
Quantitative  techniques 
in strategic  alignment 

There  is  increasing  evidence  in  both  the 
business  and  technical  literature  that  the 
operations  and  strategy  processes of many 
organizations  have  been  aided  materially by 
visualization  and  modeling  techniques. 
Application  of quantitative  methods  has 
progressed  from  relatively  well-structured 
operations to the  more  speculative  aspects of 
strategy  and  policy  formation.  In  retrospect, 
however,  the  most  valuable  contribution  of 
modeling  has  been  greater  insight:  a  clearer 
understanding of the  situations  and  prospects  at 
hand that  the  mere  act of  model  formulation 
often  provided  the  planner,  This  paper  illustrates 
some  characteristics of the  modeling  process, 
and  explores  the  applicability of quantitative 
techniques  to  strategic  alignment  opportunities, 
such as  current  pressures to reduce  the  “cycle 
time”  of  many  enterprise  functions. 

T he objective of this  paper is to  show  that  the 
accelerating  pace  and increasing scope of to- 

day’s business  operations  mandate  that  everyone 
concerned with strategic alignment planning and 
implementation-the strategists,  planners, man- 
agers, and employees-avail themselves of lead- 
ing-edge tools  that could help them  run their en- 
terprises with greater  success and a  better  chance 
of competitive survival. There  are  tools  to  iden- 
tify new  opportunities,  tools  to help comprehend 
the  structure  and  dynamics of new and existing 
business  and information processes,  and  tools to 
assess  the  consequences of proposed  actions. 

One of the most  important  contributions  such 
tools  can  make is to increase  the decision maker’s 
insight into  the  complexities of the situations  at 
hand, situations labeled by a  recent IBM Ad- 
vanced  Business  Institute  course as “Managing in 
a  Whitewater  Environment.” The point is that 
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chaos  is  here  to  stay;  economic  turbulence, com- 
petitive buffeting, and  precipitous  change  are the 
order of the  day. Rapid change is our  greatest 
challenge today-both that initiated by ourselves, 
and  that imposed on us  by circumstances  and un- 
forgiving environments.  Those who think we  can 
just “ride  out  these  rapids”  and find ourselves in 
a placid pool where  yesterday’s policies will bail 
us  out  are simply kidding themselves. 

We  argue  that one  way  to  cope with  this difficult 
environment  is the appropriate  use of quantitative 
techniques,  also known as modeling, embedded 
in today’s management information and decision 
support  systems.  This  way is consistent  with  the 
world  view  that  “you  cannot manage what  you 
cannot model.” Here,  a  model is a  precise  visu- 
alization of the situation at hand, which permits 
manipulation by computer to  assess  the conse- 
quences  and  relative  worth of alternative policies 
and implementations. The  arts of modeling- 
mathematical, symbolic, graphic, etc.-provide 
the  means  for describing and exploring the  struc- 
tures,  dynamics,  and  interactions  that  make  up 
the  situations we wish to understand,  control, and 
improve. 

A  further plus is that  the  recent  massive improve- 
ments in price-performance of computing and 
telecommunications  and  progress in determinis- 
tic  and  heuristic modeling techniques permit us to 
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tackle  what  Herbert  Simon’  has  dubbed ill-struc- 
tured (i.e., large and messy) problems we could 
not  handle earlier. We  can now go lower in the 
hierarchy of rigor from  the formula to  the para- 
digm, thus  to  the powerful insight generators of 
pattern  and analogy, and create  the  newly  inter- 
linked information and  business  systems we  en- 
vision. 

No claim is made  that  quantitative  techniques 
are, in and of themselves,  a  panacea or cure-all 
for all the ills in organizational ensembles.  But it 
can  be shown  that  they  can  assist in the  crystal- 
lization of structured insights. The thinking pro- 
cess  that  takes  place in the  course of developing 
these  techniques  often in itself affords rapid 
means  for  assessing  the likely consequences of 
our  actions. 

In  March 1969 the renowned  anthropologist Mar- 
garet Mead’ had already  made  this point in The 
New York Times, stating  that we  are living in 
times of “change  without  precedent.”  This, she 
said,  explains in part  why our children do not 
regard their  parents or grandparents  with  the  re- 
spect  that  ancestor-worshipping  cultures did in 
other  places  and  other times. Those  cultures, liv- 
ing perhaps  for  centuries in hardly changing sur- 
roundings, could pass on to their children the wis- 
dom of experience  and help them  cope with most 
events in their lives. We who did not  grow up 
“street  smart” in recent  times, intimately con- 

1 fronted with drugs  and crime, can  hear  our chil- 
dren  say:  “What do you know  about growing up 
today?” In  other  words,  what  can  you  teach us 
that  we need to know now? 

The analogy for  business is the challenge of man- 
aging in times of change  without  precedent. The 
modeler will say  that  this  is significantly different 
from “unprecedented  change”  by  asserting  a  par- 
adigm shift:  The  former implies a radical change 
in functional form describing the  events  at hand 
(for instance, going from linear to exponential 
growth),  whereas  the  latter might merely suggest 
a  change of coefficients (perhaps  just  the  slope of 
the line depicting growth  that was observed all 
along). 

Luftman  et al. have offered this definition: “The 
strategic alignment framework . . . reflect[s] the 
view  that  business  success  depends  on  the linkage 
of business  strategy, information technology [I/T] 
strategy,  organizational  infrastructure  and  pro- 
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cesses,  and I/T infrastructure  and  processes. . . . 
The  objective is to build an  organizational  struc- 
ture  and  set of business  processes  that reflect the 
interdependence of enterprise  strategy  and infor- 
mation  technology capabilities.” 

In  this  context,  then, the  task  to model the  anat- 
omy and dynamics of strategic alignment encom- 
passes  the following: 

Representation of the  business planning and  op- 
erations  processes 
Articulation of the characteristics, attributes, 
strengths, weaknesses, constraints, inhibitors, le- 
verages, and opportunities of constituent enter- 
prise functions 
Tradeoffs of make or buy,  centralization or de- 
centralization, tight or loose coupling of func- 
tions 
A framework ranging from local to global, in- 
house to  outsourced, niche to business  partner- 
ships  and  alliances 
The  roles of size,  scale,  variety,  stability, flu- 
idity, and time 

The interrelationships of such  constituent ingre- 
dients of enterprise  add  to, in crystallized and 
powerfully manipulable form,  what  has  been 
termed  the  “intellectual  capital” of the business. 
For example, “what-if‘’ simulation of food acqui- 
sition,  storage,  preparation,  and dispensing has 
positioned such  giants as McDonald’s Corp.  and 
Burger  King  Corporation among the  leaders in 
their  industry.  Once  such  models  are  developed 
and are  on line, the knowledge they  represent  can 
be extended to include current  characteristics 
of the  industry,  customers,  and  suppliers,  and 
shared  across  the  entire  organization  whenever 
and  wherever  needed  (nowadays globally), pro- 
viding a  basis  for real-time decision  support. 

