding  records  in  a  database. 
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Figure 1 Intelligent Forms Processing  overview 

The automatic encoding  of  character  images  is  called 
optical  character  recognition (OCR). OCR originated 
to meet the need  for  high-speed input of data from 
billing statements and other documents particularly 
designed  for data processing. To achieve the greatest 
accuracy and performance,  special  stylized print 
fonts  have  been  developed and used in the printing 
of the form data. OCR has  also  been  developed to a 
high capability in the  reading of conventional  ma- 
chine-printed  text  such as typed pages or magazine 
articles. In Japan, where key entry is more difficult 
because  of the thousands of different  symbols  used, 
considerable  progress  has  been  made in the OCR of 
hand-printed data. 

If forms  are  specially  designed  for  machine  process- 
ing, and if the data are imprinted according to certain 
specifications,  as in the case  of credit  card  slips, then 
high  accuracy  can be achieved. The possibility of 
interference  from  background printing can be  re- 
moved  completely  by printing the forms  in  a  color 
such as red or green that can be made  invisible to 
the scanner by the use  of  light-restricting  filters. 
Redundant data, such as check  sums,  are  sometimes 
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In some  cases the forms cannot be redesigned  for 
computer simplicity.  Examples of this include  ar- 
chives  containing  forms  from  past  years.  Currently, 
the authors are  pursuing  a  project  involving  approx- 
imately 40 million birth, death, marriage, and dis- 
solution  certificates that have  been  collecting in the 
state of California’s  archives  for  over 80 years.  A  key 
part of the project  calls  for  transfer to a computer 
database  of the data contained in these  certificates. 

We are  also  seeking to incorporate similar  capability 
into the regular  flow  of data within an enterprise. 
Our system,  Intelligent  Forms  Processing (IFP), a 
component of the state  of  California’s  Vital  Records 
Improvement  Project (VRIP), is intended to process 
data on forms  designed  according to current prac- 
tices in form  layout and usage.  Figure 1 depicts an 
overview  of the IFP. The system  will accommodate 
misplacement of data in the fields,  use  of conven- 
tional print fonts, and the mixing of forms in batch 
processing.  Optical  scanning of forms  provides input 
for  display  applications  such  as distribution, print- 
ing, and reviewing. By converting the data content 
to symbol  codes and organizing it in a  database, IFP 
permits  conventional  processing  applications  such as 
indexing,  search, and retrieval  based on content, 
sorting,  update,  statistics  gathering,  etc. 

A  variety of print styles  is  expected to be encoun- 
tered.  One  major constraint in this area, in keeping 
with  present  capabilities in OCR, is the focus on 
reading  machine-printed rather than hand-printed 
characters. If a  breakthrough  occurs in the OCR of 
hand printing (or even further in the future, in 
handwritten  script), the general  schema of this sys- 
tem can be  directly  extended to include  these  capa- 
bilities. At present the system  does  presume  some 
previous  knowledge  of document typestyles or fonts. 
Most  machine-printed  forms  are  prepared on type- 
writers or electronic printers using  basic print styles 
with the primary  objective of portraying data clearly 
and legibly. The aesthetic  considerations of docu- 
ment  composition that are paramount in  general 
publishing are absent, and so the myriad of type 
styles  used in books,  magazines, and newspapers is 
not encountered. In fact,  a  survey  of  several thousand 
documents stored in our initial applicatip reveals 
that only  a  handful  of fonts predominate. 

The next  section  discusses  the  problem of reading 
conventional  forms by machine, and details the ma- 
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jor functions that a  form  reader  for  such documents 
must possess. The authors present  their  approach to 
implementing  such  a  system.  First  a  method  is  given 
for determining the genre or class to which  a  form 
belongs,  when  different  forms  are  mixed  in  batch 
processing.  Next  a  method  is  discussed  for  specifying 
and locating the data to be  read on a  form, and for 

The  data  can  be 
inaccurately  positioned  on  the form. 

separating the data image  from  background printing 
that might  interfere  with the recognition  process. 
OCR of data images  is  described,  with  special atten- 
tion to lexical  processing  for  cases  where  there  is 
advance  knowledge of admissible data values. The 
final  section  summarizes the discussion and de- 
scribes  how  a  user  can adapt the system to changing 
requirements by modifying the parameters  used  for 
OCR and lexical  analysis. 

Difficulties  in  automated  forms  processing 

This section  discusses the problems that are the most 
critical  when  considering the design  of a  system for 
extracting and encoding data from  forms. 

Many form formats. In typical  business  environ- 
ments,  many  different kinds of forms are used to 
document frequently occumng events.  Often  these 
events  happen  randomly,  making  it  difficult to pre- 
dict  which  type of form  will  be  required  for the next 
transaction. The result  is  a  mixed  batch of forms of 
differing  types. An automated system  accepting  these 
forms  must be  able to identify  each  piece  of input 
with its form  type.  Such  a  system  must  be  able to 
accommodate the many  different  form  types that 
might be used  within  a  single environment. 

