Exponentiation
cryptosystems
on the IBM PC

Several cryptosystems based on exponentiation have
been proposed in recent years. Some of these are of
the public key variety and offer notable advantages in
cryptographic key management, both for secret com-
munication and for message authentication. The need
for extensive arithmetic calculations with very large
integers (hundreds of digits long) is a drawback of
these systems.

This paper describes a set of experimental programs
that were developed to demonstrate that exponentia-
tion cryptosystems can be efficiently implemented on
the IBM Personal Computer (PC). The programs are
organized into four layers, comprising procedures for:
multiple precision integer arithmetic, modular exponen-
tiation, prime number generation and testing, and cryp-
tographic key generation. The major emphasis of the
paper is on methods and techniques for improving exe-
cution speed. The items discussed include: the use of
a specialized squaring procedure; a recursive splitting
method to speed up squaring and multiplication; the
computation of residues by using multiplication in-
stead of division; the efficient encoding of residue in-
fcrmation; and the use of thresholds to select the most
effective primality testing algorithm for a given size
number. Timing results are presented and discussed.
Finally, the paper discusses the advantages of a mixed
system that combines the superior key management
capabilities inherent in public key cryptosystems with
the much higher bulk-encryption speed obtainable with
the Data Encryption Algorithm.

he need for data security has grown steadily over
the years, paralleling growth in the use and
interconnectivity of computers, Users require the
protection of data from unauthorized access and

526 comea

by P. G. Comba

alteration. System experts have drawn on the disci-
pline of cryptography to meet the increasing needs
for data security. In the simplest terms, cryptography
is a technique for scrambling and disguising infor-
mation so as to make it appear meaningless or
unintelligible. The scrambling, or coding, process
requires the use of a secret key, which is also needed
to recover the original text from the scrambled ver-
sion. A system that uses such a technique is referred
to as a symmetric cryptosystem. An example is the
Data Encryption Algorithm (DEA) defined in the
Data Encryption Standard,' which is widely used in
banking and transaction processing.

Public key cryptosystems

A revolution in cryptography took place as a result
of the publication in 1976 of a paper by Diffie and
Hellman’ that introduced the concept of a public key
cryptosystem. The novel feature of the proposed
system was that different keys are used for encrypting
and for decrypting. Thus, for example, an individual
A, who is a potential recipient of encrypted messages,
generates a public key as well as a private key, and
publishes the public key (e.g., in a directory), while

© Copyright 1990 by International Business Machines Corporation.
Copying in printed form for private use is permitted without
payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright
notice are included on the first page. The title and abstract, but no
other portions, of this paper may be copied or distributed royalty
free without further permission by computer-based and other
information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

[BM SYSTEMS JOURNAL, VOL 29, NO 4, 1990

keeping the private key secret. Another individual
B, who wants to communicate secretly with 4, en-
crypts the message with 4’s public key. After receiv-
ing the message, 4 decrypts it with A’s private key.
For this system to work it must be impossible to
derive, from a public key, the corresponding private
key.

Once the concept of a public key cryptosystem was
introduced, many different specific systems were pro-
posed and studied. References 3 and 4 describe these
systems, Before addressing the technical aspects of
these systems, their relevance to the key management
problem is briefly discussed.

Key management. The key management problem
arises from the fact that a symmetric cryptosystem,
while providing protection to the data that have been
encrypted, still requires that a key be exchanged
secretly between any pair of communicating parties.
If one visualizes a large network comprising thou-
sands of workstations and terminals and possibly
millions of messages, it becomes clear that the safe
exchange of keys (and their replacement if they
become compromised) can be a staggering problem.
The solution made possible by a public key crypto-
system consists of a two-tiered arrangement, where
the data to be communicated are encrypted using
DEA (for example), and the DEA keys are encrypted
using the public keys. The public keys can be freely
exchanged and posted in directories.

An actual key management system may involve
more complexities and possibly more tiers, but it
rests on the concepts outlined above, namely sepa-
ration of data-encrypting keys from key-encrypting
keys, and exchange of keys via the public key system.

Outline of some exponentiation cryptosystems. Sev-
eral public key cryptosystems have been proposed
that involve the following elements:

s The cryptographic key, or part of it, is either a
large prime number 7, or the product n = p X ¢
of two large prime numbers p and q.

s The encryption process entails raising a number
to a power and taking the results modulo 7, that
is, dividing the results by » and using the remain-
der of the division.

The three systems discussed in this paper are now
briefly outlined.

RSA system. The best known exponentiation cryp-
tosystem is the one proposed in 1978 by Rivest,

IBM SYSTEMS JOURNAL, VOL 28, NO 4, 1990

Shamir, and Adleman (see Reference 5) usually re-
ferred to by their initials as RSA. Under RSA, a typical
size for the modulus » would be 200 decimal digits,
which is equivalent to 664 bits or 42 personal com-
puter (pC) 16-bit words. The public or encryption
key is made up of two parts: the number # (but not
its factors p and ¢) and an exponent e. A message to
be encrypted is represented as a number M, which
must be less than #, and the process of encryption is
represented by the calculation

C= M mod n.

To decrypt, the recipient must be in possession of a
suitably chosen secret decryption key d; with it the
original text can be recovered by executing

M= C“mod n.

Rabin system. Another similar system, attributed to
Rabin,’ uses the number 2 as the encryption expo-
nent and the knowledge of p and g to do decryption.
This system has some drawbacks for general use, but
may be appropriate for special applications.

ElGamal system. Considerable interest has been gen-
erated by a pubhc key system described by EIGamal.”
This system requires # to be a prime number, rather
than the product of two primes. The number #, as
well as a properly chosen integer «, are known to all
users. In addition, each individual user has a private
key x and a public key y defined by

y= o’ mod n.

