Extension of the relational
database semantic
processing model

A data model consists of three paris: (1) a data defini-
tion that represents the information in an understanda-
ble manner; (2) a definition of the constraints that must
hold for the information to be valid; and (3) a definition
of operations that can be performed on the informa-
tion. Current database management systems do not
allow explicit specification of all three parts of the data
model. This paper gives an approach that extends cur-
rent database management systems through a tech-
nique called pre-precompilation.

deductive database is proposed as a solution for

recursive or semantic processing, utilizing the
advantages of both relational and knowledge-based
systems. The following introduction focuses the
reader’s understanding on the parts of a relational
data model and states the need for extensions.

The relational data model discussed in Reference 1
consists of the following three parts: (1) a structural
part that represents information in the form of a
table; (2) an integrity part that applies the constraints
on the table;z’3 and (3) a manipulative part that
operates on the table. These three parts are shown
in Figure 1. The following are the characteristics of
each component.4

The structure of the information translates into the
format of a table, in which the elements may repre-
sent such entities as concepts, events, or objects.

BM SYSTEMS JOURNAL, VOL 29, NO 4, 1980

by T. Hirao

Although the table is simple, it is difficult to represent
as a tree structure. A free structure is a convenient
way to represent a generalization, a specialization,
or an aggregation. 3

Integrity constraints assure that information is cor-
rect as regards its creation and the operations that
use it. Integrity constraints are also important with
respect to the semantics and maintenance of data.
Therefore, we have to define precisely the integrity
constraints at the time of the creation of a structure.
Typical examples of integrity constraints are the 1SA
relations, which are functional dependencies, and
the domain constraint, which relates to the properties
of a value.® The term Is4 is a self-referential term
meaning “is a,” and is used in the sense of “is a
relation.”

The manipulative part defines the four types of op-
erations for tables: selection, insertion, deletion, and
updating. The Structured Query Language (SQL) has
been the standard manipulative language for the
relational database model since 1986.”

© Copyright 1990 by International Business Machines Corporation.
Copying in printed form for private use is permitted without
payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright
notice are included on the first page. The title and abstract, but no
other portions, of this paper may be copied or distributed royalty
free without further permission by computer-based and other
information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

nrao 539

Figure 1 Three components in the relational database
model

STRUCTURAL PART

MANIPULATIVE PART INTEGRITY PART

Relational database requirements become increas-
ingly complex each year as information processing
technologies increase in function. Some of these
requirements cannot be implemented using rela-
tional database technologies. For example, manipu-
lations of the engineering data in a CAD/CAM envi-
ronment have to process tree structures or recursion.
However, it is difficult to do these operations, be-
cause values of attributes in a relational database are
constrained to be atomic values.

Therefore, we need manipulation based not only on
the data alone but also on relationships among the
data, that is, on the semantics of the data. To pursue
the operations that are the subject of this paper,
researchers propose new data models such as the
Non-First-Normal-Form model® (NF2) and a deduc-
tive database model™'® We define the deductive
database model later in this paper. The aims of the
NF2 model and the deductive database are to estab-

lish capabilities of recursive or semantic processing.
That type of data processing cannot be achieved
using current database management systems.

This paper discusses characteristics and limitations
of the following three current database management
systems: (1) those based on the hierarchical model;
(2) those based on the network model; and (3) those
based on the relational model. We then propose new
techniques to overcome the limitations in using the
concept of the deductive database. However, we still
use current technologies, such as the relational da-
tabase, conventional programming languages, and
so on. Next we discuss the semantics in database
processing and propose techniques of resolving lim-
itations of integrity processing, recursive processing,
and the handling of ambiguous (or fuzzy) data.

Conventional databases

In order to provide basic knowledge about database
management systems and knowledge-based sys-
tems,''™'* we first review three conventional database
management systems and their data models—the
hierarchical, network, and relational models.

The hierarchical model represents information in
the form of a tree, in which it is easy to understand
the relationships among higher and lower informa-
tion. Each box shown in Figure 2A is called a seg-
ment and segments are linked by pointers. These
pointers facilitate the capabilities of the referential
integrity constraints. The hierarchical model pro-
duces duplicated segments, as, for example, box E
in Figure 2A.

