10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

. R. Glazer, “Measuring the Value of Information: The In-

formation-Intensive Organization,” IBM Systems Jour-
nal 32, No. 1, 99-110 (1993).

. J. S. Poulin, “Issues in the Development and Application

of Reuse Metrics in a Corporate Environment,” Fifth In-
ternational Conference on Software Engineering and
Knowledge Engineering, IEEE, San Francisco, CA (June
16-18, 1993), 258-262. '

. J. S. Poulin, D. Hancock, and J. M. Caruso, “The Bus-

iness Case for Software Reuse,” IBM Systems Journal 32,
No. 4, 567-594 (1993, this issue).

. G. Booch, Software Engineering with Ada, Benjamin

Cummings, Menlo Park, CA (1987).

STARS, Repository Guidelines and Standards for the
Software Technology for Adaptable, Reliable Systems
(STARS) Program, IBM CDRL No. 0460, STARS Tech-
nology Center, Affiliates Desk, Suite 400, 801 N. Ran-
dolph Street, Arlington, VA 22203 (March 15, 1989).

J. Nielsen, Hypertext and Hypermedia, Academic Press,
Inc., New York (1990).

W. B. Frakes, “Software Reuse, Quality, and Productiv-
ity,” Proceedings of the International Software Quality
Exchange 92, Juran Institute, Inc., San Francisco, CA
(1992), pp. 9-9 to 9-18.

R. Prieto-Diaz and P. Freeman, “Classifying Software for
Reusability,” IEEE Software 4, No. 1, 6-16 (January
1987).

E. Karlsson, S. Sivert, and E. Tryggeseth, “Classification
of Object-Oriented Components for Reuse,” Proceedings
of TOOLS’7, Prentice-Hall, Inc., Englewood Cliffs, NJ
(1992), pp. 1-13. ‘

RIG Technical Committee on Asset Exchange Interfaces,
“A Basic Interoperability Data Model for Reuse Libraries
(BIDM),” Reuse Interoperability Group (RIG) Proposed
Standard RPS-0001, April 1, 1993. Note: The Reuse li-
brary Interoperability Group is a group of government,
industry, and academic participants interested in the de-
velopment of interoperability solutions. Their material is
available from AdaNET (telephone 800-444-1458) and
ASSET (telephone 304-594-3954), or RIG Secretariat, c/o
Applied Expertise, 1925 North Lynn Street, Arlington,
VA 22209.

R. Prieto-Diaz, “Implementing Faceted Classification for
Software Reuse,” Communications of the ACM 34, No.
5, 88-97 (May 1991).

K. Laitinen, “Document Classification for Software
Quality Systems,” ACM Software Engineering Notes 17,
No. 4, 32-39 (October 1992).

Y. S. Maarek, D. M. Berry, and G. E. Kaiser, “An In-
formation Retrieval Approach for Automatically Con-
structing Software Libraries,” IEEE Transactions on
Software Engineering 17, No. 8, 800-813 (August 1991).
K. P. Yglesias, “Limitations of Certification Standards in
Achieving Successful Parts Retrieval,” Proceedings of
the 5th International Workshop on Software Reuse, Palo
Alto, CA (October 26-29, 1992), pp. YGL 1-5.

K. P. Yglesias

IBM Large Scale Computing Division
Poughkeepsie

New York

620 TECHNICAL FORUM

A reusable parts center

In 1991 the Reuse Technology Support Center
was established to coordinate and manage the re-
use activities within IBM. One component of the
established reuse organization was a Reusable
Parts Technology Center in Boblingen, Germany,
with the mission to develop reusable software
parts and to advance the state-of-the-art in soft-
ware reuse.

The history of the Boblingen parts center dates
back to 1981. It started as an advanced technol-
ogy project looking at methods for reusable de-
sign. A recent activity was to develop a compre-
hensive class library for C++**. This library is
offered together with an IBM product (IBM C Set
++ compiler).

In the beginning the goal of the project was to
have an integrated software development system
that supported the reuse of parts. A first approach
tried to find appropriate parts by analyzing exist-
ing code, but lead to the belief that parts of code
can easily be reused if they are realizations of
abstract data types. Projects that followed veri-
fied this, and now the parts center offers imple-
mentations of abstract data types for different lan-
guages and operating systems. This entry in the
forum describes how the parts center evolved and
what experiences were gained by this effort.

The need for a parts center. Before the existence
of a reusable parts center, reuse of code across
project borders seldom took place. No organiza-
tional structures supported cross-project commu-
nication. In addition, the lack of a common design
language made communication difficult. Many
different description methods for code were in

IBM SYSTEMS JOURNAL, VOL 32, NO 4, 1993

existence. An attempt was made to introduce a
common design language within IBM, but it met
with little success.