Errors in  typing  information  onto  a  form. Data may 
be entered on a  form either by a  person or by a 
computer-controlled printer. In either case the data 
can be inaccurately  positioned on the form. For 
instance, it requires  experience and care to register  a 
form  in  a  typewriter  such that entries are printed 
precisely  in the blank  areas  of  each  field.  Typing 
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frequently  impinges on lines or other background 
printing. 

The  encoding  system  must  be  able to detect that the 
data have  been  misregistered and to compensate  for 
the misregistration. In addition, when data come 
into contact with  preprinted  lines or text on a  form, 
an automated system  should  be  able to differentiate 
between the preprinted matter and the data. 

Poor typing  quality. If the ribbon on a  typewriter  is 
worn, or if the printing  mechanism  is not functioning 
correctly, then data appearing on the form  can be  of 
poor  quality.  Likewise,  a  carbon  copy of a document 
has  a  significantly  lower  quality than the original 
document. Other factors that affect  typing  quality 
include the age  of the document, the color of the ink 
that was used, the quality of the paper  (i.e.,  newsprint 
versus linen), and the amount of handling the doc- 
ument has  received. 

Many of  today’s OCR techniques  rely on high quality 
type  such as that found in magazines, journals, and 
other  typeset  publications.  However, the print qual- 
ity on business  forms  varies  widely,  depending on 
the factors  listed  above. In such an environment, a 
forms-reading  system  must be  able to accurately 
recognize print with  a  broad  range  of  quality. 

Many fonts. Printing devices  differ  from  one  business 
to another. Even  within  a  single  enterprise that re- 
ceives documents from  many  sources or has  accu- 
mulated documents over an extended  period of time, 
many  different printing devices  are  represented. As 
a  result, the size and shape of characters  (i.e., the 
typestyle or font) that appear on documents will also 
vary  greatly. 

Scanner  misregistration. Optical  scanners introduce 
some  degradation  in the quality of  images. This loss 
of quality  can be minimized by careful  hardware 
design.  More  difficult to avoid,  however,  are  differ- 
ences  in  location  of  a  given data field  within the 
scanned  versions  of  successive  documents. This mis- 
registration  typically  consists of differences  both in 
offset and skew  angle  of the document. The conse- 
quence  is that processing  routines cannot reliably 
retrieve data images  from  a  prespecified  image  loca- 
tion, especially  when the form  has not been  specially 
designed  for OCR or is  densely  packed  with data. 

The  Intelligent  Forms  Processing  system 

When  a  form  is  scanned, the first  problem to be 
solved  is to identify the form  as  a  member of a group 
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Figure 2 Forms editor 
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of previously  defined  form  types. The process of 
classifying the form  is  called form recognition. For 
form  recognition to be  successful,  each  type  of  form 
that the system will be required to process  must be 
defined. The IFP system  employs  a setup phase,  called 
the forms editor, to define  each  form. 

Once the form  has  been  identified, the data that the 
user  desires to capture  must be found and extracted 
from the image. The data extraction function of the 
IFP system  is  used to locate the desired data and to 
extract  them  while  ignoring the form's  preprinted 
lines and text,  as well as data that the user  does not 
wish to capture. 

After the desired  image data have  been  extracted, 
they  must  be  converted to a  machine-readable  for- 
mat (Le.,  American  Standard  Code  for Information 
Interchange [ASCII] or extended  binary-coded  deci- 
mal  interchange  code [EBCDIC]) using OCR. Within 
the Intelligent  Forms  Processing function, several 
methods  of OCR are  used in combination in order to 
identify  as  accurately as possible the image data being 
processed. The first  technique  applied, decision  tree 
classification, relies on the configuration of the pixels 
that make up a  character  in  order to recognize it. 
The second  technique, lexical analysis, modifies the 
initial  recognition  result  based on linguistic  context 
and on the identification of groups  of  characters 
having  similar  shape.  Since  these  techniques  comple- 
ment one another, the accuracy of recognition can 
be  greatly  enhanced. 

Two additional functions are provided to support 
and improve the recognition  capability. The first 

function is a  mechanism  for  extending the library  of 
fonts  recognizable to decision  tree  classification. The 
second  function  permits  extensions to the library of 
lexicons (a lexicon  is  a  list of possible  values  for  a 
field-e.g., a  city  field  might  have  a  list of cities 
associated  with it) that are  used by lexical  analysis 
in  evaluating  the contents of  a data field. 

The  following  sections  define  each  of  these  processes 
in  more  detail. 