Figure 2 Current database models

HIERARCHICAL MODEL

B NETWORK MODEL

A

(€| RELATIONAL MODEL

1 2 1 3 1
B c

,_, 4 2 5 2(3

T

€

540 Hreo

1BM SYSTEMS JOURNAL, VOL 29, NO 4, 1990

Table 1 Characteristics of three major models

Item Hierarchical Model Network Model Relational Model

Object representation Segment Record Tuple (row)
Constraints

Domain Few Few Some

Relation Some Some Some

Referential integrity Deletion Deletion Definition by DDL

parent to child parent to child

Relation

Representation LN I:N N:M

Duplication Some None* Some
Manipulation/access unit CALL/segment READ/WRITE/record SQL/set
Exception handling Status code Completion code Return code
Recursive function Logical relation Available None
Deductive function None None None

The network model represents information in the
form of a network. Each box in Figure 2B is called
a record and is linked with every other box with links
that realize some capabilities of referential integ-
rity. The network model does not produce duplicate
records.

The relational model represents information as a
table. This model may be implemented easily on a
workstation as well as on large mainframe systems.
Each box shown in Figure 2C is called a table.
Relationships among tables are established by col-
umns having values in common between pairs of
tables. Referential integrity in a relational model,
such as DATABASE 2™ (DB2™) Version 2, is realized
with the definition of the table using a FOREIGN KEY
phrase in the CREATE statement.'® The relational data
model produces duplicated columns because of their
foreign key, as in the example of the 2 and 3 in
Figure 2C, table E.

Conventional database management systems and
their data models have characteristics as summarized
in Table 1, from which we can extract problems of
each model as follows.

Data redundancies. The relational model and the
hierarchical model have redundancies of data, which
is obvious from Figure 2. (See, for example, E in the
hierarchical model and 2 in table E in the relational
model.)

Lack of constraint representation. There are three
types of constraints: (1) domain constraint, (2) rela-
tion constraint, and (3) referential constraint. The
domain constraint is that an attribute value should
meet certain conditions. For example, the character
length for an employee number is 5. These con-

IBM SYSTEMS JOURNAL, VOL 29, NO 4, 1990

straints are not specified explicitly in the three data-
base models, except for predefined data types, such
as date, integer, etc. Relation constraints control the
attributes in a tuple. For example, the maximum
salary of a person whose age is under 30 must be less
than a specified amount. These constraints are not
supported by the hierarchical model and the network
model. In the relational model, one can specify such
a condition by the WITH CHECK OPTON in the CREATE
VIEW statement. The referential constraint is that the
value in the foreign key must be the same as the
primary key in the referenced table. The relational
model can specify the referential constraint in the
CREATE TABLE statement, which has already been
mentioned.

Limitations of operational capability. The hierarchi-
cal and network models have been used for a long
time. In those models, we can manipulate only one
segment or record at a time by the host programming
language via an access path that is predetermined in
the database system. On the other hand, sQL in the
relational model environment is a user-oriented lan-
guage that is executable interactively or through the
host programming language. The relational model is
also able to manipulate many tuples at a time (called
a SET operation) by means of automatic navigation.
However, SQL cannot process recursively, and the
three models cannot do inferencing the way it is
done in artificial intelligence (A1) processing.

Semantics in a database and its processing

Semantics in a database is discussed mostly in the
area of a database design. One example is that of
conceptual modeling—classification, aggregation,
and generalization. These aspects are incorporated
in such semantic data models as SHM, RM/T, SDM,

Hrao B4q

Figure 3 Relationship between the relational database
and the deductive database

DEDUCTIVE DATABASE

RELATIONAL DATABASE
(EXTENSIONAL DATABASE:
FACT)

INFERENGCE ENGINE
{INTENSIONAL DATABASE:
RULE)

[BASED ON THE FIRST-ORDER PREDICATE LOGIC]

Figure 4 Advanced database

SEMANTIC PROCESSING
& RECURSIVE PROCESSING
INFERENCE PROCESSING

RELATIONAL
DATABASE SYSTEM

Table 2 Characteristics of relational database and
knowledge-based systems

Flexible processing
with logic pro-
gramming
inference
recursion

list & set
semantic process
ambiguous data

Advantages Disadvantages
RDB Table representation Lack of processing
Applicable for * recursion
large databases * outer join
Multiprocessing * list process
Full recovery/ semantic process
restart Cannot represent the
Referential integrity set in the relation
KBS

Limited size of the
database in main
storage

No support of multi-
processing and
recovery/restart

RDB: Relational database
KBS: Knowledge-based system

TAXIS, and IFO.

15,17

One of the aims of semantic data

models is that of integrity maintenance, whereas only
the referential integrity is supported in current da-
tabase management systems. Other aims of semantic

542 Hreo

data models are those of extending the capability of
data manipulation (such as recursive processing) and
the processing of incomplete information.

This paper focuses on the processing of the semantic
differences between data types by means of integrity
maintenance, recursive processing, and the process-
ing of ambiguous data. Processing details are dis-
cussed in later sections of this paper.