To send a secret message M, one first generates a
random number k and computes K = y mod 7
the ciphertext consists then of the pair of numbers
(c,, ¢,) defined by

cl=akmodn, ¢, = (KX M)mod n.

To decrypt, one computes successively

K=c¢ modn G=K"'modn,
= (¢, X G) mod n.

The challenge of exponentiation on the PC. Modular
exponentiation is essential for encryption/decryption
in the systems outlined above. In addition, the gen-
eration of cryptographic keys involves the search for
large prime numbers; this search requires certain
tests that make heavy use of modular exponentia-
tion. Hence modular exponentiation plays a central
role in the investigations reported here.

comea 5§27

At the start of the work reported in this paper, it was
not known whether the extensive calculation for the
exponentiation and prime search procedures could
be programmed to execute on a PC in a reasonable
time. The challenge was to prove that this could be

A special case of division is the
so-called modular division, where
the quotient is not explicitly
computed and the remainder is the
desired result.

done. To meet this challenge, great effort was made
to optimize the code and fine tune the algorithms.
The timing results, obtained on an 8 MHz Personal
Computer AT® (pC AT), are discussed throughout
this paper.

Four major programs that have been implemented
are discussed in the following sections. Each program
is dependent on the previous ones, as listed in the
order given.

1. Multiple precision integer arithmetic
2. Modular exponentiation

3. Prime number search

4. Cryptographic key generation

Multiple precision integer arithmetic

The starting point of the project was the implemen-
tation of a set of arithmetic procedures to operate
on very large integers, i.e., integers that contain
several hundred digits. These procedures may be
useful in other applications as well as cryptography;
hence they have been implemented as a self-con-
tained multiple precision integer arithmetic package
(MPIA). MPIA operates on integers up to 255 words
long, corresponding to 4080 bits or approximately
1220 decimal digits.

To understand the organization of MPIA, consider
that computer words are manipulated similar to the

528 covea

digits in ordinary long-hand calculations. For ex-
ample, multiplying a 3-word number by a 4-word
number is analogous to multiplying a 3-digit number
by a 4-digit number.

MPIA implements the standard arithmetic operations
of addition, subtraction, multiplication, and divi-
sion. A special case of division is the so-called mod-
ular division, where the quotient is not explicitly
computed and the remainder is the desired result.
There are also some computer-oriented operations
such as movement of numbers and shifting.

Multiplication and squaring are the operations that
deserve the most attention. They are important be-
cause they are major components of modular expo-
nentiation, they are relatively time-consuming, and
they lend themselves to considerable optimization.
Squaring, i.e., multiplying a number by itself, is
important because it is usually much more efficient
to square a number by using a specialized squaring
procedure than by using a multiplication procedure.
The reason is that in squaring a number there are
many cross-product terms that need to be computed
only once, whereas a multiplication procedure will
compute them twice. The first description of a mul-
tiple precision squaring procedure that uses this con-
cept seems to be due to Tuckerman.’ Our timing
tests consistently show that squaring time can always
be reduced to about 60 percent of multiplication
time.

Apart from the cross-product procedure, the opti-
mization techniques that are applicable to multipli-
cation are essentially the same for squaring. For this
reason, and since multiplication is the more general
operation, the discussion below centers on multipli-
cation.

Two approaches to optimization are discussed. They
are called optimization in the small and optimization
in the large. Optimization in the small assumes that
each word of one factor must be multiplied by each
word of the other factor, and endeavors to devise the
most efficient possible data structure and code to
carry out this basic multiplication procedure. Opti-
mization in the large aims at reducing the total
number of single precision multiplication instruc-
tions that have to be executed, by splitting the factors
into smaller pieces, rearranging the pieces in various
ways, and feeding them to the basic multiplication
procedure. These rearrangements entail additional
processing time, or overhead; hence the overall op-
timum is obtained when the reduction in multipli-

IBM SYSTEMS JOURNAL, VOL 28, NO 4, 1930

cations just balances the overhead. This gives rise to
a threshold, denoted by P, such that only numbers
of length greater than or equal to P should be rear-
ranged. Anticipating later results, in the implemen-
tation reported here the threshold turned out to be
P=28.

Optimization in the small. The straightforward way
to implement a multiplication procedure for two
multiword numbers, or factors, is with a double loop.
In the outer loop each word of the first factor, or
multiplier, is successively loaded into a register; in
the inner loop the contents of that register are suc-
cessively multiplied by each word of the second
factor, or multiplicand, and the results are added to
the partial product obtained so far. The inner loop
for this procedure is illustrated in Example A, which
follows.

Example A

PUSH BP
XOR BPBP

MMUL30:
INC SI
INC SI
;fetch multiplicand word
MOV AX,[SI]
;preloaded multiplier word
MUL DI
ADD AX,BP
ADC DX, 0
;add to memory
ADD [SI][BX],AX
ADC DX,0
MOV BP,DX
LOOP MMUL30

POP BP

The loop takes 20 bytes of code, and the time re-
quired for one execution of the loop has been meas-
ured to be 7.55 microseconds. An exact allocation
of time to the individual instructions cannot be
made, since the execution cycle of one instruction
overlaps the fetch cycle of the next; nevertheless,
numerous timing experiments lead to the following
general conclusions:

o The MUL (multiply) instruction takes only about
one-third of the loop time.

IBM SYSTEMS JOURNAL, VOL 29, NO 4, 1990

¢ The LOOP instruction is very time-consuming.

» The three memory accesses (one to fetch a multi-
plicand word, and two when adding to memory)
are also relatively expensive.