Forms editor. Before  forms  can  be  processed by IFP, 
a  model  must be created  for  each  type of form to be 
processed. The model of a  form  type  consists of a 
form pattern and a  description of each  field con- 
tained on the form. A form pattern is  the  set of 
characteristics that are  used to distinguish one form 
type  from  another. The field  description  consists  of 
the location  of the field on the form  (expressed in 
Cartesian  coordinates), an acceptance  threshold  for 
OCR, and a  lexicon. 

In  an IFP form  model,  a data field  is  expressed  by 
two points that describe the opposing comers of a 
rectangle. The rectangular  area  is  called  a mask. The 
assumption of a  rectangle  for  describing  a  field  is 
made  in  order to simplify the geometric  calculations 
required  when  extracting  a  field  from an image. In 
the future, more  complex  field  description  coordi- 
nates  might  be  used to describe  a  field of irregular 
shape. 

The acceptance  threshold is used  by the decision  tree 
classification to determine whether the recognition 
of a  character  is  reliable  enough to be  accepted. The 
lexicon  is  used  by  lexical  analysis to verify and 
improve OCR accuracy.  These  field attributes are 
described  in  more  detail later in the paper. 

A system  may  be  required to process  a  large  variety 
of different  forms,  many of  which are  slight  varia- 
tions of  a  single  form  type.  Since it would  be  redun- 
dant to re-enter the same information for  each  of  a 
number of similar  form  types, IFP provides  a  mech- 
anism  for  grouping  form  types.  Such  a  group,  called 
a form class, is  made up of a  list  of  fields and their 
associated  acceptance  thresholds and lexicons.  Once 
a  form  class  is  created to define  all  of the fields that 
may occur  within  a  group,  all that needs to be 
specified  for  each  form  type  is the location  of its 
fields. 

The forms editor specifies  form information to the 
IFP system. The forms editor is an asp@ Presentation 
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Figure 3 Methods of form registration 
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Manager"  program that allows the user to scan in a mation  has  been  entered into the forms  editor,  forms 
blank  form that serves as a master  for a specified  containing data can be read by IFP. 
form  type. The master  may then be  used to define a 
form  model.  With the forms editor, the form  types Form recognition. Several  methods  were  considered 
may  be grouped into form  classes.  Figure 2 illustrates  for  recognizing a form  type  (Figure 3). One method 
a birth  certificate  form  definition.  After this infor-  matches the form number that is  typically  printed 
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Figure 4 Image skew 

on the document. The second  method  compares the 
layout, or geography, of the form’s  text and lines to 
differentiate form types. The third method, and the 
one that is  incorporated by IFP, relies on the hori- 
zontal and vertical  lines of a  form.  Each of these 
methods  is  discussed  below. 

Most  forms contain a  preprinted number that iden- 
tifies  the  form  type.  However,  in  order to read the 
form number it must  first  be  located on the form, 
because the identifying number is  often  printed in 
different  locations  for  different  form  types. In addi- 
tion, since  most  forms contain a  great  deal  of other 
preprinted information, the process of differentiating 
a  form number from the surrounding form  infor- 
mation can be quite complex. 

Using the layout  of both the text and lines on the 
form  would  appear to be a  reliable  method  for 
distinguishing one form  from another. This method 
has  a  difficulty,  however,  because the data recorded 
on the form cannot easily  be  separated  from  pre- 
printed matter until the  form  type  is  known. The 
data vary  for each  instance of a  form, and unless 
these data can be ignored, the recognition  of  a  form 
is  difficult. In addition, the processing  involved in 
recording the attributes of the form and comparing 
these attributes to the form patterns contained in the 
form  library can be quite expensive,  because the 
forms  may  be quite complex. 

The IFP system  uses the horizontal and vertical  lines 
that are printed on the  form. Form lines are usually 

longer and thinner than image patterns that repre- 
sent  preprinted  text or typed  data.  Hence  it  is easy 
to detect the form  lines.  Once the occurrence  of  each 
line on a  form  is  recorded,  these  lines  can be com- 
pared to those  stored in the models in the form 
library to determine a  form’s  type. 

In a  system that processes  many  form  types, the time 
required to determine a  form’s  type  would  be  exces- 
sive  if  each form  had to be compared to many  models 
in the form  library to seek  a  match. IFP makes  use 
of a  binary  decision  tree to compare only  a  subset  of 
the lines to specified  lines  of the form  models. (This 
decision  tree  logic is based on the principles  used for 
clustering during OCR.) The use  of this scheme  greatly 
reduces the performance  cost of having  a  large num- 
ber of form  types  in the form  library. 

Once the form  type  has  been  identified,  a  complete 
comparison of the  form  lines  is  made  between the 
matching  form  type’s  model and the form  being 
processed, in order to verify that the incoming  form 
image  is  indeed of the identified  form  type. This is 
necessary in case  a  previously unseen,form type is 
scanned, or in  scanning  a  faded  form  whose  lines 
cannot be detected  adequately. If the form is suc- 
cessfully  identified, the comparison also provides 
information about the positional  differences  between 
the form type’s model and the input form. This 
information is used  by data extraction to accurately 
locate the fields on the form. 