For  the nontechnical  reader, we briefly present  a 
few  illustrations of modeling and “paradigm 
thinking.” These  illustrations  are followed, for 
the applications-oriented  analyst, by  some  exam- 
ples  thought to  be of relevance  to  the implemen- 
tation of strategic alignment. 

Some  characteristics of modeling 

The approach of today’s modeler  is to  abstract 
from the  observed or envisioned  situation  at  hand 
those  elements, linkages, and  interactions  that 
can  skeletally  describe  the  behavior of the  whole 
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without losing or masking important effects. In 
the business  or  enterprise  areas,  the management 
science  and  operations  research  communities 
have  often utilized the formal methodologies of 
the sciences,  such as using mathematics to iden- 
tify key  parameters  and  their relationships. Sci- 
ence confines its  attention to phenomena  that  can 
be measured,  relationships  that  can  be  repre- 
sented  quantitatively,  causal  chains  whose  inter- 
nal consistency  can be logically verified, and con- 
clusions  that  can  be  tested experimentally. An 
example is Einstein’s famous insight into the re- 
lationship of energy, mass,  and  the  speed of light 
expressed in his renowned formula E = rnc *. 
Business decision-making problems  rarely  meet 
these  preconditions of scientific analysis  but are 
being approximated asymptotically via simulation 
and  heuristic modeling approaches  discussed  be- 
low. Morse  and Kimbal14 defined operations  re- 
search  as  “a scientific method of providing exec- 
utive  departments with a  quantitative  basis  for 
decisions regarding the operations  under their 
control.”  John  Little of the  Massachusetts  Insti- 
tute of Technology  added  to  this in 1990 when he 
said “presentation of analytic  results should give 
the news in the  data:  What  does it mean? What do 
I do with  it?” 

Little5 also conveyed  this delightful difference be- 
tween  a  scientist and a  manager,  attributed  to 
R. C. Mathes,  an  expert in probability theory: A 
manager is  a  person  who  thinks  there  exist  only 
two probabilities, 0 and 1; if indeed he or  she ever 
thinks. But a  scientist acts  as though  there  exists 
every  probability except 0 and 1; if indeed  he or 
she  ever  acts. Amusing or  not,  this  anecdote is 
another typical example of how a modeler’s mind 
works.  Little  further  proposed  a  “decision  calcu- 
lus,”  a  computer simulatable construct  couched 
in the manager’s own  terms,  and states a set of 
important  criteria  for judging the merit of such  a 
calculus: simplicity, robustness,  ease of control, 
adaptability,  completeness on important  issues, 
and ease of communication  with the model. 

One of the  pioneers of early  corporate  operations 
research, Melvin Hurni,6  observed as long ago as 
1955 that  “one of the  truly significant trends in 
business  today  is  the increasing tendency  toward 
introspection  with  respect to  the business  pro- 
cesses  themselves.  More efforts are being made 
to  examine the  data coming out of the  business 
process  for underlying principles, patterns of reg- 
ularity,  and  relationships of an  observed effect to 
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its  probable  causes, which can  be used in the  de- 
sign of more efficient processes and organiza- 
tions.”  Note  that in those  days  the  primary  focus 
of the modeler was still efficiency rather  than new 
opportunity. 

The  modeler, as staff to an  executive of a  com- 
pany,  then  has  the  task  to 

Ask  the right questions 
Recognize the relevant  elements 
Identify  the significant parameters 
Determine  the significant linkages among  the 
selected  elements and parameters 
Speculate on the  “right  size”  and  “right  con- 
tent” of the problem (bounding: inclusion and 
exclusion  decisions) 
Evaluate  the  temporal  characteristics of the 
problem (life cycles,  durations, stabilities, and 
discontinuities) 

All of these  tasks  are  part of the  processes  en- 
compassed by  what  Luftman  et al. termed the 
domain anchor, domain pivot, and impacted  do- 
main representations. 

A knowledge representation paradigm 

It may be helpful at  this point to review  a  para- 
digm I  developed to relate  the  substantive  content 
of a domain, the  abstract  representations of this 
content,  and  the  hardware  and  software  and  de- 
livery  systems (often called platforms by the I/T 
community) by means of which the relevant in- 
formation is distributed.  This paradigm, termed 
“the modeling theater,” is shown in Figure 1. 

The lower-right lobe in the figure, target domain 
knowledge, represents  reality  and all the know- 
how we  currently  possess  to  cope  with  our  bus- 
inesses  or  tasks-at-hand (all we ever  wanted to 
know  about running a  hospital,  a  factory,  an air- 
line, a  stock  exchange, etc.). It contains  the  day- 
to-day  chaos,  the good news,  and  the bad news. 
Clearly, at any  one time and for any  particular 
problem set  we will carve  out  only  a small part of 
the  universe of facts,  factors,  and figures relating 
to  the problem that we wish to model. But it 
should be  emphasized  that  this lobe of the  para- 
digm, lobe 1, represents  the  current limits of our 
knowledge in the  operational domain of interest, 
i.e., all we know, and all we  do not know. We 
should also never forget that  the  fundamental lim- 
itations of the usefulness of any modeling of a 
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real-world domain are  the limits of what  we really 
know about  the  phenomena  with which we  are 
concerned. 

The  top  lobe in Figure 1, lobe 2, addresses  the 
means we  can  use  to  represent  the knowledge of 
the real domain. The  sections  that follow highlight 
the  characteristics of a few of these means. They 
include mathematical  equations,  statistical  for- 
mulae, analytic  techniques, paradigms, graphs, 
and  heuristics  and their implicit and explicit rea- 
soning schemata.  Abstracting  and  representing 
the domain knowledge in models, application pro- 
grams,  databases,  spreadsheets, and expert  sys- 
tems, etc., involves a process  termed KE (for 
knowledge elicitation), which  is a combination of 
teasing  the  important  elements from the domain 
experts  and  representing their structures,  at- 
tributes,  dynamics, logic, and linkages in retriev- 
able  and manipulable form. 

The lower-left lobe, lobe 3, represents  the delivery 
platforms, hardware, software,  communication net- 
works, graphics, visualization capabilities, oper- 
ating systems,  expert  systems shells, prepro- 
grammed applications,  screen-management aids, 
and (most importantly)  the  computer languages 
from Binary to C, by  means of which the domain 
knowledge abstracted  by  the  representation  sche- 
mata of lobe 2 can  be  reduced to practice  and 
physically packaged,  distributed, and made  ac- 
cessible. Research  and  development in this  area 
is largely the domain of computer  science  and  the 
computer  industry. 