These conclusions are the bases for the two restruc-
turing steps that lead to the optimized basic multi-
plication procedure. The first step is to remove the
LooP instruction and the jump associated with it.
This is done by unraveling the loop, that is, repeating
the code in-line a number of times. (A macro may
be used for this purpose.) If the code in Example A
is unraveled, the register cx is freed up and can be
used to replace the instruction ADC DX,0 by ADC DX,
cx, further reducing the code length. The results are
shown in Example B, where the loop is unraveled.
The code takes only 16 bytes.

Example B
PUSH BP
XOR BP,BP

;set to 0 to shorten ADC instructions
XOR CX,CX
INC SI
INC SI
MOV AX,[S]]
MUL DI
ADD AX,BP
ADC DX,CX
ADD [SI][BX],AX
ADC DX,CX
MOV BP,DX

;(the above code is repeated 30 times)

POP BP

Referring to the threshold P mentioned above, the
number of static repetitions of the code must be at
least P — 1, since any factor of length P or longer is
further broken apart. If » and m are the lengths of
the factors to be multiplied, the outer loop is exe-
cuted n times; for each of these calculations, the
inner unraveled loop must be executed m times.
Hence a jump address must be computed, so that
only the last m occurrences of the unraveled loop
are executed. This computation is done only once,
outside the outer loop. Timing of the unraveled loop
shows that each execution takes 6.03 microseconds.

The second restructuring step is intended to reduce
memory accesses, and can be visualized as follows.

comsa 529

Figure 1 Rectangular sweep

' 3

Ys 1 - » - *>

Yy - - - * -

Yad —e . . - .

Yz . .

¥y . . - -
T T T ™ T T >
X, Xy Xa X4 Xs Xe

Figure 2 Diagonal sweep

Y5

Ys

Ya -

Ya

Y,‘._

v

If the m words of the multiplicand are represented
by points on the X-axis with abscissas 1, 2, ..., m,
and the n words of the multiplier are similarly rep-
resented on the Y-axis, then the nm word-by-word
products to be computed correspond to the lattice
points of a rectangle in the first quadrant. The pro-
cedure described above represents a process in which
the lattice points are swept row by row, in a rectan-
gular fashion, as shown in Figure 1. In the alternative
procedure, the lattice points are swept in a diagonal
fashion, as shown in Figure 2. The diagonal proce-
dure entails only two memory accesses, instead of

530 covea

three, for each multiply instruction: one access for
each word to be multiplied. For each diagonal, the
products corresponding to the individual points can
be accumulated in the registers; there is no need to
execute an add-to-memory instruction until the en-
tire diagonal has been processed.

The code must now provide for the possibility of a
double carry when the two-word partial products are
accumulated. In the pc the second carry may be
accumulated in a half register. A diagonal of length
4 is illustrated in Example C, where each short
segment of code is preceded by a comment that
explains its function.

Example C

;Z[3] = carry + X[0}xY[3]
MOV AX,[BX]
MUL WORD PTR|SI + 6]

ADD BPAX
ADC DIDX
ADC CL,CH

-Z[3] = Z[3] + X[1]xY][2]
MOV AX,[BX + 2]
MUL WORD PTRJSI + 4]

ADD BP,AX
ADC DILDX
ADC CL,CH

-Z[3] = Z[3] + X[2]xY[1]
MOV AX,[BX + 4]
MUL WORD PTRJSI + 2]

ADD BP,AX
ADC DILDX
ADC CL,CH
:Z[3] = Z[3] + X[3]xY[0]
MOV AX,[BX + 6]
MUL WORD PTR][S]]
ADD BPAX
ADC DIDX
ADC CL,CH
;store Z[3], shift carry
MOV DX,DI
POP DI
INC DI
INC DI
MOV [DI],BP
PUSH DI
MOV BP,DX
MOV DLCX
XOR CL.CL

A drawback of the diagonal method is that the
lengths of the diagonals vary, first increasing, then

IBM SYSTEMS JOURNAL, VOL 29, NO 4, 1980

remaining constant (if # < m), then decreasing. The
required control code is then rather complicated and
time-consuming. The problem can be avoided by a
radical solution: unraveling not only the inner loop,
but the outer loop as well. With this approach, code
similar to Example C is repeated in-line, with the
length of the diagonal (i.e., the number of occur-
rences of the inner loop) increasing from 1 to 30,
say, and then decreasing down to 1. At the end of
each of the increasing diagonals, two tests are in-
serted (in most cases only one is executed) to deter-
mine whether to continue with the next longer di-
agonal, jump to the next shorter diagonal, or repeat
the same one.

As shown in Example C, the code for the inner loop
is in most cases 12 bytes long. With appropriate
changes in the offsets, this code will then occur in-
line 900 times. Adding the code at the end of each
diagonal, this results in about 12K bytes of code for
the basic multiplication procedure.

The execution time for the doubly unraveled loop is
estimated to be 5.03 microseconds, and the actual
multiplication time for two factors of length » words
is represented by the formula

T(n) = 5.037° + 10n + 28. (1)

Optimization in the large. Tlge procedure explained
below is described by Knuth™ as a simplification of
one attributed to Karatsuba.

