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Several cryptosystems based on exponentiation have 
been  proposed in recent  years.  Some  of  these  are  of 
the public key variety  and  offer notable advantages in 
cryptographic key  management, both for secret c o m  
munication and for message authentication. The  need 
for extensive arithmetic calculations with very large 
integers  (hundreds of digits long) is a drawback of 
these  systems. 

This  paper  describes  a  set  of  experimental programs 
that were  developed to demonstrate that exponentia- 
tion cryptosystems can be efficiently implemented on 
the IBM Personal  Computer (PC). The programs are 
organized into four  layers, comprising procedures for: 
multiple precision integer arithmetic, modular  exponen- 
tiation, prime number generation and testing, and cryp- 
tographic key generation. The major  emphasis of the 
paper is on methods  and techniques for improving exe- 
cution speed.  The  items discussed include: the use of 
a  specialized squaring procedure;  a recursive splitting 
method to speed up squaring and multiplication; the 
computation of residues by using multiplication in- 
stead of division; the efficient encoding of residue in- 
fcrmation; and the use of thresholds to select the most 
effective primality testing algorithm for a  given  size 
number.  Timing results are presented  and  discussed. 
Finally, the paper  discusses the advantages of a  mixed 
system that combines the superior key management 
capabilities inherent in public key cryptosystems with 
the much  higher bulk-encryption speed obtainable with 
the Data Encryption Algorithm. 

T he  need  for data security  has  grown  steadily  over 
the years,  paralleling  growth in the use and 

interconnectivity of computers. Users require the 
protection of data from unauthorized access and 
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alteration. System  experts  have drawn on the disci- 
pline of cryptography to meet the increasing  needs 
for data security. In the simplest terms, cryptography 
is a technique for scrambling and disguising infor- 
mation so as to make it appear meaningless or 
unintelligible. The scrambling, or coding,  process 
requires the use  of a secret key,  which  is  also  needed 
to recover the original  text  from the scrambled  ver- 
sion. A system that uses  such a technique is referred 
to as a symmetric cryptosystem. An example is the 
Data Encryption Algorithy (DEA) defined in the 
Data Encryption Standard, which  is  widely  used in 
banking and transaction processing. 

Public key cryptosysterns 

A revolution in cryptography took place  as a result 
of the pyblication in 1976 of a paper by  Diffie and 
Hellman that introduced the concept of a public  key 
cryptosystem. The novel feature of the proposed 
system  was that different keys are used  for encrypting 
and for decrypting. Thus, for  example, an individual 
A,  who  is a potential recipient of encrypted messages, 
generates a public key as well as a private key, and 
publishes the public key  (e.g., in a directory), while 
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! keeping the private key secret. Another individual 
B, who wants to  communicate secretly  with A,  en- 
crypts the message  with A’s public key.  After  receiv- 
ing the message, A decrypts it with A’s private key. 
For this system to work it must be impossible to 
derive, from a public key, the corresponding private 
key. 

Once the concept of a public key cryptosystem was 
introduced, many different specific systems were pro- 
posed and studied. References 3 and 4 describe these 
systems.  Before addressing the technical aspects of 
these systems, their relevance to  the key management 
problem is  briefly  discussed. 

Key management. The key management problem 
arises from the fact that a symmetric cryptosystem, 
while providing protection to  the  data  that have been 
encrypted, still requires that a key be exchanged 
secretly  between any pair of communicating parties. 
If one visualizes a large network comprising thou- 
sands of workstations and terminals  and possibly 
millions of  messages, it becomes clear that  the safe 
exchange of  keys (and  their replacement if they 
become compromised) can be a staggering problem. 
The solution made possible by a public key crypto- 
system consists of a two-tiered arrangement, where 
the  data to be communicated  are encrypted using 
DEA (for example), and  the DEA keys are encrypted 
using the public keys. The public keys can be freely 
exchanged and posted in directories. 

B 

B 

B An actual key management system may involve 
more complexities and possibly more tiers, but it 
rests on  the concepts outlined above, namely sepa- 
ration of data-encrypting keys from key-encrypting 
keys, and exchange of  keys  via the public key system. 

Outline of some exponentiation cryptosystems. Sev- 
eral public key cryptosystems have been proposed 
that involve the following elements: 

The cryptographic key, or part of it, is either a 
large prime  number n, or  the product n = p X q 
of  two  large prime numbers p and q. 
The encryption process entails raising a number 
to a power and taking the results modulo n, that 
is, dividing the results by n and using the remain- 
der of the division. 

b 

The three systems discussed in this paper are now 
briefly outlined. 

RSA system. The best known exponentiation cryp- 
tosystem  is the  one proposed in 1978 by Rivest, 

Shamir, and Adleman (see Reference 5) usually  re- 
ferred to by their initials as RSA. Under RSA, a typical 
size for the  modulus n would be 200 decimal digits, 
which  is equivalent to 664 bits or 42 personal com- 
puter (PC) 16-bit words. The public or encryption 
key is made  up of two parts: the  number n (but  not 
its factors p and q) and  an exponent e. A message to 
be encrypted is represented as a number M, which 
must be less than n, and  the process  of encryption is 
represented by the calculation 

C =  M e  mod n. 

To decrypt, the recipient must be in possession of a 
suitably chosen secret decryption key d; with it the 
original text can be recovered by executing 

M =  C d  mod n. 

Rabin tystem. Another similar system, attributed  to 
Rabin, uses the  number 2 as the encryption expo- 
nent and  the knowledge  of p and q to  do decryption. 
This system has some drawbacks for general use, but 
may be appropriate for special applications. 

ElGamal system. Considerable interest has been gen; 
erated by a public key  system described by ElGamal. 
This system requires n to be a prime  number,  rather 
than  the product of two primes. The  number n, as 
well as a properly chosen integer a, are known to all 
users.  In addition, each individual user has a private 
key x and a public key y defined by 

y = ax mod n. 