As  an  illustration,  consider  the  anatomy of what 
the  literature  has called decision support  systems. 
These  systems, generally, can  be  viewed as con- 
sisting of three elements: 

1. A data  capture-and-retrieval  component for 
the collection,  storage,  and  retrieval of the in- 
formation  needed for the  decisions to  be made 

2. A modeling-and-interpretation component  to 
manipulate  the  data,  transform information 
into intelligence, and assess  consequences of 
alternative policies and actions 

3. A crystallize-and-display  component to dis- 
play and visualize  the  results of the  above 
graphically, and  distribute  them  to all con- 
cerned i 

Figure 1 The  modeling  theater 

KNOWLEDGE 
REPRESENTATION 
-SEMANTICS 
-MODELING 
- LOGIC \ 

ALIGNMENT 

KNOWLEDGE 

- LANGUAGES 
- PLATFORMS 

spans  the problem domain and  its KR, or knowl- 
edge representation. A large number of problem sit- 
uations involving decisions, particularly in business 
and manufacturing, cannot be modeled accurately 
using physical or mathematical techniques because 
they  are  too dynamic or too complex. These prob- 
lems are best represented in descriptive form, ex- 
pressed as word pictures of the complex relation- 
ships involved in the system. The descriptions, 
which sometimes must cover the interactions of 
hundreds of factors, their attributes, and the limi- 
tations on performance, can then be considered as 
a model of the problem. Its components and be- 
havior can be studied for various conditions using 
simulation and expert systems techniques. The par- 
adigm  in its entirety, especially when particularized 
by a business and its establishment for their own 
domains, styles of KR, and choice of platforms, is a 
good  mapping of the intellectual property of that 
business in a specific strategic alignment situation. 

In this  case,  elements 1 and 3 above belong to lobe Two  more  observations on  the modeling theater: 
3 of Figure 1; the modeling component again First,  before the tremendous  increase in cheap 
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and convenient computing  power previously men- 
tioned occurred,  only  lobes 1 and 3 were used 
extensively. That  era  was  the time of conven- 
tional computing when knowledge was comput- 
erized directly from real-world operations  into 
the then-available hardware and software. The 
deliverables were (and are) applications and fa- 
cilities from payroll, through text-processing, da- 
tabases,  reports and listings, to advanced data 
communication and network management proto- 
cols. The  sophisticated  upper  path  via lobe 2 is 
relatively new in practice  (except for advanced- 
technology communities such as universities, re- 
search organizations, and pioneering innovators). 
But what  this modeling and insight-producing ca- 
pability has enabled is  the  reverse flow shown on 
the diagram: Innovations in hardware and soft- 
ware capabilities as well as sophistication in mod- 
eling and visualization have begun to stimulate 
new insights into  the domains-proper. We are be- 
ginning a new era of understanding our  operations 
and the higher-order consequences of changes. In 
short, modeling is instrumental in making explicit 
how we know what we know. Specifically, the 
modeler differentiates problem substance from 
problem structure and problem content from 
problemform. In the  present  context, models of 
both  the  business and I/T processes  can  be helpful 
in exploiting opportunities in linking them, and in 
making the whole different from the sum of the 
parts. 

Second, a key message of the paradigm of Figure 
1 is to highlight the  scope and focus of each of the 
three lobes. The popular, and at times even  the 
scholarly, literature  often  credits  improvements 
in one  area to another.  For example, linkability or 
other  enhancements of spreadsheets, more pixels 
or 256 more hues on a color monitor, or a better 
text editor do not by themselves make the user a 
better financial executive, architect, or novelist. 
One is reminded of the old question: If you needed 
surgery, would you rather be operated on by a sur- 
geon with a butcher knife, or a butcher with a scal- 
pel? Of course, the best of  all worlds is a surgeon 
with a scalpel; in strategic alignment, the corollary 
is a competent (and visionary) business executive, 
an  equally competent chief  information  officer, and 
a world-class modeling  toolkit. 

Evolution of useful  models 

How did the modeling toolkit evolve? The  basic 
so-called primitives of quantification are  count- 
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ing, classifying, connecting, and comparing. With 
these building blocks  one  should  be able to con- 
struct most taxonomies, algorithms, flowcharts 

Basic primitives of quantification 
are counting, classifying, 

connecting,  and  comparing. 

and computational routines, and perform such 
tasks  as measuring, labeling, rank-ordering, and 
sequencing. The early operations researcwmanage- 
ment science (OWS) practitioners began with these 
building blocks and constructed classes of models 
described as deterministic, i.e., they dealt withvar- 
iables that took on precise and  definite values (as 
contrasted with ranges or approximations). The 
world not being  all that neat and tractable, they 
added models that could deal with greater behav- 
ioral  complexity, described as stochastic (con- 
cerned with statistics and probability) and discon- 
tinuous (concerned with functions that did not 
change smoothly and without peaks, breaks, or rip- 
ples somewhere in their domain of definition). 
Going even further in the direction of ill-structured 
behavior, they are beginning to invoke models us- 
ing fuzzy sets (initiated by Lotfi Zadeh and his fol- 
lowers who built an entire calculus on the relaxation 
of the  classic set theory, which postulated  that  the 
probability of an element belonging to a set  must 
be either 0 or 1; i.e., either you belong to a spec- 
ified set, or  you do not). Fuzzy  set  theory  can 
handle problems like directing “all the tall boys in 
this corner; all the  short  ones  over there.’’ Into 
which corner would a child who is five feet, seven 
inches tall be placed, and with  what probability? 
Catastrophe  theory models deal with even  more 
complex initial conditions and discontinuities. A 
related, geometric-formalistic representation of 
the 1970s and 1980s is IBM mathematician Benoit 
Mandelbrot’s development of fractal geometry, 
which, invoking the principle of self-similarity, 
allows us to describe  such totally irregular shapes 
as clouds, snowflakes, mountains, crystals,  tur- 
bulent flows, and other jagged or convoluted fig- 
ures.  From  these examples we  can  see  that  the 
toolkit has begun to address  ever more compli- 
cated  aspects of reality. 
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I FEW VARIABLES MANY VARIABLES 

