
Integrated hypertext and
program understanding
tools

This paper describes some concepts and issues
related to software tools integration. Questions
regarding data integration and functional
integration between tools are identified and
discussed. Some techniques for handling large
volumes of data are briefly described. A
prototype tool is described in which hypertext
links are automatically created between program
analysis data and hypertext documentation. With
this tool, end users can freely move between
source code views and related documentation. A
common annotation feature lets software
developers and information developers share
information and synchronize maintenance
activities in a single tools environment-

U nless a program is adequately understood,
effective maintenance of the program is im-

possible. Understanding a program involves
building a mental model that represents a pro-
grammer's current comprehension of the pro-
gram. ' In the case of large, complex systems, this
mental model is extremely difficult to construct
without automated assistance. Program mainte-
nance requires a fundamental capability to parse
and analyze programs, to extract appropriate in-
formation, and to organize and present that in-
formation so that it is useful to humans. We call
this capability program understanding, and it is a
crucial subtask in achieving many programming
deliverables, such as sizings, high-level design,
low-level design, build plans, actual code, and
fixes.

Documentation is an integral part of the software
development and maintenance process. An ex-

by P. Brown

amination of software development guidelines re-
veals that about two-thirds of the software devel-
opment tasks involve creating, modifying, or
reviewing documentation. For example, the ob-
ject of software reviews is usually a d o ~ u m e n t . ~
Large, complex systems frequently have thou-
sands of pages of associated documentation.
When a failure occurs, locating relevant sections
of the documentation to determine the appro-
priate corrective action can be time-consuming.
The problem is compounded because of currency
mismatches caused by frequent modifications of
documentation and code to accommodate engi-
neering changes, product updates, and newly
identified problems and solutions. Victor Basili,
of the University of Maryland, comments about
the importance of documentation in the January
1990 issue of IEEE Software:

Modification of complex software systems re-
quires a deep understanding of the functional
and nonfunctional requirements, the mapping
of functions to systems components, and the
interaction of components. Without good doc-
umentation of the requirements, design, and
code with respect to function, maintenance be-
comes a difficult, expensive and error-prone
task.

Wopyright 1991 by International Business Machines Corpo-
ration. Copying in printed form for private use is permitted
without payment of royalty provided that (I) each reproduc-
tion is done without alteration and (2) the Journal reference
and IBM copyright notice are included on the first page. The
title and abstract, but no other portions, of this paper may be
copied or distributed royalty free without further permission
by computer-based and other information-service systems.
Permission to republish any other portion of this paper must

IBM SYSTEMS JOURNAL, VOL 30, NO 3, 1991

Faced with growing software bases, increased
productivity demands, and mounting pressures to
move into computer-aided software engineering
(CASE) environments, software maintainers need
a consistent mechanism to capture and organize
information about their systems and to make it
available to a variety of CASE-type tools. Al-
though many of the CASE tools and methodologies
are oriented either to application or system de-
velopment, program understanding tools do not
seem to have the same limitations. Because no
specific methodology or process is enforced, the
tool is not constrained by functionality or con-
structs contained in the system. An understand-
ing tool should be applicable to the maintenance
of both applications and systems (operating sys-
tems, database management systems, libraries,
etc.) without substantial changes. User interfaces
and navigation styles should be user-driven, al-
lowing a user to follow an existing methodology
or to use the tool in a discovery mode.

This paper describes a tool suite that integrates a
hypertext tool and a program understanding tool.
The first section introduces the topic and briefly
describes the problems and concepts. Then Inte-
grated Software Engineering Applications (ISEA),
a cooperative processing tools platform, is pre-
sented. CodeNavigator, a program understanding
tool, is discussed along with several design is-
sues. Hypertext and related problems are sum-
marized, and a hypertext tool, TRAILS (Text Re-
trieval And Information Linking System), is
highlighted. A subsequent section discusses the
integration of the tools and some of the issues
involved in this process. The last section de-
scribes a scenario in which program understand-
ing data and hypertext information are linked
through integrated tools.

Problem summary

Software Engineering Tools is a tools develop-
ment organization in IBM. Our “customers” are
the IBM development laboratories that design
large systems such as the System/370” and the
System/390“. Although the laboratories develop
many different products, they are similar in that
they maintain large bases of existing code and
most of the products are intended to be used in
conjunction with products developed in other lab-
oratories. Most of the systems contain more than
a million lines of code. Frequently, there are ex-
tensive functional and documentary linkages with

364 BROWN

Figure 1 Maintenance tools requirements

SUPPORT
MULTIPLE
LANGUAQES

SUPPORT
MULTIPLE
ENVIRONMENTS

I I
I PRINT
I VtEWS CODE I

MULTIPLE/
EXTENDABLE
END-USER
FUNCTION

DATA /TOOL
INTEGRATION

other system products. Maintenance tools for the
laboratories must be able to cope with large
amounts of data and informational relationships
between software products, possibly at different
sites. Because of the large volumes of data, users
need the capability to filter out unwanted or ir-
relevant information and maintain a sense of con-
textual continuity when exploring information
from many sources.

A cooperative processing platform was devel-
oped to provide data and functional integration
capabilities for the tools. Figure 1 gives an over-
view of our approach to the tools. It addresses
four characteristics of our customers as described
below.

Multiple environments-Our customers develop
host operating systems and systems software.
The Multiple Virtual Storage (MVS) and virtual
machine (VM) operating systems have tradition-
ally been the primary operating environments.

Multiple languages-Assembly language and
PLIAS, an internal systems development language,

IBM SYSTEMS JOURNAL, VOL 30, NO 3, 1991

are the predominant programming languages.
However, the base of C code is growing rapidly.
Multiple language support must be present at the
individual program level, since a program may be
written in a higher-level language and contain in-
line assembler code.

Multiple datu sources-Source libraries provide
essential but incomplete information about sys-
tems. Valuable system knowledge is lost when
documentation becomes outdated or when key
personnel leave the project. Capabilities are re-
quired to capture system information contained in
documentation, human knowledge, and informa-
tion from other tools.

End-user function-Since program understanding
and documentation are key parts of many other
tasks, it was considered important to provide inte-
gration of function and data. End users also need to
have a robust capability to manipulate the informa-
tion, such as import or export functions, sophisti-
cated print facilities, graph analysis tools, and au-
tomatic documentation capabilities.

The Integrated Software Engineering
Applications platform

Integrated Software Engineering Applications
(ISEA) is a tools platform developed to support
CodeNavigator and other tools. It is a coopera-
tive application with components on a host and a
workstation. The host is either Multiple Vir-
tual Storage/Extended Architecture (M V S / X A ~ ~)
or Virtual Machine/Extended Architecture
(V M I X A ~ ~) . The workstation is a Personal
System/2@ (PS/~@) running Operating S y s t e m P
(oS/2@). The host is used as the primary data store,
and the workstation is used for end-user inter-
faces. An overview of the ISEA platform is shown
in Figure 2.

Although our expectation is that most tools will
populate a central repository on the host and pro-
vide end-user function on the workstation, there
is no requirement to do so. Tools developers are
free to place function on either the host or the
workstation in response to performance or other
considerations.

The host component of CodeNavigator, for ex-
ample, parses and analyzes the input data. After
analysis, the resultant data are organized and
loaded into the database. End-user presentation,

IBM SYSTEMS JOURNAL, VOL 30, NO 3, 1991

certain data manipulations, and session services
are provided on the workstation.

As we analyzed the requirements for several
tools, it became apparent that many functions
need to be provided for every tool. The require-
ments for dialog managers, graph services, mem-
ory management, and error handlers are similar

Tools developers are free to
place function on either the

host or the workstation.

from one tool to another. A set of building-block
functions has been developed for use by tools and
tool developers. The existence of services or
building blocks enables the tool builder to focus
on the specific business problem being imple-
mented without worrying about universal functions
which can, and should, become common utilities in
an integrated tools suite. Inclusion of the several
types of services shown in Figure 2 was driven by
a desire to insulate the tools from environmental
changes and to provide building blocks so new tools
can be built. Approximately two-thirds of the
CodeNavigator system is common ISEA code.

Because of the evolving nature of our tools re-
quirements, it was expected that the data content
and structures would change. Our data access
services, called the object manager, provide a
layer between the application and the storage
technology. Data are stored in the form of objects
and relationships. By packaging related informa-
tion into objects, we have been able to encapsu-
late the data and provide generic functions against
the objects. Although inheritance is supported in
the underlying data models, an object-oriented
language is not currently provided for the tools.
The object manager interface is very similar on
the host and the workstation, providing the po-
tential for functions to be moved freely between
the host and the workstation.

The ISEA base supports both server-requester
programming interface (SRPI) communications
and advanced program-to-program communica-

BROWN 365

Figure 2 ISEA system overview

DATA ACCESS
SERVERS/ 1 ~ ~ ~ ~ ~ ~ ' v ' T Y 1 ~ ~ $ ~ ~ ? E N T I COMMUNICATIONS

REQUESTORS

tions (APPC) between the host and workstation.
Each user has an option to choose either LU 2.0
or LU 6.2 communications at installation time.
Thus, one set of application users might choose to
use LU 2.0, whereas LU 6 .2 might be chosen for
another application. This choice provides some
flexibility for applications to upgrade technology
in a convenient time frame without being con-
strained by the tools platform.

Initial requirements stated that our tools operate
on MVS and VM hosts. Additionally, we antici-
pated a requirement to provide an Advanced In-
teractive ExecutiveTM (A I X ~) version of our tools.
Rather than build multiple versions of the tools,
we developed a set of environmental services that
isolate the tools from the operating environment.
Currently both MVS/xA and VM/XA hosts are sup-
ported, and the workstation is using os/2 Ex-

366 BROWN IBM SYSTEMS JOURNAL, VOL 30, NO 3, 1991

tended Edition 1.2. Migrations to new levels of
OS/2 have been transparent to the applications,
except where the tools chose to take advantage of
new functions in the operating system.