To send a secret message M, one first geperates a 
random  number k and computes K = y mod n; 
the ciphertext consists then of the  pair of numbers 
(cl, c,) defined by 

c, = a! mod n, c, = ( K  X M )  mod n. k 

To decrypt, one  computes successively 

K = cy mod n, G = K-l mod n, 
M =  (c, X G) mod n. 

The challenge of exponentiation on the PC. Modular 
exponentiation is essential for encryption/decryption 
in the systems outlined above. In addition,  the gen- 
eration of cryptographic keys involves the search for 
large prime numbers; this search requires certain 
tests that  make heavy  use of modular exponentia- 
tion. Hence modular  exponentiation plays a central 
role in  the investigations reported here. 

b 
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At the start of the work reported in this paper, it was 
not known  whether the extensive calculation for the 
exponentiation and prime search  procedures  could 
be programmed to execute on a PC in a reasonable 
time. The challenge was to prove that this could be 

A special case of division is  the 
so-called  modular  division,  where 

the  quotient  is  not  explicitly 
computed  and  the  remainder  is  the 

desired  result. 

done. To meet this challenge,  great  effort was made 
to optimize the code and fine tune the algorithms. 
The timing results, obtained on  an 8 MHz  Personal 
Computer ATcQ (PC AT), are discussed throughout 
this paper. 

Four major programs that have  been implemented 
are discussed in the following  sections.  Each  program 
is dependent on the previous  ones,  as  listed in the 
order given. 

1. Multiple  precision  integer arithmetic 
2. Modular exponentiation 
3. Prime number search 
4. Cryptographic key generation 

Multiple  precision  integer  arithmetic 

The starting point of the project was the implemen- 
tation of a set of arithmetic procedures to operate 
on very  large  integers,  i.e.,  integers that contain 
several hundred digits.  These  procedures  may  be 
useful  in other applications as well as  cryptography; 
hence  they  have  been implemented as a self-con- 
tained multiple precision  integer arithmetic package 
(MPIA). MPIA operates on integers up to 255 words 
long, corresponding to 4080 bits or approximately 
1220 decimal  digits. 

To understand the organization of MPIA, consider 
that computer words are manipulated similar to the 
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digits in ordinary long-hand calculations. For ex- 
ample, multiplying a 3-word number by a 4-word 
number is  analogous to multiplying a 3-digit number 
by a 4-digit number. 

MPIA implements the standard arithmetic operations 
of addition, subtraction, multiplication, and divi- 
sion. A special  case  of  division  is the so-called mod- 
ular division, where the quotient is not explicitly 
computed and the remainder is the desired  result. 
There  are  also  some computer-oriented operations 
such  as movement of numbers and shifting. 

Multiplication and squaring are the operations that 
deserve the most attention. They are important be- 
cause  they  are major components of modular expo- 
nentiation, they are relatively time-consuming, and 
they lend themselves to considerable optimization. 
Squaring, i.e., multiplying a number by  itself,  is 
important because it is  usually much more efficient 
to square a number by using a specialized squaring 
procedure than by using a multiplication procedure. 
The reason is that in squaring a number there are 
many cross-product terms that need to be computed 
only once, whereas a multiplication procedure will 
compute them twice. The first description of a mul- 
tiple  precision squaring procedure that 2ses this con- 
cept  seems to be due to Tuckerman. Our timing 
tests  consistently  show that squaring time can always 
be reduced to about 60 percent of multiplication 
time. 

Apart  from the cross-product procedure, the opti- 
mization techniques that are applicable to multipli- 
cation are essentially the same for squaring. For this 
reason, and since multiplication is the more general 
operation, the discussion below centers on multipli- 
cation. 

Two approaches to optimization are discussed. They 
are called optimization in the small and optimization 
in the large. Optimization in the small  assumes that 
each  word  of one factor must be multiplied by each 
word  of the other factor, and endeavors to devise the 
most  efficient  possible data structure and code to 
carry out this basic multiplication procedure. Opti- 
mization in the large aims at reducing the total 
number of  single  precision multiplication instruc- 
tions that have to be  executed, by splitting the factors 
into smaller pieces,  rearranging the pieces in various 
ways, and feeding them to the basic multiplication 
procedure.  These rearrangements entail additional 
processing time, or overhead; hence the overall op- 
timum is obtained when the reduction in multipli- 
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cations just balances the overhead. This gives rise to 
a  threshold,  denoted by P, such that only numbers 
of length  greater than or equal to P should  be  rear- 
ranged.  Anticipating  later  results,  in the implemen- 
tation reported  here the threshold turned out to be 
P = 28. 

Optimization in the small. The straightforward way 
to implement a  multiplication  procedure  for  two 
multiword  numbers, or factors,  is  with  a  double  loop. 
In the outer loop each  word  of the first  factor, or 
multiplier,  is  successively  loaded into a  register; in 
the inner loop the contents of that register  are  suc- 
cessively multiplied by each  word  of the second 
factor, or multiplicand, and the results are added to 
the partial  product obtained so far. The inner loop 
for this procedure  is  illustrated  in  Example A, which 
follows. 

Example A 

PUSH BP 
XOR BP,BP 

MMUL30: 
INC SI 
INC SI 

;fetch  multiplicand  word 
MOV AX,[SI] 

;preloaded  multiplier  word 
MUL DI 
ADD  AX,BP 
ADC  DX,O 

ADD [SI][BX],AX 
ADC DX,O 
MOV BP,DX 
LOOP MMUL30 

;add to memory 

POP BP 

The  loop  takes 20 bytes  of code, and the time  re- 
quired  for one execution of the loop has  been  meas- 
ured to be 7.55 microseconds. An exact  allocation 
of time to the individual instructions cannot be 
made,  since the execution  cycle of one instruction 
overlaps the fetch  cycle  of the next;  nevertheless, 
numerous timing  experiments  lead to the following 
general  conclusions: 

The MUL (multiply) instruction takes  only about 
one-third of the loop  time. 