As a basis for later discussion, we briefly mention
characteristics of relational database systems and
knowledge-based systems. Currently, a relational da-
tabase system is a database management system that
maintains the static business data and provides for
full recovery, restart, and so on. However, a rela-
tional database system does not provide for recursive
processing. A knowledge-based system, on the other
hand, is an application composed of a knowledge
base of facts and rules that use the flexible processing
of recursion or inference formation. However, a
knowledge-based system is limited in its use as a
database system. Table 2 summarizes the advantages
and disadvantages of relational database systems and
knowledge-based systems.

By combining the advantages of both systems, we
can overcome the disadvantages of the relational and
knowledge-based systems. We can consider the re-
lational database system as a database management
system that maintains static data, and we can con-
sider a knowledge-based system as an application
system that exploits the capabilities of a relational
database management system.

Toward a new database system

Because relational database systems and knowledge-
based systems have characteristics that complement
each other, we can construct a new database man-
agement system that can expand the capabilities of
a database management system and knowledge-
based system. Let us consider the new database
system as a deductive database system because it
uses a knowledge base. This new database system
has the following four characteristics:

e [t is based on first-order predicate logic.

* It can manipulate incomplete or ambiguous infor-
mation.

e It can make inferences using facts and rules.

e It can maintain the integrity of data.

Figure 3 represents the relationship between the
relational database and the earlier deductive data-

IBM SYSTEMS JQURNAL, VOL 29, NO 4, 1930

base. There are three ways to implement the new
deductive database: The advanced database shown
in Figure 4 adds new function to the relational
database to enable new capabilities of semantic proc-
essing, including recursion and inference. This ap-
proach need not change existing programs, which is
a great advantage. However, the current database
does not have these capabilities. Many researchers
propose new data models, such as the NF2, the se-
mantic data model, and the deductive data model.
Table 3 summarizes the characteristics of these three
models. Each data model shown in Table 3 has two
types of data, one is data itself and the other is
metadata, which describe characteristics of real data.
The properties of the data and metadata are shown
in Figure 5.

Metadata incorporate the following five definitions:

& Schema defines the table, the column and its
domain name, the primary key, and the foreign
key.

&~ Domain defines data types and characteristics of
the domain.

~ Structure defines the relationships among tables
or columns in the same table.

~ Constraint defines the referential integrity and the
relation integrity.

& Operation defines the alert and trigger that are
executed at the time of a special event; operation
also defines procedures that are used for inferenc-
ing.

The meaning of soft and hard data is as follows. Sofi
data are ordinary data that are manipulated by users.
Hard data are new types of data, typically historical
data, that require control information that is stored
in soft data. For example, CAD/CAM data are hard
data that require information of the creator, the dates
of any modifications, and their relationship to other
CAD/CAM data in soft data. Figure 6 shows an ex-
ample of metadata.'® The important fact is that we
can manipulate both metadata and soft (natural)
data in a consistent way.

Figure 5 Types of data

METADATA
| I
SCHEMA STRUCTURE CONSTRAINT
DEFINITION DEFINITION DEFINITION
DOMAIN PROCEDURAL
OPERATION

DATA

- CONTROL DATA WITH - CONTROL DATA WITH

TIME STAMP TIME STAMP
- CHARACTER DATA - PICTORIAL DATA
- NUMERIC DATA - IMAGE DATA
~DATE - VOICE

Figure 6 Example of metadata

DATABASE DEFINITION
SCHEMA (PERSONNEL) :

TABLE DEPT = (DEPT#, DNAME, MGR) PKEY (DEPT#)}

TABLE EMP (EMP#, ENAME, AGE, SEX, DNO) PKEY (EMP#)
TYPE-DCMAIN:

TYPE ID = {DEPT#,EMP#,MGR,DNO} CHAR(4)

TYPE NAME = {DNAME, ENAME} CHAR(20)

TYPE AGETYP = {AGE} SMALLINT < 70
TYPE SEXTYP = {SEX} CHAR(1l) {'F’,'M']

STRUCTURE :

RELATION D-TO-E [DEPT:DEPT#, EMP:DNO]
RELATION E-TO-D [EMP:EMP#, DEPT:MGR]
CONSTRAINT:

C(D-TO-E) DELETION SET NULL

C(E-T0-D) DELETION SET NULL

PRCCEDURAL:

PREDICATE AGE >= 30 WHERE MGR = EMP#
PREDICATE EMP,COUNT (*) <= 20

WHERE DNAME LIKE ‘B%’ AND DEPT# = DNO

Table 3 Characteristics of new data models

item NF2 Semantic Model Deductive Model
Representation Non-normalized table Graph or logic Table
Constraints Yes Yes Yes
Relationship N:M Function, abstraction Knowledge (rule)
Language Extended SQL Function Predicate logic
Unit of operation List, set Set of objects Record
Function of deduction — Inheritance Derive
IBM SYSTEMS JOURNAL, VOL 29, NO 4, 1980 wrao 543

ming language. The logic programming language can
do recursive processing. Therefore, it is easy to im-
plement a logic database. However, there are some
limitations. The database space is limited to the
memory of the running address space. Existing pro-

Figure 7 Logic database

LOGIC LANGUAGE FAST DATABASE ACGESS grams must be changed in order to access a logic
(WITH INFERENCE ENGINE) | < MULTIPROCESSING database. We have to create the interface routine for
RECOVERY/RESTART coordinating a conventional programming language

and a logic programming language.

The compromise approach shown in Figure 8 bene-
fits from the advanced database and logic database
approaches in that it incorporates cooperation be-
Figure 8 Compromise approach tween relational databases and the logic program-
ming language. Although the overhead of this ap-
proach may be less than that of the logic database
approach, it is greater than that of the advanced

database approach. Therefore, we should consider
RELATIONAL KNOWLEDGETOOL. (KT} i i i ierati
DATABASE - o <= OR LOGIC LANGUAGE that this approach is a step in the migration to an
(EXTENSIONAL {INTENSIONAL advanced database approach. This paper discusses a
DATABASE) ENGINE DATABASE) . LB .
compromise approach because of its implementabil-
~INFORMATION. - SEMANTIC PROCESS ity at the present time. Thus we shall discuss seman-
- REFERENTIAL ZUSER INTERFACE tic processing, recursive processing, and the process-
INTEGRITY - NATURAL-LANGUAGE i i
PROCESSING ing of ambiguous data.

- TRANSLATION OF SQL

Semantic processing

Integrity constraints. One of the aims of a deductive
database is that of integrity maintenance—referen-
tial integrity and relation integrity. Current relational
database systems cannot define the integrity rule
among data explicitly, except for referential integrity,
E’“Pé;ggg Tabllq:ME DEPTNO AENO SALARY AGE which is realized in DB2 Version 2. Therefore, it is

difficult to maintain data integrity. To have the
capability of integrity maintenance, SQL should have

Figure 9 An example table

a0000 J.Hull AQ01 AQ000 700000 45 . : :
20001 F.pate BOOL AGGOD €00000 35 the new functions shown in Table 4. New functions
A0002 T.Teorey C001 A0000 500000 36 of constraint checking are essential in order to de-
AQ003 C.Hunt D001 A0000 550000 40 3 3 3

0004 A.Martin BOO1 A0001 400000 36 V?IOP a new defiuctlve database. _In t.hls secjtlon, ‘.Ne
A0005 S.Ohta CO01 A0002 420000 34 discuss a technique that can maintain the integrity
A0006 P.Huit DOOL A0003 340000 30 among data in a relational database. A database that
AQQ07 G.Gull BOO1 A0004 280000 28 d
20008 J.Bu8h BOOL A0004 270000 30 uses this technique can maintain consistency an
A0009 E.Rarada CO01 A0005 250000 26 reduce redundancies in the database.

AQ010 K.Kelly D001 AQ006 200000 25

A0011 P.Sowa D001 A0006 250000 25 e .

A0011 F.Role D001 A0006 240000 27 The double precompiling technique. In order to proc-
(Zi’)“a‘f .‘i:;‘;'lg“ o ess semantics, we must specify such semantic infor-

mation as integrity constraints. To do this, we use a
) special table named a semantic table, which contains

Note: AENO is the column of the administrative . . R . M R
person. the information of integrity constraints. That infor-
mation will be created by a table creator, using the
SQL INSERT statement or the data load utility supplied

by DB2.
The logic database shown in Figure 7 adds database
function, multiprocessing capability, and the func- To illustrate, consider the example employee table
tions of recovery and restart to the logic program- shown in Figure 9. This table has some integrity

544 Hreo IBM SYSTEMS JOURNAL, VOL 29, NO 4, 1990

constraints. For example, the column AENO, which
means the administrative employee number, is the
foreign key of the column EMPNO. The AGE value
must be greater than or equal to 25 and less than or
equal to 50, and so on. We can now incorporate the
integrity-constraints information into the semantic
table shown in Figure 10. This figure shows sample
data for the employee table in Figure 9. The semantic
table will be used twice—at pre-precompile time and
at the execution time of the user program, which is
shown in Figure 11.

Semantic processing is executed in the following
sequence of steps.