A tool can be integrated with ISEA tools in several
ways. The first way is to run entirely within ISEA,
in which case both functional and data integration
are a by-product of using the common services.
An ISEA tool can be host-only, workstation-only,
or cooperative, depending on the needs of the
users. A second alternative is for a tool to exist
outside of ISEA and call or be called by an ISEA
tool. This alternative provides some degree of
functional coupling and the possibility of sharing
data between tools. A third alternative is for a tool
to store or retrieve data using the ISEA object
manager. This alternative provides an initial step
toward data integration among independent tools.

Overview of CodeNavigator

Program understanding tools are intended to pro-
vide information about software systems. To be
effective, they must be able to handle systems of
significant size and be customized to meet the
needs of a varied user set. Because program un-
derstanding is part of many development tasks
(designing enhancements, problem-solving, test-
ing, requirements analysis, etc.), the tools must
provide a variety of levels of logical and physical
views.

CodeNavigator is a program understanding tool
designed to provide information about large-scale
software systems. It is intended to improve pro-
ductivity in:

Educating programmers about software
Analyzing system change requests
Identifying software problems

The complete CodeNavigator system consists of
a host and a P S / ~ . The host portion is used pri-
marily for data gathering and data storage,
whereas the P S / ~ component provides the user in-
terface that presents the derived information to
the end user. The components of the CodeNavi-
gator system are shown in the overview in Figure
3. Several components are of interest on the host:

The butch controller provides general control of
the analysis processing. It controls access to the
source libraries, invokes the appropriate lan-

IBM SYSTEMS JOURNAL, VOL 30, NO 3. 1991

guage analysis, gives control to user exit routines
when requested, and calls the functions to load
the databases.

Analysis engines read the source code from a de-
velopment library and create a physical model of
the system. The analysis engine provides user ex-
its either for manipulations of the source code
before it is analyzed or to update the database
following analysis, or both.

User exits enable each installation to customize
the analysis of its code. Preprocessing exits can
be used to enhance the analysis by making control
flow or cross-reference data visible in situations
where it might not normally be discovered. An
example is providing information about routines
that are commonly used but are not visible to the
analysis engine, such as supervisor calls (SvCs)
and system utilities or macros. Postprocessing
provides information from outside sources or in-
formation that is derived from additional analysis
of the database.

In the event that one or more modules are
changed, only the changed modules need to be
reanalyzed, and the database is updated with the
changed information.

End-user interface. The end-user interface on the
 PSI^ provides a variety of logical views. A user
may request a display of logical views of the in-
dividual source code modules or of the whole sys-
tem. Each logical view is designed to assist the
user’s understanding of a particular aspect of the
system being analyzed. The views can be sum-
marized as follows:

Lists are used to show traditional cross-refer-
ence information, such as what-used, where-
used, how-used displays for symbols, macros,
control blocks, subroutines, and modules.
Directed graphs are used to show flow relation-
ships. Logic flow and calling relationships at
subroutine and module levels are displayed as
directed graphs.
Annotations may be created, browsed, up-
dated, deleted, imported, or exported to either
P S / ~ or host files. The annotation is stored as an
object in the database and may be associated
with other objects in the database.
Source code is displayed in a syntax-sensitive
browser. The user can invoke other types of
displays, such as cross-references, by pointing

BROWN 367

Figure 3 CodeNavigator system overview

the cursor at tokens in the source code and se-
lecting an action. Additionally, the source code
display and the logic flow diagrams scroll syn-
chronously, allowing you to easily follow the
flow in both source and logic displays.

Program understanding design considerations.
User requirements and early prototype experi-
ences with CodeNavigator have identified several
points that required special attention in our de-
signs. The first category was the organization and
internal representation of large amounts of data
from a variety of sources. Representatives from
several user sites and tools organizations worked

together to develop a data model for the program
understanding data.

The second broad class of problems was that of
end-user presentatioIls. CodeNavigator is used to
assist education, design, testing, and other tasks.
It is also intended to support users working in
several languages and environments. The design
of the user presentation had to accommodate
these needs.

Host functions. The analysis functions and pri-
mary data store were placed on the host for the
reasons of capacity and shared access. CodeNavi-

368 BROWN IBM SYSTEMS JOURNAL, VOL 30, NO 3, 1991

gator is intended to be used against large systems,
and the direct-access storage device (DASD) re-
quirements can be quite large. One of our perfor-
mance benchmarks involves analyzing 500 000
lines of assembler code (KLOC). The resulting
database exceeds the capacity of most worksta-
tion databases.

Most internal sites have their source libraries on
the host. Given the large DASD requirements, ex-
isting host libraries, and the accessibility require-
ment, the decision to place analysis and data store
functions on the host was straightforward.

Large quantities of data. Program analysis can
create databases that may grow to many times the
size of the original source library. Two key issues
are deciding (1) what data to generate and save,
and (2) how to most effectively store and present
the data. The first issue is usually addressed by
examining the user tasks and requirements. Al-
though this approach seems straightforward, pro-
gram comprehension and user interfaces are areas
of continuing research. Therefore, user interface re-
quirements and the data needed to support the re-
quirements were not well understood at design
time. We are approaching this problem by breaking
the analysis into phases or stages and by using Pro-
log, a rules-oriented language.

Staged analysis allows us to incrementally extract
or derive information from the source code and
allows users to suppress creation of information
that is not of interest to them. Staged analysis is
used in providing the generic functions for control
flow and data flow analysis shown in Figure 4.
The rules-oriented approach offers the ability to
add new types of analysis or to derive new data
without major changes to existing parts of the
analysis programs. Avoiding major changes was
a consideration in the early prototypes when anal-
ysis changes were frequent.

The second issue is quite complex, oriented pri-
marily around performance questions. The most
obvious approach is to generate and store all re-
quired data as separate objects. However, the
volume of data to be stored will probably create
capacity issues in all but trivial cases. An alter-
native is to store only the essential raw data and
to generate “derived” data when it is requested.
This approach will reduce DASD usage but may
introduce performance problems, since the query
responses now involve the derivation of data.

IBM SYSTEMS JOURNAL, VOL 30, NO 3, 1991

Another alternative involves the “clustering” of
related objects into a larger object. Clustering im-
proves response time and reduces DASD usage,
since fewer physical objects are stored and re-
trieved. However, it introduces some problems
with cross-referencing of objects that are clus-
tered. In our situation, symbol information ac-
counted for approximately 60 percent of our cap-
tured data. Maintaining each symbol as a separate
object required accessing and transferring hun-
dreds of objects to satisfy a cross-reference re-
quest. Clustering them into a single file allowed us
to satisfy the same request with one data access
and one transfer.

We have explored several alternatives for opti-
mizing query performance by caching data on the
 PSI^ or host database. The traditional approach is
to request the data from the host database for
each user query. An alternative is to store on the
workstation all of the data that have been re-
trieved. The tool passes a request for information
to the tools platform, and the workstation data-
base is searched first. If the requested data are not
found, a request is built and sent to the host da-
tabase, and the appropriate data are returned.
The tool never has any direct contact with the
database and is not aware of whether the data
come from the host or workstation. During ses-
sion initialization, a check is made to see whether
the workstation data have become obsolete, and
the user is notified that the workstation database
should be refreshed. A third approach is to at-
tempt to anticipate which kind of data are likely
to be requested next and to obtain the data in
advance of the request. However, this approach
presumes that the queries can be predicted.

CodeNavigator has implemented all three ap-
proaches. For most users, the first approach of
going to the host for each request gives the most
satisfactory performance. The second alterna-
tive, searching the workstation database before
going to the host, is implemented as an installa-
tion option and is our intended direction. Perfor-
mance is affected by overhead incurred when us-
ing the workstation database, and it makes this
option undesirable to some users. Users who
have small or heavily burdened host systems or
who pay line charges for each data transfer find
the second option very attractive. We have at-
tempted a version of the third option, in which the
system anticipates the next data request. Our
experience was that we did not have sufficient

knowledge of usage patterns to anticipate effec-
tively what data would be needed, and there was
no appreciable benefit to the user who has some
performance burden.

We have explored all of these performance alter-
natives to some degree. Our current approach is
to tailor the solution to each circumstance. Be-
cause each of our sites has different host and

CodeNavigator users can add data or
perform additional code analysis
through user exits in the analysis

capability.

workstation configurations, we have developed
the ability to enable or disable caching as an in-
stallation parameter. Because of the variety of
DASD situations at the various sites, we have de-
veloped user options to tailor the output of the
analysis engines. We are using clustered objects
to improve query response but maintain duplicate
objects to support the indexing requirements.

Individual needs of each site to add data. It is
important to be able to extend the database with
user-defined entities and to provide user exits for
user-written functions before and after the stan-
dard analysis. Every organization we interviewed
expressed a desire to extend the database with
additional types of information. The data to be
added were related to the system but not part of
the general analysis. For example, operating sys-
tem developers wanted to store information about
the location of modules in the system nucleus,
and support organizations wanted to keep prob-
lem report information. Also, a number of groups
wanted to do additional analysis pertinent to their
particular product but not suitable for general use.

CodeNavigator users have the ability to add data
or perform additional code analysis through user
exits in the analysis capability. Individual instal-
lations may add data or extract data that are im-
portant to them but not of general interest to other
organizations.

370 BROWN

Data to support activities. We interviewed main-
tenance programmers to get an understanding of
what tasks they performed and what data they
needed to perform those tasks. A consistent set of
data views has been found to be common across
activities such as education, analysis, design, and
test. Constructing matrices of user tasks and the
data needed to support the tasks has helped us
understand how to design views that are usable
across different programming activities. It was
also of interest to note the combinations of data
used by programmers to accomplish some par-
ticular task. Observing how programmers use
CodeNavigator to perform the tasks is helping us
refine the CodeNavigator displays to provide
more complete information. Additionally, a com-
parison of tasks has identified opportunities to
provide some user customization. Table 1 is an
example of several tasks that are involved in
learning about unfamiliar software. The subtasks
listed in the table were identified as being typical
tasks for programmers learning about unfamiliar
code. The module listing is the primary source of
information for most tasks. It is not assumed that
every programmer performs all or any of these
tasks on a regular basis; the tasks represent typ-
ical activities that a programmer might expect to
perform as part of an assignment.