The LOOP instruction is  very time-consuming. 
The three memory  accesses (one to fetch  a  multi- 
plicand  word, and two  when  adding to memory) 
are  also  relatively  expensive. 

These  conclusions are the bases  for the two  restruc- 
turing  steps that lead to the optimized  basic  multi- 
plication  procedure. The first step is to remove the 
LOOP instruction and the jump associated  with it. 
This is done by unraveling the loop, that is, repeating 
the  code  in-line  a number of times. (A macro may 
be  used  for this purpose.) If the code  in  Example  A 
is  unraveled, the register cx is  freed up and can be 
used to replace  the instruction ADC DX,O by A D C  DX, 
cx, further reducing the code  length. The results are 
shown  in  Example B,  where the loop is  unraveled. 
The  code  takes  only 16 bytes. 

Example B 

PUSH BP 
XOR  BP,BP 

;set to 0 to shorten ADC instructions 
XOR  CX,CX 

INC SI 
INC SI 
MOV AX,[SI] 
MUL DI 
ADD AX,BP 
ADC DX,CX 
ADD [SI][BX],AX 
ADC DX,CX 
MOV BP,DX 

;(the  above  code  is  repeated 30 times) 

POP  BP 

Refemng to the threshold P mentioned above, the 
number of static  repetitions of the code  must  be at 
least P - 1, since  any  factor of length P or longer  is 
further  broken apart. If n and m are the lengths  of 
the  factors to be  multiplied, the outer loop is  exe- 
cuted n times;  for  each of these  calculations, the 
inner unraveled loop must  be  executed m times. 
Hence  a jump address  must be computed, so that 
only the last m occurrences  of the unraveled loop 
are  executed. This computation is done only  once, 
outside the outer loop.  Timing of the unraveled loop 
shows that each  execution  takes 6.03 microseconds. 

The  second  restructuring  step  is intended to reduce 
memory  accesses, and can be  visualized  as  follows. 
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Figure 1 Rectangular  sweep 

I 

Figure 2 Diagonal  sweep 

t 

If the m words of the multiplicand are represented 
by points on the X-axis with  abscissas 1, 2,  . . . , m, 
and the n words of the multiplier are similarly  rep- 
resented on the Y-axis, then the nm word-by-word 
products to be computed correspond to the lattice 
points of a rectangle in  the first quadrant.  The pro- 
cedure described  above represents a process in which 
the lattice points are swept  row by row, in a rectan- 
gular  fashion,  as  shown in Figure 1. In the alternative 
procedure, the lattice points are swept in a diagonal 
fashion,  as  shown in Figure  2. The diagonal proce- 
dure entails only  two memory accesses, instead of 

three,  for  each multiply instruction: one access  for 
each  word to be multiplied. For each diagonal, the 
products corresponding to the individual points can 
be accumulated in the registers; there is no need to 
execute an add-to-memory instruction until the en- 
tire diagonal  has  been  processed. 

The code must now provide for the possibility of a 
double carry when the two-word partial products are 
accumulated. In the PC the second carry may  be 
accumulated in a half  register. A diagonal of length 
4 is illustrated in Example C, where  each short 
segment of code is preceded by a comment that 
explains its function. 

Example C 

;Z[3] = carry + X[O]xY[3] 
MOV AX,[BX 
MUL WORD 
ADD BP,AX 
ADC DI,DX 
ADC CL,CH 

-1 
PTR[SI + 6 

;Z[3] = Z[3] + X[l]xY[2] 
MOV AX,[BX + 21 
MUL WORD PTR[SI + 41 
ADD BP,AX 
ADC DI,DX 
ADC CL,CH 

MOV AX,[BX + 41 
MUL WORD PTR[SI + 21 
ADD BP,AX 
ADC  DI,DX 
ADC CL,CH 

MOV AX,[BX + 61 
MUL WORD PTR[SI] 
ADD BP,AX 
ADC D1,DX 
ADC CL,CH 

MOV DX,DI 
POP DI 
INC DI 
INC DI 
MOV [DI],BP 
PUSH DI 
MOV BP,DX 
MOV DI,CX 
XOR CL,CL 

;Z[3] = Z[3] + X[2]XY[l] 

;Z[3] = Z[3] + X[3]xY[O] 

;store  Z[3],  shift  carry 

A drawback  of the diagonal method is that the 
lengths of the diagonals  vary,  first  increasing, then 
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remaining constant (if n < m), then decreasing. The 
required control code  is then rather complicated and 
time-consuming. The problem can be  avoided by a 
radical solution: unraveling not only the inner loop, 
but the outer loop as well. With this approach, code 
similar to Example C is repeated in-line, with the 
length of the diagonal  (i.e., the number of occur- 
rences  of the inner loop) increasing  from 1 to 30, 
say, and then decreasing  down to 1.  At the end of 
each of the increasing  diagonals,  two  tests  are in- 
serted (in most cases only one is executed) to deter- 
mine whether to continue with the next  longer di- 
agonal, jump to the next shorter diagonal, or repeat 
the same one. 

As shown  in  Example C, the code  for the inner loop 
is in most  cases 12 bytes  long. With appropriate 
changes  in the offsets, this code will then occur in- 
line 900 times. Adding the code at the end of each 
diagonal, this results in about 12K  bytes of code  for 
the basic multiplication procedure. 

The execution time for the doubly unraveled loop is 
estimated to be 5.03 microseconds, and the actual 
multiplication time for  two  factors of length n words 
is represented by the formula 

T(n) = 5.03n2 + 10n + 28. (1) 

Optimization in the large. T\e procedure explained 
below  is described by Knuth as a simplification of 
one attributed to Karatsuba. 