For the personal computer, with a word length of 16
bits, we denote by B = 2'° the number base corre-
sponding to one word. Assume now that « and v are
two n-word numbers to be multiplied. If » is even
let m = n/2, and if n is odd let m = (n + 1)/2. Also
let X = B”. Then u and v may be represented as
u=U,+ UXandv =V, + VX, where U, is the
low-order m-word piece of # and U, is the high-order
piece; likewise for V, and V. One can then verify
the following identity:

w = UV, + (U,V, + UV,
(U, = U)V, - V)X + UV, X)

The operations required to compute the right-hand
side of Equation 2 can now be counted, noting that
the apparent multiplications by the powers of X are
not actually executed as such; they just indicate that
the respective coefficients are stored in a shifted

IBM SYSTEMS JOURNAL, VOL 28, NO 4, 1990

Table 1 Performance of Karatsuba method

n t(n) r(n)
15 1.31 ' 1.00
20 2.24 1.00
25 342 1.00
30 4.52 93
40 7.49 .88
50 11.2 .85
60 14.7 78
80 24.0 73
100 355 .69
120 46.2 63

position. For multiplications, there are 3 products of
m-word factors. For additions (and subtractions),
there are 2 additions of length m inside the double
parentheses; 2 additions of length 2m inside the
single parenthesis; and finally the coefficient of X,
which is of length 2m, has to be added into the rest
of the result. Note that the first and third terms on
the right-hand side do not overlap and do not require
addition. The total length of the quantities to be
added is thus 8. Restating these counts in terms of
n we reach the following conclusion (which is ap-
proximate if »n is odd): the Karatsuba method re-
places one multiplication of factors of length # with
3 multiplications of factors of length n/2, plus 4n
single precision additions.

For large values of #, the Karatsuba method yields a
time reduction of almost 3 to 4. Also, the algorithm
can be applied recursively, thus compounding the
improvement with each splitting of the factors. As
the length of the factors decreases, the improvement
also decreases, until the “no-improvement” thresh-
old P = 28 is reached.

Table 1 shows the measured multiplication time #(#n)
in milliseconds, for two factors of length #, when the
Karatsuba method is applied recursively. Also shown
is r(n), which is the ratio of ¢(n) to T(n); T(n) is the
basic multiplication time computed from Equation
1. The value of r(n) represents the improvement
attributable to the Karatsuba method.

The Karatsuba method is directly applicable when
the factors to be multiplied are of equal size, and
this is usually the case in the exponentiation calcu-
lations. However, if the factor sizes are unequal, two
procedures are available to reduce the problem to
the equal size case. First, if the size difference is

comea 5§31

small, the smaller number is extended at the high
end with null words. Second, if the size difference is
large, the product can be visualized as a rectangle;
from this rectangle the largest possible square is
removed and treated as a product of equal factors;
from the remaining rectangle the largest possible
square is removed, etc.; continuing until either a
rectangle consists only of squares, or a rectangle with
a size less than P is found; the latter is then fed to
the basic multiplication procedure; the results of the
square multiplications are then added with appro-
priate shifts.

Modular exponentiation

The standard procedure for exponentiating a num-
ber, i.e., raising it to a power, in general requires
many multiplications and squarings. For example,
the computation of M° is normally done by first
representing e in binary notation, as a string of bits;
then M is squared as many times as there are bits
(excluding the leftmost bit), and the partial results
are multiplied by M as many times as there are bits
with the value 1. If the exponentiation is done mod
n, after each squaring or multiplication the remain-
der mod r is computed.

For example, let us assume that the numbers A, e,
and 7 are each 640 bits long, which is the same as
40 pc words; let us also assume that approximately
half the bits of e have the value 1. Then the com-
putation of M° mod n requires

* 639 squarings of 40-word numbers—exactly

* 320 multiplications of two 40-word numbers—
approximately

* 959 modular divisions of an 80-word number by
a 40-word number—approximately

In the previous section the optimization of multipli-
cation and squaring was discussed. Here we discuss
two more techniques for speeding up modular ex-
ponentiation: a procedure to do the remainder (mod-
ulo) calculation using multiplication rather than di-
vision, and a technique for reducing the number of
multiplications required. For simplicity of notation,
these techniques are described for the case men-
tioned in the example above, where M, e, and » are
each 40 words long.

Modular calculation by multiplication. As before,
we let B = 2'°. Since M is a 40-word number,
M < B®. We now precompute the numbers

532 comea

N, = B* mod n
N,=B"modn

Ny = B” mod n

B is 1 followed by 40 words of 0s. Hence B* mod
n is the remainder of the division of a 41-word
number by a 40-word number; this is a fairly rapid
operation, often involving only one 1 X 40 multipli-
cation. To compute N, the previously computed N,
is shifted left one word, then divided by #; and so
on. Thus the entire precomputation is quite rapid.

Suppose now that we have to compute X mod #,
where X is an 80-word number with words X, X,
..., X, X,. We do this by computing the number

XoNo + XN, + -+ + X;yN,, 3)

and adding to it the low-order half of X, consisting
of Xy, ..., X, X,. The resulting 41- or 42-word
number is divided by # to obtain the remainder.

The procedure described can be further improved by
doing the multiplications indicated in Equation 3 in
parallel. This means that in the inner loop of the
code, the word X, is multiplied by the ith word of
N, and the result is saved in a pair of registers; then
the word X, is multiplied by the ith word of N, and
the result is added into the same pair of registers,
etc. This technique is similar to the one used in the
diagonal code for multiplication, previously de-
scribed, and it requires only two storage accesses per
single precision multiplication, rather than the three
required by the conventional approach. A further
speedup can be obtained by unraveling the inner
loop.

Reducing the number of multiplications. In comput-
ing M°, instead of executing one multiplication for
each 1 bit of e, as explained above, it is possible to
take the bits in small groups or nibbles, for examples
of 5 each. The following quantities are then precom-
puted:

M,=M>mod n
M, =M’ mod n

M, = M mod n

IBM SYSTEMS JOURNAL, VOL 29, NO 4, 1990

This precomputation requires 15 squarings, 15 mul-
tiplications, and 30 modular divisions. In the expo-
nentiation procedure the bits of ¢ are then scanned
by nibbles instead of individually, and if a nibble has
the value j, the current partial result is multiplied by
M,

A further improvement is obtained by working with
Sfloating nibbles, i.e., those having a 1 in the high
order position. This reduces the precomputation to
4 squarings, 15 multiplications, and 19 modular
divisions, and also reduces the number of nibbles
encountered during the scan.