Figure 2 Classification of mathematics  curricula 

DETERMINISTIC 

STOCHASTIC 

I 

I. ORGANIZED SIMPLICITY 

CLASSIC CALCULUS 
DIFFERENCE AND DIFFERENTIAL EQUATIONS 
ANALYTIC GEOMETRY 

II. DISORGANIZED SIMPLICITY 

CLASSIC PROBABILITY AND STATISTICS 

111. ORGANIZED COMPLEXITY 

MATHEMATICAL PROGRAMMING 
LINEAR ALGEBRA 

DYNAMIC PROGRAMMING 
LINEAR PROGRAMMING 

NONLINEAR PROGRAMMING 
MANY-VARIABLE ADVANCED CALCULUS 

IV. DISORGANIZED COMPLEXITY 

BEHAVIORAL SCIENCES 
LIFE SCIENCES 
MANAGEMENT SCIENCE 
AND OPERATIONS RESEARCH COMPLEX 
STOCHASTIC MODELS 
FUZZY AND CHAOS MODELS 

Source: Mathematical Association of America Committee on the  Undergraduate  Program  in Mathematics (January 1964) 

In January 1964, the Committee on the Undergrad- 
uate Program  in Mathematics of the Mathematical 
Association of America attempted to  create a gen- 
eral classification scheme for mathematics curricula 
in the United States. They came up with the neat 
two-by-two array shown in Figure 2. The bulleted 
items in the figure are partly my own  and are meant 
to be illustrative. But the taxonomy of deterministic 
or stochastic and few variables or many variables is 
very useful. The committee, I believe, was not pre- 
cise in stating at what point  few became many, but 
it  is probably in the neighborhood of five, where 
certain polynomial equations cease to  be solvable 
by simple  formulae. The challenge of many strate- 
gic  alignment problems is that they largely reside on 
the right side of the array. 

Ackoff and Rivett’ provided an early classifica- 
tion of these eight basic forms of operations re- 
search problems and the implication that a model 
could contain a mixture of them: (1) inventory, (2) 
allocation, (3) queuing, (4) sequencing, (5)  rout- 
ing, (6) replacement, (7) competition, (8) search, 
and (9) mixed. 
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Let  us  return, now, to the  tasks of model con- 
struction.  In  terms of Figure 1 we  are  concerned 
primarily with  the KE and KR processes for do- 
mains of interest.  The first task  is  the bounding of 
the model: Which factors  shall  be included, which 
excluded; and of those included, which shall be 
explicitly addressed?  Further,  at  what level of 
scale or detail (sometimes called degree of gran- 
ularity) shall our model be couched? To illustrate, 
consider  the  task of the physicist trying to de- 
scribe  the behavior of a gas in a closed container. 
The physicist could posit an initial position of ev- 
ery molecule of gas in the  space,  state  the  vector 
of its  forces and direction cosines, and invoke  the 
dynamics of Brownian motions. In principle, the 
resultants of this  Herculean  task  are  computable, 
with today’s equipment even feasibly so. But for 
many practical purposes it is preferable, and cer- 
tainly easier, to deal with the  coarser aggregates 
of pressure,  temperature, and volume familiar to 
harassed freshman physics  students  as Boyle’s 
Law. Emanuel Piore, retired Senior Vice Presi- 
dent of Research and Engineering at IBM, was 
once  asked  what he thought differentiated a No- 
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bel-prize-level scientist from a good conventional 
laboratory hand. Without  a  moment’s  hesitation 
he replied, “Good  taste in [the]  choice of prob- 
lems.,, This  wisdom applies equally to today’s 
strategic manager who  needs all the help obtain- 
able to  see  the right problem at  the right time, and 
to  choose  the right tools and the right measures 
for the right decision  maker.  The modeler’s ver- 
sion of Piore’s dictum would be  “Exercise good 
taste in your  choice of variables!” In sum, apply 
what  students of modeling are taught as Occam’s 
Razor: “If two  or more modeling representations 
yield a result of equal  usefulness,  choose the sim- 
plest. ” 

Since the 1 9 5 0 ~ ~  there  has  been  increased  interest 
in the  area of so-called artificial intelligence, par- 
ticularly in its  more pragmatic outgrowths of ob- 
ject-oriented programming and expert  systems. It 
is  beyond the  scope of this discussion to  describe 
these  techniques in detail, except  to  say that  they 
are enabling the  modeler to  construct  very rich 
and useful knowledge bases, allowing us to ask 
highly complex  strings of if-then and when-then 
questions.  These  systems  are  excellent  surro- 
gates in the  early  consequence  assessment  stages 
to  evaluate  the relative worth of alternative pol- 
icies or action plans. They  have also proven  to  be 
excellent diagnostic tools in such  areas, among 
others,  as medicine and machine maintenance 
and have  proven to  be excellent  advisors in such 
disparate applications as  computer  help-desks 
and  insurance  or  loan  approval  functions.  In  the 
1970-1983 period,  Stanford  University, Carnegie- 
Mellon, Rand Corp.,  and  Stanford  Research  In- 
stitute  produced  the  early  prototypes of expert 
systems in areas  such  as  organic  chemistry,  med- 
icine, structural analysis, and  speech recog- 
nition under  such pioneering names as DENDRAL, 

lon, Heresay,  and  Prospector.  The  software  that 
evolved from these  early efforts and  is now com- 
mercially available from a number of sources  ex- 
pands  the modeler’s toolkit for ill-structured 
problems  considerably. A technique  for inducing 
knowledge from sample  data for expert  systems 
design is described by Ting-Peng Liang.’ The 
“hybrid”  approach of mixed techniques  is  de- 
scribed in a 1991 paper  by Daniels and  Feelders. lo 

I 

MYCIN/EMYCIN, MOLGEN, OPS 5 Of Carnegie-Mel- 

Some  modeling  examples 

Example A. One of the  key  problems facing man- 
agers  today is “downsi~ing~~-force reduction, 
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generally followed by  restructuring or re-engi- 
neering the  enterprise.  But, at the  outset,  this is 
a subset of the generic question of what is the 
proper, or “right,” size for the enterprise that is 
entrusted to  a manager’s stewardship. Such choice 
may be conscious or unconscious, explicit or im- 
plicit, freely made or imposed from without. There 
is little in the literature that addresses this problem 
cohesively, certainly not exhaustively. Yet  the up- 
front selection of size, sometimes made almost ca- 
priciously, becomes a subtle determinant of orga- 
nization structure, complexity, communication 
effectiveness or  just plain “manageability.” 