For the  personal computer, with a word  length of 16 
bits, we denote by B = 216 the number base  corre- 
sponding to one word.  Assume  now that u and v are 
two  n-word numbers to be multiplied. If n is  even 
let m = n/2, and if n is odd let m = (n  + 1)/2. Also 
let X = B“‘. Then u and v may be represented as 
u = Uo + U ,  X and v = V, + V,X,  where Uo is the 
low-order  m-word  piece of u and U ,  is the high-order 
piece;  likewise  for V, and VI.  One can then verify 
the following identity: 

uv = U,V, + (UOVO + U,V, 

- ( U ,  - U0)( V ,  - Vo))X + u, V,X’ (2) 

The operations required to compute the right-hand 
side of Equation 2 can now  be counted, noting that 
the apparent multiplications by the powers  of X are 
not actually  executed  as  such;  they just indicate that 
the respective  coefficients are stored in a shifted 
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Table 1 Performance of Karatsuba  method 

n t(n) m 
15 1.31 1 .oo 
20  2.24  1 .oo 
25  3.42  1 .oo 

30 4.52  .93 
40 7.49 .88 
50  11.2 3 5  

60  14.7  .78 
80 24.0  .73 

100 35.5 .69 

120  46.2  .63 

position. For multiplications, there are 3 products of 
m-word  factors. For additions (and subtractions), 
there are 2 additions of length m inside the double 
parentheses; 2 additions of length  2m  inside the 
single  parenthesis; and finally the coefficient  of X, 
which  is  of  length  2m,  has to be added into the rest 
of the result.  Note that the first and third terms on 
the right-hand side do not overlap and  do not require 
addition. The total length of the quantities to be 
added is thus 8m. Restating these counts in terms of 
n we reach the following conclusion (which  is ap- 
proximate if n is  odd): the Karatsuba method re- 
places one multiplication of factors of length n with 
3 multiplications of factors of length  n/2,  plus 4n 
single  precision additions. 

For large  values of n, the Karatsuba method yields a 
time reduction of almost 3 to 4. Also, the algorithm 
can be applied recursively, thus compounding the 
improvement with  each splitting of the factors. As 
the length of the factors decreases, the improvement 
also  decreases, until the “no-improvement,’ thresh- 
old P = 28 is  reached. 

Table 1 shows the measured multiplication time t(n) 
in milliseconds,  for  two factors of length n, when the 
Karatsuba method is  applied  recursively.  Also  shown 
is r(n) ,  which  is the ratio of t(n) to T(n); T(n) is the 
basic multiplication time computed from Equation 
1. The value of r(n) represents the improvement 
attributable to the Karatsuba method. 

The Karatsuba method is  directly  applicable  when 
the factors to be multiplied are of equal size, and 
this  is  usually the case in the exponentiation calcu- 
lations.  However, if the factor sizes are unequal, two 
procedures are available to reduce the problem to 
the equal size  case. First, if the size  difference  is 



small, the smaller number is  extended at the high 
end  with  null  words.  Second, if the size  difference  is 
large,  the  product  can  be  visualized  as  a  rectangle; 
from this rectangle  the  largest  possible  square  is 
removed and treated  as  a  product of equal  factors; 
from the remaining  rectangle the largest  possible 
square is removed,  etc.;  continuing until either  a 
rectangle  consists  only of squares, or a  rectangle  with 
a  size  less than P is found; the latter is then fed to 
the basic  multiplication  procedure; the results of the 
square  multiplications  are  then  added  with appro- 
priate  shifts. 

Modular  exponentiation 

The standard  procedure  for  exponentiating  a num- 
ber,  i.e.,  raising it to a  power, in general  requires 
many  multiplications and squarings. For example, 
the computation of M e  is  normally done by first 
representing e in  binary notation, as a  string of bits; 
then M is  squared as many times as there are bits 
(excluding the leftmost  bit), and the partial results 
are  multiplied by M as many times as there are  bits 
with  the  value 1.  If the exponentiation is done mod 
n, after  each  squaring or multiplication the remain- 
der  mod  n  is  computed. 

For  example,  let  us  assume that the numbers M, e, 
and n are  each  640  bits  long,  which is the same as 
40 PC words;  let  us  also  assume that approximately 
half the bits of e have the value 1. Then the com- 
putation of M e  mod n requires 

639  squarings of  40-word  numbers-exactly 
320 multiplications of  two  40-word  numbers- 

959  modular  divisions of an 80-word number by 
approximately 

a  40-word  number-approximately 

In the previous  section the optimization of multipli- 
cation and squaring was discussed.  Here we discuss 
two  more  techniques  for  speeding  up  modular  ex- 
ponentiation: a  procedure to  do the remainder  (mod- 
ulo)  calculation  using  multiplication rather than di- 
vision, and a  technique  for  reducing the number of 
multiplications  required.  For  simplicity of notation, 
these  techniques  are  described  for the case  men- 
tioned  in the example  above,  where M,  e, and n are 
each  40  words  long. 

Modular calcufftion by multiplication. As before, 
we let B = 2 . Since M is  a  40-word number, 
M < B40. We  now precompute the numbers 

No = B z  mod  n 
N, = B modn 

N39 = B79 mod n 

B40 is 1  followed  by  40  words  of Os. Hence B" mod 
n is the remainder  of the division  of  a  4  1-word 
number by a  40-word number; this is  a  fairly  rapid 
operation,  often  involving  only one 1 X 40  multipli- 
cation. To compute N, ,  the previously computed No 
is  shifted  left one word, then divided by n; and so 
on. Thus the entire precomputation is quite rapid. 

Suppose  now that we  have to compute X mod n, 
where X is an 80-word number with  words X79, X78, 
. . . , X, ,  X,. We do this by computing the number 

X41)N0 + + * * * + X79N39,  (3) 

and adding to it the low-order  half of X ,  consisting 
of X39, . . . , X, ,  X,. The resulting  4 1- or 42-word 
number is  divided by n to obtain the remainder. 