The primary  weakness of this method is that it 
cannot differentiate  between  two form types if they 
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share the same line layout. This can occur, for  ex- 
ample, if a form type  is  revised by changing the 
meaning of a field without altering the form layout, 
or if the form type contains no lines. In such cases 
the forms would  have to be  batched and manually 
identified to the system, or else other information, 
e.g., the form ID number, would  have to be derived. 

Data extraction. Three steps are required to extract 
the data from the fields  of  a form. The first step is to 
adjust the mask coordinates (these were defined 
using the forms editor) so that the positional differ- 
ence between the master  form and input form is 
compensated for.  Second, the data are extracted 
from each field  using the mask  coordinates.  Finally, 
any extraneous lines that  intrude  into the fields are 
removed. 

Registration. The degree  of form skew, the horizontal 
offset, and the vertical offset  affect the ability to 
accurately  locate and capture the data in the desired 
fields.  Each  of  these  variables  is  used to adjust the 
mask coordinates so that the data may  be more 
accurately captured. 

The skew  of a form (Figure 4) is the degree  of rotation 
difference  between the master form and the incom- 
ing  form.  Since  each  mask  is  defined as a horizontal 
rectangle,  increasing the form skew  raises the chances 
of  background form information residing  within the 
rectangle. To reduce the possibility  of the mask 
becoming contaminated with  background informa- 
tion, it must be adjusted based on the form skew. 

IFP adjusts the masks by reducing the height of the 
mask  as the skew increases  (see  Figure 5). This 
reduction serves to lessen the possibility of capturing 
unwanted background information, since the ad- 
justed mask  represents the area within the original 
mask that has not been  affected  by  skew. Unfortu- 
nately, the reduction of the mask  size  increases the 
possibility that the desired data will not lie entirely 
within the mask. This serves to introduce ambiguity 
during the extraction process,  which tends to in- 
crease the processing time required to extract the 
data. 

An alternative that was considered  for adjusting the 
mask  involves rotating the mask  rectangle by the 
degree  of the form skew. This solution both reduces 
the possibility  of capturing unwanted background 
information and preserves the data  that lie  within 
the mask. The processing required to handle a ro- 
tated mask during the extraction process was deemed 
to be too expensive. 
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Figure 5 Skew  adjustment of a  mask 

The horizontal and vertical offsets represent the 
translation required to  map the incoming form to 
the master form. For instance, if a line on the form 
appeared in the 100th  row  for the master form and 
in the 96th row  for the incoming form, then the 
vertical offset would  be 4, since it would require 
adjusting the incoming form down 4 rows to com- 
pensate  for the difference.  These  differences are gen- 

CASEY  AND RRGUSON 4 1  



Figure 6 Measuring  positional  offset 
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Figure 7 Two categories of data  search  regions 

erally  caused by the placement of the form in the 
scanner or by the differences  between  scanners in 
initiating the scanning  of a form. 

The offsets are calculated by comparing the incom- 
ing  form's line descriptions to the master  form's 
pattern (Figure 6) .  After the offsets  have  been  deter- 
mined,  they are used to translate the masks'  absolute 
coordinates  (defined  using the forms editor) into the 
incoming  form's  coordinates. 
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Masking of data. Once  the  mask  coordinates  have 
been  mapped onto the form to be read, the data 
within  each  mask can be extracted.  During the proc- 
ess of extracting the data, two  types of data may 
be encountered perfect data or ambiguous data 
(Figure 7). 

Pe$ect data are data that reside  entirely  within the 
mask. A check  is  made  whether the pixels  along the 
perimeter of the mask are all 0, or ofl If all of the 
pixels are 06 the data within the mask  are  considered 
to be  perfect.  Perfect data can be extracted  immedi- 
ately. 

Ambiguous data exist  wherever  there  is an on bit 
along the perimeter of the mask.  Ambiguous data 
are data that extend  outside of the mask and that 
may encounter interference  from the form  lines or 
background  text.  Each  instance of such data must 
be tracked  beyond the mask and extracted  using 
special  processing. 

Ambiguous data that extend  sufficiently  far  from 
their  mask  may  cross a form  line.  Therefore, as the 
ambiguous data are  tracked, the tracking  location  is 
compared  with the locations of the lines that were 
found  during  the  form  recognition  process.  Any 
interfering  form  line  is  detected and removed. 

A line  removal  process, as illustrated  in  Figure 8, is 
used to eliminate the line  without  removing the data 
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that intersect the line. The process  is  performed by 
deleting the line and then replicating any pixels that 
lie just above and below the line through the region 
of the deletion. 