Program coding. First, code the program using new
statements, instead of the standard sQL statements
for the input of the pre-precompiler. In this paper,
we use the symbol $ preceding standard sQL state-
ments, by which they are recognized by the pre-
precompiler as statements for semantic processing.
Thus the SINSERT statement is used for semantic
processing rather than the standard INSERT state-
ment.

Pre-precompile. The program prepared in the first
step is pre-precompiled, which translates the state-
ments with the $ character into standard sQL state-
ments plus some other statements that are needed
for semantic processing. This process uses informa-
tion in the semantic table.

Normal processing. The conventional relational da-
tabase system has to do normal processing, which
includes precompile, compile, and link edit. This
includes an interface routine supplied by the new
deductive database system.

Here we present two examples using the Knowl-
edgeTool™, which is an 1BM-supplied artificial intel-
ligence (Al) tool based on pL/1. KnowledgeTool (KT)
is used for implementing expert systems. We use the
KT in the new deductive database system because
that system requires knowledge-based processing.
The function to be performed by the program is to
update the employee table by inserting the data for
a new employee.

Given:
$INSERT INTO Employee
VALUES ("A0015’,”T. HIROTA’,
'C001’,” A0002’,25000,25)

IBM SYSTEMS JOURNAL, VOL 29, NO 4, 1990

Figure 10 An example of semantic table

Semantic
TNAME

Employee
Employee
Employee
Employee
Employee
Employee

Table
COLUMN PKEY FKEY REFT RI UP DOWN

EMPNO Yes

NAME

DEPTNO Yes DEPT NULL

AENO Yes Employee NULL

SALARY

AGE 25 50

Figure 11 Semantic processing with the pre-precompiler

STEP 1 | USER
PROGRAM
DB2 DATABASE
STEP 2 | PRE-PRECOMPILE |
A
STEP 3 | MODIFIED
PROGRAM
USER
+ ™ TABLE
STEP 4 | PRECOMPILE
AND COMPILE/
LINK EDIT
A
STEP § | PROGRAM <
EXECUTION —

Table 4 New SQL for the deductive database

Statement Functions
SELECT Current + Recursion and inferencing
INSERT Current with RI (RESTRICT)

+ Constraint check and value check
DELETE Current with RI (RESTRICT, SET NULL,

CASCADE)

UPDATE Current with RI (RESTRICT)

+ Constraint check and value check

Hrao 545

Figure 12 The derived relation

Figure 13 Derived relations in the relational database

ANCESTOR
a b
b c
b d
a c
RIVE
a a WILL BE DERIVED

Translation:
Allocate A for the semantic table.
Allocate B for data to be inserted.

WHEN (S1-> A &
S2-> B (S2-> AGE > S1-> DOWN,
S2-> AGE < S1->UP))
BEGIN;
EXEC SQL INSERT INTO
Employee VALUES (...);
END;

This semantic processing checks age restrictions.

Ne. i, delete information of the employee number
AOQ008 from the table in Figure 9.

Given:
$DELETE FROM Employee
WHERE ENO = "A0008’

Translation:
Allocate A for the semantic table.
Allocate B for conditions of DELETE.

WHEN (S1-> A (S1->FKEY = "Yes") &
S2-> B (S1-> REFT = S2- > TNAME)
BEGIN;
EXEC SQL DELETE FROM Employee
WHERE EMPNO = :52- > EMPNO;
EXEC SQL UPDATE :S1->TNAME
SET :S1->FKEY = NULL;
END;

This processing uses referential integrity. In this case,
the DELETE rule is SET NULL.

Execution. We can execute the program, which is
pre-precompiled and compiled. Although we use KT,
this pre-precompile approach may be adapted to a
traditional programming language such as pL/l or
COBOL.

546 +reo

Recursive processing

Defining recursive processing. When a relation
R(a,b) exists between the items ¢ and b and a relation
R(b,c) exists between the items b and ¢, a new relation
R(a,c) is also established. The relation R(a,¢) is called
the derived relation. This derived relation is repre-
sented by the decision tree shown in Figure 12. The
process of tracing the decision tree is known as
recursive processing and is included in such Al ar-
chitectures as PROLOG. Using PROLOG, we can derive
¢ from a as indicated in Figure 12. However, current
relational database systems have to record the rela-
tion R(a,c) as shown in Figure 13, because relational
database systems cannot do recursive processing. If
we can perform recursive processing, we can derive
the relation without storing redundant data in the
database. We now discuss the necessity of recursive
processing and its implementation in a relational
database environment.

The necessity of recursive processing. Consider the
parts-relation shown in Figure 14, which is a typical
relation requiring recursive processing as in the case
of a bill-of-materials overview for all parts of a cer-
tain product. This type of relation is suitable for repre-
senting a hierarchical database, because the parts
relation is represented hierarchically.