Our intuition in these  matters fails us  very rap- 
idly. The notion of span of control,  determined by 
the  amount of time required  to  supervise  each 
employee in a traditional hierarchy,  does  not  cap- 
ture  the  essence of the  question. Stafford Beer’s” 
notion of requisite  variety  comes  closer. He pro- 
poses  a  “methodology of topological maps”  for 
studying  and  comparing  the  attributes and behav- 
ior of two or  more  systems.  In  our  case,  these 
characteristics could be  the business  function  for 
which we envision world-class  opportunities  and 
an  appropriate information technology infrastruc- 
ture.  Beer  addresses  the  concepts of variety, in- 
variance, and transformation  to  create  so-called 
homomorphic mappings to compare  their  prop- 
erties.  This  done, he proceeds  to questions of 
measurement  and  control  and  makes  this  charac- 
teristic  observation: “Often one  hears  the  opti- 
mistic  demand: ‘give me a simple control  system; 
one  that  cannot go wrong.’ The trouble with such 
‘simple’ controls is that  they  have insufficient va- 
riety  to  cope with variety in the  environment. 
Thus, so far from not going wrong, they  cannot go 
right. Only variety in the  control  system  can deal 
successfully with variety in the  system  con- 
trolled.” His bibliography cites W.  R. Ashby  and 
other  cyberneticists.  In the past,  their  notions 
have  been hard to implement, but  the ability of 
modern  computer  systems to handle variety, 
complexity, adaptability, and  fast  data  streams 
allows us to revisit these paradigms realistically. 

What  then is the right size for any  arbitrary  op- 
eration?  Do  quantitative differences lead to qual- 
itative differences? Just how, with some rigor, is 
the mom-and-pop store different from the multi- 
national  corporation?  Examine for a moment the 
design of an  organization of about 150 people. 
From  a  communications  viewpoint, how does  one 
organize?  Observe  that  the  structural  repertoire 
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(since the time of the pharaohs!) is  relatively  mea- 
ger: hierarchy, fully connected  net of all person- 
pairs, matrix, and hybrid. Consider  the first two. 
It  can  be  shown  that  the  number of people in a 
hierarchy, S ,  an average  span of control, r ,  one 
person  (the chief executive officer) at  the  top, 
and,  counting him or her, n layers is 

s = (rfl - l)/(r - 1) (1) 

If n = 4 and r = 5, S will be 156, and  there will 
be 155 communication pairs. The fully connected 
net  can  be  shown to have C such  pairs  (the  com- 
bination of S things taken two-at-a-time), which is 

S!/2!(S - 2)!  (2) 

In our  case, for a 156-person organization,  the 
fully-connected  net, allowing every  person to talk 
with  every  other,  works  out  to  12 090 pairs, fully 
78 times as much as  the  hierarchy. Simon and 
others  have  used  this  as  an argument to explain 
the  pervasiveness  and  robustness of the  hierar- 
chical form through  the ages. One  can  easily  see 
that as r and n become  larger,  even if only 
slightly, the  channel proliferation grows  astro- 
nomically, even in the  more  robust  hierarchical 
structure.  To illustrate,  merely r = 6  and n = 8 
if true  “across-the-board,” will yield an organi- 
zation of  335 923 people.  This  size is exceeded by 
only  a handful of multinational corporations  to- 
day. And r = 10, n = 10 yields  a  company of 1.1 
billion employees,  a result currently  absurd  even 
though 10 people working for  one manager and 10 
layers of command do not  strike  us  as ridiculous. 

If two simple quantified parameters  can  produce 
some intuitively nonobvious insights, the  argu- 
ment is  made  that modeling is worth  the manag- 
er’s time. Here  the planner’s design consider- 
ations  are  choosing  between  two at-first-glance 
contradictory  criteria: 

1. The  number of people  reporting to  any  one 
manager should  be  kept to a  practicable min- 
imum. (This would call for  a “steep” pyramid; 
r = small.) 

2. Communication lines in the  company  should 
be  kept as  short  as possible, with as few man- 
agement positions as possible. (This would call 
for  a “flat” pyramid; n = small, but r = po- 
tentially huge.) 
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Figure 3 Factors influencing organizational productivity 
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Source: P. Strassman,  Vice  President,  Xerox Corp. (ca 1960) 

Real-life answers  clearly  must lie  in hybridity, 
with the  mother  organization  decomposed  into 
loosely linked and “enabled,” Le., decision-au- 
tonomous, subgroupings based on knowledge and 
mission homogeneities. This is again the  “right- 
size”  problem  from  another  vantage point. It  is 
central  to  strategic alignment implementation us- 
ing modeling tools to identify problems  and  pos- 
sible solutions  and  simulate the consequences of 
alternative  strategies. 

Example B. An insightful paradigm relating or- 
ganizational productivity to degree of centrali- 
zation, as a  function of the  use of specialized 
knowledge and task-adaptability, is due  to Paul 
Strassman, former I E  Director of Xerox Corp. in 
the 1960s. (See Figure 3). This problem was re-ex- 
amined  in  1990 via  a mathematicaVstatisticalibe- 
havioral analysis by Huber, Miller, and Glick.12 
They provide an interesting over-the-shoulder look 
at a complex modeling process, verbalizing their 
criteria of which and how many variables to select 
for consideration. 

Example C. Howard Eisner13 developed an inter- 
esting elaboration on traditional critical path net- 
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Figure 4 ”Decision box” network  detail 
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work modeling (Figure 4). Whereas conventional 
PERT-type networks represent the successor events 
or activities to any given predecessor event or ac- 
tivity as absolute, unequivocal sequences (implic- 
itly the probability of each arc in such network = 1 
in the Zadeh sense previously mentioned), Eisner’s 
networks admit  so-called “decision-boxes” and as- 
sociate a probability value with each arc emanating 
from such a box. This value represents the likeli- 
hood of that particular arc being  followed if or when 
the project reaches the event or activity described 
by the box. Such decision boxes and probabilistic 
arcs can be embedded in conventional PERT or crit- 
ical path nets. The output of such models  is,  among 
other things, a table listing  all  possible outcomes for 
the project as a whole, the likelihood of reaching 
each particular outcome, and (if the model has in- 
cluded the necessary numerical data) the time  it  will 
take and the total estimated cost to reach each out- 
come or end event. 

Figure 4 illustrates  the  above  conditions for a hy- 
pothetical project  to develop a new magnetic ink. 
In  this illustration we  have  reached  the point 
where a pilot batch of the ink can  be  tested.  The 
a priori estimates of the managers and engineer- 
researchers involved is  that at this stage  there  is 
a 40 percent  chance  that  the  test will fail and the 
ink be unusable, a 50 percent  chance  that it will 
be successful and proceed  to pilot plant operation 

188 NORDEN 

along a traditional PERT net, and a 10 percent 
chance  that  the  test will be only partially success- 
ful, thus requiring redesign. Note  that  the  sum of 
the probabilities emanating from any decision box 
must be 1.0 to  be computationally valid,  meaning 
that all possible contingencies have been accounted 
for and calibrated. For most research and develop- 
ment projects, including strategic alignment  plan- 
ning, this approach provides an additional degree of 
freedom to represent the inevitable uncertainties of 
tasks that have never been tried before. 