Although  resolving  conflicts  between the background 
text and the data is  an important process,  algorithms 
to solve this type  of  ambiguity  are  considerably  more 
complex and have  not  yet  been  implemented  within 
IFP. Simply  measuring the average  height  of  extracted 
data and clipping  tracked data beyond this height 
offers an attractive  method of dealing  with data that 
do not  merge  far into background  text. 

Removal of nondata images. In addition to the prob- 
lems  above,  there  is  also the possibility that some 
ambiguous data might not be a part of the data 
printed in the field, but rather belong to  an extra- 
neous  line or mark intruding into the field.  This  type 
of problem  is  detected  when the height  of the ambig- 
uous data is  determined to be  larger than the maxi- 
mum height  expected  for  a  single  character. 

When  such an extraneous line  (which  may  be 
curvet) is  detected,  a  continuity-following  algo- 
rithm is  applied to track the line through intersec- 
tions with the data (Figure 9). The tracked  line  is 
deleted  except at intersections  with the data or form 
lines. 

As each  field  is  processed and the data contained 
within the field  are  extracted,  the  extracted  field  is 
placed into a new area of memory. This area  can be 
thought  of as a new or extracted  image  which  con- 
tains only the data portion  of the form  image. The 
extracted  image is then passed to optical  character 
recognition  for the automatic encoding of the data. 

Optical  character  recognition. The image  created by 
data extraction  provides  a  clean  image of the data to 
be  recognized  using OCR. As described  above,  this  is 
done field-by-field,  with the characters  in  each field 
extracted  as  a  single  image  block.  Before  a  field  image 
can be recognized,  it  must  be  segmented into indi- 
vidual  character  images.  These  are then recognized 
in turn by a  classifier. 

Segmentation. In the process of analyzing the overall 
image into character patterns, the segmentation  rou- 
tine performs the following  functions: 

The pitch, i.e., the distance  from  character to 

Touching  characters  are  separated, and broken 
character,  is  estimated. 

characters are merged. 
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Figure 8 Line  removal 

Figure 9 Extraneous  lines 

Skew  of the typing  within  each  field  is  measured. 
The  overall  image  is partitioned into print lines. 
A baseline  is computed for  each  line of print. 
The character patterns are ordered in reading  se- 

The  position of each  character  with  respect to the 

Spaces  between  words are detected. 

quence. 

baseline  is  calculated. 



Figure 10 (A) Connected components; (B) bounding rectangle description of connected components 

Figure 11 Decision tree classification 

The input to these operations is the set of connected 
components of the extracted image,  as  shown in 
Figure 10. A connected component is a  subimage 
satisfying  two conditions: (1) from any black  pixel 
of the subimage there is  a path consisting  solely of 
black  pixels that connects it to any other black  pixel 
of the subimage, and (2) there is no such connection 
from a  pixel of the subimage to any black  pixel 
outside the subimage.  Typically  a connected com- 
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ponent is  represented by its bounding  rectangle, the 
box  with  vertical and horizontal edges determined 
by the top, bottom, left, and right  edges  of the 
connected component. Figure 10A  shows an image 
whose connectivity is tracked to deterrhine the dis- 
tinct subimages indicated. The horizontal and verti- 
cal extent of each  subimage is measured during the 
process, and for segmentation processing the char- 
acters are represented only by the bounding rectan- 
gles, as shown in Figure 10B. Notice that the letter i 
yields  two bounding rectangles,  which will  be com- 
bined during segmentation processing. 

Connected components of scanned printing fre- 
quently correspond to individual characters, thus the 
ensemble of connected components is  analyzed to 
determine pitch, locate  baselines, and measure skew. 
Following this, touching characters are separated by 
searching  for weak connections between  left and 
right sections of a connected component in the 
neighborhood of a pitch boundary between charac- 
ters. Joining of broken characters, sequencing of the 
patterns for  recognition,  etc. are also done by ana- 
lyzing the connected components. 

Decision  tree  classiJication. An OCR classifier  is  a unit 
that accepts a  single character pattern as input,  and 
returns an identification symbol, or ID (for example 
an ASCII or EBCDIC code). It has previously  been 
shown in Reference 4 that highly accurate recogni- 
tion of a  given font style can be obtained using 
decision  trees that test  a  series of  prespecified  pixels 
on each character. The decision trees are designed 
automatically using statistics on the probability of 
black and white  for  each  pixel,  where the statistics 
are gathered from scanned sample characters. 

Figure 1 1 represents  a  decision tree classification. 
The circled numbers denote (row, column) coordi- 
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nates in a character array. The recognition  process 
starts at the top and determines the color of the input 
pattern at the specified location. If it is  white, the 
process  repeats at the next node down and to the 
left; if black, the node down and to the right  is 
checked. Thus, the classification algorithm follows a 
path which terminates in a symbol  class. In practice 
the trees are much larger,  identifying 100 or more 
classes and constructed with  several thousand nodes. 