The code that was written day after day was not
designed to be reused. References to global var-
iables and shared control blocks were spread all
over the code. Also, hardware or operating sys-
tem dependencies were normally not isolated.
Modularization was not used widely, so internal
interfaces were not defined or, if defined, not
standardized. The programming languages used
did not support reuse, nor did they support good
software techniques such as information hiding
and encapsulation. Therefore, the code usually
could not be reused without changes. As a result,
only coding effort could be saved, but not the
surrounding work of design, test, and mainte-
nance.

Reusable design. Early investigations into reus-
able design showed that common structures exist
in the area of data structures, operations, and
modules. To avoid such parallel efforts in the fu-
ture, a formal software development process
could be established where inspection, verifica-
tion, testing, and documentation of the code
would be performed once and then made avail-
able to other development groups. This should
lead to a gradual build-up of a central parts and
tools database containing high-quality parts.

It was expected then, that developers could
change their way of writing software so that an
additional outcome of each project would be high-
quality parts that could be supplied to the com-
mon database. To support the developers, a de-
velopment system offering the following reusable
design facilities was called for:

* A design language that allows formal specifica-
tion of module interfaces and function seman-
tics

* A process to ensure the correctness of a piece
of design by prototyping, correctness proofs, or
testing

* A database system that allows the storage and
retrieval of a piece of design with a generalized
search facility

The approach to find appropriate parts was to
scan existing products and to identify replicated
functions, either on the design or on the code

IBM SYSTEMS JOURNAL, VOL 32, NO 4, 1993

level. Soon it became clear that an abundance of
dependencies on global data existed. This led to
the hypothesis that data abstraction, i.e., bun-
dling the data with their operations, is the key to
reusability.

Reusability through abstract data types. In 1983 a
project was started to explore data abstraction as
a software development and reuse technology in
a real software product: a network communica-
tion program.

For this project, seven abstract data types called
building blocks were written that represented a
third of the total lines of code. Two implementa-
tion techniques for abstract data types, i.e.,
macro expansion and reentrant procedures, were
investigated. Besides other advantages, the pro-
cedure approach supported the hiding of infor-
mation and protection of the data against disal-
lowed access, but needed temporary storage that
had to be allocated and freed dynamically. A proj-
ect report that discusses the advantages of the
different approaches states that the decision has
to be taken for each case individually and that a
language supporting data abstraction in design
and implementation is needed.

In the course of the pilot project the following
experiences with abstract data types were ob-
served:

* Abstract data types were a stabilizing factor
during the design phase. Even drastic design
changes had only a minor effect.

Isolating data that logically belong together
proved to be correct. Where logically unrelated
data were packed together, the design became
too complex and had to be changed later.

The availability of exactly specified abstract
data types reduced the complexity of the de-
sign.

Since the abstract data types were tested thor-
oughly, the testing of the remaining code was
speeded up significantly.

The building-block approach. Due to the good ex-
periences with abstract data types, the features
that are most important for reuse were summa-
rized in a reuse model. Postulating five conditions
of reuse, the future building-block approach was
determined. The conditions are:

1. Information hiding. One does not need to
know the inner workings of reused code; a de-
scription suffices in all respects for reuse.

TECHNICAL FORUM §21

. Modularity. Reusable code reflects entities of
functional coherence, consistency, and com-
prehensiveness. '

. Standardization. Reusable code is standard-
ized code.

. Parameterization. Reusable code is to be
adapted to the specifics of reuse instances
through controlled substitution.

. Testing and validation. Reusable code must be
error-free.

The project showed that the programming lan-
guage (PL/S) primarily used within IBM at the time
lacked features that would support the reuse con-
ditions. Therefore, a language extension was en-
visioned, developed, and validated on a second
pilot project with great success.'

The building-block language extension (BB/LX)
follows the model of generic packages of Ada,
with private parts for the implementation of
abstract data types under the principle of in-
formation hiding. We found that something
like the Ada library system was essential be-
cause it can bind code entities to programs
without seeing the internals of the bound enti-
ties and because it can support the binding
with as much syntax and semantics checking as
possible.

In the PL/s environment there are two library sys-
tems: link libraries that contain output from com-
pilation or assembly in a relocatable form, and
macro libraries that contain macros and pieces of
source code to be generated into the user code.
Both approaches were investigated.