Although the programmers seem to have a rela-
tively consistent set of tasks, they do not perform
them consistently. This inconsistency suggests an
opportunity to provide user-defined profiles that
enable users to invoke a series of displays in some
user-defined sequence. Thus, users could “pro-
gram” the tool to perform specific tasks and to
tailor the use of the tool to their particular pref-
erence or to local procedures.

Data models and multiple languages. The data
model for CodeNavigator is a key element of al-
most every design decision. The content and
structure of the data model drive the analysis and
data extraction routines. End-user functions and
displays are also constrained by the data model.

Our early prototype used a data model which,
although quite simple, enabled us to provide a
very useful set of displays. Modules are collected
into logical groups by the user. Each module is
made up of one or more subroutines, and each
subroutine is made up of one or more blocks of
code that have a single entry point. All lower-
level data (data structures, macro, opcode, and

IBM SYSTEMS JOURNAL, VOL 30, NO 3, 1991

Table 1 Examples of educational program Understanding tasks
~~ ~~~~ ~~

Understanding Objectives Steps In Understanding

Understand intended function Read system documents to get description of function

Understand calling structure 1 . Find first module invoked in system documentation
Develop a cross-reference of entry point calls 2. From first module invoked, find flow to “my” modules

3. Build a cross-reference of entry point calls for my modules

Understand logic flow of module or entry point 1. Identify major functional pieces of code from tisting
2. Develop flowchart from listing

Document understanding of modules Identify function of entry point
Develop a notebook entry for each module * Define calling structure-who calls whom

* Why this entry point is called (purpose)
List macros used
List control blocks used and updated
Write personal notes

symbol data) are related to the particular block or
subroutine to which the data belong.

Although the initial data model was inadequate to
support all of our requirements, it did support our
initial set of functions. The limited support en-
abled us to try out many of the system features
with a modest initial investment. By using the
simple data model, we gained valuable experi-
ence in performance tuning and user interfaces
that has influenced our design of future data mod-
els and functions.

The new data model is a result of cooperation
among tool developers and tool users from six
sites. It supports the known requirements of the
participating sites. Readers interested in the data
model are encouraged to see the ZBM Systems
Journal article by Linore Cleveland, which refers
to an earlier data model that influenced our model
greatly.

The model is intended to support multiple lan-
guages, particularly the languages commonly
used in the laboratories: assembler, PL/AS, which
is an IBM internally used language, and C . Some
consideration was given to other languages, such
as PL/I and COBOL, to ensure that no serious flaws
were in the model. Currently CodeNavigator sup-
ports assembler in the laboratory sites, with PL/AS
support to be provided in late 1991. Additionally,
local versions of CodeNavigator analyze C and
IBM Prolog to support the development of Code-
Navigator itself.

IBM SYSTEMS JOURNAL, VOL 30, NO 3, 1991

Figure 4 illustrates our strategy for capturing in-
formation from multiple languages. A common
language-independent representation has been
defined for the output of the analysis, which we
have called an intermediate form. This form has
allowed us to build common routines to perform
additional analysis and a single common database
load capability. Aside from the obvious elimina-
tion of duplicate functions (a database loader for
assembler and another loader for C, for example),
it provides the capability to analyze mixed-lan-
guage programs, which are quite common in our
systems. When processing a mixed-language
module, such as PL/AS and assembler, control is
passed between the analyzers as the different lan-
guages are encountered. Since both analyzers will
produce similar output, no gaps exist in the in-
formation generated for that module.

Several alternatives were examined before defin-
ing our own intermediate form. The new IBM Sys-
tems Application Architecture@ (s A A ~ ~) compil-
ers will have the capability to produce an output
file for use by tools such as debuggers (methods
to detect, diagnose, and eliminate program er-
rors). Many compilers discard data element in-
formation during the optimization phase of com-
pilation, making the output file unusable for our
purposes. Design tool export files frequently are
not granular enough to represent all of the imple-
mentation detail of a program, and many are re-
stricted to structured constructs that make it dif-
ficult to represent an unstructured program.

Figure 4 Analysis of multiple languages

At this time, most analysis is done by custom-
written parsers and analysis functions. It is de-
sirable to have the analysis performed by com-
pilers so as to eliminate the redundant effort of
writing an analysis tool to perform parsing and
analysis similar to that done by a compiler. It also
eliminates the problem of keeping the custom-
written analysis function up to date with language
changes. One internally used compiler is produc-
ing output in our intermediate form.

Flexibility of end-user navigation. End users need
the capability to survey, explore, and annotate
the data they encounter. Each person does it dif-
ferently, and no process or sequence can be im-
posed.* To a great extent, the techniques used
depend on personal style; to some extent, on the
task at hand. Our own experiences confirmed that
programmers want the ability to jump from one
view to another related view, since it is unusual
for programmers to fully comprehend the system

IBM SYSTEMS JOURNAL, VOL 30, NO 3, 1991

they are trying to enhance or repair. Therefore, a
key requirement was to allow the user to move from
one view to any other contextually related view.

Our tool has a free-form navigation style that al-
lows the user to control the scope and flow of
investigation. Navigation in CodeNavigator is ac-
complished by selecting an object of interest
within a bounded domain and invoking a specific
query (e.g., “How is this symbol used in the fol-
lowing subroutines?” or “What is the logic flow of
this module?”). The capability of simultaneously
looking at several windows gives the user an abil-
ity to pursue several lines of investigation. The
effect is similar to that of a programmer placing
paper clips or bookmarks in a program listing to
indicate places of interest or important discoveries.

User interfaces. Many of our systems contain
modules written in several languages, and it was
important that the end-user views remain consis-
tent regardless of the source language being an-
alyzed. This required developing a language-
independent data model of our information and
ensuring that our logical views were consistent
across our target languages.

Frequently, users want to look at several logical
views simultaneously. It is annoying for users to
have to constantly reorient themselves in related
views as they navigate through another view.
Synchronous scrolling allows the control flow di-
agram and the source code browser to be viewed
in tandem. When the user selects an object in one
display, the other display is automatically reori-
ented, and the corresponding object is high-
lighted. Similarly, users can select an object from
most list displays and request “Find in Source,”
which will display the source code and scroll to
the first occurrence of the token selected.

The directed graphs that represent program logic
flow or program calling relationships may become
far larger than can be easily comprehended. This
possibility has driven requirements for a number
of usability features. Features such as a zoom
capability and a focus window are needed to give
users the ability to see a large graph and examine
portions of interest in detail. Graph reduction is a
method of decreasing the number of nodes and
arcs while retaining the control structure of the
graph. As the reduction takes place, each node in
the reduced graph represents a subgraph of the

IBM SYSTEMS JOURNAL, VOL 30, NO 3, 1991

original graph, and each arc in the reduced graph
represents an arc in the original graph. In effect,
we are collapsing structured subgraphs into a sin-
gle node while retaining the overall control struc-
ture. For example, if a very complicated graph is
reduced, the resulting graph will show the funda-
mental control structure, although much of the
detail will have been eliminated.

We had originally expected that the workstation
views would reduce user desire for documenta-
tion. However, we discovered that there is a very
strong requirement for print capabilities. Two
items of particular interest were the directed
graphs representing calling relationships or logic
flow and an ability to automatically produce a
“programmer reference” document. A capture
feature in CodeNavigator enables users to save a
workstation display and pass the information to a
host print facility. Some users are creating wall-
sized posters of logic flow and calling structures
as a hard-copy reference. A prototype automatic
documentation facility allows the user to define
the scope and level of detail to be included in the
generated program reference document.

TRAILS overview

Hypertext. Hypertext is a way of displaying in-
formation on line and displaying “links” between
different pieces of information. Links are used to
show a reader that other information related to
the current piece of information exists. Selecting
among the links enables the reader to display the
related information. Hypertext provides nonlin-
ear access to data whereby the reader determines
the path to be taken.

Hypertext tools are used by both authors and
readers to create, manage, and understand rela-
tionships among documents. The tool must sup-
port multiple books or libraries of nontrivial size.
There is a need to allow readers to integrate and
link local documentation with system-supplied
documents. For example, a reader may wish to
link local coding standards to a programmer’s ref-
erence manual or design document. This example
requires authoring functions to identify and link the
related pieces of information and reader functions
to enable end users to find and follow the links.

Documentation is created and updated at every
stage of the software development life cycle. Hy-
pertext is a technology that enables authors and

Figure 5 Software life cycle documentation

readers to create, manage, and retrieve pertinent
information throughout the development life cy-
cle. The term life cycle implies that information is
not static; it is constantly reviewed, updated, and
recycled into other phases of the development cy-
cle. Figure 5 provides an example of the documen-
tation created in a software development cycle.

There are two general approaches to implement-
ing hypertext:

Book method-take existing books and put
them on line and allow an author or a reader of
the information to create or maintain links be-
tween chapters, sections, and subsections of
the book and between books

Node method-write the information into dis-
crete “nodes” of information and interrelate the
nodes with links

New documents may be written in a fashion to
exploit hypertext tools and technologies. Existing
documents must be rewritten or converted to be
used in a hypertext tool. The TRAILS tool being
described is a prototype hypertext tool used to
explore issues in creating and managing hypertext
documentation. It is a cooperative processing ap-
plication with a host component (MVS or VM) and
a workstation component on a P S / ~ . The host com-
ponent provides the primary database and facil-
ities for loading and managing the database. The
workstation component provides user interfaces
for retrieving, navigating, and manipulating hy-

374 BROWN IBM SYSTEMS JOURNAL, VOL 30, NO 3, 1991

pertext documents stored in the database. Figure
2 shows how TRAILS fits into the overall ISEA
system.