When documents amve from many different 
sources, as is  typically the case  with  typed data on 
forms, a library of tree logics  is  needed, one for  each 
font that will  be encountered. The proper font logic 
for a given document is determined by trial and error 
using the first few lines of the document. Fonts 
having  size  characteristics that match those of the 
printing are tried for  recognition, and each  classifier 
provides its own estimate of the accuracy of its 
recognition.  These  estimates are evaluated to select 
the best  classifier  for  reading the remainder of the 
image. 

In a survey  of  vital  records documents, the authors 
found that six fonts comprised more than 98 percent 
of the machine printing. The sections below  show 
how decision  trees  for additional fonts can be added 
to the basic  library in order to accommodate printing 
not recognized in a first  pass. 

Speed of recognition  with the decision tree method 
depends not only upon implementation, but also 
upon quality of the printing. Figure 12 shows  how 
the time required for  recognition  varies  as docu- 
ments are successively  degraded in quality by re- 
copying  with a poorly tuned photocopier. The rate 
of correct  recognition remains high (over 99.5  per- 
cent), but the time spent in classifying  degraded 
third-generation copies is more than double that 
required  for  first  copies. The times in Figure 12 are 
relative units. The ideal document is the norm. For 
poor quality characters, the classifier  shifts to a more 
complex algorithm requiring additional passes 
through the decision  trees, thus increasing the proc- 
essing time. 

Secondpass recognition. In reading  large  volumes of 
forms we expect to process a variety of fonts.  Docu- 
ments containing standard fonts can be  read  suc- 
cessfully, but any documents printed in fonts not 
represented in the library of decision  trees will  be 
rejected. If only a few documents are rejected, the 
data can  be manually keyed.  However, if many 
documents are printed in alien fonts, they can still 
be  efficiently entered by OCR by the following  steps: 
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Figure 12 Processing time vs print quality 
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1. Group rejected documents having a common 
print style. 

2. Collect and identify sample characters from each 
group. 

3. Design  new decision tree logics  for  each group, 
using the statistics of the identified  samples. 

4. Repeat the recognition  process on rejected docu- 
ments using the newly created  decision  trees. 

It is not necessary to use the entire collection of 
rejected documents in steps 1 to 3. The design  stage 
need  only  have a few samples of each character type. 
If the character distribution is that of typical  English 
text,  for  example, then after several thousand char- 
acters  have  been  collected, there is a high probability 
of having a sample of each letter. If a letter is not 
represented after, say, 10 000 samples, then one  an- 
ticipates that its frequency of occurrence in the re- 
maining documents will  be  low as well, and it can 
be  rejected and keyed manually when encountered. 

The following  section  discuss the implementation of 
the second-pass  design. 

Clustering. The authors have  previously  published 
(Reference 5) a method for  efficiently matching char- 
acter patterns. The algorithm accepts as input a 
sequence of character patterns, plus a similarity cri- 
terion for matching pairs of patterns. It produces as 
output a list of prototype patterns selected from the 
inputs. The prototypes serve  as representatives of the 
input set by virtue of two  properties: ( 1) no two 
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prototypes  match  one another, and (2) every input 
pattern  matches  some  prototype (or possibly  more 
than one). 

With  each  prototype  is  defined  a cluster, consisting 
of the prototype  itself  plus  all patterns that match  it. 
Applied to a  sample of 10 000 or so characters  in  a 
single font, this algorithm  typically  produces  clusters 
for  each of the symbols  present, as well  as a number 
of small  clusters  resulting  from  touching or broken 
characters, or from  shape  variations. 

When the input character  sequence is printed  text, 
cryptographic  meth2ds  for  identifying the clusters 
have  been  explored.  Alternatively, the clusters can 
be  identified  manually  after the prototypes  are  dis- 
played on a  screen.  In  single-font  typing  applications, 
e.g.,  most form data, only  a  typical  typing  keyboard 
of  100 or fewer characters  has to be keyed  in  order 
to label  a font. 

Document grouping by  font. The clustering  algorithm 
groups  character  patterns. A method  for  grouping 
the documents according to the similarity  of print 
was explored.  Each  such  group of documents should 
contain a common print style, and two  different 
groups  should contain dissimilar  printing. Thus the 
groups  fit the definition of clusters  (see  above)  except 
that similarity  is  defined  over  a  pair of documents 
rather than with  respect to a  pair of character  pat- 
terns. 

A natural measure of similarity  is the number of 
common characters on two documents. Pursuing 
this concept, document grouping can be  integrated 
with  character  clustering. This is done by clustering 
an input document using  each of the prototype  sets 
obtained  from  previous  documents. If there are con- 
siderable  matches  between  a  prototype  set and a 
document, then the characters on the document are 
clustered  using the matching  prototype  set. If no 
prototype  set  matches the document, then its char- 
acters  are  used to start a new  set. 