The net result of the optimization is shown in the
following reduced operation count:

s 639 squarings of 40-word numbers

« 121 multiplications of two 40-word numbers

s 760 modular divisions done by optimized multi-
plication

Table 2 shows the actual time for modular exponen-
tiation for selected lengths of the operands. The time
varies approximately as the power 2.77 of the length.
A straightforward implementation would yield a
power of 3; the reduction is due to the use of the
Karatsuba method and the other optimization de-
vices.

Prime number search

The problems of (a) deciding whether a number is
prime, and (b) if not, finding its prime factors, have
occupied generations of mathematicians. Recent dis-
cussions of these problems and their relevance to
public key cryptography, together with ample bibli-
ographies, can be found in Knuth,9 Dixon,"® and
Riesel.'' Riesel’s book is the most detailed and con-
tains numerous Pascal programs that are function-
ally similar to some of the procedures described in
this paper.

Both the rsa and the Rabin cryptosystems require
that the modulus » be the product of two prime
numbers, which are usually denoted by p and ¢. In
both systems the number 7 is part of the public key,
while the factors p and g are kept secret. The security
of both systems rests on the extreme difficulty of
factoring a large number containing large prime
factors. To make sure that the factorization is diffi-
cult, certain subsidiary conditions are imposed on p
and g; for example p — 1 must contain a large prime
factor, denoted by p,; and p, — 1 must contain a

IBM SYSTEMS JOURNAL, VOL 29, NO 4, 1990

large prime factor, denoted by p,. Similar conditions
apply to q.

In the ElGamal system a single prime number
n = p is generated, together with a primitive element
a. A secret key x is then chosen by each user, and
the corresponding public key y = o« is computed.
The security of the system depends on its being very
difficult to infer x from a knowledge of y; this is the
so-called discrete logarithm problem which, in the
general case, is believed to be of the same order of
difficulty as the factorization problem.3 The same
subsidiary conditions apply here; for example n — 1
must contain a large prime, etc. Thus the prime
search procedure plays an essential role in all these
cryptosystems.

The prime search 1s organized so as to take advantage
of the connection between p, p,, and p, (and between
g, 4,, and g, if applicable). Two main techniques are
used: a sieve procedure to eliminate numbers con-
taining small prime factors, and a so-calied strong
pseudoprime test. These techniques are explained
below. For concreteness assume, in the RSA case, that
the goal is to generate a modulus of length 200 digits,
or 42 words, and that this is achieved by finding
primes p and ¢g of length 20 and 22 words, respec-
tively.

The sieve procedure. Because of the relationship
between the primes p, p,, and p,, the search must be
done in reverse order. Thus, from the goal of pro-
ducing p of length 20 words, the program establishes
the subgoal of producing p, of length four-fifths of
20, or 16 words, then the further subgoal of produc-
ing p, of length 13.

An odd pseudorandom number B of length 13 is
now generated, and a sieve table S2 and a residue
table R2 are initialized. B is the base for the search,
and S2 is a set of flags that indicate the results of
applying primality tests to B and its odd successors:
B+2,B+4,....Thesieve procedure is carried out
with the aid of the Small Prime Table, which is a
fixed table containing all the odd primes 3, 5, 7, ...,
65 521 that fit in one PC word; the table has 6541
entries. The number B is divided successively by
each prime in the Small Prime Table (or a subset
thereof) and the remainder is stored in the table R2;
also, using the remainder, those flags in S2 are turned
on that correspond to numbers that are divisible by
that particular prime; thus the odd successors of B
that are found to be nonprime are flagged.

comes 533

The numbers that survive the sieve procedure are
considered prime candidates and are subjected to
the strong pseudoprime test (explained below); the
first survivor of that test is taken as the prime p,.

The search for p, is now initiated. Since p, must be
of length 16, a pseudorandom even number 4 of

The strong pseudoprime test is
probabilistic.

length 3 is generated, and the search is carried out
among the integers of the form 1 + (j + A4) X p,
where j =0, 2, 4, A new sieve table S1 is now
created, but unlike the table S2, it does not have to
be computed from scratch. Instead, using the values
of P,, B, A and the residues saved in R2, the sieve
computation for S1 is faster than for S2. Again, the
survivors of the sieve are run through the strong
pseudoprime test, and the first survivor of that test
is taken as p,.

The calculation of p from p, is very similar to the
calculation of p, from p,. The calculation of the ¢gs
is also analogous.

The strong pseudoprime test. The strong pseudo-
prime test used in the prime search procedure is
described in References 9 and 10; the details of the
algorithm are not repeated here, except to note that,
given a number n = 1 + 2m to be tested, where m
is odd, the test requires the computation

x" mod n,
which is an exponentiation.

The strong pseudoprime test is probabilistic, in the
following sense: of the two possible outcomes of the
test, one outcome, “fail” guarantees that »n is not
prime; the other outcome, “pass” does not guarantee
that # is prime, but indicates that the assertion “n is
prime” is very probably true. For this reason, a
number that passes the test is called a pseudoprime.

534 cowvea

To increase the confidence that » is indeed prime,
the test may be applied repeatedly, with different
values for x. The test is characterized as strong
because it is an improvement over several tests that
had been used before, in that it has a lower proba-
bility of letting nonprime numbers pass.

The use of a probabilistic test is generally considered
necessary and adequate, in view of the fact that it
would be prohibitively time-consuming to execute a
deterministic test that identifies prime numbers with
mathematical certainty.

As mentioned above, the pseudoprime test is applied,
as part of the prime search, to the numbers that pass
the sieve procedure. The first time that the test is
applied to a prime candidate, it is convenient to
choose x = 3, since this makes the exponentiation
calculation faster (by 15 to 20 percent) than with a
multiword value for x. For subsequent applications,
x should be a different pseudorandom number each
time. The number of such subsequent applications
is governed by several parameters whose significance
is discussed further in the following subsection.