The primary objective of the TRAILS prototype
was to explore techniques and issues in develop-
ing hypertext documentation. In practice, it has
also been useful for “hypertizing” existing soft-
copy documents, and it is currently being used to
link and manage existing documentation in appli-
cation maintenance organizations. Some features
of the TRAILS prototype are:

Text browser for displaying information with
linkages and notes highlighted
Graphic link map for displaying webs of related
information
Note facility to create, browse, update, delete,
and maintain user-defined information
Textual search within and across nodes
Dynamic link creation, update, deletion, and
traversal between words or phrases within or
across nodes
Author and reader mode of operation
History display of actions during session that
can be saved across sessions and re-executed
Edit mode on nodes (for authors only) that al-
lows text-editing while preserving links

Hypertext issues. Hypertext can be a valuable in-
teractive medium for presenting information on
line; it gives the reader the opportunity to navi-
gate through related information according to in-
terest, level of understanding, and other individ-
ually determined factors. Some important issues
are evolving regarding the development and us-
age of hypertext information. Constructing a net-
work of information nodes is not the same task as
authoring an intelligible linear presentation of in-
formation. Some authoring issues are briefly de-
scribed below.

Cognitive overhead (providing context). Marshall
and Irish state the following:

Although methods for maintaining coherence
are more or less settled for conventional forms
of writing, hypertext violates many of the as-
sumptions underlying these methods. One im-
portant aspect of conventional forms absent
from hypertext is the transitional text that helps
the reader maintain a sense of materials coher-
ence. The fragmentation characteristic of hy-

IBM SYSTEMS JOURNAL, VOL 30, NO 3, 1991

pertext may also lead to a lack of interpretive
context.

The effect of following a hypertext link can be
compared to reading a paragraph in one chapter
and then suddenly reading another paragraph ran-
domly chosen from the same book. Although the
author who created the links knows the relation-
ship between the paragraphs, the reader needs
some additional clues to understand why and how
they are related. The hypertext reader no longer
has an understanding of sequence among para-
graphs, and the explanatory text that introduces,
concludes, and relates ideas to one another may
not be visible.

Authors and hypertext system designers must be
careful to provide contextual clues to assist the
user. A variety of visual techniques are used in
different systems, including persistent captions,
information “beacons,” graphical maps, and vi-
sual linkage across displays. These visual tech-
niques provide the reader with a way of identi-
fying a theme or consistent topic across many
different displays. Another technique is to filter
information so that only links that are relevant to
the current topic are presented to the user.

TRAILS has developed several techniques to help
a user understand what is being displayed and
what other information is related to it. TRAILS
users can limit an investigation to specific
projects or domains. Requests for related infor-
mation are bounded by the current project defi-
nition. Many times when a user is unsure of why
a particular display is being shown, it is useful to
recall the steps that preceded the display. A his-
tory function in TRAILS allows all or a portion of
a session to be reviewed and re-executed. This
history can be saved to provide an educational
tutorial or “guided tour” for other users. Graph-
ical maps position the user with regard to the cur-
rent node and other related information nodes.

Lack of support for authoring activities. Author-
ing activities include idea processing, planning,
organizing, and writing. When developing hyper-
text, an author is designing and developing an
information web or network. The techniques and
activities are often very different from those en-
countered in writing a book, which is usually writ-
ten and read in a linear fashion. Hypertext au-
thors may have to deal with issues of data models,

BROWN 375

providing context for arbitrary queries, represen-
tation alternatives, and contextual filtering. Very
few tools today provide support for these author-
ing activities.

Version 1 of the TRAILS prototype was developed
to explore these types of issues. In the prototype,
each node was stored as a bulk data file, and link
information was maintained in the object man-
ager. No authoring support was provided, so all

The organization and representation
of hypertext is an area of active

investigation.

_ _ _ ~

organizing, filtering, and linking was done man-
ually. The results of that study are guiding the
development of a much more sophisticated data
representation and user interface.

Degree of integration among documents. With
regard to using hypertext, Glushko states “The
limited experimental literature on hypertext sug-
gests that excessive integration through large
numbers of links creates unusable spaghetti doc-
umen t~ . ’ ’~

There are really two aspects of this issue:

What is the intended use of the hypertext in-

How should the links be organized and repre-
formation?

sented in a reasonable fashion?

The intended use of the information will deter-
mine which documents should be linked and the
types of linkages that are appropriate. Glushko
offers this advice: “Select documents to include
based on a user and task analysis. The extent to
which the documents complement each other for
the intended users and tasks will determine the
extent to which it makes sense to combine them
with hypertext links.”’ By developing task lists
and identifying which documents are used and
how they are used in support of the tasks, we can
determine how much linkage and what kind of
linkage is needed between documents.

376 BROWN

The organization and representation of hypertext
is an area of active investigation. A number of
prototypes are using graph theoretic networks or
data schema as an architecture for organizing the
data. An underlying schema for the data simul-
taneously provides a great deal of power and the
potential for severely limiting the use of the data.
A data model has the advantage of enabling a tool
to use established data management and query
capabilities. A data model also provides oppor-
tunities to integrate other tools that have similar
or overlapping data models. However, the data
model must be carefully constructed to avoid con-
straining the use of the tool. In defining a data
model, a fixed set of domains and contexts for the
data is established. This fixed set may artificially
constrain the use of hypertext data by imposing a
contextual limitation that is not actually present
in the document.

A subtlety of the task analysis mentioned earlier
is that it may in fact artificially constrain the use
of hypertext. Imagine that a task analysis is per-
formed on testing activities and that a data model
to represent the test activities is developed. There
is a danger that documents linked using the test
data model can only be referenced in a test con-
text, even though they may be pertinent in design
or other activities. Care must be taken to fully
understand all possible or desired uses of data
before establishing data models for hypertext.

Conversion of existing text into hypertext. Just as
programmers are faced with the issue of under-
standing existing software, information develop-
ers are faced with enormous quantities of docu-
mentation about the existing software. Rewriting
documentation for hypertext is often not econom-
ically feasible. Certainly a need exists for tools
that can assist users in converting existing doc-
uments into hypertext. The question of what doc-
uments to convert or rewrite is one that must be
answered on an individual basis. It seems likely
that frequently used documents or documents de-
scribing critical asset software would be con-
verted, assuming they were accurate. A task anal-
ysis that maps tasks against the documentation
required for the tasks could be used to evaluate
which documents are candidates for conversion
or rewrites. Several articles on this topic may be
found in the Hypertext ’87 Proceedings published
by the Association for Computing Machinery.’

IBM SYSTEMS JOURNAL, VOL 30, NO 3, 1991

TRAILS begins to address the problem by allowing
documents to be “imported” with node delimiters
imbedded in the formatted text. Linkages be-
tween nodes may be created manually or by run-
ning an automated analysis of the nodes. Several
types of linking mechanisms will be discussed in
a later section.

Readers of large hypermedia systems encounter
major problems in navigation and contextual ori-
entation. Some of the reader issues are now de-
scribed.

Visualization and navigation of the underlying
hypertext structures. The difficulty of navigation
is described by Van Dyke Parunak: “One of the
major problems confronting users of hypermedia
systems is that of navigation: knowing where one
is, where one wants to go, and how to get there
from here.”9 This kind of problem may be en-
countered in several levels of detail. Examples of
possible questions are: What is my overall frame
of reference for this session?, What is the current
subject and why am I looking at it?, and What
specific document am I looking at?

The question of frame of reference deals with the
intended use of the data and links. One approach
is to use multiple models to represent the data in
a hypertext database. Different models can be
used to adjust the level of complexity, to provide
alternative navigation schemes, and to present
varying levels of detail. The second type of ques-
tion may be caused by inadequate contextual
clues or an unexpected shift in context. TRAILS
provides a chronological, replayable view of the
session through the history log. A link map gives
the user a view of the current information node
and all immediately connected nodes. The third
kind of question is usually handled through use of
a title or captions to identify the information being
displayed.

User interface. There are many different types of
user interfaces for hypertext systems. Different
applications of hypertext seem to spawn varied
types of user interfaces. Many systems have ex-
ploited windowing to show multiple hypertext
nodes and to show representations of node rela-
tionships. Graphical structures are frequently
used to illustrate connectivity between nodes,
and users can often select elements from the
graphs.

IBM SYSTEMS JOURNAL, VOL 30, NO 3, 1991

The TRAILS prototype interface was intended to
provide some basic support to authors and read-
ers of software documentation while carrying out
a study to determine what interfaces are appro-
priate. Lists are used to display nodes when there

There are many different types of
user interfaces for hypertext

systems.

is no obvious relationship among a collection of
nodes. Directed graphs are used to display infor-
mation nodes and the links that connect them.
Each arc in the graph represents a link and is
labeled with information provided by the author.
A browser is used to display the text associated
with an information node, and various types of
highlighting are used to identify different types of
links that are present in the node.

Query. All of the discussion to this point has as-
sumed that a starting point or an initial object
exists. In many cases, there is no initial object,
and some form of query is needed. Keyword
searches are notoriously inaccurate and often fail
to locate appropriate nodes. lo A variety of re-
trieval techniques have been described in the lit-
erature. ’’ The query mechanism should be flex-
ible to help filter information in a number of ways.
Examples of filters might include keywords,
search for existing relationships by name, lexical
or contextual relationships, object type (if using
an underlying data model), and level of detail de-
sired.

Integration of the tools

This section describes our approach to solving
several problems in integrating the tools.