This process  can  be  made  efficient  by  using  early 
cutoff  rules  for  the  matching and by using font 
characteristics  such as pitch,  height,  width,  etc., to 
select  prototype  sets  for  matching  a  given document. 
The measure of similarity  for document grouping 
should  take into account the possibility of multifont 
documents, so that, for  example,  bursts  of non- 
matching  characters  should  be  a  basis  for  rejection 
of the match, and such documents should be 
screened  from the design  set. 
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Lexical  analysis.  Generally  the data contained  in  a 
particular field  of a  form  are  constrained  in the sense 
that not every  character  string  is  permissible. An 
amount field  is  typically  filled  in  with  numeric data; 
a  name  field,  with  alphabetic  data.  Such constraints 
are  useful  for  character  recognition.  For  example,  a 
classifier  designed to read  only  ten  digits  is  more 
accurate than one that must  consider not only  digits, 
but also  letters and punctuation, as possible  identities 
for  each  character pattern. 

Even stronger constraints hold  when the possible 
entries in a  field  can  be  listed.  For  example, one field 
may contain a  reply to a  question  with  possible 
values yes or no. In such  a  case the system  can  verify 
that the recognition  result  is one of the two  possibil- 
ities, and if not, can  simply count the number of 
character patterns in the field in  order to make  a 
choice. 

A different  field  may  require  a  longer  list  of  candidate 
words. Thus, a field  labeled  “State”  has  only 50 
possible  entries,  plus  abbreviations. We term  such  a 
list of admissible  entries  a lexicon. The yes-no  ex- 
ample,  while the simplest  case,  illustrates the general 
principles  in  using  lexicons.  First, the lexicon can 
serve to validate  a  recognition  result  obtained by a 
conventional  classifier.  Second, in case  of a  valida- 
tion failure it can  assist  in  making the correct  rec- 
ognition  decision by a  process of elimination of 
candidates. 

Clustering and lexicons. When  a  field  is  governed by 
a  lexicon,  recognition  may  be  considered to consist 
of choosing the correct  word  from the prescribed  list. 
A pattern classifier, the standard tool in OCR, is  useful 
in this process, but is not the only  basis  for  selection. 
Clustering  in the context of separating  fonts and 
selecting  sample  characters  for the design of decision 
tree  classifiers  has  been  discussed  previously.  Clus- 
tering  results  from  a  single  field can also  assist in 
making  a  selection  from  a  lexicon. 

Clustering  reveals the similarities that exist among 
the characters  in  a  field. In the name Pennsylvania, 
for  example,  letter  positions 3, 4, and 10 are  filled 
by the same  letter, and positions 9 and 12 by another 
duplicated  letter.  One way to represent the property 
of similarity  is by a transformation in which the 
letters of the alphabet are successively  substituted for 
the  letters of the word starting from the first  letter of 
the  word. Thus the first  letter  of  Pennsylvania  is 
replaced by  A, the second by B, and so on, with the 
same  symbol  always  substituted  for  any  repeating 

IBM SYSTEMS  JOURNAL, VOL 29. NO 3, 1990 



letters. By this rule, Pennsylvania is encoded as 
ABCCDEFGHCIH. 

Such an encoding is called a pattern word in cryp- 
tography, and  can be derived from an optically 
scanned, segmented word image by clustering the 
sequence of character patterns in order to detect 
similarities. Having obtained the  pattern word 
ABCCDEFGHCIH by clustering, it is not known 
that  the image processed  is the word Pennsylvania, 
but  the system  knows that it seeks a word with the 
same letter in positions 3, 4, and 10, and a second 
letter in positions 9 and 12, and  that all the  other 
letters occur once each. If in  addition it is known 
that  the word must belong to a lexicon consisting of 
the 50 state names, the system can quickly infer that 
it must be Pennsylvania. On  the  other  hand,  the 
pattern word  ABCD  is shared by both Iowa and 
Utah, illustrating that in general, clustering must be 
combined with other forms of OCR. 

Pattern words can be precomputed for a given  lexi- 
con, and stored in association with the words from 
which  they are derived. If the lexicon  is searched on 
the pattern word, then clustering alone quickly re- 
duces the  number of candidate words for a given 
field to  the subset having a common  pattern word. 

The fact that pattern words are derived from analyz- 
ing shapes during clustering introduces additional 
complexity. Thus, Alabama yields the  pattern word 
ABCDCEC  if only the first letter is capitalized, and 
ABACADA  if printed in all uppercase letters. Both 
forms must be considered in selecting candidates 
from the lexicon. 

Combining classijier and clustering  results. Both de- 
cision trees and clustering processes are subject to 
errors due  to  the variations that occur from sample 
to sample of a given symbol. However, both proc- 
esses  give information about  the  contents of the field. 
It is therefore worthwhile to  attempt  to combine the 
two results in order to obtain maximum overall 
accuracy. 