Some refinements and thresholds. Some of the com-
plexities in the prime number search, as described
above, are intended to thwart any attempts at fac-
toring the product p X g, or solving the discrete
logarithm problem, by using certain known algo-
rithms. Another algorithm that must be considered
is one which is effective when p + 1 (or g + 1) consist
entirely of small prime factors. To safeguard against
this possibility, after p is generated, the number
p + 1 is divided by the Small Primes and any exact
divisor is factored out; if the remaining number is
too short (according to some ad hoc threshold), p is
rejected and a new p is generated, starting from p,.

In the RsA case, further subsidiary requirements must
be met:

e The numbers p — 1 and g — 1 must have a small
greatest common divisor; this is almost always the
case, but the condition must be tested for, and a
new g generated if necessary.

e The ratiof—; must not be close to the ratio of two

small integers.

In the ElGamal case, the question of additional
conditions on # has been the object of recent stud-
. 12 . . .

ies; ~ it may well be that new requirements will be
discovered that must be met in order to insure the
difficulty of the discrete logarithm problem.

BM SYSTEMS JOURNAL, VOL 29, NO 4, 1990

From a performance viewpoint, an important
threshold is determined by the relative efficiency of
the sieve procedure and the pseudoprime test. Sup-
pose for definiteness that we are testing a number »
of length 20 words. If we divide » by an entry in the
Small Prime Table, say s, the probability of finding
that » is nonprime is 1/s, while the cost of the test,
determined by timing the division procedure, is
about 102 microseconds; thus, over a large series of
tests with that particular s, it would take an average
of 102s microseconds to identify one nonprime
number. On the other hand, the pseudoprime test is
essentially always effective, but it takes a time equal
to 80 percent of the exponentiation time (see Table
2), or 1376 000 microseconds. Equating the two
times and solving for s, we find that approximately
s = 13500. This implies that the optimal policy,
when testing a number of length 20, is to use the
sieve procedure for primes < 13 500, then switch to
the pseudoprime test.

In the program the situation is a little more compli-
cated, because the tests for p,, p,, and p are inter-
linked; however, many timing trials have proved that
there is indeed an optimum threshold for switching
between the sieve procedure and the pseudoprime
test, and its value is approximately the one calculated
above. These empirical tests are essential, in addition
to the theoretical calculations, in order to tune the
program for good performance.

Another set of thresholds regulates the sizes of the
flag tables and the residue tables. The performance
of the program is not very sensitive to these param-
eters, since the computations are quite fast. Hence it
is convenient to make the tables large enough so the
probability of overflow is small. Nevertheless, the
probability cannot be reduced to zero; therefore the
program must make provisions for its occurrence
and be able to restart the corresponding section of
the sieve procedure. The computation of the over-
flow probability is interesting in its own right, since
it sheds some light on the performance of the prime
search. Consider again the case where the number
being tested is of length 20 words, i.e., 96 decimal
digits, and note that the frequency of primes among
odd numbers of this length is approximately
2/ In 10* = 0.0090. If the flag table is taken to be of
length 1000, the probability of overflow is about
0.991'"° = 0.00011, or slightly over one in ten
thousand.

The frequency of primes can now be used to estimate
how many times the pseudoprime test is executed in

IBM SYSTEMS JOURNAL, VOL 29. NO 4, 1880

Table2 Exponentiation time

Length Time
(words) (ms)
10 302
15 795
20 1,700
30 5,100
40 11,300
60 35,400
80 77,000
100 143,000

each prime search. Assuming that the sieve proce-
dure is done, as indicated above, using the small
primes < 13 500, the fraction of survivors in the flag
table is given approximately by the product

I (-9-0ns

513500 /

where s, is the jth odd prime. Thus on average the
sieve procedure leaves 118 survivors out of 1000, of
which only 9 are primes. Hence the pseudoprime
test has to be executed an average of 13 times before
a prime is found. Also, because the probability of
finding a prime on any given occurrence is so small,
the number of executions of the pseudoprime test
varies a great deal between one prime search and
another. So, while it is possible to optimize the
average performance of the prime search, it is im-
possible to guarantee that the procedure will termi-
nate within a given time.

The calculation shown above for the case of a prime
of length 20 can be repeated for other lengths, so as
to obtain the various thresholds as a function of that
length. For example, if one seeks a prime of length
40 words (192 digits), it turns out that the sieve
procedure should be carried out with the small
primes up to 51 000, resulting in about 104 survivors
per thousand; since there are only on average 4.5
primes per thousand odd numbers of this length, the
pseudoprime test will be executed an average of 23
times before a prime is found.

Finally, we discuss briefly the parameters that control
the number of additional times that the pseudoprime
test is applied to a number » after n has passed the
pseudoprime test with x = 3. First, it must be noted
that these parameters, while affecting the time re-
quired for the prime search, are not thresholds that
can be varied to tune the performance of the pro-

comer 535

Table 3 Average key generation time

Modulus Length Average Time
A ElGamal
(digits) (words) {min:s)

125 26 0:35 2:15
160 33 1:06 5:00
200 42 2:07 11:00
250 52 4:05 25:00
320 66 9:00 60:00
400 85 19:00 125:00
500 104 42:00 N.A.