A brief look at a software technical manual will
usually reveal quite a number of specific refer-
ences to programs or parts of programs. Depend-
ing on the document being reviewed, references
may be found to macros, control blocks (global
data structures), symbols, entry points, subrou-
tines, modules, or subsystems. A number of ques-

tions arise about relating documentation to pro-
gram data:

What documentation should be related?
What program data should be linked?
What techniques can be used to automatically

How are appropriate links identified?
Are navigation styles consistent across tools?

What documents to link. It is assumed that the
target documentation will be formatted and avail-
able for on-line hypertext displays. The choice of
documents eligible for linking to program data
will depend on the user tasks and user set to be
supported. Maintenance, support, and user orga-
nizations will have different tasks and will prob-
ably choose to link different sets of documenta-
tion to the program information.

Documentation generated from code deserves
special attention. Many software development
organizations have tools that generate one or
more forms of documentation by analyzing
source code. The control block descriptions and
logic diagrams in some IBM technical documents
are generated in this fashion. Generated docu-
mentation has two characteristics that make it de-
sirable to link to program data. First, it has a high
degree of correlation with the programs. Second,
the fact that a software organization expended the
effort to create a document generator is a good
indication of a strong need for that specific doc-
umentation. In our scenario, the generated design
document in TRAILS was used with the control
flow diagram from CodeNavigator.

Program data to be linked. Two issues in linking
a hypertext node to a knowledge base are the
recall (the proportion of appropriate references
found) and the precision (the proportion of ref-
erences that are relevant) of the linkages. lo Once
again an examination of the intended uses of the
data is necessary to develop a good linking proc-
ess. It seems likely that externally visible data,
such as module names and module entry points,
will provide useful linkages. In our scenario, it
will become evident that error codes may also be
a good candidate for linking documents and pro-
gram data. Our recall will be improved by adding
additional links based on data that programmers
typically use in problem analysis. Additionally,
we will find that our precision can be improved by
introducing levels of detail in the linkages.

generate links?

378 BROWN

Our initial approach has been to link module and
subroutine data to documents and add other data
over time. As we gain information about the util-

Generated documentation has two
characteristics that make it desirable

to link to program data.

ity of the various linkages and gain experience in
managing the links, we will increase the types and
volumes of links.

Linking methods. Links between the program un-
derstanding objects and the hypertext document
objects are automatically generated after both da-
tabases are loaded. We will discuss several pos-
sible approaches. The first and simplest approach
uses a character string scan. A list of objects is
created from the program understanding data-
base. The names of those objects are the targets
of a character string search in the hypertext
nodes. Similarly, a list of candidate hypertext
nodes is created. Whenever the name of an object
is found in a hypertext document, a link is auto-
matically created between the program under-
standing object and the hypertext node. Although
this approach is crude, it is also fairly effective for
detailed documents, such as installation guides
and logic manuals. Variations of the approach can
be achieved by using keywords as search targets
also. Keywords provide some opportunity for func-
tional descriptions to influence the link creation.
Our scenario might have been improved by using
error codes issued by each program as keywords.

This approach has been implemented in the
CodeNavigator/TRAILS prototype. An overview
of the analysis is shown in Figure 6. Source code
is analyzed by the CodeNavigator analysis pro-
gram, and the results are stored in the database.
A document tool is used to create the hierarchi-
cal-input-process-output (HIPO) style diagrams
shown in Figure 7. These diagrams are imported
into the database by the TRAILS data loader. Ex-
isting documentation is also loaded using the
TRAILS data loader. Linkages between program
understanding data and information nodes are

IBM SYSTEMS JOURNAL, VOL 30, NO 3, 1991

Figure 6 Overview of establishing links between CodeNavigator and TRAILS

SOURCE CODE LIBRARY

1 t 1
. .“

I
ANALYSIS DOCUMENT 1
PROGRAM

” ” 1 - I - ” -

TOOL

EXTRACTED / QENERATED
DATA DOCUMENTS

1
DATA ! DATA LOADER
LOADER I

I

HOST DATA REPOSITORY

FORMATTED
DOCUMENTS

1
LIST OF PROGRAM

LIST OF 1 UNDERSTANDING DOCUMENT
OBJECTS CHUNKS 1

LINKING PROGRAM I

created by the linking program. Links are estab-
lished when a program or subroutine name con-
tained in the program understanding database is
found in an information node created by TRAILS.

A second approach is to perform a lexical affinity
analysis on the documentation and also on the
prologues and block comments in the modules. A
lexical affinity analysis identifies the most impor-
tant word pairs (or triples) in a document. Words
such as “is,” “a,” “the,” “and,” and “for” are
ignored. Simply stated, this analysis identifies the
frequency of occurrence of word groups across
the target nodes, the number of nodes containing
each word group, and the frequency of occur-
rence of word groups in a node. Word groups with
a high frequency of occurrence are considered to
have little information value, whereas seldom-
occurring word groups are considered to have
high information value. Linkages are established
among nodes that have high occurrences of in-

frequently used word groups. The technique is
heuristic and must be tailored to provide usable
results. This approach is more appropriate for
linking general information documents and high-
level control modules or external interface mod-
ules. The approach also assumes a consistently
rigorous commentary policy in the code.

A third approach involves use of a data model for
hypertext nodes and attributes of objects in the
data model. Garg introduces the concept of a
“well attributed hypertext”: “Attributes of ob-
jects are properties (of objects) which can be used
to identify the objects from different perspec-
tives.”” The information content of an informa-
tion node is represented by the attributes of the
node. Levels of generality and possible contex-
tual references may also be encoded as attributes.
He further describes the use of operators to re-
trieve information nodes based on attributes and
attribute values. ’*

IEM SYSTEMS JOURNAL, VOL 30, NO 3, 1991

Figure 7 Detail information about module CLRLGUTL

- CLALGUTL
- File Link Annotate CodeNavigator Search Refresh IF1 = Help

STEP03A t
I

IPARMLIST "">
B. OPEN OUTPUT, INPUT, & GEN

DCB
I DCBOUT

r-->
--1 C. YES, CONTINUE

D. NO, ABEND WITH USER 16
Y

-

The need for this capability is illustrated in the
scenario. Our linking technique made no distinc-
tion between overview and detailed documenta-
tion related to a module. Some context is pro-
vided in the names of the information nodes and
in the names of the links between the program data
and information nodes. Future work may use the
level of detail of the CodeNavigator display to filter
the TRAILS links. For example, if the user is looking
at overview displays, such as subfunctions, over-
view types of information nodes would be pre-
sented to the user before detailed data. Similarly,
from a low-level view, such as logic flow, the user
should be presented with detailed information
nodes.

How to identify appropriate links. A user moving
from one application to another will have estab-
lished not only a domain boundary but a working
context. Both of these contexts must be passed
to the invoked application. CodeNavigator and
TRAILS collect information into projects and ver-
sions. These project-versions provide a boundary
for investigations. The grouping of objects into
project-versions is arbitrary and may be based on

380 BROWN

departmental organization, function relationships
in the software, or team assignments. The deci-
sion of how to define project scope will include
factors about the local definition of a project as
well as careful consideration of the size of the
potential search domains. TRAILS and CodeNavi-
gator users can organize data into similar project-
versions. The CLEAR project might contain both
the program data and documentation data for the
CLEAR product.

Additional context can be provided by using un-
derlying data models. Bigelow and Riley describe
a software engineering environment that uses a
data model to support the integration of source
code and hypertext documentation. Attributes on
the nodes and links enable a user to retrieve and
follow specific types of information linkages. l 3

Garg has defined filtering that can be performed
using attributes on nodes and links. Garg and
Scacchi have gone further by encoding informa-
tion about the development process and user
roles into their data model. Individual users de-
fine a profile indicating the information they want
to see. These filters provide a form of dynamic

IBM SYSTEMS JOURNAL, VOL 30, NO 3, 1991

context by taking into consideration the attributes
of nodes that a user has recently visited. l4

Consistency of navigation across tools. The con-
trast of navigation styles between CodeNavigator
and TRAILS mirrors the contrast in their analysis
capabilities. Analysis of program source code is
specific and rigorous. Natural language analysis is
considerably less rigorous and is more heuristic.

Programming languages have closely defined
grammars and finite numbers of operators or key-
words. The number of possible relationships be-
tween programs is relatively small and well-de-
fined. Navigation in CodeNavigator is accom-
plished by selecting an object of interest within a
bounded domain and invoking a specific query
(e.g., “How is this symbol used in the following
subroutines?” or “What is the logic flow of this
module?”). The granularity of the queries is offset
by the variety of presentations (lists, text, di-
rected graphs).

The TRAILS prototype, in contrast, has a very
broad, nonspecific navigation style. This nonspe-
cific style of navigation occurs because of the
richness of natural language and the wide variety
of types of documents. A user may be presented
with many types of links across a fairly large
range of nodes. The types of nodes to be returned
must be filtered to some extent through the use of
the context information. A graphic map is used to
display nodes, links between nodes, and link
names to assist the user in determining which
links may be relevant.

Human interfaces. It has become evident that per-
sonal preference and task orientation drive the
need for a variety of representations and naviga-
tion styles. We have found that people seem to
have preferences for styles of graphic presenta-
tion. An example is the use of trees and directed
graphs to show flow relationships. Many people
have a strong preference for one or the other even
though both contain the same information.

The networks that represent either program un-
derstanding data or relationships between hyper-
text documents may become far larger than can
be comprehended easily. Because of the large
data volumes, users need a capability to navigate
at an abstract level as well as the ability to nav-
igate through instance data. We call the high-level
traversals “surface navigation” because the user

IBM SYSTEMS JOURNAL, VOL 30, NO 3, 1991

is traversing the entities and relationships of sev-
eral data models. We are developing a browser
that allows a user to examine and traverse the
entities and relationships of the various data mod-
els. Navigating at the data model level will enable
a user to see the structural relationships between
models. At any point a user can ask to see the
instance data for an entity or to invoke a tool
against the instance data.