The  procedure  described can be further improved by 
doing the multiplications  indicated in Equation 3 in 
parallel. This means that in the inner loop of the 
code, the word X ,  is  multiplied by the ith  word  of 
No and the result  is  saved in a  pair of registers; then 
the  word X,, is  multiplied by the ith  word of N ,  and 
the  result  is  added into the same  pair  of  registers, 
etc. This technique is  similar to the one used in the 
diagonal  code  for  multiplication,  previously  de- 
scribed, and it requires  only  two  storage  accesses  per 
single  precision  multiplication, rather than the three 
required by the conventional approach. A further 
speedup can be obtained by unraveling the inner 
loop. 

Reducing the number of multiplications. In comput- 
ing Me,  instead of executing one multiplication  for 
each 1 bit of e, as explained  above, it is  possible to 
take the bits  in  small  groups or nibbles,  for  examples 
of 5 each. The following quantities are then precom- 
puted: 

M, = M: mod  n 
M 3 = M  modn 

M3, = M3' mod n 
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This precomputation requires 15 squarings, 15 mul- 
tiplications, and 30 modular divisions. In the expo- 
nentiation procedure the bits of e are then scanned 
by nibbles instead of individually, and if a nibble  has 
the valuej, the current partial result is multiplied by 

B MI. 

A further improvement is obtained by working  with 
floating nibbles, i.e., those having a 1 in the high 
order position. This reduces the precomputation to 
4 squarings, 15 multiplications, and 19 modular 
divisions, and also  reduces the number of nibbles 
encountered during the scan. 

The net result of the optimization is  shown  in the 
following  reduced operation count: 

639  squarings of  40-word numbers 
12 1 multiplications of  two  40-word numbers 
760 modular divisions done by optimized multi- B 
plication 

Table 2 shows the actual time for modular exponen- 
tiation for  selected  lengths of the operands. The  time 
varies approximately as the power  2.77  of the length. 
A straightforward implementation would  yield a 
power of  3; the reduction is due to the use  of the 
Karatsuba method and the other optimization de- 
vices. 

Prime  number  search 

The problems of (a) deciding  whether a number is 
prime, and (b) if not, finding its prime factors,  have 
occupied generations of mathematicians. Recent dis- 
cussions of these problems and their relevance to 
public key cryptography, together w$h amplelbibli- 
ograph$ can be found in Knuth, Dixon, and 
Riesel.  Riesel’s  book  is the most detailed and con- 
tains numerous Pascal programs that are function- 
ally similar to some of the procedures described in 
this paper. 

Both the RSA and the Rabin cryptosystems require 

numbers, which are usually denoted by p and q. In 
both systems the number n is part of the public  key, 
while the factorsp and q are kept  secret. The security 
of both systems  rests on the extreme difficulty  of 
factoring a large number containing large prime 
factors. To make sure that the factorization is diffi- 
cult, certain subsidiary conditions are imposed on p 
and q; for example p - 1 must contain a large prime 
factor, denoted by pI; and pI - 1 must contain a 

D 

B that the modulus n be the product of two prime 

D 
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large prime factor, denoted by p,. Similar conditions 
apply to 4. 

In the ElGamal  system a single prime number 
n = p is  generated, together with a primitive element 
a. A secret key x is then chosen by each user, and 
the corresponding public key y = ax is computed. 
The security of the system depends on its being very 
difficult to infer x from a knowledge  of y; this is the 
so-called  discrete logarithm problem  which, in the 
general  case,  is  believed to be  of the saye order of 
difficulty  as the factorization problem. The same 
subsidiary conditions apply  here;  for example n - 1 
must contain a large prime, etc. Thus the prime 
search procedure plays an essential  role in all these 
cryptosystems. 

The prime search is organized so as to take advantage 
of the connection between p, pI,  and p, (and between 
q, ql ,  and q2 if applicable).  Two main techniques are 
used: a sieve procedure to eliminate numbers con- 
taining small prime factors, and a so-called strong 
pseudoprime test. These techniques are explained 
below. For concreteness assume, in the RSA case, that 
the goal  is to generate a modulus of length  200  digits, 
or 42  words, and  that this is  achieved by finding 
primes p and q of length  20 and 22 words,  respec- 
tively. 

The sieve procedure. Because  of the relationship 
between the primes p, pl, and p,, the search must be 
done in reverse order. Thus, from the goal  of  pro- 
ducing p of  length  20  words, the program establishes 
the subgoal of producing p1 of length four-fifths of 
20, or 16 words, then the further subgoal of produc- 
ing pz of length 13. 

An odd pseudorandom number B of length 13 is 
now generated, and a sieve  table S2 and a residue 
table R2 are initialized. B is the base  for the search, 
and 52 is a set  of flags that indicate the results of 
applying primality tests to B and its odd successors: 
B + 2, B + 4, . . . . The sieve procedure is camed  out 
with the aid of the Small Prime Table, which  is a 
fixed table containing all the odd primes 3, 5 ,  7, ..., 
65  521 that fit in one PC word; the table has 6541 
entries. The number B is  divided  successively  by 
each prime in the Small Prime Table (or a subset 
thereof) and the remainder is stored in the table R2; 
also,  using the remainder, those flags in S2 are turned 
on that correspond to numbers that  are divisible by 
that particular prime; thus the odd successors of B 
that are found to be nonprime are flagged. 
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The numbers that survive the sieve procedure are 
considered prime candidates and are subjected to 
the strong pseudoprime test (explained below); the 
first  survivor of that test is taken as the prime p2.  