In general, if the tree classifier  yields a result that is 
in  the lexicon and that has a pattern word consistent 
with the clustering result, then  the recognition can 
be accepted. In cases where the clustering and clas- 
sification conflict, some scheme is needed for evalu- 
ating multiple candidates for the OCR result, or for 
informing the system that no clearcut decision can 
be found. In the latter case, the field can be displayed 
to  an operator and manually keyed. 
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Figure 13 Algorithm for pattern word analysis 

The algorithm that is proposed for making decisions 
based both on decision tree classifiers and lexical 
analysis using clustering is shown in Figure 13. The 
system initially produces a word by a sequence of 
tree decisions. The  pattern word for this result is 
computed.  Another  pattern word is obtained by 
clustering. If the two agree, then  the classifier result 
will be accepted if the  pattern word is also in  the 
lexicon. Otherwise both decision results are in con- 
tradiction with the lexicon, and the result should be 
manually reviewed. 
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When the pattern word obtained by clustering  differs 
from that produced by the tree classifier, then a 
weighted  decision  is made. The classifier  word 
fetches one candidate list from the lexicon, the clus- 
tering pattern word  fetches another. Each candidate 
word  is  scored  based on (1) agreements with the 
classifier  result, and (2) number of matches versus 
the clustering pattern word. In addition, the tree 
classifier  confidence measure for  each letter identifi- 
cation is  used to weight these scores. 

Global clustering. Often all the data on a completed 
form are  typed by a  single printer. Clustering the 
character patterns of such a document yields  a map 
of similarity that extends across fields. These simi- 
larity relationships permit the results of  lexical  analy- 
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Then it compares the results  with similarities ob- 
tained by clustering and detects any discrepancies. 
In Figure  14,  for  example,  each pair of lines repre- 
sents a data field  of a test document. The tree clas- 
sifier  result  (first line) is compared with the clustering 
result  (second line). The figure  shows  fields  which 
contain characters in cluster 9. A discrepancy ap- 
pears in the fourth pair,  where a sample of this cluster 
has  been  labeled n, but u in all other occurrences. 
Based on the statistical  evidence, the system  would 
label  all members of cluster 9 as u. Additional evi- 
dence, if needed,  would  be  supplied by the measure 
of confidence  for  each  decision  given by the tree 
classifier, and by any lexicons that might be  available 
for the fields in question. 

A disputed character is  assigned an identification 
based on (1)  the IDS of patterns to which  it  is  similar, 
(2) the  tree  classifier ID obtained  for  it,  and (3) in the 
case  where a lexicon  exists  for  the  field, IDS which,  if 
assigned to the  character, will  yield  words that  are listed 
in  the  lexicon. If no ID is  sufficiently  favored  by  the 
scoring  rule,  then  the  field  is  rejected  in  favor  of  manual 
entry. 

Extending the library of lexicons. In order to use 
lexical  analysis on a field-by-field  basis, a mechanism 
for  defining the possible  values  for a field  is required. 
Within IFP, this mechanism is the lexicon editor. 
This tool provides a means for adding a lexicon to a 
repository  called the lexicon  library,  deleting a lexi- 
con from the lexicon library, or replacing a lexicon 
in the lexicon library. 

To add or replace a lexicon in the library, a list of 
possible  values  is  first created and stored in a flat  file. 
This flat  file may be created using any means that 
the person  creating the lexicon  desires.  Next, the 
lexicon editor is invoked by specifying the name of 
the flat  file, the name by which the lexicon will  be 
referenced  when  defining forms in the forms editor 
(or, for  replacing a lexicon, the current name of the 
lexicon in the library), and the lexicon’s  type. IFP 
will add the lexicon to the lexicon library. 

To delete a lexicon, its name is  specified. If the 
lexicon  does  exist, it will  be removed from the lexi- 
con  library. 

Summary 

The authors have  shown how the characteristics of 
printed forms can be advantageously  used in con- 
structing a system to automatically read data for 

IEM SYSTEMS JOURNAL, VOL 2 9 ,  NO 3. 1990 

input  to databases. The background structure of 
forms, particularly the use of lines to create field 
boundaries, is  used  for  registration and for  recogni- 
tion of form type. Data are first extracted as  image 
by a search  process that is initiated at the central 
region  of each form data field. They are then coded 
into character strings  using conventional OCR proc- 
essing  assisted by a clustering operation that takes 
advantage of  lexical constraints to improve accuracy 
of recognition. 

The paper has  discussed how  difficult  problems in 
forms reading can be  solved within IFP. Thus IFP 
recognizes characters that cross  field boundaries, de- 
tecting and removing lines that pass through the 
characters in the process. It permits quick logic  ex- 
tensions in order to read unfamiliar font styles, and 
reports inconsistent or unreliable  results to the over- 
all  system  for manual correction. 
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