“Submerged navigation” occurs when the user
follows relationships between instances of the
data. Traversing the instance data allows the user

Personal preference and task
orientation drive the need for a
variety of representations and

navigation styles.

to understand and follow relationships in specific
contexts. In this case, the user is operating be-
neath the surface of the data model.

Multiple views of the database will enable the
user to select the appropriate complexity, navi-
gation style, and level of detail.

Scenario of linking hypertext and program
understanding

This section of the paper is intended to provide an
understanding of how CodeNavigator and TRAILS
interact with each other. The scenario presented
here illustrates a potential usage of integrated hy-
pertext and program understanding tools. The
scenario is a hypothetical example developed to
demonstrate the capabilities of the tools. The
code and documentation examples are taken from
an internal library system.

The scenario has been built using information
gathered when we interviewed programmers on
how they learned to understand unfamiliar soft-
ware. Although there was no consistent sequence
of activities, several activities were consistent.
For example, all of the programmers traced the

calling relationships among the relevant pro-
grams, all of them developed some sort of control
flow analysis, most of them referred to existing
documentation for additional information, and

Multiple views of the database will
enable the user to select the

appropriate complexity, navigation
style, and level of detail.

most of them created and maintained a private
notebook which contained their personal discov-
eries and notes. Although this list of activities is
not exhaustive, it will be the basis of our scenario.

CodeNavigator provides user displays that show
calling relationships and program control flow.
An annotation capability enables users to create
and maintain private or public annotation files
that are stored in the CodeNavigator database.
TRAILS and CodeNavigator can be invoked from
each other, which enables users to transfer from
one tool and database to another tool and data-
base in the same user session. In our scenario, a
programmer’s reference manual and a messages
and codes manual will be automatically linked to
program information. Additionally, a detailed de-
sign document has been included to illustrate the
use of generated documentation and to highlight
some of the issues described earlier.

Linking these kinds of documents involves sev-
eral of the issues discussed previously in this pa-
per. CodeNavigator is primarily an understanding
and analysis tool. Therefore, the linkages to the
documentation are expected to be oriented
around understanding tasks and data. Similarly,
our choice of tasks-that of learning about unfa-
miliar programs, suggests a type of document and
level of granularity for linkages to program infor-
mation. As a starting point, we made a decision to
restrict linkages to occurrences of program
names. Thus, all documents will be scanned for
the character strings that represented programs in
the target system. When matches are found, a link
will be automatically created between the docu-

382 BROWN

ment and the program understanding database.
The decision to restrict ourselves to program
names is driven by a fear of creating an over-
whelming number of linkages. For example, we
could easily create a linkage for each symbol
name in the program understanding database and
its occurrence in the documents. However, such
linkage would involve thousands of links for even
a small number of programs and would provide
little more information than can be obtained
through a system cross-reference listing. Our ap-
proach is to begin with a minimal number of links
and add additional ones as we discover those that
have value.

Our scenario assumes that both CodeNavigator
and TRAILS are being used. Hypertext linkages
between program information and hypertext doc-
uments are automatically built when the data-
bases are created. The links between documents
and program information have been created sim-
ply by searching for the names of programs in the
documents. All links are bi-directional so that
they can be traversed in either direction.

We will assume that the program understanding
and hypertext document databases have been es-
tablished and have been used by programmers for
some time. In our scenario a programmer has
been asked to review some code and documen-
tation that is new to the programmer. Review of
the code has three objectives for the programmer:

Become educated about the reporting function

Identify changes that need to be made to the

Create a programmer’s notebook for the main-

in the bulk storage subsystem

existing documents

tenance team

The programmer uses the tools to identify
changes to existing documents and simulta-
neously create information to be included in a
programmer’s reference manual.

Step la-Identify a subset of the system to study.
The first step is to identify the modules that are to
be investigated. Since the task is to learn about a
subsystem, a mechanism is needed to identify the
modules of interest and filter out all other un-
wanted information. In this case, the programmer
is specifically interested in the modules that per-
form reporting functions for the bulk storage sub-

IBM SYSTEMS JOURNAL, VOL 30, NO 3, 1991

Figure 8 Subfunction TO00135

Refresh

system. CodeNavigator provides a capability to
group modules into logically related groups,
called subfunctions. Subfunctions can be any ar-
bitrary grouping of modules. Examples might be
subsystems, modules supported by a program-
mer, or modules involved in a design change or a
Program Trouble Memorandum (PTM). The
groupings can be overlapping and may be
changed as necessary. The intent is to provide a
scope or boundary for investigation.

The investigation starts with PTM T000135, which
involved changes to some of the BULKRPT re-
ports. In Figure 8 subfunction PTM TO00135 is se-
lected from the list of subfunctions authorized to
be seen. Subfunction PTM To00135 contains a list of
the modules affected by a recent enhancement to
the system. The pull-down menu lists the opera-
tions that can be performed on a subfunction.
Among the several choices are:

List notes associated with the subfunction
List modules in the subfunction
Display calling relationships between subrou-

Display calling relationships between modules
Change access authorization
Update the contents of the subfunction

Step 1b”Review programmer annotations. The
first source of information will be the notes and
remarks made by programmers who worked on
the code beforehand. One of the current objec-
tives is to create a programmer’s notebook con-
taining information about the modules being stud-

tines (detailed view)

ied. The purpose of this step is to review any
notes other programmers felt were important
enough to record in the database. These notes will
be captured and included as part of the program-
mer’s notebook. Additionally, the comments and
remarks may provide information that will be use-
ful in directing the investigation.

Two points of interest are in this step. The first is
that the annotation feature provides a mechanism
for people to add information to an automatically
created database. History, ambiguities, hidden
intentions, side effects, design considerations,
test information, and inspection results are ex-
amples of the kind of information that may not be
derived from code analysis and might be placed
into annotation files. A second point is that the
annotations are associated with objects in the da-
tabase. This association provides the flexibility to
make a general notation about a group of modules
or a specific comment at the individual module
level.

From the menu, List Notes is selected to display
the programmer annotations associated with the
subfunction. From the list of annotations, the
TO00135 changes are selected, and then the infor-
mation recorded about the change is looked at.
Figure 9 shows the annotation information. No-
tice that three modules were changed: VSMINTER,
CLRLGCPY, and CLRLGUTL.

Each display has a pull-down menu that provides
the ability to capture the contents of the display
as either a workstation or host metafile. The cap-

IBM SYSTEMS JOURNAL, VOL 30, NO 3, 1991 BROWN 383

Figure 9 Annotation on subfunction TO00135

Module VSMINTER was changed:
- Built separate routines for logical and physical errors

Routine VSMCWRIT was modified to handle logical errors
CSECT VSMLERAD was added to process logical errors
Routine VMSYNAD now handles only physical errors

Module CLRLGCPY was changed:
- Message formats were changed. Message CLR7072 is now created and tells the user whether the error
was in the "FROM" data set or the "TO data set.

Module CLRLGUTL was changed:
- Message formats were changed. Message CLR7072 is now created and tells the user whether the error
was "KEY NOT FOUND"

*I 14

tured metafile can then be converted into a for-
matted file for inclusion in a programmer's note-
book. The several displays shown in this scenario
are captured, and they are converted into Book-
MasterTM (an IBM document markup language for
text processing) files. These BookMaster files will
be included in the programmer's notebook.

Step 2a"Investigate calling relationships. Most of
the programmers we interviewed in IBM labora-
tories indicated that they begin learning about un-
familiar code by examining the calling relation-
ships between modules. For each module of
interest, they collect information about those
modules or subroutines that call or are called by
the module. This piece of information completes
the context definition in the sense that the pro-
grammer has established a boundary for the in-
vestigation and also knows which other modules
are immediately related to the modules of inter-
est. This method is similar to the hypertext user's
question of "What is the current node and what
are the related nodes?"

After the annotations are reviewed it is desirable
to gain an overall understanding of the structure

384 BROWN

of the subsystem. Our interest is in how the mod-
ules in the subfunction are related, so Module to
Module is chosen to display a directed graph of
the calling relationships among the modules. Call-
ing Structure is also selected to show the interre-
lationships at the subroutine level. Figure 10 pro-
vides information about the module relationships
and subroutine, or process, relationships. Notice
that there is a choice of levels of detail-intermod-
ule and intramodule level diagrams. The view cho-
sen depends on the particular question being inves-
tigated and the size of the problem. In our case,
since the objective is to acquire a general under-
standing of the system, both views are selected.

Information about modules and their relation-
ships is extracted during program analysis and
stored in the object manager. CodeNavigator us-
ers can invoke several displays that show differ-
ent representations of those relationships. An
investigation can be continued by selecting a
module or subroutine from one of the displays and
requesting additional information.

Step 2LReview a list of documents about the
module. At this point an understanding of the call-

IBM SYSTEMS JOURNAL, VOL 30, NO 3, 1991

Figure 10 Module-to-module calls and subroutine calling structure

GSMERRF-CLRLGCPY CARDERR-CLRLGCPY

I I
I

I I
I
I

I 1
I I I

I

I 1 I
I I I
/ I
I I

I

I I"""""""""" L-l
L""- 1 1

"""""""""""
,L""""""- 1 I I

111
I l l 11

1 I I ,"""

ing structure of the subsystem has been achieved.
The program analysis data are limited to infor-
mation about the physical implementation of the
system. Logical or conceptual information about
the system is found in the system documentation,
which provides information about the purpose of
the subsystem and how it is related to other parts
of the system.

Let us suppose there is a request to see docu-
mentation about CLRLGUTL, one of the modules
in the BULKRPT subsystem. The pull-down menu
in Figure 11 shows TRAILS being invoked from a
CodeNavigator display with a request to show
documentation that is linked to the highlighted
module, CLRLGUTL.