The search  for pI is  now initiated. Since pI must  be 
of length 16, a pseudorandom even number A of 

The  strong  pseudoprime  test  is 
probabilistic. 

length 3 is generated, and the search  is carried out 
among the integers of the form 1 + ( j  + A )  x p2 
where j = 0, 2, 4, . . . . A new  sieve table S I  is now 
created, but unlike the table S2, it does not have to 
be computed from scratch. Instead, using the values 
of P2, B, A and the residues  saved in R2, the sieve 
computation for S1 is faster than for S2. Again, the 
survivors of the sieve are run through the strong 
pseudoprime test, and the first survivor of that test 
is taken as p l .  

The calculation of p from pI is  very similar to the 
calculation of p ,  from pz.  The calculation of the q s 
is also  analogous. 

The strong pseudoprime  test. The strong pseudo- 
prime test used in the prime search procedure is 
described in References 9 and 10; the details of the 
algorithm  are not repeatedkere, except to note that, 
given a number n = 1 + 2 m to be tested,  where m 
is odd, the test  requires the computation 

x m  mod n, 

which  is an exponentiation. 

The strong pseudoprime test  is  probabilistic, in the 
following  sense: of the two  possible outcomes of the 
test, one outcome, “fail” guarantees that n is not 
prime; the other outcome, “pass”  does not guarantee 
that n is prime, but indicates that the assertion “n is 
prime” is  very probably true. For this reason, a 
number that passes the test is called a pseudoprime. 
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To increase the confidence that n is indeed prime, 
the test  may  be  applied  repeatedly,  with  different 
values  for x. The test is characterized as strong 
because it is an improvement over  several  tests that 
had  been  used  before,  in that  it has a lower proba- 
bility  of letting nonprime numbers pass. 

The use  of a probabilistic  test is  generally  considered 
necessary and adequate, in view  of the fact that it 
would  be prohibitively time-consuming to execute a 
deterministic test that identifies prime numbers with 
mathematical certainty. 

As mentioned above, the pseudoprime test is applied, 
as part of the prime search, to the numbers that pass 
the sieve  procedure. The first time  that the test  is 
applied to a prime candidate, it is convenient to 
choose x = 3, since this makes the exponentiation 
calculation faster  (by 15 to 20 percent) than with a 
multiword  value  for x. For subsequent applications, 
x should  be a different pseudorandom number each 
time. The number of such subsequent applications 
is governed by several parameters whose  significance 
is  discussed further in the following  subsection. 

Some  refinements  and thresholds. Some of the com- 
plexities  in the prime number search,  as  described 
above, are intended to thwart any attempts at fac- 
toring the product p X q, or solving the discrete 
logarithm problem, by using certain known  algo- 
rithms. Another algorithm that must be  considered 
is one which  is  effective whenp + 1 (or q + 1) consist 
entirely of small prime factors. To safeguard  against 
this possibility, after p is generated, the number 
p + 1 is  divided by the Small Primes and any exact 
divisor  is  factored out; if the remaining number is 
too short (according to some ad hoc threshold), p is 
rejected and a new p is generated, starting from pI. 

In the RSA case, further subsidiary requirements must 
be met: 

* The numbers p - 1 and q - 1 must have a small 
greatest common divisor; this is almost always the 
case, but the condition must  be  tested  for, and a 
new q generated if  necessary. 

The ratio - must not be  close to the ratio of two P 
4 

small  integers. 

In the ElGamal case, the question of additional 
conditions on n has  been the object of recent stud- 
ies;I2 it may  well  be that new requirements will  be 
discovered that must  be met in order to insure the 
difficulty of the discrete logarithm problem. 
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From a performance viewpoint, an  important 
threshold is determined by the relative efficiency  of 
the sieve procedure and  the pseudoprime test. Sup- 
pose for definiteness that we are testing a  number n 
of length 20 words. If we divide n by an entry in  the 
Small Prime Table, say s, the probability of finding 
that n is nonprime is l/s, while the cost of the test, 
determined by timing the division procedure, is 
about 102 microseconds; thus, over a large  series  of 
tests with that particular s, it would take an average 
of 102s microseconds to identify one  nonprime 
number.  On  the  other  hand,  the pseudoprime test is 

B 

Table 2 Exponentiation  time 

Length  Time 
(words) ( m a  

10 302 
15 795 
20  1,700 
30  5,100 
40 1 1,300 
60 35,400 
80 77,000 

100  143,000 

sieve procedure for primes < 15 500, then switch to 
the pseudoprime test. n (1 - ;) = 0.118 

In the program the situation is a little more compli- 
cated, because the tests for pz ,  pI, and Q are inter- 
linked; however, many timing trials have proved that 
there is indeed an  optimum threshold for switching 
between the sieve procedure and  the pseudoprime 
test, and its value is approximately the  one calculated 
above. These empirical tests are essential, in  addition 
to  the theoretical calculations, in  order to  tune  the 
program for good performance. 

b Another set of thresholds regulates the sizes  of the 
flag tables and  the residue tables. The performance 
of the program is not very sensitive to these param- 
eters, since the  computations  are  quite fast. Hence it 
is convenient to make  the tables large enough so the 
probability of overflow  is small. Nevertheless, the 
probability cannot be reduced to zero; therefore the 
program must  make provisions for its occurrence 
and be able to restart the corresponding section of 
the sieve procedure. The  computation of the over- 
flow probability is interesting in its own right, since 
it sheds some light on  the performance of the  prime 
search. Consider again the case where the  number 
being tested is of length 20 words, i.e., 96 decimal 
digits, and  note  that  the frequency of primes among 
odd nyybers of this length is approximately 
2/ In 10 = 0.0090. If the flag table is taken  to be  of 
length 1000, the probability of  overflow is about 
0.99 1 IOoo = 0.0001 1, or slightly over one  in  ten 
thousand. 