To avoid the complication of specifying the way to
enter a certain record into a hierarchical database,
we should migrate from the hierarchical database to
the relational database gradually. However, it is dif-
ficult to store parts records in a relational database
efficiently. Currently, we use an identifier that en-
ables us to recognize the hierarchical relationship of
parts to one another, and we add logic that manip-
ulates the identifier in the program. This is the way
we develop applications that can trace the hierarchy
upward or downward, using the identifier and adding
the capability of recursive processing to a relational
database.

1BM SYSTEMS JOURNAL. VOL 29. NO 4. 1990

Figure 14 The parts-relation

PPPPPPPPPPP
cceece
C GK C
ceeecce

C GK C
ccccce

P P
P P
P P
P P
P ccccee P
P P
P P
PPPPPPPPPPP

PPPPPPPPPPP

g gy tgtd oo

P
P
P
P
P
P
P
PPPPPPPPPPP

Cccceece
C C
ceecece

C C
cceeee

CCcCccCcC { G

The implementation of recursive processing. In order
to do recursive processing, we have to declare the
information of recursiveness in some table R, and
we have to code in a special form that specifies
recursion.

Preparing the declarative information of recursive-
ness. Because of the characteristics of a foreign key,
recursiveness can be considered as the relationship
between a primary key and the foreign key in tables.
Consider the table shown in Figure 9. Given that
there is a relationship between EMPNO (employee
number) and AENO (administrative employee num-
ber), these are the primary key and the foreign key
with respect to one another. If we want the name of
an employee’s manager, we trace columns in the
following sequence:

EMPNO — AENO = EMPNO — AENO...

That is, we trace the sequence of the primary key
and the foreign key. Thus, for example, managers of
the employee number A0006 are A0O003 and A0000.

We can record the information of the primary key
and the foreign key in a DB2 catalog by executing
CREATE statements as follows:

CREATE TABLE Employee (........
PRIMARY KEY (EMPNO)
REFERENCES Employee
ON DELETE SET NULL)

IBM SYSTEMS JOURNAL, VOL 29, NO 4, 1920

CREATE UNIQUE INDEX Xemp
ON Employee (EMPNO)

Of course, we can prepare the special table that
retains the information of the primary key and the
foreign key, as in the semantic table in Figure 10.

Coding statements for recursive processing. Many
requests may be satisfied using recursiveness. For
example, find the names of all managers in my
management chain; or find the name of the manager
whose second line is the president. If we want to
specify these requests in one statement, we must
obey predefined rules of syntax and procedures. This
paper proposes a new syntax of SQL statements as
follows:

¢ A statement is for recursive processing.
s The number of times and in which direction the
recursion is to be done are given.

Let us review the new sQL statements in detail.
Expansion to the SQL statement is

$SELECT column list FROM table list
RECURSIVE
USING starting-column-of-recursion
,{ALL| n}
WHERE condition

where

Hrao B47

Figure 15 Results of the pre-precompiler

(a)

$SELECT NAME FROM Employee
RECURSIVE USING EMPNO ,ALL
WHERE EMPNO = ‘A0006’

is translated to the following statements,

DCL KEYAREA CHAR(5) ;

DCL BAENO CHAR(S);
DCL AENO(100) CHAR(S):
DCL BNAME CHAR(20) ;

DCL NAME(100,100) CHAR(20) INIT ('/FFFFF’);
DCL HIAR_CNT FIXED BIN(31) INIT(O),
REC_CNT FIXED BIN(31) INIT(O0)};
EXEC SQL DECLARE CURSOR Cl1 FOR
SELECT NAME,AENO FROM Employee WHERE
EMPNO = :KEYAREA;
HIAR_MAX = 999999 ;
AENO(1) = 'A0006’ ;
DO WHILE(SQLCODE = 0 & HIAR_MAX-HIAR_CNT>0) DO;
REC_CNT = 0;
KEYAREA = AENO (HIAR_CNT) ;
EXEC SQL OPEN Cl;
HIAR_CNT = HIAR_CNT + 1 ;
DO WHILE (SQLCODE = 0) DO;
REC_CNT = REC_CNT + 1 ;
EXEC SQL FETCH Cl INTO :BNAME , :BAENO ;
NAME (HIAR_CNT,REC_CNT)= BNAME ;
AENOC(HIAR_CNT) = BAENO ;
END;
EXEC SQL CLOSE C1 ;
END;

« RECURSIVE indicates this statement contains re-
cursive processing

~ USING indicates the direction of the recursion; a
column name is the primary key or the foreign
key :

~ ALL|n indicates the number of recursive processes;
the default is ALL, which means to get all data
through the whole recursive process

The sample requests previously described are now
coded, using the new SQL syntax as follows:

(a) $SELECT NAME FROM Employee
RECURSIVE USING EMPNO ,ALL
WHERE EMPNO = ’A0006’

(b) $SELECT NAME FROM Employee
RECURSIVE USING AENO ,2
WHERE AENO = ’A0000’

We can now process these requests. First, the state-
ments have to be translated into conventional SQL
form using the pre-precompiler. One approach is
shown in Figure 15, which is the result of the pre-
precompiler from the request (a) just given. Because

548 Hrao

1
it is easy to expand the current application using this
programming language, this type of implementation
is valuable for those who use a traditional program-
ming language.