Since several documents are linked, and there is
no apparent relationship among them, a list of
"nodes" or document fragments that contain re-
lated information is presented as in Figure 12. The
CLRLGUTL Description tells how the program can
be invoked from the command line in the library
system panels. BULKRPT-Verb Reference Manual
is an overview of how the BULKRPT verb fits into the

bulk storage subsystem, and the CLRLGUTL HIP0
Diagram contains detailed design information.

The list of documentation is a little confusing be-
cause it contains three different levels of detail: a
general description of the program, a subsystem
overview, and a detailed design description. Such
confusion indicates that our linking scheme could
be enhanced to differentiate among the levels of
detail. As a result we need to find ways to enable
authors to create linkages that represent different
levels of detail and also to enable readers to
understand and select the level of detail that is
desired.

An approach that could be used is to separate the
documentation into levels of detail and create
linkages or relationships that represent those lev-
els. Users would see either one or another set of
linkages depending on the type of display that
generates the request for documentation. In our
case, we would categorize the subfunctions dis-
play as being at the logical level and the intra-
module displays as physical-level objects. In the
same way, the hypertext nodes will be catego-

IBM SYSTEMS JOURNAL, VOL 30. NO 3, 1991

Figure 11 Invoking TRAILS from CodeNavigator

- Reset Scope=Fll

! I !

Figure 12 Documentation nodes linked to module CLRLGUTL
~ ~ _ _

I BULKRPT - Verb Reference Manual CLRLGUTL Description - Verb Reference Manual I
CLRLGUTL HIP0 Diagram

rized as either logical or physical levels of detail
so that the BULKRPT node, which describes how
CLRLGUTL fits into the system, would be a logical-
level node and the others would be physical-level
nodes. Linkages representing different levels of
detail will be created in separate runs of the au-
tomatic linking process. The first run will contain
only the logical-level document nodes. When pro-
gram names are found, a relationship will be cre-
ated between the document node and module that
represents a logical level of detail. In the second
run, only physical-level document nodes will be
processed, and the automatically generated rela-
tionships will represent physical levels of detail.

Therefore, if the subfunctions menu is being dis-
played and a request is made to see the docu-

ments related to module CLRLGUTL, only the
BULKRPT node, which describes how the
BULKRPT subsystem is related to other sub-
systems, will be seen. In an intramodule display,
a request to see related documentation will
present the module invocation description and
the detailed design information. This scheme al-
lows use of the implicit granularity of one system
to filter information being requested from a re-
lated database.

Step 3a-Examine logic flow within a module. Our
interviews revealed that most programmers
sketched the logic flow of the individual pro-
grams, although there was no consistency about
when they did it. Some did it early in the inves-
tigation, and others left it until the end of their

386 BROWN IBM SYSTEMS JOURNAL, VOL 30, NO 3, 1991

Figure 13 Logic flow and source in CodeNavigator

1
I
I
I
I
I
I

UNPK OUTPUT+L'SYNMSGI(

DATAEMP MVC OUTPUT+34(L'SYNMS

I I I

learning process. This sketch gives them an over-
view of the module showing the number of entry
points and subroutines and some information
about the complexity of the module. Although the
logic flow is an important piece of information, it
is not generally useful by itself. Logic flow is an
abstraction of a program and is mostly used to
provide a detailed visual image of the program as
the programmer reads the source code.

A strong need exists to maintain the same posi-
tion in multiple displays as the programmer
scrolls through the source and shifts his or her
attention from the source code to the logic dia-
gram and back to the source code. The source
code display shows the source text in the order in
which the programmer wrote the code. The logic
diagram shows a graphic representation of the
code in the sequence in which the instructions
might be executed. There is no guarantee that
sequential instructions in the source display will
be represented by contiguous nodes in the logic
diagram. In fact, branching instructions will fre-
quently have targets that are not contained in the
visible part of the logic diagram.

IBM SYSTEMS JOURNAL, VOL 30, NO 3, 1991

In CodeNavigator, the source code display and
the graph are synchronized so that when an object
in either display is selected, the corresponding
object in the other display will be highlighted and
scrolled into the viewing area. Notice that the
label GSMERR is highlighted in both the source
code and control flow display.

After an examination of the system structure, it is
desirable to look at a summary of the logic flow of
the modules. All of the nodes in the calling rela-
tionship graphs are selectable, meaning that a
node with the cursor can be selected and an action
invoked against the object represented by the
node. The module CLRLGUTL is selected, and a
source code display is requested (see Figure 13).
With the source code display, a request is made
for a control flow diagram, which shows the logic
paths through the module. Source code is dis-
played in a syntax-sensitive browser. Tokens
such as subroutine names, symbol names, mac-
ros, and control blocks can be selected in the
source code, and an action initiated against them.

Step 3bDisplay detailed design information. The
CLRLGUTL HIPO Diagram is documentation that

shows a diagram of the internal logic of the mod-
ule. It was generated by another tool and is
known to TRAILS. Figure 7 shows an example of
detailed design information contained in TRAILS
along with the control flow diagram generated
by CodeNavigator. The bottom screen shows a
section of a HIPO style diagram that represents the
CLRLGUTL node in the top diagram. The logic flow
of the entire module is in the top window, and the
detailed design of selected parts of the module is
in the bottom window.

This example is another in which the two displays
need to have a synchronous scrolling capability.
Whenever two displays show different represen-
tations of the same object at the same level of
detail, the user should be given an option to scroll
them synchronously.

Step &Follow links between modules and docu-
ments. The links between documents and source
code are bi-directional, so the links can be tra-
versed from either tool. The CodeNavigator entry
on the action bar enables a link from TRAILS to be
followed back to CodeNavigator (Figure 7).

Notice that CLRLGUTL, the target of the hypertext
link, is highlighted in the document display. High-
lighting is used to indicate the existence of a hy-
pertext link and enable other related information
nodes to be viewed.

Several considerations are to be made in building
connections between tools and related databases.
One of them is maintaining a consistent context.
This context includes the specific object of inter-
est as well as the level of detail and synchroni-
zation of displays, as we have seen. Queries that
are passed from one tool to another must include
this type of information or allow the user to spec-
ify it if none is currently present. Another con-
sideration is the similarity of user interfaces be-
tween the tools. For example, both of our tools
have a point-and-click user interface, which en-
ables users to select nodes in directed graphs,
select items from lists, and select tokens from
source information displayed in browsers. How-
ever, if one tool were to use a query-language
interface and the other tool used a point-and-click
style interface, the transition between tools might
be disruptive to end users.

The granularity and organization of data should
be similar across tools that are to be integrated. In

388 BROWN

our scenario, both databases contain networks of
information about software systems. CodeNavi-
gator and TRAILS are designed to operate on webs
or networks of data. If one tool operated on hi-
erarchically organized data and the other oper-
ated on relational data, the transition from one
tool to the other could become awkward or con-
fusing. If the organization of data is significantly
different between tools, it may be desirable to
provide a mechanism to help orientation in each
database. An example of this might be to display
a stylized image of the data model for each tool
and an indicator to highlight one’s current posi-
tion. Thus, referring to the overview window
could be used for reorientation in terms of what
types of entities are related to the current object
and what navigation paths are potentially avail-
able.

Earlier in the scenario it became apparent that
there is a need for help in identifying and selecting
appropriate levels of detail when shifting between
tools. Overview documents were inappropriately
linked to low-level program understanding dis-
plays. Our solution was to examine the intended
use of the documents and displays and to develop
links that are consistent with that usage.

Another area to be considered is that of scope. In
CodeNavigator the limits of the subfunction pro-
vide constraints to prevent one from becoming
lost in potentially enormous volumes of informa-
tion. The TRAILS prototype has no similar bound-
ary. It is possible to follow some hypertext links
in TRAILS and then return to CodeNavigator to
find that one has wandered beyond the limits of
the subfunction. In the event this happens, a list
of subfunctions pertinent to the TRAILS context
is presented. Selecting one of the candidate sub-
functions will establish the boundaries that
CodeNavigator needs to limit the information it
presents.

A familiar problem in hypertext discussions is the
“lost in hyperspace” syndrome in which the users
have lost track of what they are looking at or how
they got there. The likelihood of this happening is
increased as users traverse between databases
while using several tools. TRAILS has a history log
function which displays a sequential list of all win-
dows invoked during the TRAILS session. Any
part or all of the session can be replayed by se-
lecting the windows to be redisplayed. This func-

IBM SYSTEMS JOURNAL, VOL 30, NO 3, 1991

tion helps to determine how the current window
was arrived at. Also, steps can be retraced or a
previous window state repeated with this function.

Using different tools and looking at data in several
databases will present even more opportunities
for becoming lost. A capability similar to the log

A familiar problem in hypertext
discussions is the “lost in

hyperspace” syndrome.

function is needed to operate across tools so that
it is possible to be reoriented or to return to an
earlier window state to pursue an alternate line of
investigation.

Finally, the navigation style should be compatible
between the tools. TRAILS and CodeNavigator
share several similar navigation techniques, so
the transition from one tool to another is not an
abrupt change. In our tool the user selects an ob-
ject of interest from a window and then invokes
action in a free-form fashion. Integrating tools
that use differing navigation styles such as se-
quential processing or a refinement process in a
design methodology may cause confusion be-
cause of the unexpected shifts in the way the in-
vestigation is continued. The integration of tools
whose navigation styles differ will have to include
some mechanism for providing an alert that a nav-
igation change is occurring and some mechanism
to assist in using the new style.

Step 4a-Find discrepancies between program
data and documents. In this step, a discrepancy
between the program data and the documentation
is identified. Change information contained in the
program, module prologues, and the annotation
files is not reflected in the system documentation.

Recall that reviewing program change informa-
tion was the initial step (Figure 9). The changes
concerned error messages produced by the pro-
grams. Hypertext links are now followed to look
at the error message documentation.

IBM SYSTEMS JOURNAL, VOL 30, NO 3, 1991

After a return to CodeNavigator, the same doc-
umentation review is performed for module
VSMINTER. Among the linked documents is a sec-
tion of the messages and code manual that de-
scribes message CLR7072. Following the link to
TRAILS, the messages and codes node is browsed.