The frequency of primes can now be used to estimate 
how many times the pseudoprime test is executed in 

R 

B 
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S,<13500 ' J' 

where s, is the jth odd prime. Thus  on average the 
sieve procedure leaves 1 18 survivors out of 1000, of 
which only 9 are primes. Hence the pseudoprime 
test has to be executed an average of 13 times before 
a prime is found. Also, because the probability of 
finding a  prime on any given occurrence is so small, 
the  number of executions of the pseudoprime test 
varies a great deal between one  prime search and 
another. So, while it is  possible to optimize  the 
average performance of the  prime search, it is im- 
possible to guarantee that  the procedure will termi- 
nate within a given time. 

The calculation shown above for the case of a  prime 
of length 20 can be repeated for other lengths, so as 
to obtain the various thresholds as a  function of that 
length. For example, if one seeks a  prime of length 
40 words (192 digits), it turns  out  that  the sieve 
procedure should be carried out with the small 
primes up  to 5 1 000, resulting in about 104 survivors 
per thousand; since there are only on average 4.5 
primes per thousand  odd  numbers of this length, the 
pseudoprime test will be executed an average of 23 
times before a  prime is found. 

Finally, we discuss briefly the parameters that  control 
the  number of additional times that  the pseudoprime 
test  is applied to a  number n after n has passed the 
pseudoprime test with x = 3. First, it must be noted 
that these parameters, while  affecting the  time re- 
quired for the  prime search, are  not thresholds that 
can be varied to  tune  the performance of the pro- 
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Table 3 Average key generation  time 

Modulus Length 
RSA ElGamal 

Average  Time 

(digits) (words) (min:s) 

125  26 
160 

035 
33 

2:15 
1 :06 5:OO 

200  42 
250 

2:Ol 
52 

11:oo 
405 

320 66 9:Oo 6000 
25:OO 

400 85 19:Oo 
500 104  42:OO N.A. 

125:Oo 

gram; instead they affect the probability  (extremely 
small in any case) that the program will accept as 
prime some numbers that are not prime.  Second, we 
note that in our experience, including an analysis of 
hundreds of thousands of tests, the first application 
of the strong pseudoprime test  has  always  been  de- 
cisive: not a  single instance has  been  recorded of a 
number that passed the test  with x = 3 and failed it 
later with  a  different x. Third, we briefly summarize 
the applicable mathematical knowledge, making us: 
of the following  terminology introduced by Rabin: 
if the pseudoprime test  applied to n, using  a  partic- 
ular  value of x, indicates that n is  a pseudoprime, 
when n is in fact not prime, then that x is  called  a 
false witness. For the vast majority of values of n the 
false  witnesses are extremely rare or nonexistent, 
while  for  a  very  few  values  of n the false  witnesses 
may  be as many as 25 percent of the possible x s. 
Unfortunately the “vast majority” and the “very 
few” have not been quantified by mathematical 
analysis. Hence there are no firm  guidelines. A fur- 
ther consideration, in the context of cryptographic 
key generation, is that the essential  goal is to produce 
the primes p and q, while the primality of pl, ql, p2, 
q2 is of  lesser importance. In view  of the above, the 
number of additional executions of the pseudoprime 
test, as currently set in the program, are as follows: 

0 for pz  and q2 
1 for pi and q1 
9 forp and q 

Cryptographic  key  generation 

Once the required primes have  been obtained, the 
process of  key generation can be  swiftly completed. 
In the case  of the Rabin cryptosystem,  where the 
public key  is the product n = p X q, all that remains 
to be done is multiply the two numbers. 

For the ElGamal system, an integer a < n must be 
found which  is primitive mod n. This condition is 
easy to check,  since the factorization of n - 1 is 
known. Thus a random a! is generated and exponen- 
tiated with  each factor of n - 1; if any of the results 
are unity, a! is  discarded. Very  few trials are needed 
in most  cases.  Each individual user can then arbi- 
trarily  choose  his  private key x and compute the 
corresponding  public key y by exponentiation. 

For the RSA system,  several additional numbers must 
be  produced. The first  of these is C#J = (p - 1)(q - I ) ,  
which must be kept  secret. The public encryption 
exponent e may  be  chosen next, and  it must be  a 
number relatively prime to 4. Since  a smaller e tends 
to result in faster encryption, a small prime may  be 
a  good thoice. The number 3 was once recom- 
mended, but it has  since  been  shown that it is 
vulnerable in the so-called broadcast situation (i.e., 
if the same message is encrypted with three different 
moduli but with e = 3 in all  cases, and if an attacker 
can intercept and analyze the three ciphertexts). The 
number 216 + 1 = 65  537 is  now advocated by some 
as  being  sufficiently  large to avoid this problem. 

The computation of the secret decryption exponent 
d, which must satisfy the equation ed mod C#J = 1, is 
accomplished by means of a  straightforward and 
fairly  fast procedure that resembles  a  greatest com- 
mon divisor calculation. If e is  chosen  first,  as indi- 
cated, then d will usually turn  out to be almost as 
large  a number as n, causing the decryption process, 
represented by the equation M = C d  mod n, to be 
quite slow. The situation can be  remedied in part by 
computing four auxiliary numbers defined by the 
equations 

A, = qP-I mod n, A,  = n + 1 - A,, 

d, = d mod(p - l), d, = d mod(q - 1); 

decryption is then done by computing 

M = (A, x ((C mod p)dp mod p )  

+ A,  x ((C mod q)dq mod q)) mod n. 

In this calculation, the modular exponentiations are 
done with the moduli p and q,’ which are about half 
the length of n; the time required is  usually  reduced 
by about 70 percent. The auxiliary numbers, like  all 
the other quantities except n and e, must be  kept 
secret. 

To verify that the computations have  been done 
correctly, the program  now  generates  a random 
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number of the same length  as n, encrypts it and 
decrypts it, and verifies that the end result  agrees 
with the original. As an additional test  for RSA, 
another random number is generated,  decrypted and 
encrypted, then compared with its original. 