In the link library approach, code entities to
be reused were PL/S procedures compiled indi-
vidually with a self-contained scope of wvari-
ables. An abstract data type was implemented
according to Denert’s approach.? Each proce-
dure had multiple entries (one for each abstract
data type operation) and a common part in which
a data representation was declared for the ab-
stract type.

This approach proved unsatisfactory because:

1. The required procedure call overhead, even
for simple operations; was too high for people
to accept reuse.

2. Parameters that were by their very nature ge-
neric had to be repeated on each and every

622 TECHNICAL FORUM

operation invocation, making interfaces very
complex and cumbersome. _

. The complete absence of compiler support to
check the correctness of calls to the proce-
dures (or procedure entries) caused much frus-
tration for users.

In the macro-based approach, the performance
problem is solved through in-line generation of
reusable code. Support of generic parameteriza-
tion is the domain of macro processing anyway,
so we could program into BB/LX the syntax check-
ing and the static semantics of building block use
with fairly standard techniques.

Thus the link-library-based approach was aban-
doned in favor of the macro-library-based ap-
proach, which evolved into BB/LX.

BB/LX now provides the following functions:

* It checks the syntax of building-block opera-
tions as invoked by the user.

¢ It stores and maintains generic parameters for
building blocks.

* It provides a mechanism like the private mech-
anism of Ada (to implement abstract data
types).

* It performs static semantics analysis.

The goal of error-free code. As reusable code is
expected to be used numerous times, any con-
tained error would be multiplied; therefore, it is
crucial that reusable code is error-free.

Fortunately, this goal can be reached easier for
reusable code than for ordinary code—and the
second pilot project proved that. The reason lies
in the modularity and the independence of the
building blocks.

A building block can be tested very completely
before its actual use. This is possible because no
modification of the code is required—or allowed.
In addition, a test program can handle the testing
easily because a building block is a well-struc-
tured and separate entity, has an accurate well-
defined user interface, and has no other interde-
pendencies with the user program. It is sufficient
to call building-block operations from the test
program. Usually, no scaffolding and setup of a
test environment is required.

IBM SYSTEMS JOURNAL, VOL 32, NO 4, 1993

Also, the building blocks do not depend on any
application or environment. Different hardware
platforms are supported, making it possible to test
building blocks on other systems than the one for
which they were developed. Thus, independent
testing is said to increase heavily the confidence
of the users. Since building blocks are platform-
independent, they can be tested by an indepen-
dent group, even if they have a different software
or hardware environment.

When programmers use a building block, they
cannot introduce defects into the building-block
code. This means that once a building block is
free of defects it will remain free of them. There-
fore, the quality inherent in building blocks will
directly and proportionally improve the quality of
the product in which they are reused.

Our experience has proven the quality gains to be
significant. In one project, the quality (number of
errors per lines of code) of the building-block
code was about 9 times better during the function
test and 4.5 times better during the component
and system test than the rest of the code.

In another completed project, the results were
even better. No errors in the building blocks were
found during the entire test cycle of the product.

Development of the reuse environment. As more
and more building blocks were produced, tools
became necessary to support the user in finding
and integrating the building blocks into programs
and the environment. The reuse environment was
intended to be the integrated development envi-
ronment for users of Boblingen’s software build-
ing blocks. As such, it supported ordering, ship-
ping, maintenance, and (rejuse of building blocks.
It also offered comprehensive information about
available building blocks and support communi-
cation among building-block users and develop-
ers (information exchange, problem reporting).
Special tools for creating, compiling, and testing
building-block applications were also provided.

Users could select and order building blocks from
a central repository through the interactive func-
tions provided by the reuse environment. A mul-
tilevel on-line information system (including a
catalog of the available building blocks and an
information base of all building-block specifica-
tions) aided in selecting the required building
blocks.

IBM SYSTEMS JOURNAL, VOL 32, NO 4, 1993

The reuse environment was a prototype whose
purpose was to gain experience with software
reuse support in IBM programming centers. The
experiences were expected to be used in the
definition and design of a production reuse envi-
ronment for systems programming.

Standardization. The expectation that BB/LX
would enable the developers to write their own
building blocks was not realized. Instead, there
was increased demand for building blocks pro-
duced by a parts center. Since building blocks
were developed in response to specific project
requirements, they were often too specialized for
general use and available too late. It was thus
necessary to construct a comprehensive library of
readily available reusable parts that had more
general applicability.

As the building blocks were created for the com-
mon library, it became obvious that it is not
enough to design separate building blocks care-
fully; the collection of building blocks needed to
be designed as a whole.

We needed to standardize and generalize inter-
face and behavior of the entire set of building
blocks by defining common concepts for the dif-
ferent abstract data types.