Example D. The problem of estimating the total 
time (duration) and the  total effort (in, say, labor- 
months) in applied research and development 
projects  has  been of interest to managers and an- 
alysts for a good number of years.  Research  that 
I, and subsequently  others,  conducted led to al- 
gorithms to  represent the effort build-up and 
phase-out in development projects and was called 
life-cycle method. The background, properties, 
and use of life-cycle information have  been pub- 
lished in a number of places, among them Refer- 
ences 14 and 15. For  present  purposes, to under- 
score  the power of modeling as a source of insight 
and greater manageability, the  focus of the life- 
cycle model is emphasized. Previously,  most re- 
search and development project planning, estimat- 
ing,  and control techniques (and, most importantly, 
the databases to generate and support these ap- 
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Figure 5 Cycles  in  the  life of a development  engineering  project 
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proaches, which were kept as part of the records of 
the business) concerned themselves solely with two 
variables: (1) what engineers, researchers, and 
technicians did (e.g., circuit design, drafting, as- 
sembly, testing, kept, say, in “department work- 
ing” records) and (2) what they did  it to (e.g., tape 
drives, cables, arithmetic logic units, housings, kept 
in “product or item charged to” records). It turned 
out, however, that time series and other models 
built on these data had relatively poor predictive 
value. It  was only when we noticed that the man- 
power build-up and phase-out patterns related to 
why the  work  was being done (Le., thepurpose of 
the effort, such as requirements planning, early de- 
sign, detail design, prototyping, release to produc- 
tion) that useful patterns began to emerge. The 
shapes (Figure 5)  were related to problem-solving 
practices of engineering groups and explained by 
Weibull distributions. Subsequent researchers (no- 
tably Colonel L. H. Putnam, originally of the U.S. 

’ 
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Army Computer Systems Command) referred to 
them as Rayleigh curves, but  were dealing with 
the same phenomenon. The life-cycle equation 
computes the level-of-effort (labor-hours, labor- 
months, etc.; the scale is arbitrary) required in the 
next work period (day, week, month, etc.) as a 
function of the time elapsed from the  start of this 
particular cycle, the total effort forecast for the  cy- 
cle, and a scaleless "trashiness" parameter that 
could represent the urgency of the job. It can be 
shown that the differential equation derivable from 
the above is 

y’  = h t ( K  - y )  (3) 

where 

y ’ = labor-hours  used in current period 
a = a shape  parameter, governing the 

peakedness of one cycle 
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t =time elapsed since  start of current cycle 
K=value of the upper asymptote of cumulative 

y =cumulative  labor-hours  to  date 

which makes the interesting assertion  that  the ef- 
fort required in the  next period is directly pro- 
portional to  the time already  spent, to what is left 
in the budget, and to how urgent the  job  appears 
to be! In addition to apriori estimating, the most 
valuable use of life-cycle models has  been as an 
early-warning device to show fast and graphic ev- 
idence that  “actual” is departing from “plan” and 
to permit rapid reprojection of what  is really to  be 
expected in the  way of cost and time-to-complete. 

Thus life cycle appears to  be a  stable and useful 
entity for forecasting project time and effort re- 
quirements. Applicability of the model has been 
demonstrated in a wide variety of industries from 
aerospace to banking. An interesting finding 
emerged a few years after its introduction: 
Whereas in electromechanical assembled (and 
other  structurally similar) products  the  total proj- 
ect  was multicyclic, software development gen- 
erally exhibited single-cycle behavior. The  latter 
is probably due  to  the finer granularity of software 
development practice, such as CASE (computer- 
aided software engineering) methods and on-line 
design, debugging, and systems integration. The 
hardware model requires stipulation of the lag re- 
lationship of successive  cycles (Le., how soon 
after beginning the planning cycle can detailed 
design be  started?) and their relative magnitude. 
Historical experience in a  company generally al- 
lows the  creation of a  transfer function establish- 
ing these  two  parameters, and then deviations are 
tracked as the  project progresses. Current  pres- 
sure toward so-called “concurrent engineering” 
can now be viewed as deeper  overlap among suc- 
cessive  cycles, notably the  ones for design and 
release to manufacture. It is beyond the  scope of 
this paper  to  discuss  the merits and dangers of too 
deep an overlap. 

Example E. Consider a  further model that is a 
good illustration of the utility of paradigm-turned- 
algorithm. Once a  schedule  has  been  set and a 
project  has begun, it is not uncommon for the 
project to fall behind schedule. Awag has said “a 
poorly managed project  takes  three times as long 
as anticipated;  a carefully managed one  only 
twice as long.” Nonetheless, if the  project is be- 
hind schedule, is it possible to regain the  loss? At 

labor-hours (= forecast) 
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what point should it be acknowledged that  the 
project is so far behind that no way  exists to meet 
the  schedule? Figure 6 and Reference 16 address 
this problem. Briefly, we  can  accept  the notion 
that  the earlier it is in the project, i.e., the  more 
lead time is left before a deadline or delivery com- 
mitment, the  more  recovery  tactics and strategies 
we  can invoke, and the more slippage time we  can 
make up. If we plot project-time-remaining on the 
x-axis of a graph, and recoverable-time on the 
y-axis,  we  can  expect  a funnel-shaped function 
going to zero  at or before the deadline date. Re- 
search  has shown that  such  a function indeed ex- 
ists; we have called it the  recovery  boundary 
function, or RBF. Its equation is 

C = ht/k,(k,h - t )  

where 

C = recoverable anticipated slippage 
h =total expected  project  duration 

(original estimate or latest major 
revision) 

date 

degree of the size of bell mouth of 
the function 

t =time remaining to deadline or target 

k ,  and k 2  = shape  parameters, governing the 

The function is  shown as  the solid line D in Figure 
6. The other lines are  survey  results from inter- 
views with project managers of actual hardware 
development projects  conducted in IBM’s Pough- 
keepsie and Kingston, New York, development 
laboratories in the 1960s. 