gram; instead they affect the probability (extremely
small in any case) that the program will accept as
prime some numbers that are not prime. Second, we
note that in our experience, including an analysis of
hundreds of thousands of tests, the first application
of the strong pseudoprime test has always been de-
cisive: not a single instance has been recorded of a
number that passed the test with x = 3 and failed it
later with a different x. Third, we briefly summarize
the applicable mathematical knowledge, making use
of the following terminology introduced by Rabin:’
if the pseudoprime test applied to #, using a partic-
ular value of x, indicates that » is a pseudoprime,
when # is in fact not prime, then that x is called a
Jalse witness. For the vast majority of values of n the
false witnesses are extremely rare or nonexistent,
while for a very few values of n the false witnesses
may be as many as 25 percent of the possible xs.
Unfortunately the “vast majority” and the “very
few” have not been quantified by mathematical
analysis. Hence there are no firm guidelines. A fur-
ther consideration, in the context of cryptographic
key generation, is that the essential goal is to produce
the primes p and ¢, while the primality of p,, g,, p,,
g, is of lesser importance. In view of the above, the
number of additional executions of the pseudoprime
test, as currently set in the program, are as follows:

¢ 0O forp, and g,
s | for p, and g,
e 9forpandgq

Cryptographic key generation

Once the required primes have been obtained, the
process of key generation can be swiftly completed.
In the case of the Rabin cryptosystem, where the
public key is the product #n = p X g, all that remains
to be done is multiply the two numbers.

536 comea

For the ElGamal system, an integer o < n must be
found which is primitive mod #n. This condition is
easy to check, since the factorization of n — 1 is
known. Thus a random « is generated and exponen-
tiated with each factor of » — 1; if any of the results
are unity, « is discarded. Very few trials are needed
in most cases. Each individual user can then arbi-
trarily choose his private key x and compute the
corresponding public key y by exponentiation.

For the RsA system, several additional numbers must
be produced. The first of these is ¢ = (p — 1)(qg — 1),
which must be kept secret. The public encryption
exponent ¢ may be chosen next, and it must be a
number relatively prime to ¢. Since a smaller e tends
to result in faster encryption, a small prime may be
a good choice. The number 3 was once recom-
mended,” but it has since been shown that it is
vulnerable in the so-called broadcast situation (i.e.,
if the same message is encrypted with three different
moduli but with e = 3 in all cases, and if an attacker
can intercept and analyze the three ciphertexts). The
number 2'¢+ 1 = 65 537 is now advocated by some
as being sufficiently large to avoid this problem.

The computation of the secret decryption exponent
d, which must satisfy the equation ed mod ¢ = 1, is
accomplished by means of a straightforward and
fairly fast procedure that resembles a greatest com-
mon divisor calculation. If e is chosen first, as indi-
cated, then d will usually turn out to be almost as
large a number as 7, causing the decryption process,
represented by the equation M = C¢ mod », to be
quite slow. The situation can be remedied in part by
computing four auxiliary numbers defined by the
equations

Ap=q”"modn, A,=n+1-4
d,=dmod(p — 1),

p?

d,= d mod(q — 1);
decryption is then done by computing

M=(4,x ((Cmod p)d” mod p)
+ A4, % ((C mod q)d" mod ¢)) mod #.

In this calculation, the modular exponentiations are
done with the moduli p and g, which are about half
the length of #; the time required is usually reduced
by about 70 percent. The auxiliary numbers, like all
the other quantities except » and e, must be kept
secret.

To verify that the computations have been done
correctly, the program now generates a random

IBM SYSTEMS JOURNAL, VOL 29, NO 4, 1990

number of the same length as », encrypts it and
decrypts it, and verifies that the end result agrees
with the original. As an additional test for Rsa,
another random number is generated, decrypted and
encrypted, then compared with its original.

For experimental and testing purposes, the key gen-
eration program was written so it could generate
keys with moduli between 60 and 600 digits long (12
to 125 words), although in actual practice the ex-
tremes of the range are not useful: less than 160 is
probably not secure enough, and more than 320
seems to be overkill. The average key generation
time is shown in Table 3. The variability in the
prime search procedure, previously discussed, causes
the key generation time to be also highly variable in
individual cases, especially for longer moduli; it is
not uncommon for a key generation run to take
anywhere between half to twice the stated average
time.

Speed and cryptosystems design

The figures in Table 3 show that for moduli in the
range of 200 to 250 digits, which is generally consid-
ered an adequate length, the average RSA key gener-
ation time on a PC AT is two to four minutes. This
time seems quite reasonable when one considers that
in a public key system the keys should rarely be
changed (just like telephone numbers).

It is apparent that, for a given modulus length, the
average ElGamal key generation time is larger by a
factor of 4 to 7; the reason is that a single large prime
is required, rather than two smaller ones. However,
the difference may not be very significant, in that
with the ElGamal system the same modulus is shared
by many users; hence very few modulus generations
are needed.

A different picture emerges when one compares any
public key encryption/decryption time with the cor-
responding time for the Data Encryption Algorithm.
This comparison is first made with regard to the RSA
system, then some observations are presented per-
taining to the ElGamal system. The first considera-
tion, already mentioned, is that RSA encryption can
be made quite fast by choosing the number 3, or
another small prime, as the public key; but since
each encrypted message has to be decrypted in order
to make sense, it is really the average of encryption
and decryption time that gives a meaningful measure
of performance. Under DEA the two times are essen-
tially the same.

BM SYSTEMS JOURNAL, VOL 28, NO 4, 1990

Table4 RSA and DEA block encryption time

Modulus Length Enc. Time Dec. Time
(digits) (words) (ms) (ms)
125 26 23 1,210
160 33 35 2,220
200 42 50 4,010
250 52 73 7,240
320 66 115 13,940
400 85 170 26,040
500 104 250 47,950
DEA 0.306 0.308
Table 5 RSA and DEA byte encryption time
Modulus Length Enc. Time Dec. Time
(digits) (words) (ms) (ms)

125 26 0.44 23
160 33 0.53 34
200 42 0.61 48
250 52 0.70 70
320 66 0.87 105
400 85 1.02 157
500 104 1.20 230
DEA 0.0383 0.0386

The second point is that the comparison can be
made in two ways:

* By comparing the time needed to encrypt/decrypt
a single block—Under DEA the block, or mini-
mum unit of encryption, is 8 bytes; under RSA it
is equal in length to the modulus. This comparison
is appropriate if the intended application requires
the encryption of short items, such as DEA keys,
or individual database fields.

s By comparing the average time per byte—This is
appropriate if the application involves bulk en-
cryption of large files.