The module name VSMINTER is highlighted in
messages and codes, as shown in Figure 14. The
node describes error message CLR7072 and refer-
ences modules VSMINTER and CLRGCPY, but not
module CLRLGUTL. Referring back to the notes
created for PTM TOO0135 (Figure 9), note that mod-
ule CLRLGUTL should be referenced in the mes-
sages and codes document.

This example highlights two points for us. The
first is that we have identified an error in the doc-
umentation through comparison of the source
code and documentation, which was one of the
original objectives. The example also emphasizes
the need to understand the ways in which people
may use the tool. The cross-reference of the mes-
sages and codes document with the program un-
derstanding data brings to mind the fact that this
information is frequently used in problem analy-
sis. The messages and codes manual is often the
initial information source when trying to find the
cause of a problem. Up until this point our task
analysis and linking schemes have all been ori-
ented to education activities.

A task analysis to support problem-solving might
well suggest additional types of linkages. For ex-
ample, based on this scenario, one might create a
list containing module names and the message
numbers produced in each module. An enhance-
ment to the linking process would look for the
message number in the documents in addition to
the module name. Linkages would be automati-
cally created between document nodes that ref-
erence a message number and the module that
produces it. A filter would be needed to avoid
creating redundant or duplicate links.

In the same way, other tasks such as design anal-
ysis, inspections, and testing can be considered to
see if there are any key pieces of documentation
that are used in the task. Those key pieces of
documentation become candidates for linking to
the program understanding data.

Step 4b-Create an annotation. From the display
of the message and codes node depicted in Figure

Figure 14 Node messages and codes with hypertext links

CLWO/z ERROR IN VSAM 5ATASET.ERROR CODE <XXVYZZ>.ERROR
IN VSAM DATASET.KEY NOT FOUND.ENTRY SKIPPED.

Explanation: This message indicates that there was a problem

to indicate which VSAM dataset encounters error during macro
processing the VSAM dataset. The first message type was issued

processing and whether the problem is a logical or physical error.

'xx
module. The error codes can be found in the
s the RPL error code returned from the

RUCTION REFERENCE GUIDE. xx will be 00 onless
zz is 06 or 08 (see below).

00 - error occurred during OPEN

02 - error occurred during WRITE
01 - error occurred during READ

04 - error occurred during DELETE
08 - error occurred during CLOSE

06 - Logical error
08 - Physical error

" w

*u

The word VSAM will be replaced in the message by the words FROM or
TO if the error is returned from the CLRLGCPY or VSAMCOPY modules.

14, an annotation file is opened and a note created
indicating that the documentation must be up-
dated. Since the note facility is available to both
TRAILS and CodeNavigator users, it provides a
means of sharing information between program-
mers and information developers.

This example is intended to illustrate the idea of
integrating hypertext and program understanding
tools. Our scenario deliberately focused on ex-
isting code and existing documentation, since
most users are faced with that problem. Other
examples of usage are for design and testing doc-
umentation. Linking specifications to program
data will enhance our ability to ensure that de-
signs are completely and correctly implemented.
Test coverage analysis can be improved by relat-
ing test case documentation to program informa-
tion. Documentation created throughout the en-
tire development cycle can be linked with other
pertinent documents as well as with the programs
being developed or maintained. Inspections will
be improved, since code and documentation can
be linked and annotated.

Concluding remarks

Source code and documentation are the raw ma-
terials used to understand a software system. Be-
cause information is not captured and maintained
as part of the system, analysis is repeated for each
release of the system. We have described an in-
tegrated tool that provides program understand-
ing and hypertext documentation capabilities for
large software systems. These capabilities are ap-
plicable to many types of tasks in maintenance, so
the tools need to be easily extendable and inte-
grated with other tools and capabilities.

Data integration and functional integration are
fundamental to providing tools integration capa-
bilities. Data issues include the intended use of
the data, granularity, underlying data models, and
linking schemes to relate the different databases.
A task analysis that identifies the intended tasks
and the data used in the tasks will help ensure that
appropriate links are created. Functional integra-
tion includes the mechanics of communicating
between tools as well as maintaining contextual
continuity for the user. Navigation mechanisms,

390 BROWN IBM SYSTEMS JOURNAL, VOL 30, NO 3, 1991

shared contextual information, orientation and
“replay” capabilities, and automated filtering of
information are all elements in the functional in-
tegration of tools.

Integration and distribution may well be among
the key concerns of tools developers in the next
several years. Distribution of function and data
across the tool platform will provide effective use
of resources and will separate individual tool
components from common services or platform
functions. Integration is becoming important be-
cause organizations cannot afford multiple tools
development efforts to solve similar problems.
The concept of a stand-alone tool is fading, just as
stand-alone systems faded away in the 1970s.

Distributed data models seem to offer some op-
portunity for enhancing performance and exploit-
ing the different advantages of host and worksta-
tion. An example in program understanding might
be to place systems view data models on the host
with relevant detail stored in bulk files. As data
are downloaded to the workstation, the bulk files
can be exploded to populate a workstation data
model that supports intramodule views. This ap-
proach complements our staged analysis so that
lower-level analysis can be done selectively,
rather than for the whole system.

Portability of tools is also an emerging concern.
Users are asking that the same tool function be
provided in multiple environments. Individual
tool components will be developed to be operat-
ing-system-independent, and the tools platforms
will provide common functions to isolate the tools
from operating systems.

Acknowledgments

The work described in this paper is being done in
the Software Engineering Tools organization at
IBM Sterling Forest. Each member of the devel-
opment team contributed to the products. I would
like to thank Frank Galdun for his vision of a day
in the life of a programmer and George Rapalje for
his unfailing support and positive attitude. Key
technology transfers were provided by Linore
Cleveland and Ashok Maholtra of the IBM Tho-
mas J. Watson Research Center facility at Haw-
thorne, New York. Significant contributions to
the architecture and requirements for analysis

IBM SYSTEMS JOURNAL, VOL 30, NO 3, 1991

functions were developed in work sessions that
included Sam Bailey, Linore Cleveland, Andrew
Coleman, Joe Faga, Tom A. Gambino, Emmett
G. Hayes, Roberta R. Hirth, Kurt T. Kresge,
James L. Liu, Jeff Urs, and the author. Several
people provided important leadership: Jim Caf€rey
and Yoshiro Akiyama for their early prototype and
initiative, Joe Faga for refinement of the data
model, Gary Laskoski and Enis Olgac for early
analysis functions, Tim Montgomery for TRAILS de-
velopment, and Tom Gargiulo for performance en-
hancements.

Systeml370, Systeml390, MVSIXA, VMIXA, Advanced Inter-
active Executive, SAA, and BookMaster are trademarks, and
Personal Systeml2, PSl2, Operating Systeml2, OSl2, AIX, and
Systems Application Architecture are registered trademarks, of
International Business Machines Corporation.

Cited references

1 . M. T. Harandi and J. Q. Ning, “Knowledge-Based Pro-
gram Analysis,” ZEEE Software 7, No. 1 , 74 (January
1990).

2. T. A. Corbi, “Program Understanding Challenge for the
1990s,” ZBM Systems Journal 28, No. 2, 296306 (1989).

3. P. Brown, “Managing Software Development,” Datama-
tion 31, No. 8 , 133-136 (April 15, 1985).

4. V. R. Basili, “Viewing Maintenance as Reuse-Oriented
Software Development,” ZEEE Software 7, No. 1 , 1%25
(January 1990).

5 . L. Cleveland, “PUNS-A Program Understanding
Tool,” ZBM Systems Journal 28, No. 2, 324-344 (1989).

6. C. C. Marshall and P. M. Irish, “Guided Tours and On-
Line Presentations: How Authors Make Existing Hyper-
text Intelligible for Readers,” Hypertext ’89 Proceedings
(November 1989), pp. 15-26.

7. R. J. Glushko, “Design Issues for Multi-Document Hy-
pertexts,” Hypertext ’89 Proceedings (November 1989),
pp. 51-60.

8 . Hypertext ’87 Proceedings, Chapel Hill, NC (November
1987), pp. 143-188 (published by ACM).

9. H. Van Dyke Parunak, “Hypermedia Topologies and
User Navigation,” Hypertext ’89 Proceedings (Novem-
ber 1989), pp. 43-50.

10. P. Hayes, “Towards an Integrated Maintenance Advi-
sor,” Hypertext ’87 Proceedings (November 1987), pp.

11. B. W. Croft and H. Turtle, “A Retrieval Model for In-
corporating Hypertext Links,” Hypertext ’89 Proceed-
ings (November 1989), pp. 213-224.

12. P. K. Garg, “Abstraction Mechanisms in Hypertext,”
Hypertext ’87 Proceedings (November 1987), pp. 375-
396.

13. J. Bigelow and V. Riley, “Manipulating Source Code in
Dynamic Design,” Hypertext ’87 Proceedings (Novem-
ber 1987), pp. 397-408.

14. P. K. Garg and W. Scacchi, “On Designing Intelligent
Hypertext Systems for Information Management in Soft-
ware Engineering,” Hypertext ‘87 Proceedings (Novem-
ber 1987), pp. 409-432.

119-128.

BROWN 391

Patrick Brown ZBM Enterprise Systems Division, Sterling
Forest, P .O. Box 700, Suffern, New York 10901. Mr. Brown
works in the architecture department of the Software Engi-
neering Tools organization. He joined Software Engineering
Tools to manage a program understanding project in 1986.
Prior to joining the organization, he was a programmer and
manager of application development in the former Office Prod-
ucts Division. Mr. Brown received a B.S. in computer science
from Syracuse University in 1976.

Reprint Order No. G321-5441.

IBM SYSTEMS JOURNAL, VOL 30, NO 3, 1991