The RBF implies that project managers behave as 
though the slippage they  can  recover is propor- 
tional to the product of the original duration  es- 
timate and the time remaining, and inversely re- 
lated to  a function of the time already spent. In 
practice, this model can  be maintained as part of 
the project manager’s  ongoing control information, 
and whenever the status-reporting tools being used 
indicate that slippage has exceeded (fallen outside) 
the boundary, project review  meetings should be 
called  and recovery possibilities (or renegotiation) 
explored. Plotting the time series of successive ac- 
tual status points traces the rate  at which the project 
is falling  behind or catching up, and can also serve 
as an early-warning signal. It has been our obser- 
vation that managers react more to the first deriv- 
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Figure 6 Two-year  project, 75 percent  assurance level 
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I ative of such a time series (Le.,  how ratidlv  thev  are Just  as the life cycle proved to  be a basic entity of 
project management, the situation appears to play 
the  same role in general management decision mak- 
ing. A situation is defined as a concatenation of di- 
verse problem elements, boundable in space, time, 
and domain context. Modeling on a situation basis 
could be useful  in strategic alignment when the in- 
terplay of the linkages of strategic business thrusts 
and IIT characteristics and opportunities must be 
considered. 

Time-driven modeling is concerned with devel- 
oping a taxonomy of models  based on the dura- 
tion of the dominant transients  or transactions of 
the  phenomena being modeled. My interest in this 
question was originally stimulated by Lotfi Za- 
deh,  mentioned  earlier in connection  with  fuzzy 
set  theory.  Zadeh, while at Columbia University, 
called electrical engineering (EE) “a science of 
extremely  short-lived phenomena.’’ This  obser- 
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Figure 7 Toward  a  science of short-lived  phenomena I 
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vation is  a verv valuable insight. It immediately Here is an examule. Consider a situation that  re- 
suggested to me a  spectrum of du 
logarithmic scale, on which all phe 

rations, like > 
momena of in- 

te;est could be positioned. Figure 7 is a  crude 
representation of this notion. At the left end of the 
scale shown we  can place the  ever-shortening 
phenomena of particle physics, the picosecond- 
nanosecond set. Going to  the right, we pass  the 
macro-engineering fields of mechanical engineer- 
ing (ME), industrial engineering (E), and chemical 
engineering (CE) and  the domains of accountants, 
agronomists, and historians. Further  to  the right 
we pass  the  processes of geology and tectonic 
plates, until at  the  extreme right we  are  anchored 
on  the  scale of astronomy and cosmology. A 
question at hand is, are  there  any regularities or 
periodicities in model structures  or dynamics, in- 
dependent of the  causal  systems governing the 
physical phenomena modeled? A 
tion is, what  use  can be made of 

- 
second sues- 
such  a reme- 

quired crushed 1 

of trucks  to  the 
some  distance from the road. Classic labor prac- 
tice called for dumping the coal onto  a pile, load- 
ing some carts  or wheelbarrows  with smaller 
amounts of it, trundling them to the  furnace, and 
dumping or shoveling the  coal  into  the hopper. 
Elapsed time is on the  order of the manual grasp- 
transport-release IE processes  near  the middle of 
the  spectrum.  Eventually  the  operators built a 
small hill that  the  trucks could reach and ascend 
and constructed  a shallow chute from the  truck to 
the hopper, sloped so that  the  coal slid down  into 
the  furnace.  Elapsed time is  computable by hy- 
drodynamic models for turbulent and laminar 
flow. We have moved toward  the left on  the  spec- 
trum and “stolen”  the models residing there to 
our advantage. 
Reisman, l7 in a 

sentation? special cases of Navigr-Stokes equations’for fluid 
motions that he c 

It is by now almost a platitude to acknowledge was responsible. 
an unusual hydrc 

that  the global competitive race of the 1990s and next step in the c, 
beyond is based on shortened  response  cycles coal in the form 
combined with high product  variety and quality. and, frequently, : 
Prestigious management seminars point out  that 
where& the old rile of competitionwas  “provide  In  another  case,  Ken  Fordyce of IBM Kingston 
the most  value  for the least cost,”  the new one  is and Gary Sullivan of IBM Burlington have, in the 
“do so in the least elapsed time,” minimize the  course of developing the logistic management 
cycle time of the entire business, and ovenvhelm  system for the Burlington site,  concerned them- 
your competitor with  speed and va 
driven model terms, this says  to mc 

.riety. In time- 
w e  left on the 

&lves with the 
that  occur in the 

spectrum in Figure 7. But what  does this mean in cess.  They  have called thi[ “deckion 
practice? tiers”  and  describe it thus: I 
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positioning preventive  maintenance  downtime, 
production of a similar product  to  reduce  setup 
time, downstream  needs,  simultaneous  requests 
on  the  same piece of equipment, preferred ma- 
chines for yield considerations, assigning personnel 
to machines, covering for absences, and re-estab- 
lishing steady production flow after a machine has 
been down. 

Of course,  there is overlap  and  interaction  be- 
tween  the  four  decision  tiers;  but  typically differ- 
ent  groups  are  responsible  for different schedul- 
ing decisions. For example, maintenance  may 
decide  on training for their personnel,  work 
schedules for their  people,  preventive mainte- 
nance,  and  what machine to  repair  next.  Finance 
and  each building superintendent  may  make  deci- 
sions  on capital  equipment  purchases.  Industrial 
engineering may  have  the final say  on  total man- 
power,  but a building superintendent  may do  the 
day-to-day scheduling. Marketing  may  decide 
when  orders  for  products  can  be filled and  what 
schedule  commitments to make. For strategic and 
operational  decisions,  these  groups  and  their  as- 
sociated  decision  support  tools  are  loosely  coor- 
dinated or coupled. Finance  only  requires  an  es- 
timate of required  new  tools from each building to 
estimate  capital  purchase.  Each building requires 
an  estimate  on  new tool requirements from the 
product  development people. For dispatch deci- 
sions,  they  must  be tightly coupled. Lots  are pro- 
cessed  only  when  the  appropriate tool, operator, 
and raw material are available. At  dispatch, rough 
estimates are  no longer sufficient. If a machine  is 
down, maintenance  must  have  the  appropriately 
trained individual available to repair the machine. 
Manufacturing must  have the appropriate mix of 
tools  and  workers to produce finished goods  on a 
timely basis.  At  dispatch, the decisions  made by 
various  groups  must  be in sync  or nothing is  pro- 
duced. A manufacturing facility accommodates 
this tight coupling in only one of two ways:  slack 
(extra tooling and  manpower, long lead times, 
limited product  variation,  excess  inventory  and 
people, differential quality,  brand  loyalty, and 
so forth) or  strong information systems  to make 
effective decisions. 