Implementation using the KnowledgeTool. Another
implementation is required for users who use such
Al tools as KT, which can allocate storage dynamically
in responding to the new data. The KT also provides
class-type variables that can select members imme-
diately after conditions have been met. These capa-
bilities are convenient to pass several answers to the
program at the time of the execution of the extended
SQL SELECT statement. We can also make inferences
using rules stored in the knowledge base, after ex-
tracting the facts from the database. We can imple-
ment the pre-precompiler and routines for recursive
processing using the skeleton of the process shown
in Figure 16. The pre-precompiler interprets the

Figure 16 The recursive process using KT

USER PROGRAM
WITH EXTENDED SGL

DB2 DATABASE
A

PRE-PRECOMPILE

A

A
PRECOMPLILED

—»| PROGRAM WITH 'CALL
THE KT SUBROUTINE

l INITIALIZE

rY

CLASS: SEARCHING
KEY STACK

CLASS: RESULT
STACK

1BM SYSTEMS JOURNAL, VOL 29, NO 4, 1990

extended sQL statement and checks the primary key
and the foreign key in the semantic table. Then it
creates two types of stacks—one stack for searching
and the other for storing results. The KT subroutine
is called by the user program at execution time and
uses the KT functions. Using the skeleton in Figure
16, implementation of recursive processing is easy.

Processing ambiguous data

Definition of ambiguous data. Ambiguous data are
defined as incomplete information that is stored as
null values in a relational database. There are two
meanings of null value: (1) don’t-care value, which
1s not permanently stored; and (2) don’t-know value,
which is not yet stored. Examples of ambiguous data
are shown in Figure 17.

Manipulating ambiguous data. Current relational da-
tabase systems treat these two types of ambiguous
data as null values and make no distinction between
them. However, we want to treat null values in
another way.

Consider the queries against ambiguous data:

s Name the persons who are proficient in English.

» Find the persons whose scores on the TOEIC are
about 800 (ToEIC is Test of English for Interna-
tional Communication).

We want to retrieve the right information using such
queries. In order to manipulate ambiguous data in
DB2, we propose the pre-precompiler method, for
which two tables must be created prior to pre-pre-
compilation. An ordinary table is created, which
contains real data as well as additional columns
representing ambiguous data, an example of which
is given in Figure 18. A keyword table is prepared,
which contains special keywords for pre-precompil-
ing, as shown in Figure 19.

The process of pre-precompilation is as follows:

1. Code the program with a special keyword given
in the keyword table.

Example 1. $SELECT EMPNO FROM VTI
WHERE TOEIC = $high

Example 2. $SELECT * FROM VT]1
WHERE TOEIC = $about800

IBM SYSTEMS JOURNAL, VOL 29, NO 4, 1990

Figure 17 Ambiguous data

EMPNO TOEIC

El 812

E2 - <+—- about 800

E3 - <«— not yet assigned
E4 - «— not assigned

E5 730

E6 590

Figure 18 Table with ambiguous data

Tl
EMPNO TOEIC TOEICFl TOEICF2

El 812 - -

E2 - 780 820 «— about 800
E3 - 700 1000 <«— high

E4 - - - +— unknown
E5 730 - -

E6 590 - -

«— View 4

2. The pre-precompiler translates the extended sQL
statement to the standard SQL statement using the
keyword table.

Example 1.

$SELECT EMPNO FROM VTI
WHERE TOEIC = $high

produces

SELECT EMPNO FROM T1
WHERE TOEIC

BETWEEN 700 AND 1000
UNION

SELECT EMPNO FROM Tl
WHERE TOEICF1 > = 700
AND TOEICF2 < = 1000
AND TOEIC IS NULL

Example 2.