For experimental and testing  purposes, the key  gen- 
eration program was written so it could generate 
keys  with moduli between 60 and 600 digits  long (1 2 
to 125 words), although in actual practice the ex- 
tremes of the range are not useful:  less than 160 is 
probably not secure enough, and more than 320 
seems to be  overkill. The average  key generation 
time is shown in Table 3. The variability in the 
prime search procedure, previously  discussed,  causes 
the key generation time to be also  highly  variable in 
individual cases,  especially  for  longer moduli; it is 
not uncommon for  a key generation run to take 
anywhere  between half to twice the stated average 
time. 

Speed  and  cryptosystems  design 

The figures in Table 3 show that for moduli in the 
range of 200 to 250 digits,  which  is  generally  consid- 
ered an adequate length, the average RSA key gener- 
ation time on a PC AT is  two to four minutes. This 
time seems quite reasonable  when one considers that 
in a  public key  system the keys should rarely  be 
changed Gust like telephone numbers). 

It is apparent that, for  a  given modulus length, the 
average ElGamal key generation time is  larger by a 
factor of 4 to 7; the reason  is that a  single  large prime 
is required, rather than two  smaller  ones.  However, 
the difference  may not be very significant, in that 
with the ElGamal system the same modulus is shared 
by many users;  hence  very  few modulus generations 
are needed. 

A different picture emerges  when one compares any 
public key encryption/decryption time with the cor- 
responding time for the Data Encryption Algorithm. 
This comparison is  first made with  regard to the RSA 
system, then some observations are presented  per- 
taining to the ElGamal  system. The first  considera- 
tion, already mentioned, is that RSA encryption can 
be made quite fast  by  choosing the number 3, or 
another small  prime,  as the public key; but since 
each encrypted message has to be decrypted in order 
to make  sense, it is  really the average  of encryption 
and decryption time that gives a  meaningful measure 
of performance. Under DEA the two times are essen- 
tially the same. 
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Table 4 RSA  and  DEA block encryption  time 

Modulus  Length  Enc.  Time Dec. Time 
(digits) (words) (ms) ( m  

125  26 23  1,210 
160  33 35  2,220 
200  42 50  4,010 
250  52 73  7,240 
320  66 115  13,940 
400 85 170  26,040 
500  104 250  47,950 

DEA 0.306  0.308 

Table 5 RSA  and  DEA byte  encryption  time 

Modulus  Length  Enc.  Time  Dec. lime 
(digits) (words) ( m  ( 4  

125  26 0.44  23 
160  33 0.53  34 
200  42 0.6 1 48 
250  52 0.70 70 
320 66 0.87  105 
400 85 1.02  157 
500  104 1.20 230 

DEA 0.0383  0.0386 

The second point is that the comparison can be 
made in two ways: 

By comparing the time needed to encrypt/decrypt 
a  single  block-Under DEA the block, or mini- 
mum  unit of encryption, is 8 bytes; under RSA it 
is equal in length to the modulus. This comparison 
is appropriate if the intended application requires 
the encryption of short items, such as DEA keys, 
or individual database fields. 
By comparing the average time per byte-This is 
appropriate if the application involves  bulk en- 
cryption of  large  files. 

Table 4 and Table 5 show the results of the two 
comparisons. The times for the DEA were obtained 
by using  a  highly optimized implementation of the 
algorithm. 

It is apparent that the speed of the DEA, compared 
to the average encrypt/decrypt speed of a  200-digit 
RSA, is better by almost three orders of magnitude at 
the byte  level, and almost four at the block  level. 
Such enormous differences are bound to affect the 
role that DEA or RSA can play in any integrated 
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Table 6 ElGamal  block  encryption  time 

Modulus  Length Av. Enc./Dec. Time 
(digits) (words) (s) 

125  26 5.1 
160 33 
200 

10.6 
42  19.2 

250  52 
320 66 

35. 

400 
72. 

85 
500 

135. 
104 235. 

cryptosystem.  While DEA is  likely to remain the 
algorithm of choice  for routine message and file 
encryption, the increasing  recognition  being  given to 
the importance of  key management, and the diffi- 
culty of accomplishing it with DEA, have drawn 
attention to the unique advantages of the public key 
systems. If a public key algorithm is used  only  for 
the specialized  task  of  exchanging other crypto- 
graphic keys, the performance indicated in the 
tables-several seconds  for  each key  exchange-is 
quite acceptable in many environments. 

Under the ElGamal  system, encryption/decryption 
is  slower than under RSA, as can be  seen by compar- 
ing Table 6 and Table 4. Here encryption requires 
two modular exponentiations and it cannot be sig- 
nificantly  speeded up by choosing a small  key;  de- 
cryption entails an exponentiation with a modulus 
that cannot be factored. Another disadvantage of 
ElGamal  is that each  block of plaintext produces 
two  blocks of ciphertext. 

On the plus  side, one can list  two  advantages: 

Encryption involves a random number, so if a 
given plaintext is encrypted on two  different  oc- 
casions the corresponding ciphertexts are different; 
this is a protection against  possible  replay  attacks. 
Under RSA, if the plaintext is assumed to be  chosen 
from a small  set of candidates, an attacker can 
encipher each candidate with the public key and 
compare the results  with the ciphertext; under 
ElGamal this attack does not work. 

Conclusion 

This paper  has  stressed a variety of techniques for 
increasing the speed  of the numerical calculations 
that constitute the core of exponentiation cryptosys- 
tems. The results that can be obtained by using  these 
techniques have  been illustrated. A PC implementa- 

tion of the major components of these algorithms 
yields a very reasonable performance. The solutions 
made possible by these algorithms are likely to be- 
come  increasingly important as the interconnectivity 
of computers grows. 

Personal Computer AT is a registered trademark of International 
Business Machines Corporation. 
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