Further  research  and  experimentation would be 
necessary to determine how our  understanding of 
the  lead-time differentiation of the  decisions  re- 
siding on  the  several  tiers  can  contribute  to  more 
effective execution of the interlinked operations 
to which they  pertain. 
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Figure 8 Response  time  and  time  value of information 
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Source: Hodge and Hodgson, Management  and  the Computer in 
Information and Control Systems 

Example G. Taking a bit of our  own medicine, let 
us consider  two paradigms, one  due to Hodge and 
Hodgson," shown in Figure 8; the  other by 
Robert Weinberg,19 shown in Figure 9. Hodge 
and Hodgson give us  an interesting quantification 
of the value of information as a function of the 
response time of the information system  that  de- 
livers it. Most of us would readily agree that in- 
formation that  reaches us too  late to act or com- 
pete effectively is of little value. But in the age of 
FRO (fast response organizations), few people 
would complain that information can be spewed 
at us  too  fast; it  might be  faster,  perhaps,  than  we 
can digest or  use properly. The paradigm of Fig- 
ure 8 posits time-dependent functions for the  cost 
as well as the  value of information (understood  to 
pertain to a situation  at  hand), and asserts  that 
there  is a range of response-rates  that is econom- 
ically attractive-neither too  fast nor too slow. 

Example H. Weinberg's classic paradigm in Fig- 
ure 9 relates  the  value of information to a se- 
quence of behavioral or inertial lags found in or- 
ganizations. The  heavy  top line may be read as, 
say,  the cumulative sales  revenue  curve  forecast 
for some product for the upcoming calendar  year. 
The  bottom solid line is  the actual cumulative 
sales performance; it shows dismal shortfalls due, 
perhaps, to a combination of ineptness and reces- 
sion. The following sequence of events then takes 
place: There is a perception lag  until the organiza- 
tion  finally  officially  acknowledges (takes cogni- 
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zance) that things are not as they should be. Next 
is an evaluation lag,  during which inquiries are 
made as  to why things are not going as hoped or 
forecast. Ultimately some explanation is accepted 
as plausible by  the powers that be,  and a decision 
is made to take remedial actions (price changes, 
sales drives, etc.). This is followed by an action lag 
to get the remedial  plan approved, funded, and put 
in  place. In the meantime, the graph indicates that 
performance under present conditions is deterio- 
rating.  Finally, the remedy is implemented, and, 
subject only to the natural inertias of the organiza- 
tion and its marketplace, sales turn upward and 
close the year at the point where the lower (actual) 
solid  line terminates at year-end. The distance be- 
tween the planned or forecast point and this last 
point is the shortfall cost of the present system. 

Weinberg now makes  the point that if a superior 
information system and good analytic modeling 
and diagnosis can  shorten  the perception and 
evaluation lags by  even a few percentage  points 
(the  bureaucracy and inertial lags being held un- 
changed for purposes of illustration here), the 
year-end  sales  results would be at  the point where 
the dashed line terminates, and the  distance  be- 
tween this point and the previously described ac- 
tual point is a fair measure of the  value of a good 
information and analysis system. 

Conclusion 

In summation, we  have tried to show  that pro- 
cesses of modeling (abstraction,  factor  selection, 
phenomenon-bounding,  knowledge representation, 
model  manipulation  and consequence assessment) 
are superb amplifiers of the manager's  planning  and 
implementation  abilities. They provide insights that 
are often nonobvious or counter-intuitive and thus 
highlight both dangers and opportunities that would 
otherwise have been overlooked. Improvements 
both in the sophistication of modeling and the price- 
performance of computing have created a time-of- 
ripeness that makes operational use of models  in 
planning  and  implementation truly worthwhile. 
Here  we  try to make two final observations: Enu- 
merate demonstrable benefits of problem solutions, 
and caution the reader against  blind use of exces- 
sively complicated models. 

What is a problem solution worth to  an  execu- 
tive? Miller and Star?' asked this question as 
early as 1964 and cited seven  points  that  are  ex- 
cerpted here: 
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Figure 9 Value of timely  information 
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1. The executive may profit  from the mere fact of a 
search for a solution even if no solution is  found. 

2. The executive  may profit from  a  search  that 
does  not find a solution by discovering that 
some  factor  that was considered  important is 
not so important. 

3. The executive  may profit because  the range of 
possible states of nature  is  narrowed. 

4. The executive  may profit because  the  number 

Source: R. S. WeinbergI9 

of strategies  that  he or  she  needs  to consider is 
decreased. 

5. The  executive  may profit by discovering a 
more  suitable  measure of effectiveness. 

6 .  The executive  may profit by obtaining good 
estimates of the probabilities of the  states of 
nature (e.g., with which he or  she must  cope). 

7. The executive  may profit by discovering the 
correct  evaluation of the payoff measure. 
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All of these  points  are  enhanced by insights 
gained from appropriate modeling. Although this 
exposition  clearly  has  championed the use of 
quantitative  techniques,  a  word of moderation  is 
in order in closing. This was articulated  elo- 
quently by Richard Cyert,’l excerpted in part 
here: “As a  model  becomes  more  complicated, 
however, it becomes  more difficult to determine 
which  variables  have significant effects on  the 
model’s behavior.  In  other  words, the model  may 
become almost as complex as  the real  world,  and, 
therefore,  the model may  become almost as dif- 
ficult to understand (although at  least it may  be 
experimentally manipulated and  intensively ob- 
served in a way which is usually not  possible with 
the  real world) . . . We thus find ourselves in a 
dilemma. The power of computer simulation tech- 
nique stimulates the formulation of very complex 
models, but models which are too complex defeat 
the purpose of model construction, which is to sim- 
plify the world so that it can be understood. We 
caution the  users of computer models, therefore, to 
try  to find the middle ground where  the model is 
complicated enough to deal with reality but not so 
complicated that it impedes our comprehension of 
this reality.” The present author’s predilection 
for gradual complicating of model structures,  a 
paradigm-before-algorithm or walk-before-you-run 
strategy, concurs with Cyert’s dictum. Such an ap- 
proach is also consistent with Occam’s Razor. 

A few years ago, the Columbia University  Sem- 
inar on Organization and Management addressed 
the  theme of complexity in management. During 
the  question-and-answer period, one  speaker,  a 
practicing  manager,  made  a  statement  to  this ef- 
fect: “Complexity  is  not  just  a  matter of scale or 
variety.  I  often  have  to  contend  with  many  factors 
and  many  factions. If I can  merely  guess at the 
possible  outcomes  and their likelihood of occur- 
rence,  I will call that  situation complicated. If I 
can’t  even  do that, I’ll call it complex.” 

This is an elegant insight, analogous to  the elec- 
trical engineer’s classic  “black  box” paradigm. In 
strategic alignment we  are dealing with not  just 
one  but  at  least two extremely  complex  pro- 
cesses.  The  results of their  concatenation are  apt 
to  be combinatorially huge. Application of quan- 
titative  techniques  and modeling can  often help to 
reduce  the complexities, make  the  processes 
more manageable, and at times  unearth  intu- 
itively nonobvious  opportunities. 
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