$SELECT * FROM VT!
WHERE TOEIC = $about800

vrao 549

Figure 19 Keyword table for the pre-precompiler

T2
TABLE COLUMN KEYWORD VALUE1 VALUE2

vTl TOEIC $high 700 1000

vTl TOEIC $about800 780 820

VTl TOEIC @unknown

produces

SELECT * FROM T1
WHERE TOEIC BETWEEN 780 AND 820
UNION
SELECT * FROM T1

WHERE TOEICF1 > = 780
AND TOEICF2 < = 820
AND TOEIC IS NULL

3. The program, after translation, is the program
that contains only standard sQL statements.
Therefore, we can continue the next ordinary step
of precompiling. It is important to decide the
special keyword like $high, and to standardize
the meanings of the keywords for users in order
to use the keyword correctly.

Concluding remarks

The implementation of a new experimental deduc-
tive database is discussed. This database uses the
same first-order predicate logic as relational data-
bases. Therefore, prototypes of the new deductive
database are easily implemented using the relational
database.

Another component is that of the object-oriented
database, which incorporates the data and proce-
dures. The use of object-oriented databases and de-
ductive databases is also a topic of research in the
relational model. In the future, we hope to combine
databases and knowledge engineering.

Acknowledgments

The author is grateful to M. Egawa, H. Tsuchino,
and 1. Hayashi for their advice and comments during
the preparation of this paper. The author also thanks
George Stierhoff and the referees for their helpful
comments.

550 +irao

DATABASE 2, DB2, and KnowledgeTool are trademarks of In-
ternational Business Machines Corporation.

Cited references

1. E. F. Codd, “A Relational Model of Data for Large Shared
Data Banks,” Communications of the ACM 13, No. 6, 377-
387 (1970).

2. E. F. Codd, “Relational Database: A Practical Foundation for
Productivity,” Communications of the ACM 25, No. 2, 109~
117 (1982).

3. C. J. Date, Relational Database: Selected Writings, Addison-
Wesley Publishing Co., Reading, MA (1986).

4. D. C. Tsichritzis and F. H. Lochovsky, Data Models, Prentice-
Hall, Inc., Englewood Cliffs, NJ (1982).

5. J. M. Smith and D. C. P. Smith, “Database Abstractions:
Aggregation and Generalization,” ACM Transactions on Da-
tabase Systems 2, No. 2, 105-133 (1977).

6. C. J. Date, An Introduction to Database Systems, Volume II,
Addison-Wesley Publishing Co., Reading, MA (1983).

7. C. J. Date, A Guide to the SQL Standard, Addison-Wesley
Publishing Co., Reading, MA (1987).

8. R. Hull, “A Survey of Theoretical Research on Typed Com-
plex Objects,” Database, J. Paredaens, Editor, Academic Press,
London (1987), pp. 193-256.

9. H. Gallaire, J. Minker, and J.-E. Nicolas, “Logic and Data-
bases: A Deductive Approach,” ACM Computing Surveys 16,
No. 2, 153-185 (1984).

10. B. E. Jacobs, Applied Database Logic 1. Fundamental Data-
base Issues, Prentice-Hall, Inc., Englewood Cliffs, NJ (1985).

11. C. J. Date, An Introduction to Database Systems, Volume I,
Addison-Wesley Publishing Co., Reading, MA (1986).

12. T. Hirao, Relational Database System, Kindai-kagaku-sha
(1986, in Japanese).

13. Y. Kambayashi, “Semantics of Data Structures,” Journal of
the Information Processing Society of Japan 27, No. 2, 129-
139 (1986, in Japanese).

14. J. D. Ullman, Principles of Database Systems, 2nd edition,
Computer Science Press, MD (1982).

15. J. Peckham and F. Maryanski, “Semantic Data Models,” ACM
Computing Surveys 20, No. 3, 153-189 (1988).

16. IBM DATABASE 2 General Information Manual, GC26-
4073-3, IBM Corporation (1987); available through IBM
branch offices.

17. M. L. Brodie, “On the Development of Data Models,” On
Conceptual Modeling, M. L. Brodie, J. Mylopoulos, and
J. W. Schmidt, Editors, Springer-Verlag, Inc., NY (1984),
pp. 19-47.

Takayuki Hirao IBM Japan Lid., 1, Kanda Izumi-cho, Chiyoda-
ku, Tokyo 101, Japan. Mr. Hirao is an advisory instructor in the
IBM Japan Education Center, where he is working on education
activities for customers. He joined IBM Japan in 1974, working
as a systems engineer (SE) until 1980. He received his B.S. in
applied mathematics from Tokyo Education University (now re-
named Tsukuba University). Mr. Hirao is the author of Relational
Database Systems (in Japanese) and a member of the Information
Processing Society of Japan and Japanese Society for Artificial
Intelligence.

Reprint Order No. G321-5417.

IBM SYSTEMS JOURNAL, VOL 28, NO 4, 1990