Table 4 and Table 5 show the results of the two
comparisons. The times for the DEA were obtained
by using a highly optimized implementation of the
algorithm.

It is apparent that the speed of the DEA, compared
to the average encrypt/decrypt speed of a 200-digit
RSA, is better by almost three orders of magnitude at
the byte level, and almost four at the block level.
Such enormous differences are bound to affect the
role that DEA or RsA can play in any integrated

coves 537

Table 6 ElGamal block encryption time tion of the major components of these algorithms
yields a very reasonable performance. The solutions

(digit;‘;““'“s Lengm ords) Av. E"c-{g)ec- Time made possible by these algorithms are likely to be-
come 1ncreasmg1y 1mportant as the mterconnectivity

125 26 5.1 of computers grows.
160 33 10.6
200 42 19.2 Personal Computer AT is a registered trademark of International
250 52 35. Business Machines Corporation.
320 66 72.
;‘% lgi 22 Cited references and note

1. Data Encryption Standard, Federal Information Processing
Standard (FIPS) Publication 46, National Bureau of Stand-
ards, Washington, DC (January 1977).

2. W. Diffie and M. Hellman, “New Directions in Cryptogra-

cryptosystem. Wl}ile DEA i$ _likely to remain the phy,” IEEE Transactions on Information Theory 1T-22, 644
algorithm of choice for routine message and file 654 (November 1976).

encryption, the increasing recognition being given to 3. D. E. R. Denning, Cryptography and Data Security, Addison-
the importance of key management, and the diffi- Wesley Publishing Co., Reading, MA (1982).

4. W. Patterson, Mathematical Cryptology, Rowman & Little-

culty 'of accomp11§h1ng it with DEA, have c}rawn field, Totowa, NJ (1987).
attention to the unique advantages of the public key 5. R. L. Rivest, A. Shamir, and L. Adleman, “A Method for
systems. If a public key algorithm is used only for Obtaining Digital Signatures and Public-Key Cryptosystems,”
the specialized task of exchanging other crypto- . ﬁor’é)m’gig{”’"’fls) o :hléf AdC]‘S”. 21’t120‘122 (lfea‘f“al‘;y 19}_28)-

: . . - . M. O. Rabin, “Digitalized Signatures and Public-Key Func-
graphlc keys’ the performance indicated in th.e tions as Intractable as Factorization,” MIT/LCS/TR-212,
tables_several S.econds for e_aCh key exchange—is Massachusetts Institute of Technology, Laboratory for Com-
quite acceptable in many environments. puter Science, Cambridge, MA (January 1979).

7. T. ElGamal, “A Public Key Cryptosystem and a Signature

Under the FlGamal system. en ion ion Scheme Based on Discrete Logarithms,” IEEE Transactions
is sl th d Y » © cbrypt 0 {)decrypt N on Information Theory IT-31, 469-472 (July 1985).
!S slower than under RSa, as can be Seen_ y Coml?ar' 8. B. Tuckerman, “The 24th Mersenne Prime,” Proceedings of
ing Table 6 and Table 4. Here encryption requires the National Academy of Science 68, 2319-2330 (1970).
two modular exponentiations and it cannot be sig- 9. D. E. Knuth, The Art of Computer Programming, Volume 2
nlﬁcantly speeded up by Choosing a small key; de- (second edition), Addison-Wesley Publishing Co., Reading,

. X o . MA (1981).
cryption entails an exponentiation W}th a modulus 10. J. D. Dixon, “Factorization and Primality Testing,” American
that cannot be factored. Another fllsadvantage of Mathemathics Monthly, 333-352 (June-July 1984).
ElGamal is that each block of plaintext produces 11. H. Riesel, Prime Numbers and Computer Methods of Factor-
two blocks of ciphertext. ization, Birkhauser, Boston, MA (1985).

12. Don Coppersmith, private communication.

On the plus side, one can list two advantages:
. . . Paul G. Comba [BM Cambridge Scientific Center, 10! Main
e Encryption involves a random number, so if a Street, Cambridge, Massachusetts 02142. Dr. Comba joined IBM
given plaintext is encrypted on two different oc- in 1960 and has since worked on a variety of advanced technology

casions the ¢ orrespon ding ciphertexts are different; projects, maml_y in software an(_i apph_catlon dev@lopment, includ-
ing programming languages, simulation, graphics, and database

this is a pro?ectlon agalnst ‘poss1ble replay attacks. management. In the last seven years, he has worked primarily in
* Under Rsa, if the plaintext is assumed to be chosen the area of software implementation of cryptographic systems.
from a small set of candidates, an attacker can Dr. Comba received his Ph.D. in mathematics from the California
encipher each candidate with the public key and Institute of Technology in 1951. Before joining IBM he was

assistant professor, then associate professor of mathematics at the

compare the results with the ciphertext; under University of Hawaii from 1951 to 1960

ElGamal this attack does not work.

Conclusion .
Reprint Order No. G321-5416.

This paper has stressed a variety of techniques for
increasing the speed of the numerical calculations
that constitute the core of exponentiation cryptosys-
tems. The results that can be obtained by using these
techniques have been illustrated. A PC implementa-

538 comea IBM SYSTEMS JOURNAL, VOL 28, NO 4, 1990