As preparation for this building-block revision, a
project was set up in 1984 that resulted in a com-
prehensive catalog of reusable abstract data
types. This eventually led to the development of
the Boblingen building-block catalog, which now
defines and establishes the following for all BB/LX
building blocks:

¢ Comprehensive collection of abstractions—all
abstract data types described in standard text-
books, such as stack, queus, list, set, map, etc.,
are contained.
Consistent and complete user interfaces—all
building blocks of one abstraction offer the
identical abstract interface, which is checked
for completeness. ‘
Uniform operations semantics—operations
with the same name behave conceptually alike.
Uniform attributes—abstractions with the same
attribute offer similar operations.
Common terminology—the abstractions are de-
scribed using a common vocabulary and com-
mon concepts.

¢ Hierarchical implementation and abstraction

TECHNICAL FORUM 623

structure—overview information and catego-
rizing information is supplied.

The Boblingen building-block catalog describes
about 10 different implementation features. The
user can choose linked or unlinked implementa-
tion, bounded or unbounded implementation, and
much more. This results in more than a thousand
different combinations per abstraction. Although
G. Booch does not offer as many implementation
features in his book,? he still has over 400 differ-
ent abstract data types with over 100 different
queues.

To save coding effort while building the compre-
hensive library, a technique was developed that
combined the use of generic characteristics with
the ability to derive abstract data types from sim-
ilar ones. This technique also allowed the reuse of
specifications, test cases, and documentation.
Thus the expectation that reuse saves effort in all
development phases did materialize.

Production of C+ + parts. In parallel with the im-
plementation of the reuse methodology in PL/S,
investigations of the use of the C+ + language for
building blocks started.* Since the required con-
cepts of encapsulation, information hiding, and
modularity are supported by C+ +, the develop-
ment of a language extension was not necessary.’
Also, no special technique to derive building
blocks was necessary since the concept of inher-
itance is supported.

So the implementation of the building-block li-
brary for C++ did not require as much start-up
effort as the development for PL/S. In August
1991, the first release of the class library (IBM’s
Collection Class Library) for C++ became avail-
able within 1BM. By the end of 1991, 57 projects
with 340 programmers were already using the
C++ building blocks. In June 1993, the Collec-
tion Class Library became available as part of the
IBM C Set++ compiler, for C++.

Support. After production for building blocks was
established, it became obvious that for the parts
that were not produced on a special order, sup-
port for the users is necessary.

Today, in system programming, assembler code
is still being written or modified. The use of PL/S
still is not widely accepted, and the use of still

624 TECHNICAL FORUM

higher elaborated techniques is far beyond the
normal daily working experiences.

In contrast, the experiences with the user support
and consultancy for the C++ building blocks
show that in the C++ domain, programmers are
much more motivated to make themselves famil-
iar with a new technology.

What is true for both domains is that few devel-
opers use abstract data types as if they were a
usual part of the programming language. This
makes support and consultancy in selecting and
applying building blocks necessary.

Summary. During the creation and the establish-
ment of the parts center, our group discovered
what language features and what infrastructure
were needed to enable the building and the dis-
tribution of reusable components. Many of the
problems we had to solve were caused by the
inadequate support of reuse through the language
we initially used.

Significant progress was achieved when object-
oriented languages like C++, which support re-
use inherently, became available. Our experience
showed that it is not enough to use an object-
oriented language to make reuse happen, but
high-quality class libraries are essential to get the
desired productivity improvements.

**Trademark or registered trademark of AT&T.

Cited references

1. M. Lenz, H. A. Schmid, and P. F. Wolf, “Software Reuse
Through Building Blocks,” IEEE Software 4, No. 4,
34-42 (July 1987).

. E. Denert, ‘“Software-Modularisierung,” Informatik-
Spektrum 2, 204-218 (1979).

. G. Booch, Software Components with Ada: Structures,
Tools, and Subsystem, The Benjamin/Cummings Publish-
ing Company, Inc., Menlo Park, CA (1987).

. J. Uhl and H. A. Schmid, “A Systematic Catalogue of
Reusable Abstract Data Types,” Lecture Notes in Com-
puter Science, G. Goos and J. Hartmanis, Editors,
Springer-Verlag, Berlin (1990).

. M. Ellis and B. Stroustrup, The Annotated C++ Refer-
ence Manual, AT&T Bell Laboratories, Addison-Wesley
Publishing Co., Reading, MA (1990).

D. Bauer
IBM Large Scale Computing Division
Boblingen
Germany

18BM SYSTEMS JOURNAL, VOL 32, NO 4, 1993

